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Abs t rac t .  Gold showed in 1967 that not even regular grammars can be 
exactly identified from positive examples alone. Since it is known that 
children learn natural grammars almost exclusively from positives exam- 
ples, Gold's result has been used as a theoretical support for Chomsky's 
theory of innate human linguistic abilities. In this paper new results are 
presented which show that within a Bayesian framework not only gram- 
mars, but also logic programs are learnable with arbitrarily low expected 
error from positive examples only. In addition, we show that the upper 
bound for expected error of a learner which maximises the Bayes' poste- 
rior probability when learning from positive examples is within a small 
additive term of one which does the same from a mixture of positive and 
negative examples. An Inductive Logic Programming implementation is 
described which avoids the pitfalls of greedy search by global optimisa- 
tion of this function during the local construction of individual clauses 
of the hypothesis. Results of testing this implementation on artificially- 
generated data-sets are reported. These results are in agreement with 
the theoretical predictions. 

1 Introduct ion 

Gold's [5] seminal paper not only formed the foundations of learnability theory 
but  also provided an important  negative result for the learnability of grammars.  
It was shown that  not even the class of all regular languages could be identified 
in the limit from an arbitrary finite sequence of positive examples of the tar- 
get language. In the same paper Gold pointed out the implications for theories 
of language acquisition in children. He notes that  psycholinguistic studies by 
McNeill and others had shown that  

... children are rarely informed when they make grammatical errors and 
those that  are informed take little heed. 

Gold's negative results have been taken by [14] as theoretical support  for Chom- 
sky's theory [4] of innate human linguistic abilities. 

In this paper Gold's requirements for exact identification of a language are 
replaced by a need to converge with arbitrarily low error. In a previous paper 
[10] the author derived a function for learning logic programs from positive ex- 
amples only. In the present paper the Bayes' function for maximising posterior 
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probability is derived. The solution is representation independent, and there- 
fore equally applicable to grammar learning, scientific theory formation or even 
automatic programming. The expected error of an algorithm which maximises 
this function over a high prior probability segment of the hypothesis space is 
analysed and shown to be within a small additive term of that obtained from a 
mixture of positive and negative examples. 

An implementation of this approach within the Inductive Logic Programming 
(ILP) system Progol4.2 is described. A novel aspect of this implementation is 
the use of global optimisation during local construction of individual clauses of 
the hypothesis. The technique avoids the local optimisation pitfalls of cover-set 
algorithms. Experiments on three separate domains (animal taxonomy, KRK- 
illegal and grammar learning) are shown to be in accordance with the theoretical 
predictions. 

This paper is organised as follows. In Section 2 a Bayes' framework is de- 
scribed which is compatible with the U-learnability framework [9, 13]. The Bayes' 
function for the posterior probability of hypotheses given positive examples only 
is derived in Section 3. The expected error of an algorithm which maximises the 
Bayes' function over a high prior probability segment of the hypothesis space 
is given in Section 4. In Section 5 the ILP system Progol4.2, which implements 
this function is described. An experiment is presented in Section 6, in which 
Progol4.2 is tested on varying amounts of randomly generated data for three 
target concepts. The results of these experiments are discussed in Section 7. The 
paper is concluded in Section 8 by a comparison to related work and a discussion 
of directions for future research. 

2 B a y e s '  p o s i t i v e  e x a m p l e  f r a m e w o r k  

The following is a simplified version of the U-learnability framework presented 
in [9, 13]. X is taken to be a countable class of instances and 7/ ___ 2 x to be 
a countable class of concepts. Dx and DH are probability distributions over X 
and 71 respectively. For H 6 71, Dx(H) = ~=e~ Dx(z) and the conditional 
distribution of Dx associated with H is as follows. 

Dx(xNH) ~ ODx(~ ) i fz~H 
DXIH(Z) = Dx(zlH) - Dx(H) -- (Dx(H) otherwise 

The teacher randomly chooses a target theory T from DH and randomly and 
independently chooses a series of examples E = (xl, .., zrn) from T according 
to DXIT. Given E, DH and Dx a learner L chooses an hypothesis H 6 7-/ 
for which all elements of E are in H. The teacher then assesses Error(H) as 
Dx(H \ T) + Dx(T \ H). 

Unlike the setting in U-learnability it is assumed in the present paper that 
L is given DH and Dx. 
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3 Bayes' posterior estimation 

Gold's negative result for identification of the regular languages over the symbol 
set ~7 is based on the fact that for any sequence of positive examples E there 
will always be at least two possible candidate hypotheses, 1) Z ~*, the language 
containing all possible sentences and 2) the language corresponding to elements 
of E alone. It is clear that 1) is the most general hypothesis, and has a compact 
finite automaton description, while 2) is the least general hypothesis and has a 
complex finite state automaton description. Since neither of these two extremes 
seems attractive it would seem desirable to find a compromise between the size 
of the hypothesis description and the generality of the hypothesis. Size and 
generality of an hypothesis can be defined within the Bayes' framework of the 
previous section as follows. 

sz(H) = - In  OH(H) 
g(H) = Dx(H) 

Bayes' theorem allows us to derive a tradeoff between sz(H) and g(H). In its 
familiar form, Bayes' theorem is as follows. 

p(H]E) = P(H)p(EIH) 
p(E) 

With respect to the Bayes' framework of the previous section p(HtE ) is inter- 
preted from the learner's perspective as the probability that H - T given the 
example sequence is E. Similarly, p(H) is defined as the probability that H - T, 
which is 

p(H) - DH(H). 
Meanwhile p(E]H) is the probability that the example sequence is E given that 
H - T. Since examples are chosen randomly and independently from DXlH then 
for any consistent hypothesis this is as follows. 

P(EIH) = H DxIH(X,) 
i=1 

~-f nx (xi) 
~=llt Dx(H) 

The prior p(E) is the probability that the example sequence is E irrespective of 
T. This is as follows. 

p(E) = Z DH(T) H DXIT(Xj) 
T67-/ j = l  

The Bayes' equation can now be rewritten as follows. 

OH(H) l'Iim=l Dx(xi) Dx (H) 
P(HIE) - p(E) 
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Since H~=, Ox(=,) . p(E) is common to all consistent hypotheses, it will be treated as 
a normalising constant cm in the following. 

(1)  
p(HIE) = Dn(H) Dx-(H) cm 

ln p(HlE) = m ln (g-~'-H) ) - sz(H) + dra 

In the above dm = In era. The tradeoff between size and generality of an hypoth- 
esis can be seen in the final equation above. The function In P(HIE) decreases 
with increases in sz(H) and g(H). Additionally, as m grows, the requirements 
on generality of an hypothesis become stricter. A function with similar prop- 
erties was defined in [10] and it was shown there that for every hypothesis H 
except T there is a value of m such that for all m j > m it is the case that 
fro' (H) < f m  (T). This result indicates a form of convergence, somewhat differ- 
ent from Gold's identification in the limit. 

4 Analys is  of  expec ted  error 

In [7] Haussler et al. argue the advantages of analysing expected error over VC 
dimension analysis. Analysis of expected error is the approach taken below. 

It is assumed that class membership of instances is decidable for all hypothe- 
ses. Also the hypotheses in 7/are assumed to be ordered according to decreasing 
prior probability as H1, H2,. . . .  For the purposes of anMysis the distribution 
DH(Hi) = ~ is assumed, where a is a normalising constant. This is similar 
to the prior distribution assumptions used in Progol4.1 [10] and is a smoothed 
version of a distribution which assigns equal probability to the 2 b hypotheses 
describable in b bits, where the sum of the probabilities of such hypotheses is 
2 -5. Within this distribution i has infinite mean and variance. It is also assumed 
that the hypothesis space contains only targets T for which Dx (T) <_ ½. This 
assumption, which holds for most target concepts used in Inductive Logic Pro- 
gramming, is not a particularly strong restriction on the hypothesis space since 
i f T  is the complement of T and Dx(T) > ½ then clearly Dx('T) < ½. 

The following theorem gives an upper bound on the expected error of an 
algorithm which learns from positive examples only by maximising the Bayes' 
posterior probability function over the initial am hypotheses within the space. 

T h e o r e m  1. Expec t ed  e r ror  for posi t ive  examples  only. Let X be a count- 
able instance space and Dx be a probability distribution over X.  Let 7t C 2 x be 
a countable hypothesis space containing at least all finite subsets of X,  and for 
which all H E 7-I have Dx  (H) < ½. Let DH be a probability distribution over 
7t. Assume that 7t has an ordering HI ,H2 , . . .  such that DH(HI) >_ DI~(Hj) 
for all j > i. Let DH(Hi) = ~ where ~ = ~']~1 ~ ~" o.~" Let 7"ln = {Hi : 
Hi E 7t and i < n}. Let f (H)  = D H ( H ) ( ~ )  m. (~ is chosen randomly 
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from DH and the xi in E = (xl, ..,xm) are chosen randomly and indepen- 
dently from DXlT. L is the following learning algorithm. I f  there are no hy- 
potheses H E 7in such that H D HE = {xl,.., xm} then L(E) = HE. Otherwise 
L(E)  = Ha(E) = H only if H E 71n, H D_ HE and for all H'  E 71,~ for which 
H'  D__ HE it is the case that f ( H )  > f (H ' ) .  The error of an hypothesis H is 
defined as Error(H, T) = Dx (T \ H) + Dx(H \ T). F o r  n = am the expected 
error of L after m examples, EE(m), is at most 2.3z+2~, m 

I n  

Proof .  Given in Appendix A. [] 

Note that this result is independent of the choice of Dx and that L considers 
In  ~Tt only O(m) hypotheses to achieve an expected error of O(~-- ) .  For comparison a 

similar algorithm which learns from a mixture of positive and negative examples 
is analysed for the same choice of DH. 

T h e o r e m 2 .  E x p e c t e d  e r ro r  for pos i t ive  and  nega t ive  examples .  Let 
X be a countable instance space and 7t C 2 X be a countable hypothesis space 
containing at least all finite subsets of X .  Let DH , Dx  be probability distributions 
over 71 and X.  Assume that 71 has an ordering H1, H2, . . .  such that DH(H,) >_ 
OH(Hi) for all j > i. Let OH(Hi) = ~ where ~ = ~"~i~=1 ~ .  Let 71,, = {Hi : 
Hi E 71 and i < n}. Let f (H)  -- DH(H).  T is chosen randomly from D~.  Let 
ex(x, H) = (x, v) where v = True if x e H and v = False otherwise. Let E = 
( ex( x l , T) , .., ex( xin , T) ) where each xi is chosen randomly and independently 
from Dx .  HE -- {x : (x, True) in E}. Hypothesis H is said to be consistent 
with E if and only if x, E H for each (xi, True) in E and xj q~ H for each 
(xj, False) in E. L is the following learning algorithm. I f  there are no hypotheses 
H E 71n consistent with E then L(E) = He.  Otherwise L(E) = Ha(E) = H 
only if H E 7"ln, H consistent with E and for all H I E 71n consistent with E 
it is the case that f ( H )  > f ( H ' ) .  The error of an hypothesis H is defined as 
Error(H, T) = Dx  (T \ H) + D x  (H \ T). For n = am the expected error of L 
after m examples, EE(m), is at most 1.51+2~. In 

m ° 

Proof .  Given in Appendix A. [] 

Note that this is within a small additive term of the bound for learning from 
positive examples only. Again the result is independent of the choice of D x  and 

of i. m again L considers only O(m) hypotheses to achieve an expected error 0(--~--), 

5 I m p l e m e n t a t i o n  

The Bayes' function fin has been implemented to guide the search of the ILP 
system Progol [10] when learning from positive examples only. The new version, 
Progol4.2, is available by anonymous ftp from ftp.comlab.ox.ac.uk in directory 
pub/Packages/ILP/progol4.2. The earlier version, Progol4.1, uses a cover-set 
algorithm to construct the set of clauses, but for each clause does a pruned 
admissible search to maximise compression. Progol4.2 has a similar overall search 
algorithm, but when constructing each clause carries out an admissible search 
which optimises a global estimate of fin for the complete theory containing 
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the clause under construction. The basis for this global estimate is as follows. 
Suppose a clause Ci has been constructed as the ith clause of an overall theory 
(set of clauses) Hn = {C1, .., Ca}. It is found that Hi - C1, .., Ci implies p more 
of the m positive examples than Hi-a.  Figure 1 shows this situation with respect 

Dx 

Fig. 1. Generality of partial theories 

to the sample distribution Dx. According to the Law of Large Numbers when 
m is large 

g(Hi) - g(gi-1)  p 
g(H,~) m 

and therefore 
g(Hn) ~ p (g (Hi )  -g (Hi -1 ) ) .  

The surprising conclusion is that for large m it is possible to estimate the gen- 
erality of H ,  from p, m, g(Hi) and g(Hi-t) .  

By assuming that the size of an hypothesis can be measured in bits for any 
hypothesis and that the number of examples covered per bit of an hypothesis is 
approximately uniform the following should also hold. 

m 
sz(Hn) ~ - -  sz(Ci) 

P 

In Progol4.2 the value of sz(Ci) is measured crudely as the number of atoms in 
the clause. 

Since it is possible to estimate both sz(Hn) and g(Hn) during the local con- 
struction of each individual clause, it is possible to maximise an estimate of 
f,~(Hn) during the construction of each of the clauses. The polynomial time- 
complexity bounds on the search carried out by Progol4.1 [10] are unaltered for 
Progol4.2. 

5.1 E s t i m a t i o n  o f  g(Hi) 

The function g(Hi) in the above is estimated in Progol4.2 using Stochastic Logic 
Programs (SLPs) [11]. An SLP is a range-restricted logic program P with nu- 
meric labels associated with each of the clauses. An SLP can be used to randomly 
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derive elements of the Herbrand Base of P using SLD derivation with a stochas- 
tic selection rule. In order to estimate g(Hi) an SLP, representing Dx, is used to 
randomly generate a sample of size s from the domain of the predicate p/n being 
learned. If s I of these instances are entailed by p/n then the Laplace corrected 
estimate of g(Hi) is ,%1 

s + 2  " 

In order to construct the SLP for the domain of p/n, Progot4.2 uses the 
modeh declaration of p/n (see [10]). For instance, suppose in a chess domain the 
mode declaration is modeh(1,move(+piece,pos(+file,+rank),pos(+file,+rank))). 
Then Progol4.2 will construct the following generating clause for the domain. 

'*move'(A,pos(B,C),pos(D,E)) :- piece(A), file(B), rank(C), 
file(D), rank(E). 

The clauses of the SLP consist of the above clause and the definitions of piece/l, 
jile/1 and rank/1. The labels for the SLP are built up by recording the total 
number of times each clause is visited in the derivations of the positive examples 
of move~3. In this way it is possible to estimate the distribution D x  from the 
examples themselves. For instance, in the example set we might find that half 
the examples involve the queen, a quarter involve rooks and the other quarter 
involve bishops. When randomly generating examples from the conditioned SLP 
these proportions are maintained. 

6 Experiment 

6.1 E x p e r i m e n t a l  h y p o t h e s e s  

The experiments described in this section will test the following two hypotheses. 

1. U p p e r  b o u n d .  In every domain EE(m) < 2.33+2!n m 
2. Pos i t ive  versus  pos i t ive  and  nega t ive  data .  In every domain error is 

of a similar order when learning from positives examples only compared to 
learning from a mixture of positive and negative examples. 

6.2 Materials  

The experimental hypotheses will be tested using Progol4.2 on the following 
target theories. 

An ima l  t axonomy.  Figure 2 shows the target and form of examples for the 
animal taxonomy domain. 

K R K  illegality. Figure 3 shows the target and form of examples for the KRK 
illegality domain (originally described in [12]). 

N a t u r a l  l anguage  g rammar .  Figure 4 shows the target and form of examples 
for the natural language grammar domain. 

Examples sets and background knowledge for the domains above are available 
from the ftp site described in Section 5. 
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Examples .  

class(dog,mammal), class(dolphin,mammal). 
class(trout,fish), class(eel,fish). 
class(lizard,reptile), class(snake,reptile ). 
class(eagle,bird), class(penguin,bird). 
Target. 

class(A,mammal) :- has_milk(A). 
class(A,fish) :- has_gills(A). 
class(A,bird) :- has_covering(A,feathers). 
class(A,reptile) :- has_covering(A,scales), 

not has_gills(A). 

Fig. 2. Animal taxonomy 

Examples .  

illegal(3,5,6,7,6,2), illegal(3,6,7,6,7,4). 
illegal(5,1,2,1,2,1), illegal(4,3,1,1,4,2). 

Target .  

illegal(A,B,A,B,_,_). 
illegal( .... A,B,A,B). 
illegal(A,B . . . .  C,D) :- adj(A,C), adj(B,D). 
illegal(A,_,B,_,B,_) :- not A=B. 
iltegal(_,A,,B,_,B) :- 
illegal(_,A,B,C,B,D) 
iUegal(_,A,B,C,B,D) 
illegal(i,_,B,C,D,C) 
illegal(i,_,n,C,D,C) 

not A----B. 
:- A<C, A<D. 
:- A>C, A>D. 
:- A<B, A<D. 
:- A>B, A>D. 

Fig. 3. KRK illegality 

Examples .  

s([every, nice, dog, bark@ H). 
s([the,man,hits,the,ball,at,the,house],~). 
s( [the ,dog, walks, to,the,m an], 0 )" 

Target .  

s(A,B) :- np(A,C), iverb(C,B). 
s(A,B) :- np(A,C), vp(C,D), np(D,B). 
s(A,n) :- np(A,C), tverb(C,D), np(D,E), 

prep(E,F), np(F,S). 

Fig. 4. Natural language grammar 
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6.3 M e t h o d  

For the first two domains instances were generated randomly using the appro- 
priate SLP (see Section 5.1) with uniform values of labels on all clauses. In the 
grammar domain it was found that only around 4 in 10,000 randomly generated 
sentences were positive examples of the target grammar T. Thus the distribution 
Dx was skewed so that Dx(T) = Dx(T) = 0.5. In all domains instances were 
classified according to the target theory in order to construct training and test 
sets. In the case of learning from positive examples only, training sets had all 
negative examples removed. 

For each domain Progol4.2 was tested on 1) learning from positive examples 
only and 2) learning from a mixture of positive and negative examples. In both 
cases m was varied according to the series m = 5, 10, 20, 40, 80,160,320,640, 1280. 
For each size of sample the predictive accuracy of the hypothesis returned by 
Progol4.2 was estimated on a test set of size 10,000. For each m the estimate of 
predictive accuracy was averaged over 10 repeat resamplings of the same sized 
training set. The series was discontinued for a particular domain if the estimate 
error was 0 for several successive values of m. 

7 Results  

7.1 P red ic t ive  accuracy  versus b o u n d  

The results of testing the first experimental hypothesis (expected error upper 
bound) are graphed in Figures 5, 6 and 7. Labels on these graphs have the 
following meanings. 

P. The predictive accuracy of learning from positive examples only is shown as 
the mean and standard deviation (error bars) of the 10 retrials for each value 
of m. 

L(P) .  The theoretical lower bound on positive examples only accuracy from 
Theorem 1 (Accuracy= 100(1- BE(m))). 

M. Majority class for domain (IOODx(T)). 

Since each data point in each of the three domains lies above the bound, the 
first experimental hypothesis of Section 6 is confirmed t 

7.2 Posi t ive  versus posi t ive and  negat ive  

The results of testing the second experimental hypothesis (similar expected error 
for positive versus positive and negative) are graphed in Figures 8, 9 and 10. 
Labels on these graphs have the following meanings. 

1 The non-monotonic behaviour of P in Figure 5 was found to be caused by large 
fluctuations in errors of commission. This is due to the gradual allowance of larger 
theories by the Bayes' function as ra grows, together with the fact that generality 
does not vary monotonically with increasing size of a clausal theory. 
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Fig .  5.  Predictive accuracy versus bound for animal taxonomy 
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Fig. 7. Predictive accuracy versus bound for natural language grammar 

P. The predictive accuracy of learning from positive examples only, shown as 
the mean of the 10 retrials for each value of m. 

P T N .  The predictive accuracy of learning from a mixture of positive and neg- 
ative examples, shown as the mean of the 10 retrials for each value of m. 

L ( P T N ) .  The theoretical lower bound on positive examples only accuracy from 
Theorem 2 (Accuracy-- 100(1 - EE(m))). 

M. Majority class for domain (IOODx(T)). 

In the taxonomy and grammar domains (Figures 8 and 10) learning from positive 
examples only requires consistently fewer examples for any given e than learning 
from a mixture of positive and negative examples. In the KRK-illegality domain 
the converse is true. In every domain accuracy for all values of m is comparable 
when learning from positive examples compared to learning from a mixture of 
positive and negative examples. This confirms the experimental hypothesis. 

8 C o n c l u s i o n  

In 1967 Gold demonstrated negative results for learnability in the limit of various 
classes of formal languages. This has provided a strong impetus for the investi- 
gation of constrained hypothesis languages, within which learning from positive 
examples is possible, For instance, Plotkin [15] demonstrated the existence of 
unique least general generalisations of positive examples represented as first- 
order clauses. Biermann and Feldman [2] and later Angluin [1] demonstrated 
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Fig. 10. Positives versus positives and negatives for natural language grammar 

that certain parameterised subsets of the regular languages could be identified 
in the limit from positive examples only. Within the framework of PAC-learning 
Valiant demonstrated [19] that k-CNF propositional logic formulae are learnable 
from positive examples. More recently Shinohara [18] demonstrated that certain 
size-bounded classes of elementary formal systems are identifiable in the limit 
from positive examples. 

Unlike the approaches above, the techniques used in this paper for learning 
from positive examples are representation independent. That is to say, the rep- 
resentation of hypotheses does not play a part either in the development of the 
Bayes' function (Section 3) or the analysis of expected error (Section 4). It might 
legitimately be claimed that two strong assumptions are made in Section 2: 1) 
that the learner knows DH and 2) that the learner can estimate Dx by condition- 
ing a Stochastic Logic Program. The second assumption seems less pernicious 
since it only requires a logic program which defines the Herbrand base. The first 
assumption is more worrying. Further research is required to analyse the effect 
of discrepancy between the learner's prior p(H) and the teacher's distribution 
DH. 

Various researchers including [3, 6] have advocated and demonstrated the use 
of Bayesian analysis in machine learning. The success of the Bayesian solution 
to learning from positive examples reinforces this trend. 

Several techniques [16, 17, 8] for learning from positive examples only have 
been investigated within Inductive Logic Programming. However, all these ap- 
proaches differ from this paper in assuming some form of completeness within 
the example set. 
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In the light of the results in this paper it would seem worth reconsidering 
the degree of support that Gold's learnability results provide for Chomskian lin- 
guistics. Clearly, Chomsky's theory of innate linguistic ability is consistent with 
the results in this paper. However, the results in this paper show that weaker 
assumptions concerning the innate properties of natural language can be made 
than those suggested by Gold's results. 
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A Proof  of Theorems  1 and 2 

T h e o r e m  1. E x p e c t e d  e r r o r  f o r  p o s i t i v e  e x a m p l e s  only .  Let X be a count- 
able instance space and Dx be a probability distribution over X.  Let 7~ C_ 2 X be 
a countable hypothesis space containing at least all finite subsets of X,  and for 
which all H E 7£ have Dx (H) <_ ½. Let DH be a probability distribution over 
74. Assume that 74 has an ordering HI, H2, . . .  such that Dtt(Hi) > DH(Hj) 
for all j > i. Let D , (H i )  = ~ where ~ = ~ - ~ 1 ~  ~ 1 Let 74~ = {Hi : m o.-~" 
Hi E 74 and i < n}. Let f (H)  = D H ( H ) ( ~ )  . T is chosen randomly 
from DIt and the x~ in E = (xl , . . ,xm) are chosen randomly and indepen- 
dently from DXIT. L is the following learning algorithm. If there are no hy- 
potheses H E 7£n such that H D_ HE = {xl, ..,Xm} then L(E) = HE. Otherwise 
L(E) = Hn(E) = H only if H E 74n, H ~_ Ha and for all H I E ~n for which 
H I ~_ HE it is the case that f (H)  >_ f (H' ) .  The error of an hypothesis H is 
defined as Error(H, T) = Dx (T \ H) + n x  (H \ 7"). For n = am the expected 
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error of L after m examples, EE(m), is at most 2.as+2,. 
171 

Proo£ Consider the case in which T e 7t. (case 1). Then by definition L(E) = 
Ha(E) = H. Since H = Hn(E) has the maximum value of f in 71, it follows 
that 

(~x~xl()  m ( 1 ) m 
DH(H) H) > DH(T) Dx(T)  (1) 

Also Dx  (T fq H) = Dx (T) - Dx  (T \ H) = Dx  (g)  - Dx  (H \ T) and therefore 

Dx  (H) - Dx  (T) = Dx  (H \ T) - Dx  (T \ H). (2) 

Furthermore consider the case in which Dx (H) > Dx  (T) (case la). Rearranging 
(I) and taking logs we get 

m(In Dx(H) - In Dx(T)) <_ In DH(H) - In DH(T). (3) 

Since Dx(H)  > Dx(T)  let Dx(H)  = Dx(T)  + A where 0 < A < 1. Also let 
r(Dx(T) ,  A) = In (Dx(T)+A)--ln Dx(T) in Dx(H)-ln Dx(T) za = Dx(H)-Dx(T) . We now show that 
for 0 < Dx  (T) < Dx (H) <_ ½ it is the ease that r(Dx (T), A) > 2. First note 
that r (Dx (T), A) decreases monotonically in Dx (T) since ~ r ( D x  (T), ,5) = 

-~(ln ~Dx (T) -- Dx(H)Dx (T) + 1) < 0 for A > O. But within the given ranges ,5 ap- 

proaches 0 as Dx(T)  approaches ½ and therefore limDx(T)_~½ r (Dx (T ) ,A )  = 

OD~x ln Dx(T)  = 1 _ Dx(T) -- 2. Thus r (Dx(T) ,A)  > 2 for 0 < Dx(T)  < 
Dx(H)  <_ ½ from which it follows that In Dx(H)  - In Dx(T)  > 2 (Dx (g )  - 
Dx(T)) .  Combining this with (2) and (3) gives 

2m(Dx(H \ T) - Dx(T\ H)) <_ In DH(H) - In DH(T) 

and therefore 

D x ( H  \ T) < - In  D~(T) 
- 2m + Dx (T \ H). (4) 

Now consider the case in which Dx (H) <_ Dx  (T) (case lb). From (2) it follows 
that Dx (H \ T) < Dx (T \ H). Thus (4) holds in both case la and case lb, and 
therefore from the definition of Error in the theorem for all of case 1 we get 

Error(H(E), T) < - In  DH(T) - 2m + 2Dx(T  \ H). (5) 

Lastly consider the case in which T ~ 7"lr, (case 2). In this case we have the 
trivial bound 

Error(H, T) < 1. (6) 
We are now in a position to bound EE(m).  First we define T 1 = T and T m = 
T x T m-1 Now 

EE(m) = E DH(T) E Dx(EIT)Err°r(L(E) 'T)"  
T67"l E6T '~ 
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Splitting the sum into case I and case 2 and making use of (6) gives the following. 

EE(m) <_ Z DH(T) Z Dx(EIT)Err°r(Hn(E)'T)+ Z DH(T).I 
TE14~ EfiT "~ T~4\~In 

But since DH(Hi) -- -5,a 

TET-/\7/,, 

Z a a a 
D~ (T) = ~ < -- - - 

/=n+l n i2 -- n" 

This together with (5) gives 

a 
EE(m) <_ - + 

T614n E6T m 

a 1 
n 2m Z Dg(T)In D.(T) 

TE74~ 

+2 Z DH(T) Z Dx(E[T)Dx(T\H) 
T6~l~ E6T m 

But 
1 l ° ° a  _~ 
2 Z DH(T)In DH(T) < -2 - -  _ ~ l n  ( ) < 0.82. 

TE?-/,~ 

Letting finn(e) = i S :  E 6 T m and Dx(T ~ Hn(E)) < eDx(T)} and remember- 
ing that Dx(T \ H) <_ Dx (T) < ½ gives 

O.(T) Z Dx(EIT)Dx(T \ H) 
TEH~ EET "~ 

Z DH(T) Z Dx(EIT)Dx(T\H) 
T 6 H ~  E E r m .  (e) 

TEH. EETm\rmn(e) 

6 
< 5+ v,,(r) Vx(EIT)  

c 1 
= -~ + "2 Z DH(T)Pr(for random E, Dx(T \  S n ( E ) )  > eDx(T)) 

T 6 H ~  

e Pr(3H 67 i , .Dx(T \H)  > cOx(T) andxl,..,xm 6 (TNH)) 
< 3  + 2 

¢ + n(1 -- E) m 
< 
- -  2 

6 q- n e  -era  < 
- 2 

Dx(E[T)Dx (T \ H) 
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T h u s  
a 0.82 

EE(m) < - + + e + ne -~m 
n m 

Optimal values of n and e are found by successively setting to zero the partial 
derivatives of n, c and solving. This gives e = '"m and n = am. Substituting 
gives 

EE(m) <_ 
m 

2.33 + 2ln m 
< 

1 + 0.82 + 2ln m +  In a+ 1 

m 

[3 

T h e o r e m  2. E x p e c t e d  e r r o r  fo r  p o s i t i v e  a n d  n e g a t i v e  e x a m p l e s .  Let 
X be a countable instance space and 7{ C__ 2 x be a countable hypothesis space 
containing at least all finite subsets of X.  Let DH, Dx be probability distributions 
over 7i and X.  Assume that 7{ has an ordering H1, H 2 , . . .  such that DH(Hi) >_ 
DH(Hj) for all j > i. Let OH(Hi) = ~ where ~ = ~i°°__1 ~ .  Let 7in = {H, : 
Hi 6 74 and i < n}. Let f ( g )  = DH(H). T is chosen randomly from DH. Let 
ex(x, H) - (x, v} where v -- True if x 6 g and v = False otherwise. Let E = 
<ex(xl,T), .., ex(xm,T)> where each xi is chosen randomly and independently 
from Dx.  HE = (x : (x, True) in E}. Hypothesis H is said to be consistent 
with E if and only if xi 6 H for each (xi, True) in E and xj ~ H for each 
(xj, False) in E. L is the following learning algorithm. If  there are no hypotheses 
H 6 7{, consistent with E then L(E) = HE. Otherwise i ( E )  = Hn(E) = U 
only if H 6 7i,,  H consistent with E and for all H' @ 7i,, consistent with E 
it is the case that f (H)  >_ f ( g ' ) .  The error of an hypothesis H is defined as 
Error(H, T) = Dx (T \ H) + Dx ( g  \ T). For n - am the expected error of L 
after m examples, EE(m), is at most 1.51+21. m 

fr~ 

P r o o f .  Let T m -- {(ex(xl, T), .., ex(xm, T)>: xi 6 T}. The expected error can be 
bounded in a similar way to that used in the proof of Theorem 1. 

E E ( m ) =  E DH(T) E Dx(EIT)Err°r (L(E) 'T)  
T674  E E T  m 

<- E OH(T) E Dx(EIT)Err° r (H"(E) 'T )+  E 
T67"In E6T ~ T~7¢\74~ 

a 
< - - +  E DH(T) E Dx(EIT)Err°r (L(E) 'T)  

n 
TETI~ E6T "~ 

DH(T).I 

Letting Vm,(e) = { E ' :  E' 6 T m and Error(H,(E'),T) <_ e} gives 

E DH(T) E Dx(EIT)Err°r (L(E) 'T)  
T E H , ,  E E T  '~ 

- - - - E  DH(T) E Dx(EIT)Err°r (L(E) 'T)  
T6H~ E6r.~(e) 
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q- E DH(T)  E D x ( E I T ) E r r ° r ( L ( E ) ' T )  
T e H n  E E T m \  r,~n (~) 

< e + P r ( 3 g  e 7-In.Error(H, T)  > e and x l , . . ,  xm e (T  fl g ) )  

_< e + n ( 1  --  e) m 

< e + ne -era 

T h u s  a 
E E ( m )  <_ - + e + ne -~'" 

n 

Again optimal values of  n and e are found by successively setting to zero the par- 
t~ .= and n = am.  Substituting tial derivatives of  n, ¢ and solving. This gives ¢ = --W- 

gives 

1 + 2 t . m + l , ~ a +  1 
E E ( m )  < 

rn 
1.51 + 2In m 

< 
m 

rl 


