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Abstract. Over the last decade Inductive Logic Programming systems
have been dominated by use of top-down refinement search techniques.
In this paper we re-examine the use of bottom-up approaches to the con-
struction of logic programs. In particular, we explore variants of Plotkin’s
Relative Least General Generalisation (RLGG) which are based on sub-
sumption relative to a bottom clause. With Plotkin’s RLGG, clause
length grows exponentially in the number of examples. By contrast, in the
Golem system, the length of ij-determinate RLGG clauses were shown
to be polynomially bounded for given values of i and j. However, the
determinacy restrictions made Golem inapplicable in many key applica-
tion areas, including the learning of chemical properties from atom and
bond descriptions. In this paper we show that with Asymmetric Relative
Minimal Generalisations (or ARMGs) relative to a bottom clause, clause
length is bounded by the length of the initial bottom clause. ARMGs,
therefore do not need the determinacy restrictions used in Golem. An
algorithm is described for constructing ARMGs and this has been imple-
mented in an ILP system called ProGolem which combines bottom-clause
construction in Progol with a Golem control strategy which uses ARMG
in place of determinate RLGG. ProGolem has been evaluated on several
well-known ILP datasets. It is shown that ProGolem has a similar or
better predictive accuracy and learning time compared to Golem on two
determinate real-world applications where Golem was originally tested.
Moreover, ProGolem was also tested on several non-determinate real-
world applications where Golem is inapplicable. In these applications,
ProGolem and Aleph have comparable times and accuracies. The ex-
perimental results also suggest that ProGolem significantly outperforms
Aleph in cases where clauses in the target theory are long and complex.

1 Introduction

There are two key tasks at the heart of ILP systems: 1) enumeration of clauses
which explain one or more of the positive examples and 2) evaluation of the
numbers of positive and negative examples covered by these clauses. Top-down
refinement techniques such as those found in [25,22,23], use a generate-and-test
approach to problems 1) and 2). A new clause is first generated by application of
a refinement step and then tested for coverage of positive and negative examples.
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It has long been appreciated in AI [20] that generate-and-test procedures
are less efficient than ones based on test-incorporation. The use of the bottom
clause in Progol [15] represents a limited form of test-incorporation in which, by
construction, all clauses in a refinement graph search are guaranteed to cover
at least the example associated with the bottom clause. The use of Relative
Least General Generalisation (RLGG) in Golem [13] provides an extended form
of test-incorporation in which constructed clauses are guaranteed to cover a
given set of positive examples. However, in order to guarantee polynomial-time
construction the form of RLGG in Golem was constrained to ij-determinate
clauses. Without this constraint Plotkin [21] showed that the length of RLGG
clauses grows exponentially in the number of positive examples covered.

In this paper we explore variants of Plotkin’s RLGG which are based on sub-
sumption order relative to a bottom clause [28]. We give a definition for Asym-
metric Relative Minimal Generalisation (ARMGs) and show that the length of
ARMGs is bounded by the length of the initial bottom clause. Hence, unlike in
Golem, we do not need the determinacy restrictions to guarantee polynomial-
time construction. However, we show that the resulting ARMG is not unique and
that the operation is asymmetric. ARMGs can easily be extended to the multiple
example case by iteration. We describe an ILP system called ProGolem which
combines bottom-clause construction in Progol with a Golem control strategy
which uses ARMG in place of determinate RLGG. The use of top-down ILP
algorithms such as Progol, tends to limit the maximum complexity of learned
clauses, due to a search bias which favours simplicity. Long clauses generally re-
quire an overwhelming amount of search for systems like Progol and Aleph [27].
In this paper we also explore whether ProGolem will have any advantages in
situations when the clauses in the target theory are long and complex.

ProGolem has been evaluated on several well-known ILP datasets. These in-
clude two determinate real-world applications where Golem was originally tested
and several non-determinate real-world applications where Golem is inapplica-
ble. ProGolem has also been evaluated on a set of artificially generated learning
problems with large concept sizes.

The paper is arranged as follows. In Section 2 we review some of basic con-
cepts from the ILP systems Golem and Progol which are used in the definitions
and theorems in this paper. In Section 3 we discuss subsumption relative to a
bottom clause. ARMG is introduced in Section 4 and some of its properties are
demonstrated. An algorithm for ARMG is given in Section 5. This algorithm is
implemented in the ILP system ProGolem which is described in Section 6. Em-
pirical evaluation of ProGolem on several datasets is given in Section 7. Related
work is discussed in Section 8. Section 9 concludes the paper.

2 Preliminaries

We assume the reader to be familiar with the basic concepts from logic pro-
gramming and inductive logic programming [19]. This section is intended as a
brief reminder of some of the concepts from the ILP systems Golem [13] and
Progol [15] which are the basis for the system ProGolem described in this paper.
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The general subsumption order on clauses, also known as θ-subsumption, is
defined in the following.

Definition 1 (Subsumption). Let C and D be clauses. We say C subsumes
D, denoted by C � D, if there exists a substitution θ such that Cθ is a subset of
D. C properly subsumes D, denoted by C � D, if C � D and D �� C. C and D
are subsume-equivalent, denoted by C ∼ D, if C � D and D � C.

Proposition 1 (Subsumption lattice). Let C be a clausal language and �
be the subsumption order as defined in Definition 1. Then the equivalence classes
of clauses in C and the � order define a lattice. Every pair of clauses C and D in
the subsumption lattice have a least upper bound called least general generalisa-
tion (lgg), denoted by lgg(C, D) and a greatest lower bound called most general
specialisation (mgs), denoted by mgs(C, D).

Plotkin [21] investigated the problem of finding the least general generalisation
(lgg) for clauses ordered by subsumption. The notion of lgg is important for ILP
since it forms the basis of generalisation algorithms which perform a bottom-up
search of the subsumption lattice. Plotkin also defined the notion of relative least
general generalisation of clauses (rlgg) which is the lgg of the clauses relative
to clausal background knowledge B. The cardinality of the lgg of two clauses is
bounded by the product of the cardinalities of the two clauses. However, the rlgg
is potentially infinite for arbitrary B. When B consists of ground unit clauses
only the rlgg of two clauses is finite. However the cardinality of the rlgg of
m clauses relative to n ground unit clauses has worst-case cardinality of order
O(nm), making the construction of such rlgg’s intractable.

The ILP system Golem [13] is based on Plotkin’s notion of relative least gen-
eral generalisation of clauses (rlgg). Golem uses extensional background knowl-
edge to avoid the problem of non-finite rlggs. Extensional background knowledge
B can be generated from intensional background knowledge B′ by generating
all ground unit clauses derivable from B′ in at most h resolution steps. The pa-
rameter h is provided by the user. The rlggs constructed by Golem were forced
to have only a tractable number of literals by requiring the ij-determinacy.

An ij-determinate clause is defined as follows.

Definition 2 (ij-determinate clause). Every unit clause is 0j-determinate.
An ordered clause h ← b1, .., bm, bm+1, .., bn is ij-determinate if and only if a)
h ← b1, .., bm is (i − 1)j-determinate, b) every literal bk in bm+1, .., bn contains
only determinate terms and has arity at most j.

The ij-determinacy is equivalent to requiring that predicates in the background
knowledge must represent functions. This condition is not met in many real-
world applications, including the learning of chemical properties from atom and
bond descriptions.

One of the motivations of the ILP system Progol [15] was to overcome the
determinacy limitation of Golem. Progol extends the idea of inverting resolution
proofs used in the systems Duce [14] and Cigol [16] and uses the general case of
Inverse Entailment which is based on the model-theory which underlies proof.
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Progol uses Mode-Directed Inverse Entailment (MDIE) to develop a most specific
clause ⊥ for each positive example, within the user-defined mode language, and
uses this to guide an A∗-like search through clauses which subsume ⊥.

The Progol algorithm is based on successive construction of definite clause
hypotheses H from a language L. H must explain the examples E in terms of
background knowledge B. Each clause in H is found by choosing an uncovered
positive example e and searching through the graph defined by the refinement
ordering � bounded below by a bottom clause ⊥ associated with e. In general
⊥ can have infinite cardinality. Progol uses mode declarations to constrain the
search for clauses which subsume ⊥. Progol’s mode declaration (M), definite
mode language (L(M)) and depth-bounded mode language (Li(M)) are defined
in Appendix A.

Progol searches a bounded sub-lattice for each example e relative to back-
ground knowledge B and mode declarations M . The sub-lattice has a most
general element which is the empty clause, �, and a least general element ⊥
which is the most specific element in Li(M) such that B ∧ ⊥ ∧ e 	h � where
	h � denotes derivation of the empty clause in at most h resolutions. The fol-
lowing definition describes a bottom clause for a depth-bounded mode language
Li(M).

Definition 3 (Most-specific clause or bottom clause ⊥e). Let h and i be
natural numbers, B be a set of Horn clauses, E be a set of positive and negative
examples with the same predicate symbol a, e be a positive example in E, M
be a set of mode declarations, as defined in Definitions 13, containing exactly
one modeh m such that a(m) � a, Li(M) be a depth-bounded mode language
as defined in Definitions 16 and ⊥̂e be the most-specific (potentially infinite)
definite clause such that B ∧ ⊥̂e ∧ e 	h �. ⊥e is the most-specific clause in
Li(M) such that ⊥e � ⊥̂e. C is the most-specific clause in L if for all C′ in L
we have C′ � C. −→⊥e is ⊥e with a defined ordering over the literals.

In this paper, we refer to ⊥e as −→⊥ or ⊥ depending on whether we use the ordering
of the literals or not. Progol’s algorithm for constructing the bottom clause is
given in [15]. The Proposition below follows from Theorem 26 in [15].

Proposition 2. Let ⊥e be as defined in Definition 3, M be a set of mode dec-
larations as defined in Definitions 13, Li(M) be a depth-bounded mode language
as defined in Definitions 16, i the maximum variable depth in Li(M) and j be
the maximum arity of any predicate in M . Then the length of ⊥e is polynomially
bounded in the number of mode declarations in M for fixed values of i and j.

3 Subsumption Relative to a Bottom Clause

In a previous paper [28] we introduced a subsumption order relative to a bottom
clause and demonstrated how clause refinement in a Progol-like ILP system can
be characterised with respect to this order. It was shown that, unlike for the
general subsumption order, efficient least general generalisation operators can



ProGolem: A System Based on Relative Minimal Generalisation 135

be designed for subsumption order relative to a bottom clause (i.e. lgg⊥). In
this section we briefly review the notion of subsumption order relative to bot-
tom clause which is essential for the definition of Asymmetric Relative Minimal
Generalisations (ARMGs) in this paper.

Clauses which are considered by Progol, i.e. clauses in L(M) (Definition 14),
as well as determinate clauses considered by Golem (Definition 2), are defined
with a total ordering over the literals. Moreover, the subsumption order which
characterises clause refinement in a Progol-like ILP system is defined on ordered
clauses. In the following we adopt an explicit representation for ordered clauses.
We use the same notion used in [19] and an ordered clause is represented as a dis-
junction of literals (i.e. L1∨L2∨. . .∨Ln). The set notation (i.e. {L1, L2, . . . , Ln})
is used to represent conventional clauses.

Definition 4 (Ordered clause). An ordered clause −→
C is a sequence of literals

L1, L2, . . . , Ln and denoted by −→
C = L1 ∨ L2 ∨ . . . ∨ Ln. The set of literals in −→

C
is denoted by C.

Unlike conventional clauses, the order and duplication of literals matter for
ordered clauses. For example, −→

C = p(X) ∨ ¬q(X), −→
D = ¬q(X) ∨ p(X) and

−→
E = p(X) ∨ ¬q(X) ∨ p(X) are different ordered clauses while they all corre-
spond to the same conventional clause, i.e. C = D = E = {p(X), ¬q(X)}.

Selection of two clauses is defined as a pair of compatible literals and this
concept was used by Plotkin to define least generalisation for clauses [21]. Here
we use selections to define mappings of literals between two ordered clauses.

Definition 5 (Selection and selection function). Let −→
C = L1∨L2∨. . .∨Ln

and −→
D = M1 ∨ M2 ∨ . . . ∨ Mm be ordered clauses. A selection of −→

C and −→
D is

a pair (i, j) where Li and Mj are compatible literals, i.e. they have the same
sign and predicate symbol. A set s of selections of −→

C and −→
D is called a selection

function if it is a total function of {1, 2, . . . , n} into {1, 2, . . . , m}.

Definition 6 (Subsequence). Let −→
C = L1 ∨L2 ∨ . . .∨Ll and −→

D = M1 ∨M2 ∨
. . . ∨ Mm be ordered clauses. −→

C is a subsequence of −→
D , denoted by −→

C � −→
D , if

there exists a strictly increasing selection function s ⊆ {1, . . . , l} × {1, . . . , m}
such that for each (i, j) ∈ s, Li = Mj.

Example 1. Let −→
B = p(x, y) ∨ q(x, y) ∨ r(x, y) ∨ r(y, x), −→

C = p(x, y) ∨ r(x, y) ∨
r(y, x) and −→

D = p(x, y)∨r(y, x)∨r(x, y) be ordered clauses. −→
C is a subsequence

of −→
B because there exists increasing selection function s1 = {(1, 1), (2, 3), (3, 4)}

which maps literals from −→
C to equivalent literals from −→

D . However, −→
D is not a

subsequence of −→
B because an increasing selection function does not exist for −→

D
and −→

B . ♦
As shown in [28], clause refinement in Progol-like ILP systems cannot be de-
scribed by the general subsumption order. However, subsumption order relative
to ⊥ (i.e. �⊥) can capture clause refinement in these systems. In the following
we first define −→L s

⊥ which can be used to represent the hypotheses language of a
Progol-like ILP system.



136 S. Muggleton, J. Santos, and A. Tamaddoni-Nezhad

Definition 7 (−→L s

⊥). Let −→⊥ be the bottom clause as defined in Definition 3 and
−→
C a definite ordered clause. −→� is −→⊥ with all variables replaced with new and
distinct variables. θ� is a variable substitution such that −→�θ� = −→⊥ . −→

C is in −→L s

⊥
if −→

C θ� is a subsequence of −→⊥ .

Example 2. Let −→⊥ = p(X) ← q(X), r(X), s(X, Y ), s(Y, X) and according to
Definition 7, we have −→� = p(V1) ← q(V2), r(V3), s(V4, V5), s(V6, V7) and θ� =
{V1/X, V2/X, V3/X, V4/X, V5/Y, V6/Y, V7/X}. Then −→

C=p(V1)←r(V2), s(V6, V7),−→
D = p(V1) ← r(V1), s(V6, V1) and −→

E = p(V1) ← r(V1), s(V4, V5) are in −→L s

⊥ as
−→
C θ�, −→

Dθ� and −→
Eθ� are subsequences of −→⊥ . ♦

Definition 8 (Subsumption relative to ⊥). Let −→⊥ , θ� and −→L s

⊥ be as de-
fined in Definition 7 and −→

C and −→
D be ordered clauses in −→L s

⊥. We say −→
C sub-

sumes −→
D relative to ⊥, denoted by −→

C �⊥
−→
D , if −→

C θ� is a subsequence of −→
Dθ�. −→

C
is a proper generalisation of −→

D relative to ⊥, denoted by −→
C �⊥

−→
D , if −→

C �⊥
−→
D

and −→
D ��⊥

−→
C . −→

C and −→
D are equivalent with respect to subsumption relative to

⊥, denoted by −→
C ∼⊥

−→
D , if −→

C �⊥
−→
D and −→

D �⊥
−→
C .

Example 3. Let −→⊥ , θ�, −→L s

⊥, −→
C , −→

D and −→
E be as in Example 2. Then, −→

C sub-
sumes −→

D relative to ⊥ since −→
C θ� is a subsequence of −→

Dθ�. However, −→
C does

not subsume −→
E relative to ⊥ since −→

C θ� is not a subsequence of −→
Eθ�. Note that−→

C subsumes −→
E with respect to normal subsumption. ♦

The following Proposition is a special case of Lemma 5 in [28] and follows directly
from Definition 8.

Proposition 3. Let −→⊥ be as defined in Definition 3 and −→
C be an ordered clause

obtained from −→⊥ by removing some literals without changing the order of the
remaining literals. Then, −→

C �⊥
−→⊥ .

The subsumption order relative to ⊥ was studied in [28]. It was shown that
the refinement space of a Progol-like ILP system can be characterised using
〈−→L⊥, �⊥〉. It was also shown that 〈−→L⊥, �⊥〉 is a lattice which is isomorphic to
an atomic lattice and that the most general specialisation relative to ⊥ (mgs⊥)
and the least general generalisation relative to ⊥ (lgg⊥) can be defined based on
the most general specialisation and the least general generalisation for atoms.

4 Asymmetric Relative Minimal Generalisations

The construction of the least general generalisation (lgg) of clauses in the general
subsumption order is inefficient as the cardinality of the lgg of two clauses can
grow very rapidly (see Section 2). For example, with Plotkin’s Relative Least
General Generalisation (RLGG), clause length grows exponentially in the num-
ber of examples [21]. Hence, an ILP system like Golem [13] which uses RLGG is
constrained to ij-determinacy to guarantee polynomial-time construction. How-
ever, the determinacy restrictions make an ILP system inapplicable in many key



ProGolem: A System Based on Relative Minimal Generalisation 137

application areas, including the learning of chemical properties from atom and
bond descriptions. On the other hand, as shown in [28], efficient operators can
be implemented for least generalisation and greatest specialisation in the sub-
sumption order relative to a bottom clause. In this section we define a variant
of Plotkin’s RLGG which is based on subsumption order relative to a bottom
clause and does not need the determinacy restrictions. The relative least general
generalisation (lgg⊥) in [28] is defined for a lattice bounded by a bottom clause
⊥e. This bottom clause is constructed with respect to a single positive exam-
ple e and as in Progol we need a search guided by coverage testing to explore
the hypotheses space. However, the asymmetric relative minimal generalisation
(ARMG) described in this paper is based on pairs of positive examples and as
in Golem, by construction it is guaranteed to cover all positive examples which
are used to construct it. Hence, ARMGs have the same advantage as RLGGs in
Golem but unlike RLGGs the length of ARMGs is bounded by the length of ⊥e.
The asymmetric relative minimal generalisation of examples e′ and e relative to
⊥e is denoted by armg⊥(e′|e) and in general armg⊥(e′|e) �= armg⊥(e|e′). In the
following we define asymmetric relative minimal generalisation and study some
of their properties. It is normal in ILP to restrict attention to clausal hypotheses
which are “head-connected” in the following sense.

Definition 9 (Head-connectness). A definite ordered clause h ← b1, .., bn is
said to be head-connected if and only if each body atom bi contains at least one
variable found either in h or in a body atom bj, where 1 ≤ j < i.

Definition 10 (Asymmetric relative common generalisation). Let E, B

and ⊥e be as defined in Definition 3, e and e′ be positive examples in E and −→
C

is a head-connected definite ordered clause in −→L s

⊥. −→
C is an asymmetric common

generalisation of e′ and e relative to ⊥e, denoted by −→
C ∈ arcg⊥(e′|e), if −→

C �⊥ ⊥e

and B ∧ C 	 e′.

Example 4. Let M = {p(+), q(+, −), r(+, −)} be mode definition, B = {q(a, a),
r(a, a), q(b, b), q(b, c), r(c, d)} be background knowledge and e = p(a) and e′ =
p(b) be positive examples. Then we have ⊥e = p(X) ← q(X, X), r(X, X) and
clauses −→

C = p(V1) ← q(V1, V1),
−→
D = p(V1) ← q(V1, V3), r(V3, V5) and −→

E =
p(V1) ← q(V1, V3) are all in arcg⊥(e′|e). ♦

Definition 11 (Asymmetric relative minimal generalisation). Let E and
⊥e be as defined in Definition 3, e and e′ be positive examples in E and arcg⊥(e′|e)
be as defined in Definition 10. −→

C is an asymmetric minimal generalisation of e′

and e relative to ⊥e, denoted by −→
C ∈ armg⊥(e′|e), if −→

C ∈ arcg⊥(e′|e) and −→
C �⊥−→

C′ ∈ arcg⊥(e′|e) implies −→
C is subsumption-equivalent to

−→
C′ relative to ⊥e.

Example 5. Let B, ⊥e, e and e′ be as in Example 4. Then clauses −→
C = p(V1) ←

q(V1, V1) and −→
D = p(V1) ← q(V1, V3), r(V3, V5) are both in armg⊥(e′|e). ♦

This example shows that ARMGs are not unique.
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Theorem 1. The set armg⊥(e′|e) can contain more than one clause which are
not subsumption-equivalent relative to ⊥e.

Proof. In Example 4, clauses −→
C = p(V1) ← q(V1, V1) and −→

D = p(V1) ← q(V1, V3),
r(V3, V5) are both in armg⊥(e′|e) but not subsumption-equivalent relative to ⊥e. �

The following theorem shows that the length of ARMG is bounded by the length
of ⊥e.

Theorem 2. For each −→
C ∈ armg⊥(e′|e) the length of −→

C is bounded by the
length of ⊥e.

Proof. Let −→
C ∈ armg⊥(e′|e). Then by definition −→

C �⊥ ⊥e and according to
Definition 8, −→

C is a subsequence of ⊥e. Hence, the length of −→
C is bounded by

the length of ⊥e. �

It follows from Theorem 2 that the number of literals in an ARMG is bounded
by the length of ⊥e, which according to Proposition 2 is polynomially bounded
in the number of mode declarations for fixed values of i and j, where i is the
maximum variable depth and j is the maximum arity of any predicate in M .
Hence, unlike the RLGGs used in Golem, ARMGs do not need the determinacy
restrictions and can be used in a wider range of problems including those which
are non-determinate. In Section 7 we apply ARMGs to a range of determinate
and non-determinate problems and compare the results with Golem and Aleph.
But first we give an algorithm for constructing ARMGs in Section 5 and describe
an implementation of ARMGs in Section 6.

5 Algorithm for ARMGs

It was shown in the previous section that ARMGs do not have the limitations
of RLGGs and that the length of ARMGs is bounded by the length of ⊥e. In
this section we show that there is also an efficient algorithm for constructing
ARMGs. The following definitions are used to describe the ARMG algorithm.

Definition 12 (Blocking atom). Let B be background knowledge, E+ the set
of positive examples, e ∈ E+ and −→

C = h ← b1, . . . , bn be a definite ordered
clause. bi is a blocking atom if and only if i is the least value such that for all θ,
e = hθ, B � (b1, . . . , bi)θ.

An algorithm for constructing ARMGs is given in Figure 1. Given the bottom
clause ⊥e associated with a particular positive example e, this algorithm works
by dropping a minimal set of atoms from the body to allow coverage of a second
example. Below we prove the correctness of the ARMG algorithm.

Theorem 3 (Correctness of ARMG algorithm). Let E and ⊥e be as de-
fined in Definition 3, e and e′ be positive examples in E, armg⊥(e′|e) be as
defined in Definition 11 and ARMG(⊥e, e

′) as given in Figure 1. Then −→
C =

ARMG(⊥e, e
′) is in armg⊥(e′|e).
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Asymmetric Relative Minimal Generalization (ARMG) Algorithm
Input: Bottom clause ⊥e, Positive example e′
−→
C is ⊥e = h← b1, .., bn

While there is a blocking atom bi wrt e′ in the body of −→C
Remove bi from −→C
Remove atoms from −→C which are not head-connected

Repeat
Output: −→C

Fig. 1. ARMG algorithm

Proof. Assume −→
C �∈ armg⊥(e′|e). In this case, either −→

C is not an asymmetric
common generalisation of e and e′ or it is not minimal. However, by construc-
tion −→

C is a subsequence of ⊥e in which all blocking literals with respect to e′

are removed. Then according to Proposition 3, −→
C �⊥ ⊥e and by construction

B∧C 	 e′. Hence, −→
C is an asymmetric common generalisation of e and e′. So, −→

C

must be non-minimal. If −→
C is non-minimal then −→

C �⊥
−→
C′ for

−→
C′ ∈ armg⊥(e′|e)

which must either have literals not found in −→
C or there is a substitution θ such

that −→
C θ =

−→
C′. But we have deleted the minimal set of literals. This is a minimal

set since leaving a blocking atom would mean B ∧ C � e′ and leaving a non-
head-connected literal means −→

C �∈ armg⊥(e′|e). So it must be the second case.
However, in the second case θ must be a renaming since the literals in −→

C are all
from ⊥e. Hence, −→

C and
−→
C′ are variants which contradicts the assumption and

completes the proof. �

The following example shows that the ARMGs algorithm is not complete.

Example 6. Let B, ⊥e, e and e′ be as in Example 4. Then clauses −→
C = p(V1) ←

q(V1, V1) and −→
D = p(V1) ← q(V1, V3), r(V3, V5) are both in armg⊥(e′|e). How-

ever, the ARMGs algorithm given in Figure 1 cannot generate clause −→
D . ♦

Example 6 shows that the ARMGs algorithm does not consider hypotheses
which require ‘variable splitting’. As shown in [28] (Example 2), there are some
group of problems which cannot be learned by a Progol-like ILP system without
variable splitting. The concept of variable splitting and the ways it has been
done in Progol and Aleph were discussed in [28]. Similar approaches could be
adopted for ProGolem, however, the current implementation does not support
variable splitting.

Figure 2 gives a comparison between Golem’s determinate RLGG and the
ARMGs generated by the ARMG algorithm on Michalski’s trains dataset from
[12]. Note that Golem’s RLGG cannot handle the predicate has car because
it is non-determinate. The first ARMG (2) subsumes the target concept which
is eastbound(A) ← has car(A,B), closed(B), short(B). Note that in this exam-
ple RLGG (1) is shorter than ARMGs (2,3) since it only contains determinant
literals.
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1. RLGG(e1, e2) = RLGG(e2, e1) = eastbound(A) ← infront(A,B), short(B), open(B),
shape(B,C), load(B,triangle,1), wheels(B,2), infront(B,D), shape(D, rectangle), load(D,E,1),
wheels(D,F), infront(D,G), closed(G), short(G), shape(G,H), load(G,I,1), wheels(G,2).

2. ARMG(⊥e1 , e2) = eastbound(A) ← has car(A,B), has car(A,C), has car(A,D), has car(A,E),
infront(A,E), closed(C), short(B), short(C), short(D), short(E), open(B), open(D), open(E),
shape(B,F), shape(C,G), shape(D,F), shape(E,H), load(D,I,J),2), wheels(E,2)

3. ARMG(⊥e2 , e1) = eastbound(A) ← has car(A,B), has car(A,C), has car(A,D), infront(A,D),
closed(C), short(B), short(D), open(D), shape(B,E), shape(D,E), load(B,F,G), load(D,H,G),
wheels(B,2), wheels(D,2)

ARMG(⊥e1 , e2) ARMG(⊥e2 , e1)

⊥e1 e2 ⊥e2 e1

	⊥ 
 	⊥ 


Fig. 2. A comparison between Golem’s determinate RLGG (1) and the non-
determinate ARMGs (2,3). Note that Golem’s RLGG cannot handle the predicate
has car because it is non-determinate. The first ARMG (2) subsumes the target con-
cept which is eastbound(A) ← has car(A,B), closed(B), short(B).

6 Implementation

This section describes ProGolem’s implementation. As in Golem and Progol,
ProGolem uses the cover set approach to construct a theory consisting of more
than one clause. ProGolem’s cover set algorithm is shown in Fig. 3. This algo-
rithm repeatedly constructs a clause from a set of best ARMGs, uses negative
examples to reduce the clause (see below), adds this clause to the theory and
removes the positive examples which are covered.

As in Golem, ProGolem uses negative-based reduction to generalise clauses
with respect to negative examples. This algorithm is described in section 6.1.
ProGolem uses a greedy beam search to select the best ARMG with respect to
⊥e. This algorithm is shown in Fig. 4. The basic idea is to repeatedly extend
ARMGs using positive examples and keep the best ARMGs at each iteration to

ProGolem’s Cover Set Algorithm
Input: Examples E, mode declarations M , background knowledge B

Let T = {}
Let S = all positive examples in E
While S �= {}
Let e be the first example in S
Construct the bottom clause ⊥e from e, M and B ([15])
Let −→C = Best ARMG(⊥e, E) (see Fig. 4)
Let
−→
C′ = Negative based reduction(−→C , E) (see section 6.1)

T = T ∪ −→C′

Let S′ = all examples from S which are covered by
−→
C′

S = S − S′

Repeat
Output: T

Fig. 3. ProGolem’s cover set algorithm
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Best ARMG Algorithm
Input: ⊥e, Examples E
sample size K, beam width N

Let best armgs = {⊥e}
Repeat

Let best score = highest score from best armgs
Let Ex = K random positive examples from E
Let new armgs = {}
for each −→C ∈ best armgs do
for each e′ ∈ Ex do

Let
−→
C′ = ARMG(−→C , e′) (see Fig. 1)

if score(
−→
C

′) > best score then
new armgs = new armgs ∪ −→C′

end if
end for

end for
if (new armgs �= {}) then

best armgs = highest scoring N clauses from new armgs
Until new armgs = {}

Output: highest scoring clause from best armgs

Fig. 4. Best ARMG algorithm

be extended in the next iteration until the ARMGs’ score no longer increases.
The score of an ARMG is computed in the same way a normal clause is eval-
uated in ProGolem. The evaluation function can be selected by the user (e.g.
compression, accuracy, precision, coverage). By default it is compression, that is,
the positives covered minus negatives covered minus length of the clause (i.e. its
number of literals). At each iteration and for each ARMG in the set of ARMGs
under consideration, K examples which are not covered by the current ARMG
are selected and used to extend it. The best N (beam width) ARMGs of each
iteration are selected to be used as the initial set for the next iteration. The
initial set of ARMGs at iteration 0 is the bottom clause ⊥e. K and N are user
defined parameters with default values of 10 and 2 respectively.

ProGolem is a bottom-up ILP system and unlike in a top-down system such
as Progol, the intermediate clauses considered may be very long. The coverage
testing of long non-determinate clauses in ProGolem could be very inefficient
as it involves a large number of backtracking. Note that clauses considered by
Golem are also relatively long but these clauses are determinate which makes the
subsumption testing less expensive. In order to address this problem, efficient
subsumption testing algorithms are implemented in ProGolem. The following
sections describe the negative-based clause reduction and the efficient coverage
testing algorithms.

6.1 Negative-Based Clause Reduction

ProGolem implements a negative-based clause reduction algorithm which is sim-
ilar to the reduction algorithms used in QG/GA [18] and Golem [13]. The aim
of negative-based reduction is to generalise a clause by keeping only literals
which block negative examples from being proved. The negative-based reduction
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algorithm works as follows. Given a clause h ← b1, . . . , bn, find the first literal,
bi such that the clause h ← b1, . . . , bi covers no negative examples. Prune all
literals after bi and move bi and all its supporting literals to the front, yielding a
clause h ← Si, bi, Ti, where Si is a set of supporting literals needed to introduce
the input variables of bi and Ti is b1, . . . , bi−1 with Si removed. Then reduce this
new clause in the same manner and iterate until the clause length remains the
same within a cycle.

6.2 Efficient Coverage Testing

The intermediate clauses considered by ProGolem can be non-determinate and
very long. Prolog’s standard left-to-right depth-first literal evaluation is ex-
tremely inefficient for testing the coverage of such clauses. An efficient algorithm
for testing the coverage of long non-determinant clauses is implemented in Pro-
Golem. This algorithm works by selecting at each moment the literal which has
fewest solutions, from the ones which had their input variables instantiated. This
algorithm was further improved by an approach inspired by constraint satisfac-
tion algorithms of [11] and [9]. The core idea is to enumerate variables (rather
than literals as before) based on the ones which have the smallest domains. The
domain of a variable is the intersection of all the values a variable can assume
in the literals it appears. This works well because normally clauses have much
fewer distinct variables than literals.

7 Empirical Evaluation

In this section we evaluate ProGolem on several well-known determinate and
non-determinate ILP datasets and compare the results with Golem and Aleph.
Aleph [27] is a well-known ILP system which works in different modes and can
emulate the functionality of several other ILP systems including Progol. Pro-
Golem and Aleph are both implemented in YAP Prolog which makes the time
comparison between them more accurate.

The materials to reproduce the experiments in this section, including datasets
and programs are available from http://ilp.doc.ic.ac.uk/ProGolem/.

7.1 Experiment 1 – Determinate and Non-determinate Applications

Materials and Methods. Several well-known ILP datasets have been used:
Proteins [17], Pyrimidines [6], DSSTox [24], Carcinogenesis [26], Metabolism [5]
and Alzheimers-Amine [7]. The two determinate datasets, Proteins and Pyrim-
idines, were used with a hold out test strategy. The data split between training
and test sets was done by considering 4/5 for Proteins and 2/3 for Pyridimines
as training data and the remaining for test. For the Carcinogenesis, Metabolism
and Alzheimers-Amine datasets a 10-fold cross-validation was performed and
for DSSTox it was a 5-fold cross validation. Whenever cross-validation was
used the accuracy’s standard deviation over all the folds is also reported. Both
Aleph and ProGolem were executed in YAP Prolog version 6 with i = 2,
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Table 1. Predictive accuracies and learning times for Golem, ProGolem and Aleph
on different datasets. Golem can only be applied on determinate datasets, i.e. Proteins
and Pyrimidines.

dataset Golem ProGolem Aleph
A(%) T (s) A(%) T (s) A(%) T (s)

Alz-Amine N/A N/A 76.1±4.4 36 76.2±3.8 162
Carcino N/A N/A 63.0±7.2 649 59.7±6.3 58
DSSTox N/A N/A 68.6±4.5 993 72.6±6.9 239
Metabolism N/A N/A 63.9±11.6 691 62.1±6.2 32
Proteins 62.3 3568 62.3 2349 50.5 4502
Pyrimidines 72.1 68 75.3 19 73.7 23

maxneg = 10 (except for Carcinogenesis and Proteins where maxneg = 30)
and evalfn = compression (except for DSSTox where evalfn = coverage).
Aleph was executed with nodes = 1000 and clauselength = 5 (except for Pro-
teins where nodes = 10000 and clauselength = 40). ProGolem was executed
with N = 2 (beam-width) and K = 5 (sample size at each iteration). ProGolem’s
coverage testing was Prolog’s standard left-to-right strategy on all these datasets
(the same as Aleph). All experiments were performed on a 2.2 Ghz dual core
AMD Opteron processor (275) with 8gb RAM.

Results and discussion. Table 1 compares predictive accuracies and average
learning times for Golem, ProGolem and Aleph. ProGolem is competitive with
Golem on the two determinate datasets. On the Proteins dataset which requires
learning long target concepts, Aleph cannot generate any compressive hypothesis
and is slower. This is the type of problems where a bottom-up ILP system has
an advantage over a top-down one. Golem is inapplicable on the remaining non-
determinate problems and ProGolem and Aleph have comparable times and
accuracies.

Fig. 5 compares the length and positive coverage of ARMGs in ProGolem. In
Fig. 5.(a) the ARMG length (as a fraction of the bottom clause size) is plotted
against the number of examples used to construct the ARMG. In Fig. 5.(b)
the ARMG positive coverage is plotted against the same X axis. For number of
examples equal to 1, the ARMG (i.e. bottom clause) coverage is almost invariably
the example which has been used to construct the bottom clause and has the
maximum length. The coverage increases with the number of examples used to
construct the ARMGs. The ARMGs clause lengths follow an exponential decay
and, symmetrically, the positive coverage has an exponential growth since shorter
clauses are more general.

7.2 Experiment 2 – Complex Artificial Target Concepts

The results of Experiment 1 suggested that for the Proteins dataset which re-
quires learning long clauses, the performance of Aleph is significantly worse than
Golem and ProGolem. In this experiment we further examine whether ProGolem
will have any advantages in situations when the clauses in the target theory are
long and complex.
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(a) (b)

Fig. 5. (a) ARMGs length and (b) ARMGs positive coverage as number of examples
used to construct the ARMGs increases

Materials and Methods. In this experiment we use a set of eight artificially
generated learning problems with varying concept sizes from 6 to 17. These
problems are selected from the phase transition study [4] and correspond to
problems m6.l12 to m17.l12. There are two parameters that characterise each
problem in the dataset: m the target concept size, and L the number of distinct
constants occurring in an example. These problems are selected from the first
row of the (m, L) plane, i.e. L = 12 so that they only approach the phase
transition region. Each problem has 200 training and 200 test examples and the
positive and negative examples are balanced in both partitions (100 for each).
We use a hold-out test strategy and compare the performance of ProGolem and
Aleph. This dataset is noise free and highly non-determinate having about 100
solutions per predicate. In order to curb the combinatorial explosion the recall
for constructing the bottom clauses was set to 2 for both Aleph and ProGolem.

Aleph and ProGolem were executed with evalfn = compression, i = 2,
noise = 0. Other Aleph parameters are clauselength = 20, search = heuristic
and nodes = 100, 000. ProGolem was used with N = 2, K = 10 and the efficient
coverage testing algorithm was used in place of Prolog’s left-to-right evaluation.
All the experiments were performed, as before, on a 2.2 Ghz dual core AMD
Opteron processor (275) with 8gb RAM.

Results and discussion. Table 2 shows predictive accuracies and average
learning times for ProGolem and Aleph. Aleph fails to find any solution in
four out of eight problems whereas ProGolem can find good approximations
of the target concepts. Moreover, ProGolem is significantly faster than Aleph.
This is partly because long clauses generally require an overwhelming amount
of search in top-down systems like Progol and Aleph, due to a search bias
which favours simplicity. This tends to limit the maximum complexity of learned
clauses. Note that Golem is inapplicable on this phase transition dataset as it is
non-determinate.
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Table 2. Predictive accuracies and learning times for ProGolem and Aleph on a set
of learning problems with varying concept sizes from 6 to 17

m ProGolem Aleph
A(%) T (s) A(%) T (s)

6 98.0 7 99.5 1
7 99.5 15 99.5 254
8 97.5 40 100 23
10 97.0 45 50.0 3596
11 99.0 36 50.0 3708
14 93.5 47 96.0 365
16 76.0 501 50.0 4615
17 71.0 485 50.0 4668

8 Related Work and Discussion

It was shown in a previous paper [28] that, unlike for the general subsumption
order, efficient least generalisation operators can be designed for the subsump-
tion order relative to a bottom clause. This idea is the basis for ProGolem which
implements efficient asymmetric relative minimal generalisations for the sub-
sumption order relative to a bottom clause. The lattice structure and refinement
operators for the subsumption order relative to a bottom clause were studied
in [28]. The relationship between this subsumption order and some of related
subsumption orders including weak subsumption [2], ordered subsumption [8]
and sequential subsumption in SeqLog [10] were also discussed.

The least and minimal generalisations relative to a bottom clause can be
compared with other approaches which use lgg-like operators but instead of
considering all pairs of compatible literals they only consider one pair. For ex-
ample, LOGAN-H [1] is a bottom-up system which is based on inner products
of examples which are closely related to lgg operator. This system constructs
lgg-like clauses by considering only those pairs of literals which guarantee an
injective mapping between variables. In other words, it assumes one-one object
mappings. Other similar approaches use the same idea of simplifying the lgg-like
operations by considering only one pair of compatible literals but they select
this pair arbitrarily (e.g. [3]).

As already mentioned in the previous sections, ProGolem is closely related
to Golem which is based on generalisation relative to background knowledge B.
ProGolem is based on generalisation relative to a bottom clause ⊥e which is
the result of compiling background knowledge B. Hence, subsumption relative
to a bottom clause can be viewed as subsumption relative to a compilation of
B which makes it more efficient than subsumption relative to B. Moreover, as
already shown in this paper, generalisation relative to a bottom clause allows
ProGolem to be used for non-determinate problems where Golem is inapplicable.

9 Conclusions

In this paper we have proposed an asymmetric variant of Plotkin’s RLGG, called
ARMG. In comparison to the determinate RLGGs used in Golem, ARMGs are
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capable of representing non-determinate clauses. Although this is also possible
using Plotkin’s RLGG, the cardinality of the Plotkin RLGG grows exponentially
in the number of examples. By contrast, an ARMG is built by constructing a
bottom clause for one example and then dropping a minimal set of literals to
allow coverage of a second example. By construction the clause length is bounded
by the length of the initially constructed bottom clause.

An algorithm is described for constructing ARMGs and this has been imple-
mented in an ILP system called ProGolem which combines bottom-clause con-
struction in Progol with a Golem control strategy which uses ARMG in place of
determinate RLGG. It is shown that ProGolem has a similar or better predictive
accuracy and learning time compared to Golem on two determinate real-world
applications where Golem was originally tested. Moreover, ProGolem was also
tested on several non-determinate real-world applications where Golem is inap-
plicable. In these applications, ProGolem and Aleph have comparable times and
accuracies. ProGolem has also been evaluated on a set of artificially generated
learning problems with large concept sizes. The experimental results suggest that
ProGolem significantly outperforms Aleph in cases where clauses in the target
theory are long and complex. These results suggest that while ProGolem has
the advantages of Golem for learning large target concepts, it does not suffer
from the determinacy limitation and can be used in problems where Golem is
inapplicable.

The use of top-down ILP algorithms such as Progol, tends to limit the max-
imum complexity of learned clauses, due to a search bias which favours sim-
plicity. Long target clauses generally require an overwhelming amount of search
for systems like Progol and Aleph. We believe that such targets should be more
effectively learned by a bottom-up systems such as ProGolem since long clauses
are easier to construct using bottom-up search.
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Appendix A Progol’s Definite Mode Language

The following definitions describe Progol’s mode declaration (M), definite mode
language (L(M)) and depth-bounded mode language (Li(M)).

Definition 13. Mode declaration M . A mode declaration has either the form
modeh(n,atom) or modeb(n,atom) where n, the recall, is either an integer, n > 1,
or ‘*’ and atom is a ground atom. Terms in the atom are either normal or place-
marker. A normal term is either a constant or a function symbol followed by a
bracketed tuple of terms. A place-marker is either +type, -type or #type, where
type is a constant. If m is a mode declaration then a(m) denotes the atom of m
with place-markers replaced by distinct variables. The sign of m is positive if m
is a modeh and negative if m is a modeb.

Definition 14. Definite mode language L(M). Let C be a definite clause
with a defined total ordering over the literals and M be a set of mode declarations.
C = h ← b1, .., bn is in the definite mode language L(M) if and only if 1) h is
the atom of a modeh declaration in M with every place-marker +type and -type
replaced by variables and every place-marker #type replaced by a ground term
and 2) every atom bi in the body of C is the atom of a modeb declaration in M
with every place-marker +type and -type replaced by variables and every place-
marker #type replaced by a ground term and 3) every variable of +type in any
atom bi is either of +type in h or of -type in some atom bj, 1 ≤ j < i.

Definition 15. Depth of variables. Let C be a definite clause and v be a
variable in C. Depth of v is defined as follows:

d(v) =
{

0 if v is in the head of C
(maxu∈Uv d(u)) + 1 otherwise

where Uv are the variables in atoms in the body of C containing v.

Definition 16. Depth-bounded mode language Li(M). Let C be a definite
clause with a defined total ordering over the literals and M be a set of mode
declarations. C is in Li(M) if and only if C is in L(M) and all variables in C
have depth at most i according to Definition 15.
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