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Abstract. In a previous paper we described a machine learning ap-
proach which was used to automatically generate food-webs from national-
scale agricultural data. The learned food-webs in the previous study con-
sist of hundreds of ground facts representing trophic links between in-
dividual species. These species food-webs can be used to explain the
structure and dynamics of particular eco-systems, however, they cannot
be directly used as general predictive models. In this paper we describe
the first steps towards this generalisation and present initial results on
(i) learning general functional food-webs (i.e. trophic links between func-
tional groups of species) and (ii) meta-interpretive learning (MIL) of gen-
eral predictive rules (e.g. about the effect of agricultural management).
Experimental results suggest that functional food-webs have at least the
same levels of predictive accuracies as species food-webs despite being
much more compact. The results also suggest that when the number of
training examples are limited, functional food-webs have a higher pre-
dictive accuracy. In this paper we also present initial experiments where
predicate invention and recursive rule learning in MIL are used to learn
food-webs as well as predictive rules directly from data.

1 Introduction

Machine Learning has previously been used in ecology (e.g. [5]), however, eco-
logical data-mining is relatively a new emerging subject. For example large-scale
ecological data from agricultural systems are nowadays being produced to eval-
uate the impacts of new technology, such as genetically modified crops. These
large-scale data can be also used to develop models for predicting the effects
of perturbation on agro-ecosystems. We have recently demonstrated [10] that
a logic-based machine learning method can be used to automatically generate
plausible and testable food webs from ecological census data. Through a review
of the literature, it was found that many of the learned trophic links are cor-
roborated by the literature. In particular, links ascribed with high probability
by machine learning are shown to correspond well with those having multiple
references in the literature. In some cases novel, high probability links were sug-
gested, and some of these have recently been tested and confirmed by subsequent



empirical studies [11]. The learned species food-webs described in [10] and [11]
consist of hundreds of ground facts (ground abductive hypotheses) represent-
ing trophic links between individual species. These food-webs can be used to
explain the structure and dynamics of particular eco-systems. However, species-
based food-webs cannot be directly used as general predictive models unless
they are generalised or used together with general (i.e. non-ground) predictive
models. In this paper we describe the first steps towards this generalisation and
present initial results on (i) learning general functional food-webs (i.e. trophic
links between functional groups of species) and (ii) meta-interpretive learning of
general predictive rules (e.g. about the effect of agricultural management).

2 Background and related work

To make good decisions about ecosystem management, e.g. the management
of agricultural land for the optimal delivery of ecosystem services, it is neces-
sary to have theories that predict the effects of perturbation on ecosystems.
Network ecology, and in particular food-web approach, holds great promise as
an approach to modeling and predicting the effects of perturbation on ecosys-
tems. Networks of trophic links, also known as food-webs, which describe the
flow of energy/biomass between species, are important for explaining ecosystem
structure and dynamics. However, relatively few ecosystems have been studied
through detailed food-webs because establishing predation relationships between
the many hundreds of species in an ecosystem is expensive and in many cases
impractical.

We have recently developed [10] a logic-based machine learning method which
can be used to automatically generate plausible and testable food-webs from
ecological census data. The initial food-web was learned from an extensive Vortis
suction sampling of invertebrates from 257 arable fields across the UK as part
of the Farm Scale Evaluations (FSE) of genetically modified, herbicide-tolerant
(GMHT) crops. Using a technique based on calculating a treatment effect ratio
[6], this abundance count data was converted into up/down information and
was regarded as the primary observational data for the learning. The set of
observable (or training) data are represented by predicate abundance(X,S, up)
(or abundance(X,S, down)) expressing the fact that the abundance ofX at site S
is up (or down). This information was compiled from FSE data as detailed in [10].
The knowledge gap that we initially aimed to fill was a predation relationship
between species. Thus, we declared abducible predicate eats(X,Y ) capturing
the hypothesis that species X eats species Y . In order to use abduction, we also
provided the rules which describe the observable predicate (abundance) in terms
of the abducible predicate (eats):

abundance(X,S,Dir):-
predator(X),
bigger than(X,Y),
eats(X,Y),
abundance(Y,S,Dir).



Fig. 1. Machine learning of species food-webs from ecological data using Abductive
ILP.

where Dir can be either up or down. This Prolog rule expresses the inference
that following a perturbation in the ecosystem (caused by the management),
the increased (or decreased) abundance of species X at site S can be explained
by X eating species Y , which is lower in the food chain and the abundance
of species Y is increased (or decreased). Given this model and the observable
data, the Abductive ILP system Progol 5 4 generates a set of ground abductive
hypotheses in the form of ‘eats’ relations between species as shown in Figure
1. The set of ground hypotheses can be visualised as a network of trophic links
(food-webs) as shown in Fig. 2a. In this network a ground fact eats(a, b) is
represented by a trophic link from species b to species a.

This food-web was examined [2] by domain experts from Rothamsted Re-
search UK and it was found that many of the learned trophic links are corrob-
orated by the literature. In particular, links ascribed with high probability by
machine learning are shown to correspond well with those having multiple refer-
ences in the literature. In some cases novel, high probability links were suggested,
and some of these have recently been tested and confirmed by subsequent empir-
ical studies. For example, in the hypothesised food-webs, some species of spiders
always appeared as prey for other predators; a result that was unexpected be-
cause spiders are obligate predators. This hypothesis was tested using molecular
analysis of predator guts and it was found that in this system spiders do appear
to play an important role as prey [4]. Thus, even though some of the hypothe-
sised links were unexpected, these were in fact confirmed later and this provided
an extremely stringent test for the machine learning approach. The initial study
was extended [11] by learning more complex food-webs from the national-scale

4 Available from: http://www.doc.ic.ac.uk/ e shm/Software/progol5.0/
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pitfall sampling data (that was considerably larger than the initial Vortis data).
Fig. 2b shows a species food-web learned from merged Vortis and pitfall data.

The learned species food-webs described in [10] and [11] consist of hundreds of
ground facts (ground abductive hypotheses) representing trophic links between
individual species. Figure 2 shows examples of species food-webs learned from the
Vortis data and merged Vortis and pitfall data. These food-webs can be used to
explain the structure and dynamics of particular eco-systems. However, species-
based food-webs cannot be directly used as general predictive models unless
they are generalised or used together with general (i.e. non-ground) predictive
models. In this paper we describe the first steps towards this generalisation
and present initial results on two different but related directions: (i) Learning
general functional food-webs and (ii) Meta-interpretive learning (MIL) of general
predictive rules.

Functional food-webs are more general than species food-web, a functional
food-web represents interactions between functional groups of species while a
species food-web represents trophic links between individual species as described
in [2]. The machine learning of species food-web described above can be gener-
alised by extending the approach to learn trophic links between functional groups
of species, given the functional group memberships of species. Figure 4 shows
examples of functional food-webs learned from the Vortis data and merged Vor-
tis and pitfall data. More details about these functional food-webs and how they
have been learned are given in the next section.

The machine learning of species food-webs (and functional food-webs) de-
scribed above assume that the logical rules describing the problem, e.g. a rule
which describes the observable predicate in terms of ‘eats’ relations (or the func-
tional group memberships of species) are given as background knowledge. How-
ever, these may not be always available or they could be incomplete. In this paper
we describe a new machine learning approach which allows automated discovery
of trophic links as well as general predictive rules (and functional group mem-
berships) directly from ecological data. This new setting requires both predicate
invention and learning recursive rules which are not supported by most machine
learning tools, including Progol which has been used for learning species and
functional food-webs. On the other hand, Meta-interpretive Learning (MIL) [9,
8] is a new approach for predicate invention and recursive rule learning and can
be used for learning ground hypotheses (e.g. trophic links) as well as non-ground
hypotheses such as the general recursive rules. The MIL setting was initially
used [9] for learning grammars from example sequences but was extended [8] to
dyadic definite clauses. Unlike some ILP systems which either support predicate
invention or recursion learning, MIL was shown to be a very efficient approach for
predicate invention as well as learning recursive programs. For example, the ILP
system ATRE has been used [1] for the discovery of mutual recursive patterns
from text. However, ATRE does not support invention of first-order predicates.
MIL is related to other studies where abduction has been used for predicate
invention (e.g. [7]). One important feature of MIL, which distinguishes it from



other existing approaches, is that it introduces new predicate symbols which
represent relations rather than new objects or propositions.

3 Machine learning of predictive models as an ILP

problem

The machine learning tasks described above, i.e. learning of species food-webs,
learning of functional food-webs and learning of predictive rules, can all be for-
mally described by adopting the general ILP setting. ILP systems use given set
of positive and negative examples E = {E+ ∪ E−} and background knowledge
B to construct a hypothesis H that explains E+ relative to B such that the
extended theory is self-consistent:

– B ∪H |= E+, and
– B ∪H ∪ E− is consistent.

The components E, B and H are each represented as logic programs. In the
case of machine learning of species and functional food-webs, abductive learning
is used to learn ground hypotheses H (abducible) in the form of eats relations
between species or functional group of species. In this case, background knowl-
edge includes general rules R ⊆ B which describe the observable examples in
terms of the abducible predicate (e.g. see definition of abundance/3 above).

In the case of machine learning of predictive rules, Meta-interpretive Learning
(MIL) is used to learn a set of ground and non-ground hypotheses H . These
include general predictive rules R ⊆ H which describe the observable examples
in terms of the invented predicates (e.g. see Fig. 6). In this case, background
knowledge includes higher-order meta-rules M ⊆ B which are activated during
the proving of examples in order to generate hypotheses H .

Hence, machine learning of species and functional food-webs only require
abductive learning where predicates can be separated into two disjoint sets:
the observable predicates and the abducible predicates. In practice, observable
predicates describe the empirical observations of the domain, i.e. abundance of
species. The abducible predicates describe underlying relations in our model,
i.e. eats relations between species or functional group of species, that are not
observable directly but can, through the theory B, bring about observable infor-
mation. By contrast, machine learning of predictive rules requires a combination
of abduction and induction where the induction is needed to generate a set of
non-ground hypotheses that contain universally quantified variables and can be
used as general predictive rules. Meta-interpretive Learning (MIL) provides a
tight integration of abduction and induction as described in [9].

In the following sections, machine learning of functional food-webs and meta-
interepretive learning of predictive models are described with more details.

4 Machine learning of functional food-webs

In this section we explain how the approach for learning species food-webs has
been extended for learning functional food-webs which are more general than



Fig. 3. Machine learning of functional food-webs from ecological data using Abductive
ILP.

species food-webs. We also show that functional food-webs can lead to higher
predictive accuracy than species food-webs.

As discussed in Section 2, species food-webs can be used to explain the struc-
ture and dynamics of a particular eco-system. However, functional food-webs (i.e.
which represent trophic interactions between functional groups of species) are
more important for predicting changes in agroecosystem diversity and produc-
tivity [3]. Given the background information on functional type of each species,
trophic networks for functional groups can be also learned from ecological data
using the machine learning approach described above.

As for the species food-webs, we need a rule which describes the observable
predicate in terms of eats relation between functional groups:

abundance(X,S,Dir):-
predator(X),
bigger than(X,Y),
ft(X,XFunc ID),
ft(Y,YFunc ID),
eats(XFunc ID,YFunc ID),
abundance(Y,S,Dir).

Given this new model and background information (functional types [3] of
species in the form of ft(X,XFunc ID)) trophic networks can be constructed
for functional groups in a learning setting similar to the one described above for
individual species.

Figure 4a and 4b show functional food-webs learned from the Vortis data
and from merged Vortis and pitfall data respectively. These food-webs are con-
structed by learning trophic interactions between functional groups rather than



individual species. Each functional group is represented by a species which can
be viewed as an archetype for the functional group.

4.1 Empirical evaluation

In this section we test the following null hypothesis:

Null hypothesis 1: A trophic network constructed by learning trophic links
between functional groups has a lower predictive accuracy compared to the
trophic network for individual species.

Materials and methods In this experiment Progol 5.0 5 is used to abduce
‘eats’ relations between species and functional groups of species from observable
data (i.e. up/down abundance of species at different sites). The observable data
has been compiled from FSE data as described in [10]. The up/down abundance
of species at different sites are then encoded as predicates abundance(X,S, up)
and abundance(X,S, down). The background knowledge includes information
about sites and species and Prolog rules for abundance as described in Sec-
tions 2 and 4. A probabilistic approach, called Hypothesis Frequency Estimation
(HFE) [10], was used for estimating probabilities of hypothetical trophic links
based on their frequency of occurrence when randomly sampling the hypothesis
space. Using this technique, the thickness of trophic links in Figures 2 and 4 rep-
resent probabilities which are estimated based on the frequency of occurrence
from 10 random permutations (a user selected parameter) of the training data
(and hence different seeds for defining the hypothesis space). Relative frequencies
are used in the same way probabilities are used in probabilistic ILP and the prob-
abilistic inference is used to estimate probabilities of unseen data. For example,
the probability p(abundance(a, s, up)) can be estimated by relative frequency of
hypotheses which imply a at site s is up. Similarly, p(abundance(a, s, down))
can be estimated and by comparing these probabilities we can decide to predict
whether the abundance is up or down. This method has been used in the leave-
one-out experiments in [10] to compare the predictive accuracies of probabilistic
trophic networks vs non-probabilistic trophic networks. We use similar leave-one-
out experiments to compare the predictive accuracies of functional food-web vs
species food-web from Vortis data (shown in Fig. 2a and 4a). Other materials
and methods are similar to the experiments in [10], but we also include the rule
and background knowledge for learning functional food-webs as described above.

Results and discussion The predictive accuracies of the functional and species
food-webs are shown in Figure 5. According to this figure, the difference between
the predictive accuracies of the probabilistic network for the species food-web
and the functional food-web are not significant when more than 50% of training
examples are provided. However, the predictive accuracy of functional food-web

5 Available from: http://www.doc.ic.ac.uk/ e shm/Software/progol5.0/



(a)

(b)

Fig. 4. Functional food-webs learned from the Vortis data (a) and from merged Vortis
and pitfall data (b). Each group in the functional food-web is represented by a species
which can be viewed as an archetype for that functional group.
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is significantly higher (p-value of 0.004 from t-test) than the predictive accu-
racy of species food-web when 25% of training examples is available. This result
suggest that when the number of training examples are limited, the functional
food-web (which is more general) has a higher predictive accuracy compared to
the species food-web. The null hypothesis 1 can therefore be refuted. In gen-
eral these experiments confirm that a network which is constructed by learning
trophic links between functional groups is at least as accurate as the trophic
network for individual species despite being less complex (i.e. having less nodes
and edges). Note that in this experiment we used a leave-one-out test strategy
and evaluated both food-webs on the data from the same agricultural system.
The higher predictive accuracy of the functional food-web would be more evident
if the food-webs are evaluated on a different agricultural system (e.g. different
crops, climate etc) and we intend to demonstrate this as a future work.

5 Meta-interepretive learning of predictive models

In the machine learning setting described in the previous section, the recur-
sive rules describing the observable predicate (abundance/3) and the functional
groups were provided as part of background knowledge. However, these informa-
tion may not be always available or they could be incomplete. Here we describe a
new machine learning setting where these information could be learned directly
from data. This new learning setting requires predicate invention and recursive
rule learning and we use Meta-interpretive Learning (MIL) [9, 8] for this purpose.
In the MIL framework described in this paper, predicate invention is conducted



Fig. 6. Meta-interpretive learning of ground hypotheses (i.e. food-web) and non-ground
hypotheses (i.e. prediction rule for down regulation) learned from a simplified food-web
data (abundance of 6 species from 4 different sites). Predicates z1 and z2 are invented
predicates, where z2 represents ’eats’ relation.

via construction of substitutions for meta-rules employed by a meta-interpreter.
The use of the meta-rules clarifies the declarative bias being employed. New
predicate names are introduced as higher-order skolem constants, a finite num-
ber of which are introduced during every iterative deepening of the search as
described in [8].

MIL is a technique which supports efficient predicate invention and learning
of recursive logic programs built as a set of metalogical substitutions by a mod-
ified Prolog meta-interpreter which acts as the central part of the ILP learning
engine. The meta-interpreter is provided by the user with meta-rules which are
higher-order expressions describing the forms of clauses permitted in hypothe-
sised programs. The meta-interpreter attempts to prove the examples and, for
any successful proof, saves the substitutions for existentially quantified variables
found in the associated meta-rules. When these substitutions are applied to the
meta-rules they result in a first-order definite program which is an inductive
generalisation of the examples.

Fig. 6 shows meta-interpretive learning of ground hypotheses (i.e. food-web)
and non-ground hypotheses (i.e. prediction rule for down regulation) learned
from a simplified ecological data on down regulation of species following an
agricultural management. MIL works by proving examples via meta-interpreter.
This figure shows three higher-order meta-rules which are activated during the
proof in order to generate the hypotheses shown in this figure. These hypotheses
include non-ground rules and ground facts. Predicates z1 and z2 are invented
predicates, where z2 represents ’eats’ relation. Hence, the ground facts z2(a, c),
z2(c, f), etc represent the food-web which together with the non-ground rules for



’down’ can be used for predicting down-regulation. The rule for ’down’ shown in
Fig. 6 is similar to the rule provided as background knowledge in the previous
sections.

5.1 Empirical evaluation

In this section we test the following null hypothesis:

Null hypothesis 2: The MIL system Metagol cannot outperform the ILP sys-
tem Prolog in learning prediction rules as well as trophic links from a sim-
plified ecological data.

Materials and methods In this section we use MetagolD
6 to learn ground

hypotheses (i.e. food-web) and non-ground hypotheses (i.e. prediction rule for
down regulation) from a simplified food-web data consisting of abundance of
6 species from 4 different sites, as shown in Figure 6. We use leave-one-out
experiments to compare the predictive accuracies of Metagol vs Prolog. Prolog
has been also tested in an enhanced mode where the food-web is provided as
background knowledge (Prolog + foodweb).

Results and discussion Fig. 7 compares predictive accuracies of Metagol
vs Progol vs Prolog + foodweb in learning ground hypotheses (i.e. food-web)
and non-ground hypotheses (i.e. prediction rule for down regulation) from the
simplified food-web data described above. According to this, the predictive ac-
curacies of Metagol are significantly higher than Progol. The accuracy of an
enhanced Progol setting ,where the food-web is provided as background knowl-
edge (Prolog + foodweb), reaches around 75%. However, Metagol, which can
learn both food-web and prediction rules, reaches an accuracy of 100%. These
results suggest that Metagol can learn the recursive rules and the food-web at
the same time but it is difficult for Progol to learn these recursive rules directly
from data even if the food-web structure is provided as background knowledge.
Fig. 7 also compares timings of Metagol vs Progol. According to this figure
Progol is significantly faster. But it should be noted that unlike Progol which
fails to learn any recursive rule, Metagol is learning and evaluating recursive
rules.

6 Conclusions

We presented initial results on machine learning of general predictive models
from ecological data. We have considered two different but related directions
to extend our previous approach for machine learning of food-webs: (i) learning
functional food-webs and (ii) meta-interpretive learning (MIL) of general pre-
dictive rules. Experimental results suggested that functional food-webs have at

6 Available from: http://ilp.doc.ic.ac.uk/metagolD
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Fig. 7. Predictive accuracies and timing of Metagol vs Progol in learning ground hy-
potheses (i.e. food-web) and non-ground hypotheses (i.e. prediction rule for down reg-
ulation) from a simplified ecological data as shown in Fig. 6.

least the same levels of predictive accuracies as species food-webs and could also
lead to higher predictive accuracy when the number of training examples are
limited. We also presented initial results on using MIL for machine learning of
predictive models. These results confirm that MIL can re-construct a simplified
food-web and learn recursive predictive rules directly from data. In this paper
we only demonstrated MIL on a simplified species food-web. However, initial
experiments suggest that it is also possible to learn functional food-webs as well
as functional groups membership directly from data using predicate invention.
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