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Many attempts have been made to solve the problem of
predicting protein secondary structure from the primary
sequence but the best performance results are still dis-
appointing. In this paper, the use of a machine learning
algorithm which allows relational descriptions is shown to lead
to improved performance. The Inductive Logic Programming
computer program, Golem, was applied to learning secondary
structure prediction rules for «/a domain type proteins.
The input to the program consisted of 12 non-homologous
proteins (1612 residues) of known structure, together with
a background knowledge describing the chemical and physical
properties of the residues. Golem learned a small set of rules
that predict which residues are part of the «-helices—based
on their positional relationships and chemical and physical
properties. The rules were tested on four independent
non-homologous proteins (416 residues) giving an accuracy
of 81% (+2%). This is an improvement, on identical data,
over the previously reported result of 73% by King and
Sternberg (1990, J. Mol. Biol., 216, 441—457) using the
machine learning program PROMIS, and of 72% using the
standard Garnier — Osguthorpe —Robson method. The best
previously reported result in the literature for the o/« domain
type is 76%, achieved using a neural net approach. Machine
learning also has the advantage over neural network and
statistical methods in producing more understandable results.
Key words: artificial intelligence/a-helix/machine learning/protein
modelling/secondary structure prediction

Introduction

An active research area in the hierarchical approach to the protein
folding problem is the prediction of secondary structure from
primary structure (Lim, 1974; Gibrat er al., 1987; Bohr et al.,
1988, 1990; Qian and Sejnowski, 1988; Seshu et al., 1988;
Holley and Karplus, 1989; McGregor et al., 1989, 1990; King
and Sternberg, 1990). Most of these approaches involve
examining the Brookhaven database (Bernstein et al., 1977) of
known protein structures to find general rules relating primary
and secondary structure. However, this database is hard for
humans to assimilate and understand because it consists of a large
amount of abstract symbolic information, although the use of
molecular graphics provides some help. Today the best methods
of secondary structure prediction achieve an accuracy of 60—65%
(Kneller et al., 1990). The generally accepted reason for this poor
accuracy is that the predictions are carried out using only local
information—long range interactions are not taken into account.
Long range interactions are important because when a protein
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folds up, regions of the sequence which are linearly widely
separated become close spatially. Established approaches to the
problem of predicting secondary structure have involved hand-
crafted rules by experts (Lim, 1974) and Bayesian statistical
methods (Gibrat et al., 1987). More recently a variety of machine
learning methods have been applied: both neural networks (Bohr
et al., 1988, 1990; Qian and Sejnowski, 1988; Holley and
Karplus, 1989; McGregor et al., 1989, 1990) and symbolic
induction (Seshu ef al., 1988; King and Sternberg, 1990). An
exact comparison between these methods is very difficult because
different workers have used different types of proteins in
their data sets.

One approach to achieve a higher accuracy in the prediction
of secondary structure is to break the problem down into a number
of sub-problems. This is done by splitting the data set of proteins
into groups of the same type of domain structure, e.g. proteins
with domains only with a-helices (a/a domain type), 3-strands
(8/B domain type), or alternate «-helices and (-strands (a/f
domain type). This allows the learning method to have a more
homogeneous data set, resulting in better prediction, and assumes
a method of determining the domain type of a protein. The
decomposition approach is adopted in this paper where we
concentrate solely on proteins of a/a domain type. On these
protein types, neural networks have achieved an accuracy of 76 %
on unseen proteins (Kneller et al., 1990)—using a slightly more
homologous database than in this study. These proteins have also
been studied using the symbolic induction program PROMIS,
which achieved an accuracy of 73% on unseen proteins (King
and Sternberg, 1990)—using the same data as this study.
Compared with the machine learning method used in this study,
PROM IS has a limited representational power. This means that
it was not capable of finding some of the important relationships
between residues that the new method showed were involved in
a-helical formation.

In this paper, Inductive Logic Programming (ILP) is applied
to learning the secondary structure of a/a domain type proteins.
ILP is a method for automatically discovering logical rules from
examples and relevant domain knowledge (Muggleton, 1991).
ILP is a new development within the field of symbolic induction
and marks an advance in that it is specifically designed to learn
structural relationships between objects—a task particularly
difficult for most machine learning or statistical methods. The
ILP program used in this work is Golem (Muggleton and Feng,
1990). Golem has had considerable previous success in other
essentially relational application areas including drug design (King
et al., 1992), finite element mesh design (Dolsak and Muggleton,
1991), construction of qualitative models (Bratko er al., 1991)
and the construction of diagnostic rules for satellite technology
(Feng, 1991).

Materials and methods
Database of proteins

Sixteen proteins were selected for the data set from the
Brookhaven data bank (Bernstein et al., 1977). The training
proteins used were 155C (cytochrome CS550: Timkovich and
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Dickerson, 1976), 1CCS5 (cytochrome C5 oxidized: Carter er al.,
1985), 1CCR (cytochrome C: Ochi eral., 1983), ICRN
(crambin: Hendrickson and Teeter, 1981), 1CTS (citrate
synthase: Remington et al., 1982), 1ECD (erythrocruorin
reduced deoxy: Steigemann and Weber, 1979), IHMQ (hem-
erythrin met: Stekamp et al., 1983), IMBS (myoglobin met:
Scouloudi and Baker, 1978), 2B5C (cytochrome BS), 2C2C
(cytochrome C2 oxidized), 2CDV (cytochrome C3) and 3CPV
(calcium-binding parvalbumin). The test proteins used were 156B
(cytochrome BS562 oxidized: Lederer eral., 1981), 1BP2
(phospholipase A2: Dijkstra et al., 1981), 351C (cytochrome
C551: Matsuura er al., 1982) and 8PAP (papain: Kamphuis
et al., 1984)—in protein 8PAP only the first domain (residues
1 —108) is used, the other domain is of type (3/8. These proteins
have high resolution structure and o/« domain type (secondary
structure dominated by «-helices, with little if any §-strands)—
Sheridan er al. (1985). The proteins were also selected to be
non-homologous (little structural or sequential similarity). This
selection was performed on the basis of a knowledge of protein
structure and biology, e.g. there is only one globin structure
IMBS (myoglobin). It was not possible to use a much larger set
of proteins because of the limited number of proteins with known
o/a domain type structure. The data set of proteins was randomly
chosen from all the proteins to give an ~ 70:30 split (Table I).
Secondary structure was assigned using an early implementation
of the Kabsch and Sander (1983) algorithim.

Golem

Golem is a program for ILP. The general scheme for ILP
methods is shown in Figure 1. This scheme closely resembles
that of standard scientific methods. Observations are collected
from the outside world (in this study the Brookhaven data bank).
These are then combined, by an ILP program, with background

Table 1. Staustics of the random split of the data into training and test sets

Set Types of secondary structure
a nota f not 8 turn not turn  total
Train  no 848 764 45 1567 719 893 1612
ratio 0.526 0.474 0.028 0972 0446 0554
Test no. 217 199 10 406 189 227 416
ratio  0.522 0.478 0.024 0.0976 0454 0.546
All no 1065 963 55 1973 908 1120 2028
ratio  0.525 0475 0.027 0973 0.448 0.552

The top row titles are the types of secondary structure, the left column titles
are the splits of the data into training and test sets, no. is the number of
residues of that secondary structure type and ratio 1s the ratio (secondary
structure no /total no.)

——{ Observations
\ Inductive [—

Experimentation

Hypothesis |

Background
knowledge

} Acceptance

Fig. 1. Inductive Logic Programmung scheme
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knowledge to form inductive hypotheses (rules for deciding
secondary structure). These rules are then experimentally tested
on additional data. If experimentation leads to high confidence
in the hypotheses’ validity, they are added to the background
knowledge.

In ILP systems, the descriptive languages used are subsets of
first-order predicate calculus. Predicate logic is expressive enough
to describe most mathematical concepts. It is also believed to
have a strong link with natural language. This combination of
expressiveness and ease of comprehension has made first-order
predicate calculus a very popular language for artificial
intelligence applications. The ability to learn predicate calculus
descriptions is a recent advance within machine learning. The
computer implementation of predicate logic used in Golem is the
language Prolog. Prolog rules can easily express the learned
relationships between objects such as molecular structures.
Previous machine learning programs have lacked the ability to
learn such relationships and neural network and statistical learning
techniques also have similar difficulties. This gives ILP learning
algorithms such as Golem a potential advantage in learning
problems involving chemical structures.

Golem takes as input positive examples, negative examples and
background knowledge described as Prolog facts. It produces as
output Prolog rules which are generalizations of the examples.
The Prolog rules are the least general rules which, given the
background knowledge, can produce the input examples and none
of the negative examples. The method of generalization is based
on the logical idea of Relative Least General Generalization
(RLLG). The basic algorithm used in Golem is as follows. First
it takes a random sample of pairs of examples. In this application,
this will be a set of pairs of residues chosen randomly from the
set of all residues in all proteins represented. For each of these
pairs Golem computes the set of properties which are common
to both residues. These properties are then made into a rule which
is true of both the residues in the pair under consideration. For
instance, if the only common properties of the residues are that
both residues are large and are three residues distant from a more
hydrophilic residue then Golem would construct the following
explanation for their being part of an «-helix.

alpha(Protein,Position):
residue(Protein,Position,R),
large (R),
P3 = Position+3,
residue(Protein, Position,R3),
more__hydrophilic(R3,R). (see Representation of the problem)

Having built such a rule for all chosen pairs of residues, Golem
takes each rule and computes the number of residues which that
rule could be used to predict. Clearly these rules might predict
some non a-helix residues to be part of an «-helix. Golem
therefore chooses the rule which predicts the most a-helix
conformation residues while predicting less than a predefined
threshold of non a-helix residues. Having found the rule for the
best pair, Golem then takes a further sample of as yet unpredicted
residues and forms rules which express the common properties
of this pair together with each of the individual residues in the
sample. Again the rule which produces the best predictions on
the training set is chosen. The process of sampling and rule
building is continued until no improvement in prediction is
produced. The best rule from this process 1s used to eliminate
a set of predicted residues from the training set. The reduced
training set is then used to build up further rules. When no further
rules can be found the procedure terminates.




Representation of the problem

Three types of file are input into Golem: foreground examples
(facts that are true), background facts and negative examples (facts
that are false).

Foreground and negative examples. The following is a foreground
example: alpha(Protein name,Position), e.g. alpha(155C, 105).
This states that the residue at position 105 in protein 155C is
an o-helix. The negative examples take the same form but state
all residue positions in particular proteins in which the secondary
structure is not an a-helix.

Background facts. The background facts contain a large variety
of information about protein structure. The most basic is
the primary structure information. For instance the fact:
position(155C, 119, p) states that the residue at position 119 in
protein 155C is proline (the standard 20 character coding for
amino acids is used).

Table I1. Definition of the more complicated properties of some unary
predicates

Unary predicate Definition

hydro__b__don hydrogen bond donator
hydro__b__acc hydrogen bond acceptor
not__aromatic the complement of the aromatic class
small__or__polar either small or polar

not__p everything but proline

not__k everything but lysine

either aromatic or very hydrophobic
either aromatic or aliphatic or
methionine

aromatic__or__very__hydrophobic
ar__or_al__or_m

Protein structure predictions using machine learning

Because Golem does not have arithmetic information built in,
information has to be given about the sequential relationships
between the different positions (residues). These arithmetic-type
relations allow indexing of the protein sequence relative to the
residue being predicted. The first predicate describes nine
sequential positions. For instance the fact octf(19, 20, 21, 22,
23, 24, 25, 26, 27), describing the sequence 19—27, can be
used to index the four flanking positions on either side of
position 23. The second type gives sequences that are considered
to be especially important in «-helices (Lim, 1974). Thus,
for instance, the background knowledge contains the facts
alpha__triplet(5, 6, 9).alpha__pair(5, 8).alpha__pair4(5, 9). The
predicate alpha__triplet contains the numbers n, n + 1 and
n + 4. In an a-helix these residues will appear on the same face
of the helix. Grouping these numbers together is a heuristic to
allow the preferential search for a common relationship between
these residues. Similarly, the residues with positions in the
alpha__pair predicate (nand n + 3), and residues with positions
in the predicate alpha__paird (n and n + 4) are expected to occur
on the same face of a helix.

The physical and chemical properties of individual residues
are described by the unary predicates hydrophobic, very__
hydrophobic, hydrophilic, positive, negative, neutral, large,
small, tiny, polar, aliphatic, aromatic, hydro__b__don,
hydro__b__acc, not__aromatic, small__or__polar, not_p,
ar__or__al__or__m, not__k, aromatic__or__very__hydrophobic
(Taylor, 1986). Each of these is expressed in terms of particular
facts, such as small(p) meaning that proline is a small residue.
The more complicated properties are given in Table II. The rather
unusual looking logical combinations, such as aromatic__
or__very hydrophobic, have been found useful previously (King

Level 2 rules
(region clumping) RUN 3
predictions
Level 1 rules
(speckle filtering) RUN 2
predictions
Level O rules RUN 1
. Background
82csgwanom knowledge
ndary (primary
structure structure and
assignments) chemical
properties

Fig. 2. Process used to generate the three levels of rules showing the flow of information.
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Train Test
Level 0  Predicted p
Actual a o AN a o
@ | 509 339 @ | 128 89
a | 92 672 a | 28 171
[Q30.73]Cc0.50 | | [Q30.72]C0.46 |
Level 1
AP a  a AP o o
a | 666 182 o | 169 48
a | 169 595 a | 42 157
1Q30.78/C0.56 | | |Q30.78[C0.57
Level 2
AP a  a AP a o
e | 626 222 a | 160 57
o | 126 638 a | 24 175
1Q30.78[C0.57 | | 1Q30.81[C0.62 |

Fig. 3. Confusion matrices and Q; percentage accuracies of rules found

(P = predicted, A = actual). Each matrix has the form ('é g). The
@, percentage accuracies below each matrix are calculated as P*100 where
P=(A+ D)Y(A + B+ C + D). Each percentage 1s followed by SE (i.e.

+2). SE is given as $*100 where § = JJ(P(1 — P)/(A + B + C + D)).

and Sternberg, 1990). (For some runs, similar predicates to
not__p were created for all 20 residue types.)

Information was also given about the relative sizes and
hydrophobicities of the residue. This was described using the
binary predicates Itv and Ith. Each is expressed in terms of
particular facts such as Itv(X, Y), meaning that X is smaller than
Y [scale taken from Schulz and Schirmer (1978)], and ith(X, Y),
meaning that X is less hydrophobic than Y [scale taken
from Eisenberg (1984)].

Experimental procedure

A Golem run takes the form of asking Golem to find good
generalization rules. These generalizations can then be either
accepted or Golem can be asked to try and find another
generalization. A prediction rule is accepted if it has high accuracy
and good coverage. If a rule is accepted, then the examples it
covers are removed from the background observations (true and
false facts), and the rule is added to the background informa-
tion. Learning stops when no more generalizations can be found
within set conditions.

Golem was first run on the training data using the above
background information. A certain amount of ‘noise’ was
considered to exist in the data and Golem was set to allow each
rule to misclassify up to 10 negative instances. To be accepted,
rules had to have >70% accuracy and coverage of at least 3%.
If a rule had lower coverage than this it would not be statistically
reliable. Learning was stopped when no more rules could be
found to meet these conditions. Each determined rule was
typically very accurate (often >90% correct classification):
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Table II. The Q; accuracy of the predictions for each individual protein for
the Golem and GOR methods

No. Protein identification Set type Golem @ GOR O
1 155C train 87.6 64.5
2 1CCS train 90 4 69.9
3 1CCR train 6617 71.5
4 ICRN train 80.4 65.2
5 ICTS train 76.2 812
6 1ECD train 76.5 779
7 1HMQ train 68.1 814
8 IMBS train 76.5 699
9 2B5C train 82.4 518

10 2C2C train 88.4 625

11 2CDV train 82.2 68.2

12 3CPV train 77.8 593

13 156B test 76.7 825

14 1BP2 test 81.3 62.6

15 351C test 780 79.3

16 BPAP test 852 73

overall ~60% of the instances were classified by the rules as
a whole. The accuracy and coverage settings used to find the
rules were based largely on subjective judgement and experience.
Work is being carried out to replace the need for subjective
judgement by objective measures from statistical and algorithmic
information theory.

To improve on the coverage found by these first rules, the
learning process was iterated. The predicted secondary structure
positions found using the first rules (level O rules) were added
to the background information (Figure 2) and then Golem was
re-run to produce new rules (fevel 1 rules). This forms a kind
of bootstrapping learning process, with the output of a lower level
of rules providing the input for the next level. This was needed
because after the level O rules, the predictions made were quite
speckled, i.e. only short sequences of a-helix predicted residues
interspersed by predictions of coil secondary structure. The level
1 rules have the effect of filtering the speckled prediction and
joining together the short sequences of «-helix predictions. The
iterative learning process was repeated a second time, with the
predicted secondary structure positions from the level 1 rules
being added to the background information, and new rules found
(level 2 rules). The level 2 rules had the effect of reducing
the speckling even more and clumping together sequences of
a-helix. Some of the level 1 and 2 rules were finally generalized
by hand with the formation of the symmetrical varants of the
rules found by Golem.

Results

Applying Golem to the training set produced 21 level 0 rules,
five symmetrical level 1 rules and two symmetrical level 2 rules.
These rules combined together to produce a Q, accuracy of 78%
and a Matthews correlation (Schulz and Schirmer, 1978) of 0.57
in the training set, and a Q; accuracy of 81% and a Matthews
correlation of 0.62 in the test set (Figure 3 and Table ). (s
accuracy is defined as (W + X)/T)*100, and the Matthews
correlation is defined as (W*X) — (Y*Z2)/VX + N (X + 2Z)
(W + Y) (W + Z), where W is the number of correct helical
predictions, X is the number of correct coil (not helical)
predictions, Y is the number of helical residues predicted to be
coil, Z is the number of coil residues predicted to be helical
and T is the total number of residues. The SE in this Q; predic-
tion accuracy was estimated to be ~2%. SE is calculated as
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Fig. 4.
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Fig. 4. Residue by residue predictions of secondary structure for the training and test data The top line 1s the primary structure of the proteins The second
line is the actual secondary structure (H signifies a residue with a-hehix secondary structure, — signifies a residue with coil secondary structure) The third
line 1s the Golem predicted secondary structure The fourth line is the GOR predicted secondary structure The last line is the exposure profile of the protemn
(1 sigmfies <10% of area exposed; O signifies = 10% exposed).

[\/h(CP(l ~ P)/7.)d’ t“,hterelfazgrgS/l(.xt;{.r;rhtgepredlceuz? {ha;essgf : j’;‘;:’i(g—;‘;}.:‘ﬁAIH: 509/92 (85%acc, 6¥cov) TEST. 128/28 (82%acc, 59%cov)
training and test se withi rang .

LI ¥ RULE 1 TRAIN: 48/9 (84% , 6%cov) TEST: 12/0 (100%acc, 5%cov)
However, the figure of 81% prediction on the test set at level A1pha0(A,B) - OCtE(DE,F,G B, 1,0, K),
2 may be a slight overestimate, with a leve!l of 79% being more B ionin P11, hydTopmaniery,|
consistent with the test set prediction. These are the most accurate zﬁgig:::f'g;' i) ggggg;;
predictions found by any method to date. The next best reported position(AH,Q), not_p(Q), not k{Q),
. . position(A,I,M), hydrophobic(M), lth(N,M), ltv(M,0),
accuracy is that of 76% (on a slightly more homologous database position(A,X,P), not_aromatic(p), ith(p,L}.
than U.SCd mn thlS Snldy) U.Sll’lg a neu@ nctwork approach (KI'IC”CT ¥ RULE 2 TRAIN: 30/1 (97%acc, 4%cov) TEST 10/0 (100%acc, S¥cov)
et al., 1990). A more accurate estimate of prediction accuracy alphaC(A,B) - oCLE(0.E,F,G,8,H,1,1,K),
. N . . position(A,D,Q), not_p(Q), not_k(Q),
could be made using cross-validation. Unfortunately it takes position(n,E,0), not arcmacic(3), small or polar(o,
. . position(A,F,R),
~1 h on a workstation to generate each of the 28 rules. This position(A,G,P), not_aromatic(P),
. . . . ition(a,8,C), ’ .
time would have to be multiplied by 16 (once for each protein). PonLton (A R M), Laria (e s eomat 1y oAt (@)
To compare further the accuracy of the Golem predictions, FOSTMPUR NS oot A I

the Standa'rd Garr'lier—Osguthorpe—.Robson (GOR) prediCtiqn ¥ RULE 3 TRAIN. 34/3 (92%acc, 4%cov) TEST: 7/0 (100%acc, 3%cov)
method was applied to the data (Gibrat et al., 1987). In this 41phad(A,8) .- octf(D,E,F,G,B, R, I,J,K),

position(A,D, L}, neutral(lL), aromatic_or_very_hydrophobic(L},

compartson the standard residue parameters were used (this biases position(AE,R), not p(R), not_k(R),
. ition(A, F, Q). 11 lar(Q), k(Q),

the results in favour of GOR because the parameters are based Position(nB.C). neseraL @ o POt
on some of the proteins in the test set). In addition, the decision Dotition (A, notarematic(o)) ot p(F), not_k(P),

mi 1 1 M position(A, I,M), neutral(M), not_aromatic(M), not_p(M},
cor.lsFants were OptlranCd to glVC t‘he hlgh&qt accuracy mn the position(A,J,N), neutral(N}, aromtic_or_vory_hydiphobic(N), lev (N, Q)
training data. GOR produced a Q3 accuracy of 72% and a

. . . . Y RULE 4 TRAIN: 45/2 (96%,5%cov) TEST' 14/1 (93%acc, 6%cov)
Matthews correlation of 0.44 in the training set, and a Q alpha0(A,B) - octf(D,E,F,G,B,H,1,7.K),

R . position(A, E,M), neutral (M),
accuracy of 73% and a Matthews correlation of 0.46 in the test position(A .0, not aromatic(0), ot p(0), not_k(0),
. . * [ position(A,G,P), t tic(P).,
set (Figure 3 and Table III). The residue by residue predictions PosLtion (A B.C), Large(C), not. sromaticiC), not_K(€),
1 1 1 1 1 position(A,H,K), neutral(N), aromatic_or_very_hydrophobic(N),

for Qolf:m and GOR are given in F}gpﬂi 4. Examination of these position(A, IR}, not_p(R), yereponie
predictions shows that GOR predictions are more ragged than position(A,J,Q), not_aromatic(Q), sot_p(Q), not_k(Q),

. .. . . position(A,K,L), hydrophobic{L)
those of Golem, e.g. producing predictions of helices consisting

. . . L. . ¥ RULE S TRAIN: 45/12 (80Y%, 6% ) TEST® 10/1 (91w -1
of single residues. The GOR prediction might have benefited from SIPPEC (B et B TR, acc, stcov)

some filtering process such as that produced by the Golem level Potltion(a E0), ssaTh or poiar (o), moe pio) wor X(0),
o 4 : M ition{(A,F.N), t tic(M), t_p (W),
1 and 2 rules. It is interesting to note that occasionally the Golem Bositionia, G, Y, not pimy, e metR
and GO 10t both 101 1 position(A,B,C), hydrophobic(C), lth(M,C),
s R pr.edlctlon's agl e 9“ pred]cung_ a hCIlX Where npne position(A,H,Q), not_p(Q), lth(aC),
exists. e.g. in protein 2B5C. This may be evidence for incipient position(A 1,1}, hydrophobic(L),
. . . . . pos oni(A, J, ' tv(§, ’
helix formation prevented by higher level interactions. position(A, KR}, not_k(R) .
In an attempt to characterize the reasons for the successes and v RULE 6 TRAIN: 31/2 (94%acc,3vcov)  TEST: 7/1 (88%acc, 3tcov)
failures of the Golem and GOR methods, the exposure profiles oLt ion (A, D, M) mot. acomatic (K}, xAall_of_polar (),
M M position(A,E,0), not_arcmatic(0), t _k(0),
of the proteins were produced (Figure 4). These were then Poaitionih F 5, ot aremaricimy, "0t
examined to see if there was any correlation between particular positicn(A,G, M), hydrophilic(M), hydro b_acc(M),
.. position(A,B,C), hydrophobic(C),
exposure profiles and prediction success. Unfortunately there position(A,H,0), not_aromatic(Q). not_kiQ),
. . ition(A, I, R}, ’ 11 '
appears to be no relationship between the amount of exposure Position (A, J.5), hydFophobicily, net ArGasiic(lr: small or polar(L)
a nd the success of the Predlctlon methods. Most of the proteins Y RULE 7 TRAIN 29/1 (37%acc,3Vcov)  TEST: 7/1 (88Vace, 3tcov)
in L_hc data set are quite small and have few msndues deeply '19‘*;;2{:;:; (i.‘g‘,’ii,"?,;T’.i’(i;f":;é;i;ﬁ’_;ccm,
buried; however, in 1CTS, where there are helices almost position(A,G, L), lacge(L), nor _kiLl,
. position(A,B,C), large(C), not ki(C),
completely buried. Golem and GOR seem to have equal success position(A,H,0), not_pi0), not_k (O},
with these buried helices as they do with amphipathic helices D taon (AL RN, not_aromatici, Lthi,p
Although (5 and the Matthews correlation are the accepted .
. Y RULE 8 TRAIN: 40/8 (B3%acc, S¥cov) TEST. 6,1 .B6%acc, 2%vzcvy
measure for accuracy, it would be better to have a measure more alphad(A®) - oCtf(®.EF.G.B.A LK, .
. . . . ition{(A,D, N}, t tic(N), ama or ar(nN),
closely related to the information given about conformation, e.g. B iticn (A L, hydropnobicily, lacge (D"
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position(A,F,Q), ltv(L,Q}), % RULE 19 TRAIN: 22/4 (85%acce, 3%co :
position(A,B,C), not_aromatic{C), not_p(C}, alphadia, By .- oct!(D,B,l‘,G,B.H:LJ,;;, TRST: 371 (83vace, 2xcon)
position(A,R,P), not_p(P), not_ki(P), position(A,D,P), not_k(P), not_p(P),
position(A,I,M), neutral(M), large(M), position(A,E,N), small or_polar(N)
position(A,K,0), not_arcaatic(O), small or polar(Q), not_p(0Q) poaition(A,F,R), lth(’v_n), !
position(A,G,L), N hobi ’
% RULE 9 TRAIN: 40/2 (95%,5%cov) TEST: 16/3 (84Nacc, T¥xcov) poaition(A,B,C), nzgﬁm, Gk, mmallor polar(l),
uph.oi:f;(A:DO:“(D’EJ;G’B;.?’I(;I}LK:I!’DE o0 position(A,H,0), small_or_polar{0), not_k(0), not_p(0),
pos I} M), not_aromatic . = . position(A, I,M), hydrophobic (M), not_aromatic (M)
position(A,E,N), not_aromatic(N), small _or_polar(N), not_k(N), position(A,J,S), 1tv($,Q) - ’
poaition(A,F,R), not_k{R), poslticn(A,K'Q)‘ not k,(o)'
position(A,G,0), not_aromatic(0), not_p(0), not_k(0), P -
po-i:ion::,:,g), no:_azomt:C(g:r a0t p(P), not k(P RULE 20 TRAIN: B84/20 (81l%acc,10%cov) TEST: 1B/4 (82%acc, 8%cov)
Po,itionil&,J,L)' :o;;-rgm;: :.1(‘) ’lth(iPC) ILES(EF(' e alphaO(A,B) :- alpha_paird(B,D), alpha_triplet(D,E,F),alpha_triplet(s, i, k),
position(A,J, L}, hydro_b_don(L}, ,C), /P), position(A,B,C), not_e(C), not_f{C), not_g(C), not_i(C), mot_k(C},
position(A,K,Q), not_aromatic(Q), not_k(Q) poaition(A,F,G), - - B
posiction(A,H,I), not_c(I), not_e(I), not_f(I}, not_g(I), not_h(I),
LZﬁ.“Z‘(P.) -Fui:éfa(g/: ;‘-92';‘:;}';'?;; TEST 9/2 (82%acc, d¥cov) position(A,D,J), not_c(J), not_d(J}, not_e(J), not_f(J), not_g(J),
. = .2,F,G,B,H,1,J, K}, LE,K), K), X)), (K , not_r(K
poaition(A,D,N), not_aromatic(N), not_k(N), position (A E/K), not @(RK), not_e(K), not_f(K), mothm, not_c(K),
post:tonz:.i,g), no:_armtic(g;, act e} RULE 21 TRAIN: 72/18 (72%acc, 8%cov) TEST: 18/4 (82%acc, 8%cov)
po-uion(A,G,R), no:_u:n. et k'(R) _P ’ alphaO(A,B) .- alpha_triplet(B,D,E), alpha pair3(B,G),
Wsi ion oo ), not_p(c ’ not_k(c): position(A,B,C), not_c(C}, not_e(C), not_g(C), not_k(C), not_m(C},
posltion: ,H,C), not_p(C), Tot_' , position(A,D,F), not_ci{F), not_d(F), not_f(F), not_g(F), not_h(F),
position(A,H,Q), not_aramatic(Q), poaition(A,G,H), not_c(H), not_d(H), not_f(H), not_h(H), mot_l(H),
position{(A,I,L), hydrophobic(L), ltv(C,L), ltv(N,L), ltv(P,L), position(A,E,I), not_c(l), not_d(I), not_e(I), not_h(I), not_i(I),

position(A,J, M), hydrophobic(M), not_aromatic(M},

position(A,X,S), not_p(S}, not_k(S).
% level 1 rules

% RULE 11 TRAIN. 40/3 (93%acc, 5¥cov) TEST. 9/2 (82%acc, 4%cov) % JOINT TRAIN- 666/169 (BO%acc,78%cov)  TEST: 169/42 (80%acc,83%cov)
alphaO(A,B) .- octf(D,E,F,G,B,H,I,7,K),
position(A,D,0), not aromatic(0), not k(O), § RULE 22 TRAIN: 509/92 (85%acc, 60%cov) TEST. 128/28 (82%acc, 59%cov)
position(A,E,P), not_aromatic(P), N alphal (A,B) :- alphaO(A,B}.
position(A,F,Q), not_arcmatic(Q), not_p(Q), not_ki(Q),
position(A,G,R), not p(R), ltv(R,P), % RULE 23a TRAIN- 299/52 (85tacc,35%cov) TEST: 83/10 (B89%acc, 38%cov)
position(A,B,C), not_arcmatic(C}, alphal(A,B) :- octf(D,E,F,G,B,H,I,J,K), alphaO(A,F), alphaO(A,G).
position(A,H,N), llrE‘(H), 1tv (N, L), % RULE 23b TRAIN: 303/44 (87%cc,36%cov) TEST: 85/7 (92%acc, 40%cov)
position(A,I,L), hydrophobic(L), alphal (A,B) .- octf(D,E,F,G,B,K,I,J,K), alphaQO(A,H), alphaO(A,I).
position(A,J, M), hydrophobic (M), not_arcmatic(M),
position(A,X,8), not_p(8). § RULE 24a TRAIN: 183/10 (95%acc,22%cov) TEST: 53/2 (96%acc,24%cov)
alphal(A,B) :- octf(C,D,EF,B,G,H,I,J), alphaO(A,F), alphaO{(A,G),
¥ RULE 12  TRAIN: 58/3 (95%acc,7%cov) TEST: 13/3 (8l¥acc, 6%cov) alphad (A, B) .
alphaO(A,B) :- octf(D,E,F,G,B,H,I,J.K), % RULE 24b TRAIN: 189/5 (97%acc,22%cov) TEST: 54/2 (96%acc, 25%cov)
position(A,F,Q), not_p(Q), alphal (A,B) .- octf(c¢,D,E,F,B,G,H,I,J), alphaO(A,E), alphaO(A,F),
position(A,G,N), not_aromatic(N), not_p(N), alphaO(A,G) .
position(A,B,C), larqge(C), not_aromatic{C), not_k(C),
position(A,H,L), hydrophobic{(L}, not_k(L), % RULE 25 TRAIN: 102/2 (98%acc,12%cov) TEST. 35/1 (97%acc, lé%cov)
position(A,I,0), not_arcmatic(0), not_p{0), alphal(a,B) :- octf(cC,D,EF,B,GH L, J),
position(A,J, P}, not_arcmatic(P), small or_polar(N), not_p(P), alphaQ(A,E), alphaQ(A,F), alphaO(A,H), alphaO(A,I).

position(A,X,M), hydrophcbic (M), not_k (M)
- % RULE 26a TRAIN: 102/3 (9B%acc,12%cov) TEST' 36/0 (100%acc,1l7%cov)

% RULE 13  TRAIN: 23/1 (97%acc, 3scov) TEST: 4/1 (BO%acc,2%cov) alphal(A,B) :- octf(C,D,E,F,B,G,H,1,J), alphaO(A,D}, alphaC(A,E),
alphaO(A,B) :- octf(D,E,F,G,B,H,I,J,K), alphaQ(A,G), alphaO(A,H).
position(A,D,N), not_aromatic(N), % RULE 26b TRAIN: 86/6 (93%acc,10%cov) TEST: 33/0 (100%acc, 15%cov)
position(A,E,Q), not_arcmatic(0), small or_polar(0), not_p(0), alphal{A,B) :- octf(C,D,KE,F,B,G,H,I,J), alphaO(A,C), alphaO(A,D},
position(A,F,R), lth(R,N), alphaO(A,G), alphaO(A,H).
position(A,B,C), not_p(C}, not_ki{C), v RULE 26c TRAIN: 88/5 (95%acc,10%cov)  TEST' 32/1 (97%acc, l1S%cov)
position(A,H,P), not_aromatic(P), not_p(P), 1th(P,Q), alphal(A,B) :- octf(C,D,E,F,B,G,H,1,J), alphaO(A,D}, alphal(AE),
position(A,I,L), hydrophobic(L), not_aromatic(L), small_or_polar (L), alpha0 (A, H), alphaO(A,I)

¥ RULE 26d TRAIN: 87/5 (95%acc, 10%cov) TEST. 32/1 (97%acc, 15%cov)
alphal(A,B) .- octf(C,D,E,F,B,G,H,1,J), alphaO(A,E), alphaO(A,F),
alphaO(A,I), alpha0(A,J).

position(A,J,Q), not_sromatic(Q), not_p(Q), not_k{(Q),
position(A,K, M), hydrophobic(M).

% RULE 14 TRAIN. 45/4 (92%acc, S¥cov) TEST: 14/3 (B2%acc, 6%cov) % level 2 rules

alphaO(A,B) :- octf(D,E,F,G,B,HI,J,K), -
PoBLt on (A E.0) s Hbe aromatie O, MOt _p(0), % JOINT TRAIN 626/126 (83%ace, 74%vcov) TEST: 160/24 (87%acc, Tdkcov)

position(A,F,P), small or polar(P), not_aromatic(P), not_p(P),

RULE 27
position(A,G,Q), nor_aromatic(Q), not_k(Q), -
Position (A B, DydTornobicio neoriatits. alpha2(A,B) ;lpg‘cii:i,g;B,F,B,G,H,I,J), alphal((A,B), alphal((A,G),
position(A,H, L), hydrophobic(L), neutral(L), - " . E
position(A, I, M), hydrophobic(M), Hipnazia B ;l ﬁf:cé?’E'P'B'G’H'I,J), Hpnan((h ey, siphat(n B,
position(A,J,N), neutral(N), not_p(N), P ’
position(A,K,R), not_arcmatic(R), small or_polar(R). % RULE 28
alpha2(A,B) :- f(,D,E,F,B,G,H,1,J),alphal(A,B), alphal(A,D),
% RULE 15 TRAIN 2B8/5 (BS5t%acc, 3scov) TEST 4/1 (80%acc, 2%cov) P { ! llpg:;..(ﬂ((,:l), lll;hsl(k,i‘), Alp:AI(;,G)r Ilp:‘;(:,ﬂ).
ulphaO{A,iB) :- octf(D,E,F,G,B,H,I,J K, alpha2(A,B) - octf(C,D,E,F,B,G,H,I,J), alphal(A,B), alphal(A,G),
position(A,D,P), not_k(P), alphal(A,H), alphal(A,I).
position(A,E,Q), not_ki(Q), alpha2(A,B) :- octf(c,D,k,F,B,G,H,I,J), alphal(A,B), alphal(A,D),
position(A,F,0), not_aromatic(0), not_p(0), alphal(A,E), alphal(A,F).
position(A,G,L), hydrophobic(L), small_or_polar(L), not_aromatic(L), alpha2(A,B) :- octf(C,D,E,F,B,G,H,1,J), alphal(A,B), alphal(A,F),
position(A,B,C), polar(C), lthiC, 8}, alphal (A,G), alphal(A, H)
position(A,H,8), alpha2(A,B) .- octf(C,D,E,F,B,G,H,1,J), alphal(A,B), alphal(A,E),
position(A,I,R), not_k{(R), alphal(A,F), alphal(A,G).

position(A,J,N), neutral(N), not_p(N),
position(A,K,M), hydrophobic(M), not_arocmatic(M)

Fig. 5. The list of rules found by Golem at level 0, level 1 and level 2.

% RULE 16 TRAIN: 25/1 (96%acc, 3¥cov) TEST: 4/1 (80% , 2% The rmance ini and H i

alphaO(A,B) :- octf(C,D,E,F,B,G,H,1,J), octf(K,L,M, N,‘C,D::?F.Bf?v' pcrfo Of mh l'LIl‘C onthc (.l'ﬂ.lmng test dﬂlﬂ 15 gIVCn as Lhc
position(A,C,8), not_sazomatic($), not p(S), number of correctly predicted residues and wrongly predicted residues (in
position(A,D,U), small_or polar(U), not_k(U), ining data i orrect and idues wrong) and
position(A,E,T), not_aromatic{(T), not_p(T), not_k(T), rule 1 on the training ’ 48 residues ¢ S.I'CS g)
position(A,F,V), not_p(v), the percentage accuracy and coverage. The rules are in Prolog format:
position(A,B,0), not_p(0), not_k(O), 1tvi{O,R), _Body means onditi i bod true
position(A,G,P), very_hydrophobic(P), not_aromatic(P), H@d.' . ThlS that if the ¢ u.m.s in the Y m Lhcn the
position (A, H,Q), large(Q), head is true. Taking the example of rule 1: there 1s an a-helix residue in
position(A,I,R), small(R), rotein A at ition B (the head) if: at ition D in protein A ition
position(A,J,W), not_p (). g — 4) the r::f:lue 1S ncgt aronnmc) and Slysine' a.ndpal 'tioagpl‘;sin

} posi

¥ RULE 17  TRAIN: 34/5 (87%acc,4¥vcov) TEST: 4/1 (B0%acc, 2%cov) rote i - idue is hydrophobic; and ition D in

alphaO(A,B) :- octf(C,D,E,F,B,G,H,1,J), octf(K,L,M,NC,D,E,F,B), P ?n A (posmon B 2) (he m. lS Y ! at WS .
position(A,C,R), not arcmatic(R), not_p(R), not k(R), protein A (position B — 1) the residue is not aromatic and not proline; and
position(A,D,3), not_arcmatic(3), small_or_polaris), at positjon B in protein A the residue is not aromatic and not Pm[mc; and
position(A,E,0), very_hydrophobic(0), large(0), .- . .. . - B
position(A,F,Q), neutral(Q), not_p(Q), at position H in protein A (ppsmon B + 1D the residue is not prolme and
position(A,G,P), very hydrophobic(P), not_arcmatic(P), not lysine; and at position I in protein A (position B + 2) the residue is

% RULE 18 TRAIN: 26/3 (90%acc, Iscov) TEST: 4/0 (100%acc, 2%cov) hydrophoblc and has a lower hqu‘c'w .lha'n the residue mposmon D

alphaO(A,B) :- octf(C,D,B,F,B,G,H,1,J), octf(K,L,M,K,C,0,EF,B), and a lower volume than the residue at position G; and at position K in
position(A,C,T), not_p(T), lth(T,R), i it i aromatic and
Position (D, 3), ot Arcmatic(s), protein A gposmon B + 4)_the r&s:dur: is not c has a lower
position(A,E,R), large(R), lev(R,T), hydrophobicity than the residue at position F. For the level 1 rules, a
position(A,¥,Q), neutral(Q), not_p(Q), icti i 1 signi 1
position(A,B,0), polar(0), 1th{(o;8), prec?lf:uon of a hc'."f by a level 0 .mlc is signified by alphaO(Protein,
position(A,G,P), hydrophobic(P), not_aromatic(P), Position). The positions of predictions made by the level 1 rules used by the

level 2 rules are signified by alpha(Protein,Position).
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Fig. 6. Helical wheel plan of rule 12

are the correct number of a-helices predicted. It would also be
useful to take into account that the boundary between a-helices
and coil secondary structure can be ambiguous.

The rules generated by Golem can be considered to be
hypotheses about the way «a-helices form (Figure 5). They define
patterns of relationships which, if they exist in a sequence of
residues,will tend to cause a specified residue to form part of
an o-helix. For example, considering rule 12, this rule specifies
the properties of eight sequential residues which, if held, will
cause the middle residue in the sequence (residue B) to form part
of a helix. These rules are of particular interest because they were
generated automatically and do not reflect any preconceived ideas
about possible rule form (except those unavoidably built into the
selection of background information). The rules raise many
questions about a-helix formation. Examining rule 12, the residue
p (proline) is disallowed in a number of positions, but allowed
in others—yet proline is normally considered to disrupt protein
secondary structure. 1t is therefore of interest to understand under
exactly what circumstances proline can be fitted into an a-helix.
One of the most interesting features to be highlighted by the rules
was the importance of relative size and hydrophobicity in helix
formation, not just absolute values. It is an idea which warrants
further investigation (N.B. relative values cannot easily be used
in statistical or neural network methods).

Orne technique of making the level O rules more comprehensible
is to display them on a helical wheel plan—a projection showing
the o-helix from above and the different residue types sticking
out from the sides at the correct angle, see rule 12 in Figure 6.
Rule 12 shows amphipathicity, the tendency in «-helices of
hydrophobic residues and hydrophilic residues to occur on
opposite faces of the a-helix. This property is considered central
in a-helical structure (Lim, 1974; Schulz and Schirmer, 1978).
However, most of the level 0 rules, when displayed on helical
wheels, do not display such marked amphipathicity, and a detailed
survey of the location of the positive and negative examples of
the occurrences of the rules is required. This would involve a
database analysis combined with the use of interactive graphics.

One problem raised with the rules, by protein structure experts,
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is that although they are much more easily understood than an
array of numerical parameters or a Hinton diagram (Qian and
Sejnowski, 1988) for a neural network, they still appear somewhat
complicated. This raises the question about how complicated the
rules for forming a-helices are (King and Sternberg, 1990) and
it may be that any successful prediction rules are complicated.
The failure of Rooman and Wodak (1988) to produce especially
high accuracy using patterns with only three residues specified
lends support to this idea. One approach to make the rules
easier to understand may be to find over-general rules, and
then generalize the exception to these rules (Bain, 1991). In
such a procedure the over-general rules would tend to be
easier to comprehend.

The meaning of the level 1 and 2 rules is much clearer to
understand. In proteins, secondary structure elements involve
sequences of residues, €.g. an a-helix may occupy 10 sequential
residues and then be followed by eight residues in a region of
coil. However, the level O rules output predictions based only
on individual residues. This makes it possible for the level O rules
to predict a coil in the middle of a sequence of residues predicted
to be of a-helix type; this is not possible in terms of structural
chemistry. This shortcoming is dealt with by the level 1 and 2
rules which group together isolated residue predictions to make
predictions of sequences. For example, rule 23 predicts that a
residue will be in an a-helix if both residues on either side have
already been predicted to be a-helices; similarly rule 24 predicts
that a residue will be in an «-helix if two residues on one side
and one residue on the other side have already been predicted
to be a-helices.

Discussion
It is intended to extend the application of Golem to the protein
folding problem by adding more background knowledge, such
as the division of each «-helix into three parts (beginning, middle
and end). Analysis has shown that a specific pattern of residues
can occur at these positions (Presta and Rose, 1988; Richardson
and Richardson, 1988). This is thought to occur because the
physical/chemical environment experienced by the three different
sections is very different: both the beginning and end have close
contact with coil regions, while the middle does not; also a dipole
effect causes the end of an «-helix to be more negative than the
beginning. Evidence for the usefulness of this division is given
by rules 17 and 18. The structure of these rules suggests that
they are biased towards the end of «-helices—the residues
predicted by these rules occur at the end of the sequence of
defined primary structure. Examination of the occurrences of
these rules confirms this, showing that their predictions tend
to occur at the end of «-helices (and often occur together).
Protein secondary structure prediction methods normally only
consider local interactions and this is the main reason for
their poor success. One way of tackling this problem is that
used in this paper of iterative predictions based on previous
predictions. This may be extended by using well defined long
range interactions such as super-secondary structure and domain
structures (Shulze-Kremer and King, 1992) or by using models
of constraints (Murzin and Finkelstein, 1988). It is hoped that
with the addition of such new types of knowledge, the prediction
accuracy of Golem will gradually improve. making it a more
useful biological tool.

The advantages Golem enjoys in the protein prediction problem
should apply equally well to other problems in chemistry and
molecular biology. This 1s because chemicals are structural



objects and it is most natural to reason and learn about them using
relational knowledge. Using the same methodology as described
in this paper, we have successfully applied Golem to the problem
of forming a Qualitative Structure Activity Relationship in drug
design (King er al., 1992). In drug design the foreground data
are the activities of the particular drugs, and the background data
are the chemical structures of the drugs and the physical/chemical
properties of the substituent groups. A further possible application
area is in the human genome project which is producing a vast
amount of sequential DNA data and has associated with this data
a number of important learning problems, e.g. the recognition
of promoter sequences, the recognition of translation initiation
sequences, etc. Such problems have been investigated using
neural network methods (Stromo er al., 1982) and it would
be instructive to investigate how well Golem performs in
comparison. Golem could also be applied to other problems in
chemistry. Some important early machine learning work was
done learning the rules for the break-up of molecules in mass
spectroscpoy (Meta-DENDRAL: Buchanan and Feigenbaum,
1981); such a problem would be well suited for Golemn.

Availability
A Prolog program that implements the Golem prediction rules

is available on request. The ILP learning program, Golem, is
also available free to academic users.
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