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Abstract. Development of effective methods for learning large programs is arguably one of the hardest un-
solved problems within ILP. The most obvious approach involves learning a sequence of predicate definitions
incrementally. This approach is known as Curriculum Learning. However, Quinlan and Cameron-Jones’
paper from 1993 indicates difficulties in this approach since the predictive accuracy of ILP systems, such
as FOIL, rapidly degrades given a growing set of learned background predicates, even when a reasonable
ordering over the predicate sequence is chosen. Limited progress was made in this problem until the recent
advent of bias-reformulation methods within Meta-Interpretive Learning. In this paper we show empiri-
cally that given a well-ordered predicate sequence, relatively large sets of dyadic predicates can be learned
incrementally using a state-of-the-art Meta-Interpretive Learning system which employs a Universal Set
of metarules. However, further experiments show how progressive random permutations of the sequence
rapidly degrades performance in a fashion comparable to Quinlan and Cameron-Jones’s results. On the
basis of these results we propose the need for further identification of methods for identifying well-ordered
predicate sequences to address this issue.

1 Introduction

In their seminal paper Quinlan and Cameron-Jones [14] demonstrated the difficulties in using FOIL [12] to learn
a sequence of inter-related predicate definitions. This approach is now referred to as Curiculum Learning [1]. The
experiment involved eighteen list-processing definitions learned incrementally in the sequence order presented
in Chapter 3 of Bratko’s textbook for learning Prolog [2]. Although predicates in the first half of the sequence
were learned accurately and efficiently from extensive tabulated sets of examples, predictive accuracy degraded
substantially in the second half of the sequence, leading to FOIL timing-out with error-prone definitions. While
some of this behaviour was due to difficulties in effective learning of mutually recursive definitions, the dominant
feature was that of progressive expansion of the search space due to the growing vocabulary of learned predicate
definitions being added to the background knowledge.

By contrast, more recent work in Meta-Interpretive Learning (MIL) [10] has shown that the use of bias-
reformulation methods, such as dependent learning [6] allows accurate and efficient learning of extended se-
quences of string-transformation predicates from small numbers of examples. A key feature of dependent learn-
ing is its ability to automatically identify a good sequence ordering for the learning. A second aspect is that
MIL, unlike FOIL, is guaranteed to find minimal predicate definitions, avoiding problems with overfitting in the
presence of large amounts of background knowledge. Since the minimal representation of the target theory either
stays the same or shrinks monotonically with expanding background predicates, this can lead to reductions in
search in the case that hypotheses are considered in increasing order of their size.

In this paper we explore the effect that predicate sequence choice has on learning performance. In particular,
we show that a) with a set of inter-related family relations, MIL produces efficient and effective learning in
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the case of a well chosen predicate sequence and b) performance degrades gradually with progressive random
permutations of such an ordering. These results re-enforce the need for techniques, such as dependent learning,
for addressing the problems of learning large logic programs.

This paper is organised as follows. Section 2 describes related work. The Meta-Interpretive framework is
described in Section 3. In Section 4 we describe the implementation of Metagol and the algorithm for running
the experiments. The experiments are described in Section 5. We conclude and describe further work in Section
6.

2 Related work

Induction of large programs from data is one of the long term aims of ILP [11]. However, even when learning
individual predicate definitions the complexity of admissable search grows exponentially [8]. Although Quinlan’s
FOIL [12] provides efficient heuristic search, the lack of admissable search leads to problems with incompleteness
associated with zero-gain literals [13] as well as hard issues relating to mutual recursion in multi-predicate
learning [14, 5]. One initially promising avenue to avoid Quinlan and Cameron-Jones’ problem with increasing
background knowledge was presented by Srinivasan et al [15] who showed that using admissable search Progol
[8] can simultaneously increase accuracy while decreasing search time. The reason is that increasing background
knowledge reduces the minimal size of a consistent solution, allowing Progol to consequently reduce both the
search size and the degree of overfitting for single clause solutions as relevant background knowledge is provided
incrementally.

Recent advances in the area of Meta-Interpretive Learning (MIL) [10] have demonstrated a way in which
higher-order background knowledge in the form of metarules and abstractions [4] can further constrain admiss-
able hypothesis space search, leading to decreases in search time and increases in predictive accuracy. While
Progol guarantees minimal solutions for single clause searches, Metagol [10] achieves minimal and admissable
multi-clause predicate definition searches by iterative deepening. However, MIL learns definitions incrementally,
which opens the question of effects related to the order in which predicates are learned. Results in our exper-
iments indicate that if the idealised ordering used in experiments is randomly permuted, predictive accuracy
degrades rapidly. It is therefore necessary to consider how the order of predicate definition learning should be
selected automatically. Inital results in [6] indicate that a technique referred to as dependent learning can be
effective in selecting such an ordering, though it has still to be clarified what the properties of a target theory
are for dependent learning to have guaranteed effectiveness.

3 Framework

MIL [9, 10] is a form of ILP based on an adapted Prolog meta-interpreter. Whereas a standard Prolog meta-
interpreter attempts to prove a goal by repeatedly fetching first-order clauses whose heads unify with a given
goal, a MIL learner attempts to prove a set of goals by repeatedly fetching higher-order metarules (Fig. 1b)
whose heads unify with a given goal. The resulting meta-substitutions are saved in an abduction store, and
can be re-used in later proofs. Following the proof of a set of goals, a hypothesis is formed by applying the
meta-substitutions onto their corresponding metarules, allowing for a form of ILP which supports predicate
invention and the learning of recursive theories.



3

4 Implementation

Figure 1a shows MetagolDF [6], an implementation of the MIL framework, similar in form to a standard Prolog
meta-interpreter. A universal set of metarules (see [3]) (Fig. 1b) is defined separately.

prove([], Prog, Prog).
prove([Atom|As], Prog1, Prog2) : −
metarule(Name,MetaSub, (Atom :- Body), Order),
Order,
abduce(metasub(Name,MetaSub), Prog1, Prog3),
prove(Body, Prog3, Prog4),
prove(As, Prog4, Prog2).

(a) Prolog code for generalised meta-interpreter

Name Metarule Order
Inverse P (x, y)← Q(y, x) P � Q
Chain P (x, y)← Q(x, z), R(z, y) P � Q,P � R
TailRec P (x, y)← Q(x, z), P (z, y) P � Q, x � z � y

(b) Metarules with associated ordering constraints, where �
is a pre-defined ordering over symbols in the signature. The
letters P , Q, and R denote existentially quantified higher-
order variables; x, y, and z denote universally quantified first-
order variables; and c1 and c2 denote existentially quantified
first-order variables.

Fig. 1: MetagolDF meta-interpreter (a) and universal metarules (b)

4.1 Metagol Interface

A user interface1 was created for manually entering data and configurations needed to run a learning task with
Metagol. The user can enter predicates and constants, fill in background knowledge, select metarules, enter a
predicate to learn, and enter the training set of positive and negative examples. Once the run is assembled, the
user can generate the Prolog code for running the task in Metagol, execute the code on the server, and view the
results. Finally, the definitions learned in the task can be saved in the database for the given user, and included
as background knowledge in subsequent learning tasks. This allows the user to progressively learn large logic
programs.

4.2 Algorithm of implementation used for experiments

Figure 2 shows the procedure used for each trial of the experiment. A Metagol learning task is executed for
each predicate, and the learned definition is used as additional background knowledge for each successive task.

predicate list = list of predicates in standard order
for each permutation:

pick two predicates in predicate list and swap their position
for each predicate in predicate list:

generate prolog code
execute metagol learning task
check learned definition for accuracy
save learned definition as background knowledge

Fig. 2: Trial procedure for experiments

1 Available at https://github.com/metagol/metagol web interface
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5 Experiments

Hypotheses Two hypotheses were tested: (1) learning a series of predicate definitions using the universal set of
metarules does not decrease performance in Metagol and (2) learning predicates in a randomized order would
lead to lower accuracy.

Materials Learning was based on family relationships in Hindi [7]. In Hindi there are a number of terms without
specific words in English. For example in Hindi there are different terms for your father’s brother (taaoo) than
for your mother’s brother (maamaa). Hindi also has specific terms for complex concepts such as the daughter
of your mother’s brother (mameri). Family trees of 5000 individuals were randomly generated. The trees were
written to a Prolog file containing all of the facts for each individual in terms of the background predicates
male/1, female/1, father/2, and mother/2. This file could then be used as background knowledge for learning
the definitions of family relationships. In total 43 family relationship concepts were assembled2, along with their
definitions in Prolog to be learned progressively. The concepts were placed into a reasonable order for learning,
where for example the simpler concepts brother and daughter are learned before the more complex concept
mother’s brother’s daughter.

Methods In the first experiment the training set was 1% and test set 10% of the total number of positive and
negative examples for each predicate, randomly selected with replacement. Predicate accuracies and running
times were averaged over 50 trials. In the second experiment the predicates were learned in a randomized order.
Predictive accuracies were averaged over 50 trials for each increment of number of swaps. Positive and negative
examples were randomly sampled in equal number for each learning task (averaging 56 training examples and
226 test examples) in order to give a default predicate accuracy of 50% for a majority class predicator. The
experiments were run on a Windows 7 operating system running YAP 6.2.2, the latest Metagol code from
github3 (as of 2017-02-12), and with a test harness running on Java 8 (jre1.8.0 121). The MySQL instance
shared by the web interface and test harness was on version 10.1.19-MariaDB.

Results Figure 3a shows that in experiment 1 the mean accuracy of the learned definitions stayed near 100%,
and Figure 3b shows learning times remained consistently below 1s (with some outliers) throughout the series,
confirming the first hypothesis.

2 All experimental code and materials available at https://github.com/metagol/ILP2017
3 Available at https://github.com/metagol/metagol
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(a) Predictive accuracy (b) Learning time

Fig. 3: Learning results for experiment 1

Figure 4 shows the mean accuracy gradually decreased as increasing numbers of predicates were swapped
out of order, confirming the second hypothesis.

Fig. 4: Learning results for experiment 2

6 Conclusions and further work

This paper revisits issues related to Quinlan Cameron-Jones’ demonstration that the performance of systems
such as FOIL progressively degrades with increasing numbers of predicates. We show that given a reasonable
ordering, such as that provided to FOIL, Metagol’s performance does not degrade while progressively learning
43 Hindi family relationships. However, when the reasonable ordering over predicates learned is randomly
perturbed, predictive accuracy also progressively degrades.

In further work we hope to investigate the degree to which dependent learning guarantees the discovery of
a “reasonable order” for learning a large set of predicate definitions.
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