CProgol4.4: a tutorial introduction

Stephen Muggleton
John Firth

Department of Computer Science,
University of York, UNITED KINGDOM.
Email: stephen@cs.york.ac.uk.

Abstract. This chapter describes the theory and use of CProgol4.4, a
state-of-the-art Inductive Logic Programming (ILP) system. After ex-
plaining how to download the source code, the reader is guided through
the development of Progol input files containing type definitions, mode
declarations, background knowledge, examples and integrity constraints.
The theory behind the system is then described using a simple example
as illustration. The main algorithms in Progol are given and methods of
pruning the search space of possible hypotheses are discussed. Next the
application of built-in procedures for estimating predictive accuracy and
statistical significance of Progol hypotheses is demonstrated. Lastly, the
reader is shown how to use the more advanced features of CProgol4.4,
including positive-only learning and the use of metalogical predicates for
pruning the search space.

1 Introduction

The theory and implementation of the Inductive Logic Programming (ILP) sys-
tem CProgol4.1 was first described in [8]. Since then a number of advances have
been made over the original CProgol4.1 in systems such as CProgol4.2 [9], PPro-
gol2.1 and PProgol2.2. The development of these systems has been informed by
feedback from experiments on a variety of real-world applications [3, 6, 5,14, 2].

This chapter describes the theory and use of CProgold.4, a publicly dis-
tributed version of the Progol family of ILP systems. In order to follow the
examples in this chapter, it is assumed that the reader is familiar with the aims
of ILP, Horn clause logic and Prolog notation for clauses. It is also assumed that
the reader is familiar with the concepts of deductive logic in order to understand
the theoretical foundations of Progol. Furthermore it is assumed that the reader
has access to a machine running UNIX with an internet connection. This will
be necessary in order to obtain the software and run the examples described in
the chapter.

The chapter has the following structure. Section 2 describes how to use anony-
mous ftp to obtain CProgol4.4, together with the associated distribution datasets
and documentation. Having obtained the system, Section 3 guides the reader
through the general approach that should be taken to developing a Progol input
file containing examples and background knowledge. The theory behind Progol

is then described in Section 4 and illustrated by a simple example. Here the main
algorithms inside the system are given in quite a good deal of detail, hopefully
without being too technical. The reader is then shown in Section 5 how to make
use of built-in procedures which support the estimation of predictive accuracy
and statistical significance of hypothesised theories. Section 6 describes how to
use integrity constraints and prune statements to control search in CProgol4.4.
The setting of resource bounds is discussed in Section 7. Section 8 describes the
facilities available to support the debugging of a CProgol4.4 input file. Finally,
Section 9 summarises the philosophy behind Progol and explains why it was
designed in the way it was. Mention is made of some of the more important
applications of the system to real-world problems.

2 How to obtain CProgol4.4

It should be noted that CProgol4.4 is available free for academic research and
teaching. For commercial research, a license should be obtained by writing to
the first author.

CProgol4.4 can be obtained in either of the following ways.

WWW: The ftp site can be accessed via the following web page:
http://www.cs.york.ac.uk/mlg/progol.html.

ftp: It can also be obtained directly by anonymous ftp from ftp.cs.york.ac.uk
in the directory pub/ML_GROUP/progol4.4 .

The ftp site contains a README file with instructions on installing the software.
For this you will need to be running a UNIX (or Linux) operating system with a
gee compiler. In fact, Progol4.4 is automatically compiled in the source directory
when you obtain all the files from the ftp site and run the expand script. This
command additionally compiles a program called gsample, which is useful for
randomly sampling training and test sets (instructions for running gsample are
in the comments at the top of gsample.c).

To test that Progol is correctly installed after running expand, move to the
source directory and issue the following command from the UNIX prompt.

$ progol

In response you should see the following.

Progol Version 4.4

| -

To see the list of available commands type the following.

|- help?

Note that in interactive mode Progol is similar to a Prolog interpreter. In fact,
Progol uses the Edinburgh Prolog syntax and contains almost all of the built-
in predicates used in Clocksin and Mellish’s introduction to Prolog [1]. One
immediate difference however is the use of ‘?’ at the end of queries instead of ‘.’
Any statement ending with a ‘.’ is asserted into the clause-base.

You can get one-line description of Progol’s built-in commands using the
command help in the following fashion.

|- help(tell/1)7?

To quit Progol type either an end-of-file (usually Control-D) or ‘quit?’.

For the following, you should include the source directory as part of the path
description in your .login file in order to be able to use the ‘progol’ command in
other directories.

3 Developing an input file for CProgol4.4

As with all ILP systems, Progol constructs logic programs from examples and
background knowledge. For instance, given various examples of “aunt_of”

aunt_of (jane,henry) .
aunt_of (sally, jim).

and background knowledge concerning “parent_of”, “father_of”, “mother_of”
and “sister_of”

parent_of (Parent,Child) :- father_of (Parent,Child).
parent_of (Parent,Child) :- mother_of (Parent,Child).

father_of (sam,henry) .
mother_of (sarah, jim).
sister_of (jane,sam) .

sister_of(sally,sarah).

together with a list of types and mode declarations, Progol can construct a
definition for the aunt_of predicate. In order to do this Progol needs to be told
the following information about the learning task.

3.1 Types

These describe the categories of objects (numbers, lists, names, etc.) in the
world under consideration. In this example we only need the type person, since
all objects in the given relations are of this type.

person(jane).
person (henry) .
person(sally) .
person(jim).

This simply states that all of the elements involved satisfy the unary predicate
person. In other words they have type person.

3.2 Modes

These describe the relations (predicates) between objects of given types which
can be used either in the head (modeh declarations) or body (modeb declarations)
of hypothesized clauses. Modes also describe the form these atoms can take
within a clause. For the head of any general rule defining aunt_of we might give
the following head mode declarations

:- modeh(1,aunt_of (+person,+person))?

The declaration states that head atom has predicate symbol aunt_of and has 2
variables of type person as arguments. The ‘+’ sign indicates that an argument is
an input variable. A ‘-’ sign would indicate an output variable, and a ‘#’ would
indicate that a constant should be placed at the position in the hypothesis. Thus
the declaration above indicates that

aunt_of (X, Y)

is allowed as the head atom of a general definite clause, and that goals calling
this clause should bind both variables.

All modeh (and modeb) declarations contain a number called the recall. This
is used to bound the number of alternative solutions for instantiating the atom.
Here it is 1 because the aunt_of predicate gives a unique answer (yes or on) when
given two input arguments. For a predicate such as square_root the recall would
be 2 since a number has at most two square roots. If in doubt use a large number
or ‘¥ as the recall. The latter means no limit to the number of instantiations
that might be made but, in practice, Progol will set its own upper limit of 100.

For atoms in the body of a general rule, body mode declarations must be
given as follows.

:— modeb (*,parent_of (-person,+person))?
:- modeb(*,parent_of (+person,-person))?
:- modeb(*,sister_of (+person,-person))?

The first of these declarations can be used to add parent_of atoms to the body
of a hypothesis which introduce one or more parents of a given child. Similarly,
the second allows parent_of to be used in the body to find one or more children
of a given parent and the last can be used in the body to find one or more sisters
of a given individual.

3.3 Settings

These describe some of the runtime parameter settings that Progol uses. For
instance, in the following

:— set(posonly)?

posonly turns on the positive-only evaluation mechanism [9]. This allows the user
to avoid incorporating negative examples, which are often unnatural to define,
and also often unavailable in real-world domains.

All the other settings in Progol are described in the manual that is part of
the source distribution.

3.4 The complete example

The full listing of the example follows. This is similar to the file aunt.pl found
under the directory examples4.4 in the Progol4.4 distribution (see Section 2).

T to o lotoTotoToto 1o o oo ToToToo To o o o ot to oo o ToTo o To To o

% Learning aunt_of from parent_of and sister_of.
% Settings

:—- set(posonly)?

% Mode declarations

:- modeh(1,aunt_of (+person,+person))?

:— modeb(*,parent_of (-person, +person))?
:— modeb (*,parent_of (+person,-person))?
:— modeb (*,sister_of (+person,-person))?

% Types

person(jane) .
person(henry) .
person(sally) .
person(jim).

person(sam) .

person(sarah).
person(judy) .

% Background knowledge

parent_of (Parent,Child) :- father_of (Parent,Child).
parent_of (Parent,Child) :- mother_of (Parent,Child).

father_of (sam,henry) .
mother_of (sarah, jim) .

sister_of (jane,sam).
sister_of (sally,sarah).
sister_of (judy,sarah) .

% Examples

aunt_of (jane,henry) .
aunt_of (sally, jim).
aunt_of (judy, jim) .

Note that a line beginning with the *%’ character indicates a comment. Negative
examples of aunt_of could have been included as follows.

:- aunt_of (henry,sally).
:- aunt_of (judy,sarah).

Note the use of “:-’ to indicate negation.

3.5 The output

Assuming that the above listing is in a file called aunt.pl say, it would be given
to Progol by typing the following on the command line.

progol aunt

Alternatively the session might be interactive in which case Progol would be
executed with no arguments. The user could then type in modes, types and
clauses or use Prolog input routines such as consult to read in files. See the
manual page for further details. The output of executing the above command
follows.

CProgol Version 4.4

[Noise has been set to 100%]

[Example inflation has been set to 400%]

[The posonly flag has been turned ON]

[:- set(posonly)? - Time taken 0.00s]

:— modeh(1,aunt_of (+person,+person))? - Time taken 0.00s]

:— modeb(100,parent_of (-person,+person))? - Time taken 0.00s]
:- modeb(100,parent_of (+person,-person))? - Time taken 0.00s]
:- modeb(100,sister_of (+person,-person))? - Time taken 0.00s]
[Testing for contradictions]

[No contradictions found]

[Generalising aunt_of (jane,henry).]
[Most specific clause is]

aunt_of (A,B) :- parent_of(C,B), sister_of(A,C).

[Learning aunt_of/2 from positive examples]

[C:-0,12,11,0 aunt_of(A,B).]

[C:6,12,4,0 aunt_of (A,B) :- parent_of(C,B).]

[C:6,12,3,0 aunt_of(A,B) :- parent_of(C,B), sister_of(4,C).]
[C:6,12,3,0 aunt_of(A,B) :- parent_of(C,B), sister_of(A,D).]
[C:4,12,6,0 aunt_of (A,B) :- sister_of(A,C).]

[5 explored search nodes]

f=6,p=12,n=3,h=0

[Result of search is]

aunt_of (A,B) :- parent_of(C,B), sister_of(4,C).
[3 redundant clauses retracted]

aunt_of (A,B) :- parent_of(C,B), sister_of(A,C).
[Total number of clauses = 1]

[Time taken 0.02s]

When Progol is given a file as input, it tries to develop a general rule for all pred-
icates appearing in head mode declarations. In this case the only such predicate
is aunt_of. It first ensures that the asserted clauses are consistent. In this case
it reports that no contradictions were found so the input is consistent. It then
constructs the most specific clause of the first positive example in the input. The
first positive example is

aunt_of (jane,henry) .
and its most specific clause is
aunt_of (A,B) :- parent_of(C,B), sister_of (A,C).

It then generates new clauses from this most specific clause and sees how many
of the examples they prove. Here the clause

aunt_of (A,B).

explains 3 positive examples (400% inflation during positive-only learning and
3*4=12 is the second number in the list) and 11 random instances (the third
element in the list). Similarly

aunt_of (A,B) :- parent_of(C,B).

explains the same number of positive examples but fewer (5) randomly con-
structed instances, and thus has a better measure of compression (6, the first
number in the list). The fourth number is an optimistic estimate of the number
of literals needed in the clause and the first is a measure based on the other
three. See the next section and [8] for full details. Progol then adds the best
generalisation to its clause base and retracts any clauses which have now been
made redundant. Note that 3 clauses are retracted. Usually Progol would now
move onto the next example and repeat this procedure. However, all examples
are now covered, so Progol stops and shows its constructed definition.

4 The theory

The Progol system uses an approach to the general problem of ILP called mode
directed inverse entailment (MDIE). In contrast to inverse resolution [10] and
subsumption oriented approaches to induction [13], inverse entailment is based
upon model-theory rather than resolution proof-theory. In this way a great deal
of clarity and simplicity can be achieved. Furthermore by basing induction on a
sounder theoretic footing, it is hoped that it is easier to develop completeness and
consistency results. MDIE is a generalisation and enhancement of these previous
approaches.

4.1 The general problem in ILP

The general problem in ILP can be summarized as follows. Given background
knowledge B and examples E find the simplest consistent hypothesis H such
that

BAH = E

If we rearrange the above using the law of contraposition we get the more suitable
form

BANE E H
In general B, H and E can be arbitrary logic programs but if we restrict H and
E to being single Horn clauses, H and E above will be ground skolemised unit
clauses. If L is the conjunction of ground literals which are true in all models of
B A E we have

BAE E L
Since H must be true in every model of B A E it must contain a subset of the
ground literals in L. Hence

BA\EE LA
and so
HE 1

A subset of the solutions for H can then be found by considering those clauses
which #-subsume 1. The complete set of candidates for H could in theory be

found from those clauses which imply L. As yet Progol does not attempt to find
a fuller set of candidates (bypassing the undecidabilty of implication between
clauses with bounds on the number of resolution steps in the Prolog interpreter).
Progol searches the latter subset of solutions for H that theta-subsume L.

4.2 Mode declarations

In general 1 can have infinite cardinality. Progol uses the head and body mode
declarations together with other settings to build the most specific clause and
hence to constrain the search for suitable hypotheses.

A mode declaration has either the form modeh(n, atom) or modeb(n, atom,).
where n, the recall, is an integer greater than zero or *’ and atom is a ground
atom. Terms in the atom are either normal or place-marker. A normal term is
either a constant or function symbol followed by a bracketed tuple of terms. A
place-marker is either +type, -type or #type where type is a constant.

The recall is used to bound the number of alternative solutions for instantiat-
ing the atom. A recall of ‘*’ indicates all solutions - in practice a large number.
+type, -type, #type correspond to input variables, output variables and con-
stants respectively.

Progol imposes a restriction upon the placement of input variables in hy-
pothesised clauses. Suppose the clause is written as h : — by,...,b, where h
is the head atom and b;,1 <4 < n are the body atoms. Then every variable of
+type in any atom b; is either of +type in h or -type in some atom b; where
1 < j < 4. This imposes a quasi-order on the body atoms and ensures that the
clause is logically consistent in its use of input and output variables.

4.3 An example

In order to illustrate how Progol finds consistent hypotheses, the following ex-
ample will be used (this is similar to the grammar example file in the Progol4.4
release).

bbb htotototo oo To o oo TaTo oo
% Grammar learning problem. Learns a simple English language
% phrase grammar.

% Increase to 100 the resolution bound of the Prolog interpreter,
% ie. the maximum number of unifications the interpreter will

% perform per call.

:- set(r,100)7?

% Increase to 1000 the depth bound for the Prolog interpreter.
:- set(h,1000)7?

% Set learning from positive examples only.
:— set(posonly)?

% Learn grammar rules with head s(In,Out) and body atoms representing
% determiners, prepositions, nouns, etc.

:- modeh(1,s(+wlist,-wlist))?

:— modeb(1,det (+wlist,-wlist))?

:— modeb(1,prep(+wlist,-wlist))?

:— modeb(1,noun(+wlist,-wlist))?

:— modeb(1,tverb(+wlist,-wlist))?

:- modeb(1,iverb(+wlist,-wlist))?

:— modeb(*,np(+wlist,-wlist))?

:- modeb(x*,vp(+wlist,-wlist))?

Tl Toto oo ToTo o oo T To o o o o o
% Types

wlist([]).
wlist([W|Ws]) :— word(W), wlist(Ws).

word(a). word(at). word(ball). word(big). word(dog). word(every).
word (happy). word(hits). word(house). word(in). word(man). word(nice).
word(on). word(small). word(takes). word(the). word(to). word(walks).

T T toto ot T Toto oo o ToTo 1o 6 o oo T T
% Background knowledge

% The following represents the grammar rule

% NP -> DET NOUN

np(S1,S2) :- det(S1,S3), noun(S3,S2).

np(S1,S2) :- det(S1,S83), adj(S3,S4), noun(S4,S2).

% The following represents the grammar rule
% DET -> a

det([alS],S).

det([the|S],S).

det ([everyl|S],S).

vp(S1,82) :- tverb(S1,S2).
vp(S1,S2) :- tverb(S1,S83), prep(S3,S2).

noun([man|S],S).
noun([dog|S],S).
noun([house|S],S) .
noun([balll|S],S).

% Transitive and intransitive verbs.

tverb([hits]|S],S).
tverb([takes|S],S).
tverb([walks|S],S).

iverb([barks|S],S).
iverb([hits|S],S).

iverb([takes|S],S).
iverb([walks|S],S).

prep([at|8],8).
prep([tolS],8).
prep([on]|S],S).
prep([in]|S],S).
prep([from|S],S).

adj ([bigls],s).
adj([small|S],S).
adj([nice|S],S).
adj ([happylS],S).

bbb htoto o to oo 1o o To o o To oo

% Positive examples

s([the,man,walks,the,dogl,[]).
s([the,dog,walks,to,the,man], []).
s([a,dog,hits,a,ball]l, []1).
s([the,man,walks,in,the,house],[]).
s([the,man,hits,the,dog]l, [1).
s([a,ball,hits,the,dog]l,[]).
s([the,man,walks],[]).
s([a,ball,hits],[]).
s([every,ball,hits], []).
s([every,dog,walks], []).
s([every,man,walks], []).
s([a,man,walks],[]).
s([a,small,man,walks],[]).
s([every,nice,dog,barks], [1).

In the above, bounds on the on the dimensions of proofs carried out by the Prolog
interpreter inside Progol, are set first. The resolution bound r (maximum number
of unifications) is increased from its default value of 400 ! to 1000 and the depth
bound (maximum stack depth before forced backtracking) from its default of 30
to 100. Whenever the interpreter reaches a limit it gives a warning message and

! Progol’s default settings can be found using the settings command when running

Progol interactively.

returns failure so the two sets of commands are just a precaution to avoid this
happening.

The aim of the example is to find grammar rules which parse simple English
sentences such as “The man walks the dog”. The mode declarations express
this and also define the input(+) and output(-) variables and the types of the
parameters - in this case they all have the same type wlist (meaning word list).
We then define word lists recursively in terms of a given set of words which
appear in the examples and background knowledge. Finally 14 positive examples
of simple English sentences are given. In practice this is a very small number
but is sufficient for learning a few simple grammar rules.

4.4 Construction of the most specific clause

The construction of the most specific clause L proceeds as follows.

The first clause e to generalise is
s([the,man,walks,the,dog]l,[]).
From the head mode declaration
:— modeh(1,s(+wlist,-wlist))?

we have the trivial deduction

B Ae | s([the,man,walks,the,dog],[])
From the body mode declaration
:— modeb(1,det(+wlist,-wlist))?

and replacing the input variable by [the,man,walks,the,dog] we have the deduc-
tion

B A€ = det([the, man,walks, the, dog], [man,walks, the, dog))

Note that this constructs the term [man,walks,the,dog] in place of the output
variable. Using this new term with the body mode declaration

:— modeb(1,noun(+wlist,-wlist))?
and replacing the input variable by the new term we have the deduction
B A€ | noun([man,walks, the, dog], [walks, the, dog])

However, using other mode declarations in a similar way we can get the following
deductions as well.

B Ae |E np([man,walks, the,dog], [walks,the, dog])

B Ae = verb([walks,the,dog], [the, dog])

B Ae | vp([walks,the, dog], [the, dog])

B Ae | np([the,dog],[])

Putting these and all other similar deductions together we get

B A€ | s([the,man,walks,the,dog],[]) A
det([the, man, walks, the, dog], [man,walks, the,dog]) A ...
Anp([the, dog], [])

L is the right hand side of the above deduction. In effect a restricted minimal
Herbrand model has been constructed for B A E, the mode declarations being
used to guide the inclusion of predicates that might be of importance. To derive
L, the above is first negated to give

s([the, man, walks, the, dog],[]) V
det([the, man, walks, the, dog], [man,walks,the,dog]) V ...V
np([the, dog], [])

and then the most specific clause can be constructed by replacing terms in the
above by unique variables.

1 =s(A,B) vdet(A,C) Vnp(A, D)V noun(C, D) V tverb(D, E) V
iverb(D, E) V vp(D,E) V det(E,F) V np(E, B)

ie L is given by

s(A,B) :- det(A,C), np(A,D), noun(C,D), tverb(D,E), iverb(D,E), \\
vp(D,E), det(E,F), np(E,B).

in Prolog notation (see Section 8 to see how to trace the construction of this
clause).

4.5 Algorithm for constructing the most specific clause

The general algorithm for constructing the most specific clause is given in Figure
1. The final set L is a disjunction of its members so the final clause will have
the h constructed in step 2 as its head and the bs constructed in step 4 as atoms
in its body.

Note that InTerms is not affected by variables corresponding to -type in step
3 because of the restriction mentioned earlier that an input variable in a body
atom must either be an input variable in the head or an output variable in an
earlier body atom.

The recall is used to determine how many times to call the Prolog interpreter
for each instantiation of the clause in step 4. It may well be that the clause will
succeed many times and produce many answer substitutions.

The maximum variable depth (default 3) determines how many times step 4
is executed. The Prolog interpreter inside Progol is also bounded in its number
of resolution steps and in its depth.

Let e be the clause a : — b1,...,b,.
TheneisaAbi A... Aby.
hash : Terms — N is a function uniquely mapping terms to natural numbers.

1. Add e to the background knowledge
2. InTerms=0, L =10
3. Find the first head mode declaration h such that h subsumes a with substitution 8
For each v/t in 6,
if v corresponds to a #type, replace v in h by ¢
if v corresponds to a +type or -type, replace v in h by v
where vy, is the variable such that k = hash(t)
If v corresponds to a +type, add ¢ to the set InTerms.
Add h to L.
4. For each body mode declaration b
For every possible substitution 8 of variables corresponding to +type
by terms from the set InTerms
Repeat recall times
If Prolog succeeds on goal b with answer substitution 6’
For each v/t in 6 and ¢’
If v corresponds to #type, replace v in b by ¢
otherwise replace v in b by v, where k = hash(t)
If v corresponds to a -type, add t to the set InTerms
Add b to L
5. Increment the variable depth
6. Goto step 4 if the maximum variable depth has been achieved.

Fig. 1. Algorithm for constructing L

4.6 Searching the subsumption lattice

Thus, for each example, the search for suitable hypotheses is limited to the
bounded sub-lattice
O<H=<L1

where =< denotes §-subsumption and O is the empty (false) clause. The sub-
lattice has a most general element top which is O and a most specific or least
general element bottom which is L. The construction of the most specific clause
1 reduces the search space significantly.

When generalising an example E relative to background knowledge B, Progol
constructs L and searches from general to specific through the sub-lattice of
single clause hypotheses H such that O < H < 1. The search space is thus
bounded both above and below. The search is therefore better constrained than
in other approaches to general to specific searching. For the purpose of searching
this lattice of clauses ordered by @-subsumption, Progol employs a refinement
operator. Since H < 1, it must be the case that there exists a substitution 8
such that HA C 1. Thus for each literal [in H, there exists a literal I’ in L
such that 16 = I'. The Progol refinement operator has simply to keep track of
6 and a list of those literals I’ in L which have a corresponding literal [in H.

Any clause H which subsumes | corresponds to a subset of the literals in L
with substitutions applied. In Progol we have the added provision that the head
atom must always be included in order to obtain a sensible generalisation.

For the most specific clause in the example above, Progol starts from the
empty clause

false :- true.
and first refines it to
s(A,B).

This clause is then tested to see how many of the positive and negative examples
it predicts. The refinements of this clause are then considered. Progol now refines
this clause by adding the first body atom det(A,C) to the clause.

s(A,B) :- det(A,C).

The new clause is then tested against the examples and possible refinements
are again considered. Progol is searching a tree whose root node is 0. Children of
a node are the possible refinements that can be made to the clause at that node.
Certain nodes will be pruned by the use of the user-defined prune statements
which delimit the hypothesis space. In this example none of the subsumed clauses
are accepted so Progol then backtracks to try

s(A,B) :- np(4,0).
In this example Progol has to search 21 nodes before finding the most com-
pressive hypothesis
S(A’B) e nP(A,C) ’ VP(C’D) > nP(D,B) .

Note also that the refinement operator considers only variable/variable substi-
tutions which map hypothesised clauses to subsets of L. General subsumption
can be achieved when necessary by the the use of the equality operator in modeb
declarations. See [8] for further details.

4.7 The search algorithm

To search the subsumption lattice Progol applies an A*-like algorithm to find
the clause with maximal compression. A simple outline of this algorithm is given
in Figure 2.
The algorithm calculates the following for each candidate clause s

ps = number of positive examples correctly deducible from s

ng = number of negative examples incorrectly deducible from s

cs = length of clause s — 1

hs = number of further atoms to complete the clause

fs =DPs — (ns +Cs +hs)

hs is calculated by inspecting the output variables in the clause and determining
whether they have been defined. For example

Algorithm for searching 0 < C <X L

e is the example being generalised

1. Open = {0}, Closed =)

2. s = best(Open), Open = Open — {s}, Closed = Closed U {s}
3. if prune(s) goto 5

4. Open = (Open U re finements(s)) — Closed

5. if terminated(Closed, Open) return best(Closed)

6. if Open = 0 return e (no generalisation)

7. goto 2

Fig. 2. Algorithm for searching the lattice

s(A,B).

would have hy = 3 because it requires at least three literals from L to construct
a chain of atoms connecting A to B. This is found from a static analysis of L.

fs is a measure of how well a clause s explains all the examples with prefer-
ence given to shorter clauses.

The function best(S) returns a clause s € S which has the highest f value
in S.

prune(s) is true if ng = 0 and fs > 0. In this case it is not worth consider-
ing refinements of s as they cannot possibly do better since any refinement will
add another atom to the body of the clause and so cannot have a higher value
of p than s does. It also cannot improve upon ng as the latter is zero.

terminated(S,T) is true if s = best(S), ny, = 0, fs > 0 and for each ¢t in T
it is the case that f; > f;. In other words none of the remaining clauses nor any
potential refinements of them can possibly produce a better outcome than the
current one.

This algorithm is guaranteed to terminate and to return the clause (if it exists)
which has both maximum explanatory power and high compression as measured
by its length.

In the worst case the algorithm will consider all clauses in the subsumption
ordering. For further details on bounds for the algorithm and a more theoretical
discussion of the Progol system see [8].

4.8 The covering algorithm

Progol uses a simple set cover algorithm to deal with multiple examples. It
repeatedly generalises examples in the order found in the Progol source file and

B is the background knowledge, E the set of examples.

.If E =0 return B

. Let e be the first example in E

. Construct clause L for e

. Construct clause H from L

.Let B=BUH

.Let E'={e:e€ Eand B E e}
.Let E=E—FE’

. Goto 1

O~ O O W

Fig. 3. Covering algorithm

adds the generalisation to the background knowledge. Examples which are now
redundant relative to the new background knowledge are then removed. This is
shown in Figure 3.

For the grammar learning problem, only one pass through this algorithm is
needed to cover all the examples. This results in the single hypothesised general
clause solution.

4.9 The output
The output from Progol when processing the example follows.

CProgol Version 4.4

[:- set(r,100)? - Time taken 0.00s]

[:- set(h,1000)?7 - Time taken 0.00s]

[Noise has been set to 100%]

[Example inflation has been set to 400%]

[The posonly flag has been turned ON]

[:- set(posonly)? - Time taken 0.00s]

[:- modeh(1,s(+wlist,-wlist))? - Time taken 0.00s]

:— modeb(1,det(+wlist,-wlist))? — Time taken 0.00s]
:— modeb(1,prep(+wlist,-wlist))? - Time taken 0.00s]
modeb(1,noun(+wlist,-wlist))? - Time taken 0.00s]
:— modeb(1,tverb(+wlist,-wlist))? - Time taken 0.00s]
:— modeb(1,iverb(+wlist,-wlist))? - Time taken 0.00s]
:- modeb(100,np(+wlist,-wlist))? - Time taken 0.00s]
[:- modeb(100,vp(+wlist,-wlist))? - Time taken 0.00s]
[Testing for contradictions]

[No contradictions found]

[Generalising s([the,man,walks,the,dog],[]).]

[Most specific clause is]

Lo B B I s B e B |
|

s(A,B) :- det(A,C), np(A,D), noun(C,D), tverb(D,E), iverb(D,E),

vp(D,E), det(E,F), np(E,B).

[Learning s/2 from positive examples]
[C:-3,56,55,3 s(A,B).]

[C:42,56,9,3 s(A,B) :- det(A,C).]
[C:50,56,2,2 s(A,B) :- np(A,C).]

[C:51,52,1,1 s(A,B) :- np(A,C), tverb(C,D).]
[C:50,52,1,1 s(A,B) :- np(A,C), tverb(C,D), iverb(C,D).]
[C:50,52,1,1 s(A,B) :- np(A,C), tverb(C,D), iverb(C,E).]
[C:50,52,1,1 s(A,B) :- np(A,C), tverb(C,D), vp(C,D).]
[C:50,52,1,1 s(A,B) :- np(A,C), tverb(C,D), vp(C,E).]
[C:35,16,1,1 s(A,B) :- np(A,C), tverb(C,D), det(D,E).]
[C:39,16,1,0 s(A,B) :- np(A,C), tverb(C,D), np(D,B).]
[C:35,16,1,1 s(A,B) :- np(A,C), tverb(C,D), np(D,E).]
[C:51,56,1,1 s(A,B) :- np(A,C), iverb(C,D).]
[C:50,52,1,1 s(A,B) :- np(A,C), iverb(C,D), vp(C,D).]
[C:50,52,1,1 s(A,B) :- np(A,C), iverb(C,D), vp(C,E).]
[C:35,16,1,1 s(A,B) :- np(A,C), iverb(C,D), det(D,E).]
[C:39,16,1,0 s(A,B) :- np(A,C), iverb(C,D), np(D,B).]
[C:35,16,1,1 s(A,B) :- np(A,C), iverb(C,D), np(D,E).]
[C:51,52,1,1 s(A,B) :- np(4,C), vp(C,D).]

[C:42,24,1,1 s(A,B) :- np(A,C), vp(C,D), det(D,E).]

[C:44,24,1,0 s(A,B) :- np(A,C), vp(C,D), np(D,B).]
[C:42,24,1,1 s(A,B) :- np(A,C), vp(C,D), np(D,E).]
[21 explored search nodes]

f=44 ,p=24,n=1,h=0

[Result of search is]

s(A,B) :- np(4,C), vp(C,D), np(D,B).

[6 redundant clauses retracted]
[Generalising s([the,man,walks],[]).]
[Most specific clause is]

s(A,B) :- det(A,C), np(A,D), noun(C,D), tverb(D,B), iverb(D,B),
vp(D,B).

[Learning s/2 from positive examples]
[C:-12,48,55,2 s(A,B).]
[C:34,32,9,2 s(A,B) :- det(A,C).]

[C:46,32,2,1 s(A,B) :- det(A,C), np(A,D).]

[C:40,24,2,1 s(A,B) :- det(A,C), np(A,D), noun(C,D).]
[C:40,24,2,1 s(A,B) :- det(A,C), np(A,D), noun(C,E).]
[C:46,28,1,0 s(A,B) :- det(A,C), np(A,D), tverb(D,B).]
[C:44,28,1,1 s(A,B) :- det(A,C), np(A,D), tverb(D,E).]

[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:47,32,1,0 s(A,B)
[C:46,32,1,1 s(A,B) :
[C:44,28,1,0 s(A,B) :
[C:44,28,1,0 s(A,B)
[C:46,28,1,0 s(A,B)
[C:44,28,1,1 s(A,B)
[C:42,24,2,1 s(A,B)
[C:44,24,1,0 s(A,B)
[C:42,24,1,1 s(A,B)
[C:42,24,1,0 s(A,B)
[C:42,24,1,0 s(A,B)
[C:42,24,1,0 s(A,B)
[C:42,24,1,0 s(A,B)
[C:44,24,1,0 s(A,B)
[C:42,24,1,1 s(A,B)
[C:42,24,1,0 s(A,B)
[C:42,24,1,0 s(A,B)
[C:44,24,1,0 s(A,B)
[C:42,24,1,1 s(A,B)
[C:50,48,2,1 s(A,B)
[C:48,28,1,0 s(A,B)
[C:46,28,1,1 s(A,B)
[C:46,28,1,0 s(A,B)
[C:46,28,1,0 s(A,B)
[C:46,28,1,0 s(A,B)
[C:46,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:44,28,1,0 s(A,B)
[C:49,32,1,0 s(A,B)
[C:47,32,1,1 s(A,B)
[C:46,28,1,0 s(A,B)
[C:46,28,1,0 s(A,B)
[C:48,28,1,0 s(A,B)
[C:50,44,1,1 s(A,B)

[48 explored
£=49,p=32,n=1,h=0
[Result of search is]

search nodes]

det (A,QC),
det (A,C),
det (A,C),
det (A,C),
det (A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,C),
det(A,QC),
det(A,C),
np(4,C).]

np(A,D),
np(A,D),
np(A,D),
np(A,D),
np(A,D),
np(4,D),
np(4,D),
np(4,D),
np(A,D),

noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),
noun(C,D),

np(A,C), tverb(C,B).]
np(A,C), tverb(C,D).]

Ilp(A,C),
np(A,C),
np(A,C),
np(A,C),
np(A,C),
np(A,C),
np(4,C),
np(4,C),
np(4,C),
Ilp(A,C),
Ilp(A,C),
np(A,C),
np(A,C),
np(A,C),
np(4,C),

tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),
tverb(C,B),

iverb(C,B),
iverb(C,B),
vp(C,B).]
vp(C,D).]

tverb(D,B),
tverb(D,B),
tverb(D,B),
tverb(D,B),
iverb(D,B).]
iverb(D,E).]
iverb(D,B), vp(D,B).]
iverb(D,B), vp(D,E).]
vp(D,B).]

np(A,D), vp(D,E).]

noun(C,D).]

iverb(C,B).]
iverb(C,D).]

iverb(D,B
iverb(D,E
vp(D,B).]
vp(D,E).]

tverb(D,B).]
tverb(D,E).]
tverb(D,B), iverb(D,
tverb(D,B), iverb(D,
tverb(D,B), vp(D,B).
tverb(D,B), vp(D,E).
iverb(D,B).]
iverb(D,E).]
iverb(D,B), vp(D,B).
iverb(D,B), vp(D,E).
vp(D,B).]

vp(D,E).]

iverb(C,B
iverb(C,D
vp(C,B).]
vp(C,D).]
iverb(C,B),
iverb(C,B),
iverb(C,D),
iverb(C,D),
iverb(C,D),

).1]
)]

vp(C,B).
vp(C,D).
vp(C,B).
vp(C,D).
vp(C,E).

vp(C,B) .]
vp(C,D).]

B
E
]
]

]
]

]
]
]
]
]

).]
).]

).]
).]

s(A,B) :- np(A,C), iverb(C,B).
[8 redundant clauses retracted]

S(A’B) e nP(A,C), VP(C’D)’ nP(D’B)-
s(A,B) :- np(4,C), iverb(C,B).

[Total number of clauses = 2]

[Time taken 0.32s]

The names of the variables may not always match those in the description since
Progol generates the name of a variable from its number. The clauses will be
equivalent up to alphabetic renaming though.

Once Progol has determined the most specific clause L, it lists those clauses
which subsume it and which might be part of any final hypothesis it reaches. For
each clause the 4 integers output correspond to f, p, n and h. These are a measure
of predictive power /compression, the number of positive examples explained, the
number of negative examples incorrectly explained and the number of further
atoms to complete the clause, respectively. Note that f is defined as

f=Pp—(n+c+h))/p

where ¢ is now the length of the clause and P is the total number of positive
examples. The multiplication by P and division by p are just a way of normalising
the measure while still leaving f a monotonically increasing function of p. The
value of f output is rounded to the nearest integer. Higher values of f indicate
the most promising candidate clauses for the final hypothesis.

Also note that the example illustrated is perhaps of one of the most basic
kinds that Progol can cope with. It has no constant declarations, functions, lists,
integrity constraints, recursion and has few examples and background clauses.
It has been used for illustrative purposes only.

5 Estimating accuracy and significance

Once Progol has learnt a set of rules from examples, the system permits a quan-
tifiable analysis of predictive accuracy. The methods used to achieve this vary
according to the number of test examples.

Suppose the teaching file gram trn.pl contains the following definitions and
examples (the types and background knowledge are assumed the same as in the
previous example and have thus been omitted).

:- set(r,100)7
:- set(h,1000)7?
:- set(posonly)?

% Learn grammar rules with head s(In,Out) and body atoms representing
% determiners, prepositions, nouns, etc.

:— modeh(1,s(+wlist,-wlist))?

:— modeb(1,det (+wlist,-wlist))?

:- modeb(1,prep(+wlist,-wlist))?

:— modeb(1,noun(+wlist,-wlist))?

:— modeb(1,tverb(+wlist,-wlist))?

:— modeb(1,iverb(+wlist,-wlist))?

:— modeb(*,np(+wlist,-wlist))?

:- modeb(x*,vp(+wlist,-wlist))?

Tl Toto oo ToTo o oo T To o o o o o
% Types

hooos

T ToToto ot T Too oo o ToTo 1o o oo T T
% Background knowledge

hooos

oo toto oo ToTo o TotoTo o o o o ToToto

% Positive examples

s([the,man,walks,the,dogl,[]).
s([the,dog,walks,to,the,man], []).
s([a,dog,hits,a,ball]l, [1).
s([the,man,walks,in,the,house],[]).

s([the,man,walks],[]).

This is almost the example of the last section with a reduction in the positive
examples. Given this reduction Progol will fails to find the same hypothesis as
before and produces some incorrect classifications.

Once Progol has found a rule for s it can be given a set of test examples
to see how accurate its predictions are. Suppose the test file gram tst.pl is as
follows.

% Positive test examples

s([the,man,hits,the,dog]l, [1).
s([a,ball,hits,the,dog]l,[]).
s([a,ball,hits],[]1).
s([every,ball,hits], [1).
s([every,dog,walks],[1).
s([every,man,walks],[]).
s([a,man,walks],[]).

s([a,small,man,walks], []).
s([every,nice,dog,barks], [1).

% Negative test examples

:— s([every,man],[]).

:- s([a,man],[1).

:— s([a,small,man],[]).

:- s([every,nice,dogl,[1).

We can call Progol interactively by just typing
progol

on the command line and then consult the file gram trn.pl to read in the defi-
nitions and examples, generalise the predicate in question and then test Progol’s
hypothesis against the test file. Note that in interactive mode we have to explic-
itly tell Progol to find a general rule.

|- consult(gram_trn)?
|- generalise(s/2)7

S(A:B) e I].P(A,C), VP(C,D)’ I].P(D,B).
s(A,B) :- np(4,C), tverb(C,B).

|- test(gram_tst)?
[False negative:]s([every,nice,dog,barks],[]).

[PREDICATE s/2]

Contingency table= ________ A _______ "A
P| 8| ol 8

¢ 5.5)1C 2.8)]
“P| 1] 4| 5

| (3.5) I (1.5) |

[Overall accuracy= 92.31% +/- 7.39%]
[Chi-square = 5.87]

[Without Yates correction = 9.24]
[Chi-square probability = 0.0154]

The consult command is used to add the definitions and clauses to Progol’s
knowledge base. The generalise command then tells Progol to find a general rule
for s. The argument to this command has the form predicate/arity. The second
rule that Progol finds incorrectly has tverb instead of iverb. This rule is then

tested using the test command which expects a filename as its sole argument.
The result of testing are as follows: out of the 9 positive examples in the test
all but one were correctly predicted by the rules. The 4 negative examples in
the test are all correctly predicted by the rules. The contingency table above
shows this - P stands for predicted by the rule, ~ P not predicted, A stands
for actual positive examples, ~ A for negative ones. A statistical chi-square test
has been applied to the data and an overall accuracy and chi-square probability
calculated.

To improve accuracy, one could then try adding the test examples to the
learning examples and see if the system can come up with an improved rule. In
this case the test rules are a little more general and Progol does come up with
a new rule that explains all the examples.

A further testing technique provided by the system is the leave-one-out
method. When there are not many examples to learn from and test, an overall
accuracy measure can be calculated by putting one example aside for testing
and learning a rule from the remaining examples. This is then repeated for all
the examples. The procedure to do this is to consult the relevant files and then
to call the built-in procedure leave with an argument of the form predicate/arity.
Note that generalise must not be used; otherwise the rule is learnt from all the
examples.

Another technique that can be used is that of layered learning. In this case
Progol is first allowed to form a general rule and then it is given a file of examples
from which it tests and tries to improve its rule. A number of the examples
are tested against the general rule and when the first false positive or negative
is encountered Progol will improve its rule to take account of this exception.
The process is then repeated but now the exceptions are accumulated until at
least 5 clauses have been tested before Progol improves its rule from them. The
algorithm then repeats with 25, 125, ... clauses to be tested before trying to
improve the rule. This command is issued as follows.

|- layer(filename)?

6 Declarative bias

In the following two sub-sections we describe the main mechanisms in Progol
that can be used to control the search?. These are a) integrity constraints and
b) prune statements. Their effects are illustrated in Figure 4. Note that with
integrity constraints if the hypothesis H is disallowed then so are all more general
clauses. Conversely, with prune statements, if H is pruned, then so are all more
specific clauses in the search. Good use of these declarative bias mechanisms
(especially prune statements) can be extremely effective for reducing the amount
of search performed by Progol.

2 Section 7 describes how to set resource bounds which can also be used to control the
search.

Solutions eliminated
by
Integrity
Constraints

false:- ..

Increasing
b generality

Present]
search — 1T e
node

prune(Head,Body) :- ..

Search nodes
eliminated by
Prune statements

Fig. 4. Controlling search using integrity constraints and prune statements

6.1 Integrity constraints

Progol allows the user to add integrity constraints into the clause base. These
are represented as headless clauses, though are stored internally as clauses with
head false. For example, if we were concerned with the predicates person, male
and female, we might include the following clauses.

:— person(X), male(X), female(X).
This headless clause is stored internally as
false :- person(X), male(X), female(X).

and can be read as saying “false is provable if there is a person who is both male
and female” | ie. no person can be both male and female. If the Prolog query false?
succeeds it means that the integrity constraints have been violated. The integrity
constraints can be listed in interactive mode using the query listing(false)?. Note
that negative examples are just a special case of integrity constraints. If Progol
detects that a hypothesis under consideration is inconsistent with this integrity
constraint then it will disallow its acceptance.

Closed world integrity constraint

A more advanced example of an integrity constraint is as follows.

:— hypothesis(male(X),Body,_), person(X), Body,
not (clause(male(X) ,true)).

The Progol built-in predicate hypothesis returns the present hypothesis under
consideration if one exists and fails otherwise. The three arguments of hypothe-
sis are 1) hypothesis head, 2) hypothesis body and 3) the unique clause number
of the hypothesised clause. The integrity constraint can be read as saying that
“false is provable (ie. a contradiction has been found) if a) the present hypoth-
esis is male(X) :- Body and b) X is a person and c) Body is provable and d)
male(X) is not a unit clause (positive example) in the clause base”. Such an
integrity constraint is often called a “Closed World Assumption”, meaning that
the hypotheses must not make predictions about examples which have not been
seen. The use of such a closed world assumption ensures that Progol will not
overgeneralise, which is useful for instance in the case in which no negative
examples are available. However, the integrity constraint eliminates overgener-
alisation by ensuring that Progol will not generalise at all with respect to the
positive examples!

Output completeness integrity constraint

The following is a less severe integrity constraint, which has been referred
to as “input completeness” [7]. The constraint requires that the hypothesised
predicate must act as functions (ie. f : X — Y where there is at most one
f(z) €Y for every z € X)) with respect to the training examples. In [7] this type
of constraint is used for learning rules for the construction of the past tense of
English. Thus for every verb it is assumed that there is a unique past tense. The
following Progol integrity constraint encodes this constraint.

:- hypothesis(past(X,Y),Body,_),
clause(past(X,Z) ,true), Body, not(¥Y==Z).

The constraint can be read as saying “false if a) the hypothesis is past(X,Y) :-
Body, and b) there is a unit clause (ie. example) past(X,Z) and c¢) when the Body
is proved the substitution for Y differs from Z”. In other words the hypothesised
clause must not make a prediction for the past tense of a verb in the example
set which differs from the actual past tense of that verb.

Generative integrity constraint

The examples above illustrate the use of integrity constraints for testing
semantic properties of hypotheses. It is also quite usual to use them to test syn-
tactic properties of clauses. One such widely used syntactic property of clauses is
whether they are generative [11], otherwise called range-restricted. A generative
clause is one in which each variable appears in at least two different atoms. It
can be shown that if all clauses in a logic program are range restricted then
all the atoms which can be derived from it are ground. The following integrity

constraint and associated definitions encode the requirement of generativeness
for hypothesised clauses.

:— hypothesis(Head,Body,_), nongenerative((Head,Body)) .

nongenerative(C) :- % C is a comma-separated list of atoms
in(A1,C), var(V1i,A1),
not ((in(A2,C), A1\==A2, var(V2,A2), U1==V2)).

var (V,V) :- var(V).
var (V,T) :- arg(N,T,T1), N>0, var(V,T1).

The built-in predicate in tests the membership of its first argument within the
comma separated list represented by its second argument. The predicate non-
generative succeeds if there is a variable V1 in atom A1 of clause C where V1
does not appear in any other atom A2 in C.

6.2 Prune statements

Integrity constraints reject certain hypotheses, but only after the Progol inter-
preter has constructed the hypothesis to be tested. If pruning is used instead,
clauses can be taken out of consideration with little execution time overhead.
Consider for example the following prune statement.

prune (Head,Body) :- Head, not(Body) .

This statement will reject an hypothesis generated by Progol if it is found that
with a certain substitution the Head can be proved but the Body cannot. Put
another way, the prune rule says that for every instance of the head the body
must be provable. This means that the target rule set consists of a single clause
which covers all of the examples. Thus any hypothesised clause which does not
do so can be ignored, as can all more specific clauses. In this way the entire
search tree below such an hypothesis can be pruned.

Prune statements are extremely useful for stating which kinds of clause
should not be considered in the search. For instance, suppose you wanted to
disallow self-recursive clauses. This can be achieved using the following simple
prune rule.

prune (Head,Body) :- in(Head,Body) .

The prune statement eliminates any clause whose Head unifies with an atom in
its Body. Similarly a single level of mutual recursion can be eliminated using the
following prune statement.

prune (Head ,Body) :-
in(Atom,Body), clause(Atom,Bodyl),
in(Head,Bodyl).

7 Setting resource bounds

It is necessary to put finite limits on a variety of time and space resources used
within Progol’s search in order to ensure that it terminates efficiently. This is
done largely using internal settings of various named bounds. These bounds all
have default values which can be viewed using the built-in command settings?
and can be altered using the built-in commands set and unset.

Below is a list of the named resource bounds followed by their default values
in brackets and a short description of each.

h (Default=30). This is the maximum depth of any proof carried out by the
interpreter, ie. the maximum stack depth before backtracking occurs. When
the limit is exceeded a warning of the form [WARNING: depth-bound failure
- use set(h,..)] is issued. This is not an error. It is necessary to have such
failures when learning recursive rules.

r (Default=400). This is the maximum depth of resolutions (unifications) al-
lowed in any proof carried out by the interpreter. Once this limit is exceeded
the entire proof is failed (unlike h in which backtracking occurs when the
bound is reached). and the warning [WARNING: depth-bound failure - use
set(r,..)] is issued. Again this is not an error. It is necessary to have such
failures when learning recursive rules.

nodes (Default=200). This is a bound on the number of search nodes ex-
panded in the search of the lattice of clauses. According to sample complex-
ity results in the paper [9] this value should be set to around 1.6 times the
number of examples in the training set in order to minimise expected error.

¢ (Default=4). This is the maximum number of atoms in the body of any
hypothesised clause. Increasing this value potentially increases the maximum
clause search size exponentially.

i (Default=3). This is a bound on the number of iterations carried out in the
construction of the bottom clause. Each iteration introduces new variables
based on the instantiation of output terms associated with modeb declara-
tions.

8 Debugging Progol input files

Note that writing background knowledge, integrity constraints and prune state-
ments involves programming. It should by now be clear that each of these com-
ponents of a Progol input file is itself a piece of Prolog code. Thus it is important
to have debugging tools which allow the user to test and correct this code. The
available debugging tools are essentially the same as those found in a standard
Prolog interpreter (ie. trace and spy) [1], though there is an additional mecha-
nism in CProgol4.4 to test how a particular bottom clause is being constructed.
This mechanism can be illustrated with reference to the worked example from
Section 4.4. Suppose that we have loaded the file grammar.pl and wish to trace
the construction of the most specific clause associated with the example sentence
“The man walks the dog”. We proceed as follows.

|- trace?

|- s([the,man,walks,the,dog], [1)!
[Testing for contradictions]

(0) Call: false

(0) Fail: false

[No contradictions found]

Note the use of ‘!” after the example rather than ‘?’. This tells Progol to construct
the most specific clause for this example. The first thing which Progol does is
to test if the given example contradicts any integrity constraint. This is done by
testing the goal false?, which fails, leading to the diagnosis [No contradictions
found]. Next the modeh declaration is matched as follows.

(0) Call: s(_0,_1)=s([the,man,walks,the,dogl,[])
(0) Done: s([the,man,walks,the,dog],[])=s([the,man,walks,the,dogl,[])

The first and second arguments are found to be the terms [the,man,walks,the,dog]
and []. Next these terms are type checked as follows.

(0) Call: wlist([the,man,walks,the,dog]) s
(0) Done: wlist([the,man,walks,the,dog])

The user’s response of ‘s’ causes the tracing of the sub-proof to be skipped,
leading to the result that [the,man,walks,the,dog] succeeds as a wlist. Having
determined that the new term is of type wlist, Progol then uses the modeb dec-
larations to test this term with respect to the background knowledge as follows.

(0) Call: det([the,man,walks,the,dogl,_1) s
(0) Done: det([the,man,walks,the,dog], [man,walks,the,dog])

Here it is shown that theis a determiner followed by the phrase [man,walks,the,dog],
which in term becomes a new term which in turn will be tested using the modeb
declarations and associated background predicate definitions.

As is usual with Prolog interpreters, tracing can be turned off by responding
with n, and it is possible to leap to the next spy-point by responding with [. Spy-
points are set on individual predicate definitions using the spy command. Thus
turning off tracing using notrace? and calling spy(det/2)? above would ensure
that the trace only started when the arity 2 predicate det was called. All spy
points can be turned off using nospy?.

Notice that a command such as s([the,man,walks,the,dog],[])! above only
leads to the construction of the bottom clause. If you want to trace the entire
search through the lattice, it is necessary to first issue the command set(searching)?.

9 Summary

The design methodology for Progol was to present the user with a standard
Prolog interpreter augmented with inductive capabilities. The syntax for exam-
ples, background knowledge and hypotheses is the Dec-10 Prolog syntax with

the usual augmentable set of prefix, postfix and infix operators. Headless Horn
clauses are used to represent negative examples and integrity constraints. Indeed
it is possible for Progol to learn headless constraints from headless ground unit
clauses by the use of a modeh declaration for the predicate false. The standard
library of primitive predicates described in Clocksin and Mellish [1] is built into
Progol and available as background knowledge. Progol constructs new clauses by
generalising from the examples in the Prolog database using an inverse entail-
ment algorithm. Results from the theory of ILP guarantee that Progol conducts
an admissible search through the space of generalisations, finding the maximally
compressive set of clauses from which all the examples can be inferred. The
choice of engineering a complete Prolog interpreter was taken in order to make
induction a first-class and efficient operation on the same footing as deductive
theorem proving. Progol has been used successfully in experiments in learning
to predict mutagenic molecules [5, 14], in drug design [4, 3], and in protein shape
prediction [12,15].

Acknowledgements

The first author would like to thank his wife, Thirza Castello-Cortes, and daugh-
ter Clare, who have provided unfailing support during the writing of this chapter.
This work was supported partly by the Esprit Long Term Research Action ILP IT
(project 20237), EPSRC grant GR/K57985 on Experiments with Distribution-
based Machine Learning and an EPSRC Advanced Research Fellowship held by
the author.

The second author would like to thank his wife, Valmai Alysia, for much
valued help in proof-reading various versions of this chapter.

References

1. W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin,
1981.

2. James Cussens, David Page, Stephen Muggleton, and Ashwin Srinivasan. Using
Inductive Logic Programming for Natural Logic Processing. In W. Daelemans,
T. Weijters, and A. van der Bosch, editors, ECML’97 — Workshop Notes on Em-
pirical Learning of Natural Language Tasks, pages 25-34, Prague, 1997. University
of Economics. Invited keynote paper.

3. P.Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using
the inductive logic programming system Progol. Machine Learning, 30:241-271,
1998.

4. R. King, S. Muggleton, R. Lewis, and M. Sternberg. Drug design by machine
learning: The use of inductive logic programming to model the structure-activity
relationships of trimethoprim analogues binding to dihydrofolate reductase. Pro-
ceedings of the National Academy of Sciences, 89(23):11322-11326, 1992.

5. R. King, S. Muggleton, A. Srinivasan, and M. Sternberg. Structure-activity rela-
tionships derived by machine learning: the use of atoms and their bond connectives

10.

11.

12.

13.

14.

15.

to predict mutagenicity by inductive logic programming. Proceedings of the Na-
tional Academy of Sciences, 93:438-442, 1996.

R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from
molecular structure using inductive logic programming. Environmental ealth Per-
spectives, 104(5):1031-1040, 1996.

R.J. Mooney and M.E. Califf. Induction of first-order decision lists: Results on
learning the past tense of english verbs. Journal of Artificial Intelligence Research,
3:1-24, 1995.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245—
286, 1995.

S. Muggleton. Learning from positive data. Machine Learning, 1998. Accepted
subject to revision.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by
inverting resolution. In Proceedings of the 5th International Conference on Machine
Learning, pages 339-352. Kaufmann, 1988.

S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281-298. Academic Press, London,
1992.

S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction
using logic-based machine learning. Protein Engineering, 5(7):647-657, 1992.
S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. Springer-Verlag, Berlin, 1997. LNAT 1228.

A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Theories for muta-
genicity: a study of first-order and feature based induction. Artificial Intelligence,
85(1,2):277-299, 1996.

M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg. Protein fold recognition.
In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic
Programming (ILP-98), LNAI 1446, pages 53—64, Berlin, 1998. Springer-Verlag.

