
A Comparison of Stochastic Logic Programs
and Bayesian Logic Programs

Aymeric Puech and Stephen Muggleton
Department of Computing, Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
{atp02,shm}@doc.ic.ac.uk

Abstract

First-order probabilistic models are recognized
as efficient frameworks to represent several real-
world problems: they combine the expressive
power of first-order logic, which serves as a
knowledge representation language, and the ca-
pability to model uncertainty with probabili-
ties. Among existing models, it is usual to dis-
tinguish the domain-frequency approach from
the possible-worlds approach.
Bayesian logic programs (BLPs, which conve-
niently encode possible-worlds semantics) and
stochastic logic programs (SLPs, often referred
to as a domain-frequency approach) are promis-
ing probabilistic logic models in their cate-
gories.
This paper is aimed at comparing the re-
spective expressive power of these frameworks.
We demonstrate relations between SLPs’ and
BLPs’ semantics, and argue that SLPs can en-
code the same knowledge as a subclass of BLPs.
We introduce extended SLPs which lift the lat-
ter result to any BLP. Converse properties are
reviewed, and we show how BLPs can define the
same semantics as complete, range-restricted,
non-recursive SLPs. Algorithms that trans-
late BLPs into SLPs (and vice versa) are pro-
vided, as well as worked examples of the inter-
translations of SLPs and BLPs.

1 Introduction

The recent study APrIL [Muggleton and de Raedt,
2001] aimed at assessing how probabilistic reasoning
could be integrated with first-order logic representa-
tions and machine learning. The project ended in June
2002 and raised the conclusion that, due to the re-
quirements for the use in functional genomics, stochas-
tic logic programs (SLPs) and Bayesian logic programs
(BLPs) [were] the most promising formalisms. They
represent the most expressive frameworks as they al-
low not only for constant and predicate symbols but also
for functors. Moreover, both formalisms are alternative

and complementary formalisms. Indeed, in BLPs the
possible-worlds perspective is dominant, while SLPs use
a domain-frequency approach.

1.1 Motivations
Comparing these two major approaches looks like an

interesting issue. The study of the relations between
the possible-worlds and domain-frequency approaches,
which is not new, crops up in many articles. Halpern
dedicated a paper to that study [Halpern, 1989]. Fur-
thermore, the idea of investigating the relations between
BLPs and SLPs in particular has been put forward in
[Kersting and Raedt, 2000] by Kersting and de Raedt,
who reckon at the very end of their article: Exploring the
relations between Bayesian logic programs and stochastic
logic programs is interesting because: (1) both are using
SLD trees and (2) transformations between probabilities
on the domain and probabilities on possible worlds exist
as Halpern noted.

Essentially two questions at two different levels can be
asked:
• Given an expert domain, can we encode the same
knowledge in a BLP and in a SLP?
• More practically: can we translate a BLP into an SLP,
and an SLP into a BLP? What are the respective in-
terests of these formulations? In particular, does the
translation have the same features (computation of the
probabilities, inference with or without evidence)?

BLPs SLPs

Figure 1: BLPs, SLPs... What is at the intersection?

We argue that it is possible to encode a complete,
range-restricted and non-recursive SLP with a BLP, and
that the converse holds for a certain subclass of BLPs
(the restricted BLPs, whose predicate definitions contain
a single clause). This latter result is lifted to all BLPs

by introducing extended SLPs (e-SLPs), which are SLPs
augmented with combining functions, and whose evalu-
ation is made in stochastic SLD and-or trees instead of
stochastic SLD-trees for SLPs.

1.2 Outline
The section 2 of this article is dedicated to some pre-

requisites (we recall the usual syntax and semantics of
SLPs and BLPs). We also demonstrate relations be-
tween SLPs’ and BLPs’ semantics, hence we eventually
reduce the issue of inter-translations of SLPs and BLPs
to the practical question: given a BLP (resp. an SLP),
how can we find an SLP (resp. a BLP) that encodes
equivalent distributions of probabilities with respect to
the semantics?

The section 3 presents some ways to construct and
evaluate an SLP which computes equivalent probabilities
to a given BLP.
• Firstly, a standard translation is proposed, which

deals with the subclass of restricted BLPs, whose
and-or trees (as defined in [Kersting and Raedt,
2000]) contain only and -nodes (these BLPs don’t
make use of combining rules). Extended SLPs are
introduced, and the latter result is lifted to all BLPs.
• However, standard translations can only be queried

without evidence. Thus a BN1 translation is also
proposed, which can be queried with evidence but
works only for BLPs with finite Herbrandt model
(which obviously prevent the use of functors). Fi-
nally, we show how this result can be lifted to all
BLPs, provided that we insert a KBMC2-inspired
stage in the query-answering procedure.

In section 4, we provide a converse translation (from
SLP to BLP) and prove that it computes equivalent dis-
tributions of probabilities.

We conclude that extended SLPs and BLPs can en-
code the same knowledge (although their formalism is
more or less intuitive, depending on the kind of knowl-
edge we want to model).

2 Background

2.1 Stochastic Logic Programs (SLP)
Stochastic logic programs were first introduced by

Stephen Muggleton in 1996, as a generalization of
stochastic grammars.

Syntax:
As defined in [Muggleton, 2001], a SLP consists of a

set of labelled clauses p : C, where p is from the interval
[0, 1], and C is a range-restricted3 definite clause. Later
in this report, the labelled clauses p : C will be named
parameterized clauses or stochastic clauses. The simplest

1BN stands for Bayesian network.
2Knowledge-Based Model Construction, as defined in

[Kersting and Raedt, 2000].
3C is said to be range-restricted iff every variable in the

head of C is found in the body of C.

example of SLP is the coin example which mimics the
action of a fair coin. The probability of the coin coming
up either head-side up (0) or tail-side up (1) is 0.5:

0.5 : coin(0)←
0.5 : coin(1)←

In [Muggleton, 2001], SLP definition requires that for
each predicate symbol q, the probability labels for all
clauses with q in the head sum to 1. However, this
can be a restrictive definition of SLPs. In other articles
([Cussens, 2000] for instance), SLPs having this prop-
erty are called complete SLPs, while in uncomplete
SLPs, the probability labels for all clauses with a same
predicate symbol in the head sum to less than 1. In
[Cussens, 2000] James Cussens introduces pure SLPs,
whose clauses are all parameterized (whereas impure
SLPs can have non-parameterized clauses, that is, def-
inite logical clauses). Furthermore, normalized SLPs
are like complete SLPs, but in unnormalised SLPs,
the probability labels for all clauses with a same predi-
cate symbol in the head can sum to any positive value
other than 1.

Semantics:
A stochastic logic program P has a distributional se-

mantics, that is one which assigns a probability distri-
bution to the atoms of each predicate in the Herbrand
base of the clauses in P. These probabilities are assigned
to atoms according to an SLD-resolution strategy which
employs a stochastic selection rule4.

In [Cussens, 1999b], three different related distri-
butions are defined, over derivations, refutations and
atoms. Given an SLP P with n parameterized clauses
and a goal G, it is easy to define a log-linear proba-
bility distribution over the set of derivations, by
considering the function:

ψλ(x) = eλ.ν(x) =
n∏

i=1

l
νi(x)

i

where

• x is a derivation in the set of derivations from the
goal G.

• λ = (λ1, λ2, ..., λn) ∈ <n is a vector of log-
parameters where λi = log(li), li being the label
of the clause i.

• ν = (ν1, ν2, ..., νn) ∈ Nn is a vector of clause
counts s.t. νi(x) is the number of times the ith
parameterized clause is used in the derivation x.

The proof that ψλ(x) is a probability distribution (pro-
vided that P is pure and normalized) can be found in
[Cussens, 2000]. So far we have defined a probability dis-
tribution over all possible derivations, but we are mainly
interested in the refutations of the goal G. Now, if we
assign the probability 0 to all derivations that are not

4The selection rule is not deterministic but stochastic; the
probability that a clause is selected depends on the values of
the labels (details can be found in [Muggleton, 2001]).

refutations of the goal G, and if we normalize the re-
maining probabilities with a normalization factor Z, we
obtain the probability distribution fλ(r) over the
set R of the refutations of G:

fλ(r) = Z−1
λ,G eλ.ν(r)

Given an SLP S and a ground query G, the prob-
ability of G as defined in the distributional semantics
[Muggleton, 2000] is equal to

∑
r∈R ψλ(r) and is noted

P (G / S).
Each refutation r involves some bindings along the

SLD-tree, which permits finding the computed answer
for G using r. The computed answer is the most general
instance of the goal G that is refuted by r; it is also
named the yield atom. Let us note X(y) the set of
refutations which lead to the yield atom y. We can finally
define a distribution of probabilities over the set of
yield atoms, with the function:

pλ,G(y) =
∑

r∈X(y)

fλ(r) = Z−1
λ,G

∑
r∈X(y)

(
n∏

i=1

l
νi(r)
i

)

Thus it is fairly simple to define probability-
distributions over the yield atoms in SLPs: we can use
the stochastic SLD-tree, which is the SLD-tree in
which each vertex (which corresponds to a resolution
step) is labelled with the parameter of the clause that
is used in the resolution step. Since every refutation of
the goal G corresponds in the stochastic SLD-tree to a
branch from the root to a leaf, we only have to:
- draw the stochastic SLD tree,
- compute the probability of each refutation by multi-
plying the labels along the corresponding branch,
- normalize the probabilities, so that they sum to 1,
- associate each refutation to a yield atom, and sum the
probabilities of the refutations that lead to the same
yield atom.

We can illustrate this method with Cussens’ sample
SLP:

0.4 : s(X)← p(X), p(X).
0.6 : s(X)← q(X).
0.3 : p(a).
0.7 : p(b).
0.2 : q(a).
0.8 : q(b).

We take the goal G = s(X); the stochastic SLD tree
which derives from the query : − s(X) is:

There are 4 refutations of the goal (r1 to r4). The yield
atom is s(a) for r1 and r3, s(b) for r2 and r4. Thus the
probability distribution over {s(a), s(b)} is {Z−1×(0.4×
0.3× 0.3+0.6× 0.2), Z−1× (0.4× 0.7× 0.7+0.6× 0.8)}
where Z is a normalization constant.

2.2 BLPs
Bayesian logic programs were first introduced by Luc

de Raedt and Kristian Kersting in 2000, as a generaliza-
tion of Bayesian nets (BNs) and Logic Programs.

Refutation
r4

Refutation
r3

Refutation
r1

Refutation
r2

:− s(X).

:− q(X).:− p(X), p(X).

:− p(a). :− p(b).

Fail Fail

0.4:{X’/X} O.6:{X’’/X}

0.8:{X/b}0.2:{X/a}0.7:{X/b}0.3:{X/a}

0.7:{}

0.7:fail

0.3:fail

0.3:{}

Figure 2: Stochastic SLD tree for the query ?- s(X).

Syntax:
A Bayesian logic program has 2 components: a logical

one (which is a set of Bayesian clauses) and a quanti-
tative one (a set of conditional probability distributions
and combining rules corresponding to that logical struc-
ture).

A Bayesian clause is an expression of the form:

A | A1, ..., An

where n ≥ 0 and the Ai are Bayesian atoms which
are (implicitly) universally quantified. The difference be-
tween a logical definite clause and a Bayesian clause is
that:
- the sign | is employed instead of : − ,
- Bayesian atoms are assigned a (finite) domain, whereas
first order logic atoms have binary values. Following the
definitions in [Kersting and Raedt, 2000], we assume that
atom domains in BLPs are discrete.

In order to represent a probabilistic model, we asso-
ciate with each Bayesian clause c a conditional proba-
bility distribution cpd(c) which encodes the probability
that head(c) takes some value, given the values of the
Bayesian atoms in body(c):

P(head(c)|body(c))
This conditional probability distribution is repre-

sented with a matrix called conditional probability table
(CPT).

As there can be many clauses with the same head (or
non-ground heads that can be unified), we use combining
rules to obtain the distribution required, i.e. functions
which map finite sets of conditional probability distribu-
tions onto one combined conditional probability distri-
bution. Common combining rules include the noisy-or
rule, when domains are boolean, and the max rule, which
is defined on finite domains.

Semantics:
The link to Bayesian networks is now straightfor-

ward: each ground Bayesian atom can be associated to a
chance node (a standard random variable), whose set of
states is the domain of the Bayesian atom. The links
(influence relations) between chance nodes are given

by the Bayesian clauses, and the link matrices by the
conditional probability distributions associated to these
Bayesian clauses.

The set of ground Bayesian atoms in the least Her-
brand model5 together with the structure defined by the
set of ground instances of the Bayesian clauses and the
conditional probability tables, define a global (possibly
infinite) Bayesian network that can be queried like any
other Bayesian net6.

Thus the query-answering procedure actually consists
of two parts: first, given a ground query and some
evidence, the Bayesian network containing all relevant
atoms is computed, using KBMC (Knowledge Based
Model Construction). Then the resulting Bayesian net-
work can be queried using any available inference algo-
rithm, the results we were looking for being the proba-
bility of the initial ground query over its domain. Fur-
ther details about the query-answering procedure can be
found in [Kersting and Raedt, 2000].

Remark: The distribution is not defined if there
is a cycle, as stated in [Kersting and Raedt, 2000]. In
the remainder of the paper, in order to use the condi-
tional independency assumption between the parents of
a node in a Bayesian net, we assume that no merging
of nodes takes place in the and-or tree (when construct-
ing the Bayesian net from the and-or tree). This leads
to a Bayesian net which consists in a singly connected
network (with no loop). Ground queries satisfying this
property are said to be safe with regards to the consid-
ered BLP (cf. next definition).

2.3 Formulation of the problem
Halpern’s paper [Halpern, 1989] as well as [Cussens,

1999a] are good clarifications about what respective
kinds of knowledge can be captured with probabilities on
the domain (such as those defined by SLPs) and proba-
bilities on possible worlds (BLPs). Links between these
probabilities are also provided.

Let B be a BLP and Ga a ground query. The Bayesian
network constructed with KBMC (as defined in [Kersting
and Raedt, 2000]) is denoted by BNB,Ga

. The probabil-
ity of a chance node Q taking the value v in BNB,Ga

(i.e.
the probability of the set of possible worlds of BNB,Ga

in
which Q has the value v) will be denoted PB,Ga

(Q = v).
Given a SLP S, the probability of a ground query G (as
defined in the distributional semantics [Muggleton, 2000]
and in section 3) is noted P (G / S).

The fact that a k-ary Bayesian atom Ga takes the
value v can be represented with a (k + 1)-ary logical
atom G having the same predicate and k first arguments
as Ga, and the value v as last argument. Conversely,
we can identify any logical atom to a Bayesian atom

5We define the least Herbrand model of a BLP in the same
way as in logic programs.

6Bayesian networks are formally defined only for finite sets
of chance nodes; this point of view is put forward because it
provides a better idea of the relations between BLPs and
Bayesian nets.

having the domain {true, false} and taking the value
true whenever the logical atom holds.

Hence we will claim that a BLP and an SLP define
equivalent semantics if the probability that any ground
Bayesian atom Ga in the Herbrand model of the BLP
takes some value v is identical to the probability of the
associated logical atom G in S:

P (G / S) = PB,Ga(Ga = v)

Given these relations between SLPs’ and BLPs’
semantics, we eventually reduce the issue of inter-
translations of SLPs and BLPs to the practical question:
given a BLP (resp. an SLP), how can we find an SLP
(resp. a BLP) that encodes equivalent distributions of
probabilities with respect to the semantics?

3 From BLPs to SLPs

We provide two translations from BLPs to SLPs. The
standard translation (3.1) exists in 2 versions: one uses
SLPs and works for a subclass of BLPs (the restricted
BLPs). It is generalized to all BLPs in the second ver-
sion , which makes use of e-SLPs (SLPs augmented with
combining functions). However, these standard transla-
tions eventually work for all BLPs but do not handle ev-
idence (that is: some prior knowledge about the domain,
which corresponds to the instantiation of a chance node
in a BN). The reason is that SLPs and e-SLPs define
semantics on tree structures, whereas KBMC (in BLPs)
permits the union of several trees, hence the computa-
tion of probabilities in singly connected networks. Thus
we also provide a more global approach with the BN
translation (3.2), which is based on Cussens’ translation
of Bayesian networks into SLPs.

3.1 Standard Translations
Standard Translation for Restricted BLPs:

Definition: If S is an SLP, the subset Sh of clauses
in S with predicate symbol h in the head is called the
definition of h. A restricted BLP is a BLP whose predi-
cate definitions contain one single stochastic clause each.
A ground query Ga is said to be safe with regards to a
BLP B if the and-or tree rooted at Ga does not contain 2
identical nodes (no merging of nodes takes place during
KBMC). Nn is the set of natural numbers from 1 to n.

Definition (standard translation of a restricted
BLP):

Let B denote a restricted BLP.

• Identify each k-ary Bayesian atom b, which appears
in B and has the value domain V , to the (k+1)-ary
(logical) atom b(vb) having the same k first argu-
ments and a value vb of V as last argument.

• For each Bayesian clause head|b1, ..., bn in B, for
each value in the associated CPT, which indicates
the probability pvh,vb1,...,vbn

that the Bayesian atom
head takes the value vh given that the {bi : i ∈ Nn}
take the values (vb1, ..., vbn), construct the stochastic

clause consisting of the parameter pvh,vb1,...,vbn
, and

the definite clause:

head(vh) ← b1(vb1), ..., bn(vbn)

• The standard translation of B consists of the n
stochastic clauses constructible in that way, n being
the sum of the numbers of coefficients in the CPTs.
This SLP is pure and unnormalised (the parameters
of the clauses in Sh ⊆ S sum to the product of the
domain sizes of the Bayesian atoms in the body of
the Bayesian clause with head h).

Theorem: Given a restricted BLP B, its standard
translation S obtained as defined above, and a ground
Bayesian query Ga which is safe with regards to B. Let
us associate to Ga the logical query G(v), v ∈ dom(Ga).
Then: P (G(v)/S) = PB,Ga(Ga = v).

We illustrate the standard translation mechanism
through this simple example:

Example:
Let us take the following standard translation of a BLP

(the original BLP does not need to be mentioned):

0.99 : alarm(A, yes)←
burglary(A, yes), tornado(A, yes).

0.80 : alarm(A, yes)←
burglary(A, yes), tornado(A,no).

0.90 : alarm(A, yes)←
burglary(A,no), tornado(A, yes).

0.05 : alarm(A, yes)←
burglary(A,no), tornado(A,no).

0.01 : alarm(A,no)←
burglary(A, yes), tornado(A, yes).

0.20 : alarm(A,no)←
burglary(A, yes), tornado(A,no).

0.10 : alarm(A,no)←
burglary(A,no), tornado(A, yes).

0.95 : alarm(A,no)←
burglary(A,no), tornado(A,no).

0.4 : burglary(A, yes)← neighborhood(A, bad).
0.2 : burglary(A, yes)← neighborhood(A, avg).
0.1 : burglary(A, yes)← neighborhood(A, good).
0.6 : burglary(A,no)← neighborhood(A, bad).
0.8 : burglary(A,no)← neighborhood(A, avg).
0.9 : burglary(A,no)← neighborhood(A, good).
0.3 : neighborhood(tom, bad).
0.4 : neighborhood(tom, avg).
0.3 : neighborhood(tom, good).
0.01 : tornado(tom, yes).
0.99 : tornado(tom, no).

We want to compute the probability
P (burglary(tom, yes) / S). Each refutation in the
stochastic SLD-tree rooted at burglary(tom, yes) per-
mits the computation of the probability of a particular
set of possible worlds. The nodes along the refutation
correspond to instantiations of some Bayesian atoms.
The set of possible worlds we are talking about is the
set of worlds where the instantiations defined along the
refutation hold.

Refutation
r1

Refutation
r2

Refutation
r3

:− prove(neighborhood(tom,bad)).

?− prove(burglary(tom,yes)).

:− prove(neighborhood(tom,bad)).

:− prove(neighborhood(tom,bad)).

O.4

O.4

O.2

O.1

O.3
O.3

Figure 3: Stochastic SLD tree for ?− burglary(tom, yes).

• The refutation 1 is associated to the set of pos-
sible worlds in which {burglary(tom) = yes,
neighborhood(tom) = bad}. P = 0.4× 0.3 = 0.12

• The refutation 2 is associated to the set of pos-
sible worlds in which {burglary(tom) = yes,
neighborhood(tom) = avg}. P = 0.2× 0.4 = 0.08

• The refutation 3 is associated to the set of pos-
sible worlds in which {burglary(tom) = yes,
neighborhood(tom) = good}. P = 0.1× 0.3 = 0.03.

Hence the probability P (burglary(tom, yes) / S)
is equal to 0.12 + 0.08 + 0.03 = 0.23. In
the BN constructed from the original BLP,
we have as well: P (burglary(tom, yes)) =
P ({possible worlds where burglary(tom) = yes}) =
0.12 + 0.08 + 0.03 = 0.23.

Extended SLPs:
Restricted BLPs don’t make use of the or-nodes, in

that all queries can match at most one head. In order to
lift the latter result to general BLPs, we have to intro-
duce an extension of SLPs, namely extended SLPs.

Definition (Syntax of Extended SLPs): An ex-
tended SLP (e-SLP) is an SLP S augmented with a set of
combining functions CRh, for all predicates h appearing
in the head of some stochastic clause in S. A combin-
ing function is a function that maps a set of possible
resolvents of h (obtained using one clause in Sh) and as-
sociated real numbers in [0, 1] to a real number in [0, 1]:

CRh : ((r1, p1), ..., (rn, pn)) 7→ r ∈ [0, 1]

Definition (Proof of Extended SLPs): Given an
e-SLP Se consisting of the SLP S and the combining
functions (CRh)h, and a query Q (consisting of the pred-
icate p with none or more arguments), the probability
Pe(Q/Se) is the probability of the pruned and-or tree T
rooted at the or-node Q. The probability of a pruned
and-or tree is defined by structural induction:

• Base case: if T is a single or-node, Pe(Q/Se) is the
probability P (Q/S).

• If the root of T is an or-node with n branches
leading to the resolvents (and-nodes) (ri)i∈Nn

, then
Pe(Q/Se) = CRp((ri, pi)i∈Nn

), where pi is the prob-
ability of the pruned and-or subtree rooted at the
and-node ri.

• If the root of T is an and-node leading to the
resolvents (or-nodes) (ri)i∈Nn , then Pe(Q/Se) =∏n

i=1 pi, where pi is the probability of the pruned
and-or subtree rooted at the or-node ri.

Remark: The probability Pe(Q/Se) is defined by
structural induction in SLD and-or trees (while SLPs’
distributional semantics make use of SLD (and-)trees).
The computation of the probabilities at the and-nodes is
the same as in SLPs’ distributional semantics: it is sim-
ply a product. At or-nodes, probabilities are computed
using the newly added combining functions.

Standard Translation for BLPs:
Definition (Standard Translation of a BLP): Let

B denote a BLP. The standard translation of B is the ex-
tended SLP Se defined by the following stochastic clauses
and combining functions:

• The stochastic clauses (which form the set S) are
obtained in the same way as the stochastic clauses
obtained from a restricted BLP (definition 2).

• Let us take a ground predicate h in the head of
some clause in S and assume that it can be unified
with the heads of some clauses in Sh, leading to
the resolvents (ri,j)i,j with probabilities in S equal
to (pi,j)i,j . A resolvent can contain several atoms.
The clauses in Sh come from z different Bayesian
clauses with the same predicate in the head. These
original clauses can be indexed with a number that
corresponds to the first index i ∈ Nz in the name of
the resolvents. The second index j ∈ Nni refers to
one of the ni different distributions of values over the
Bayesian atoms in the body of the Bayesian clause
i. We define CRh by:

CRh =
∑

j1∈Nn1 ,...,jz∈Nnz

CR(h, r1,j1 , ..., rz,jz
)×

z∏
t=1

pt,jt

where CR is the combining rule defined in B.

Proposition: The theorem 1 stating the equivalence
of the semantics for the standard translation of restricted
BLPs still holds if the translation is done with the latter
rules (using e-SLPs and probabilities defined in definition
4).

Theorem: Given any BLP B, its standard transla-
tion Se obtained as defined above, and a ground Bayesian
query Ga which is safe with regards to B. Let us asso-
ciate to Ga the logical query G(v), v ∈ dom(Ga). Then:
Pe(G(v)/Se) = PB,Ga

(Ga = v).
It is worth saying a word about the computational

complexities involved in the standard translation. Al-
though the latter representation is less compact than the
original BLP (there is one stochastic clause for each pa-
rameter in the CPTs of the BLP), the computation of
probabilities is more efficient. Indeed, queries in stan-
dard translations can be answered by simply summing
the probabilities of refutations in a stochastic SLD-tree.
On the other hand, querying the original BLP requires

the computation of the pruned and-or tree, the trans-
formation of this tree into a BN, and the initialization
of the constructed BN (usually with a message passing
algorithm such as Pearl’s).

3.2 BN Translations
It is a well-known result that BNs can be formulated in

terms of SLPs. The next subsection recalls Cussens’ sug-
gestion of encoding. Since Herbrand bases of the BLPs
define (possibly infinite) Bayesian networks, a possible
way of translating a BLP into an SLP is to encode the
corresponding Bayesian net.

From Bayesian Nets to SLPs:
According to Cussens, unnormalised SLPs can conve-

niently represent Bayesian nets.
The encoding is presented throughout an example. Let

us take the following Bayesian net (figure 4).

A
a1 a2

D
d1 d2 d3

C
c1 c2 c3

B
b1 b2

Figure 4: A simple Bayesian net

The following SLP encodes this Bayesian network:

1: world(A,B,C,D) :-
b(B), c(C),
a(A,B,C),
d(D,A).

0.05: b(b1).
0.95: b(b2).

0.07: a(a1,b2,c1).
...

The first stochastic clause7 permits the possible-worlds
approach, since the probability of the refutation of
a ground instance of the predicate symbol world
is exactly the probability of the associated possi-
ble world.

The next clauses encode the values that are con-
tained in the CPTs. They are unary stochas-
tic clauses groundatom associated to the parameter
P (groundatom).

From Cussens’ point of view the translation from BN
to SLP seems obscure in that the directionality of BN
is obscured. Indeed, the labels of the clauses in the re-
sulting SLP encode conditional probabilities, while the
predicate symbols don’t seem to make any distinction be-
tween the head and the other variables the head depends
on. However one can argue that the structure of the BN
is encoded in the first stochastic clause, the query clause

7This clause is obviously different from all other clauses
in the SLP. We will call it the query clause of the SLP.

as defined above. This approach works pretty well and
will be used in the next section as the basis for a new
translation of BLPs (namely: BN translations).

Lifting this approach to BLPs:
The resulting SLP falls into two parts: a data part

(consisting of several stochastic clauses which encode the
knowledge in the conditional probability tables) and a
query part (consisting of only one stochastic clause with
the parameter 1.0).

Data Part
In order to mimic the global approach that was pre-

sented in the previous section, we propose to use the
following clauses to encode the knowledge in the condi-
tional probability tables of our example:

0.99 : holds1(alarm(A, yes), burglary(A, yes), ...
... tornado(A, yes)).

0.80 : holds1(alarm(A, yes), burglary(A, yes), ...
... tornado(A,no)).

... ...
0.40 : holds2(burglary(A, yes), neighborhood(A, bad)).
... ...
0.99 : holds4(tornado(tom, no)).
Note that alarm, burglary... were predicate symbols

in the last standard translation, while we consider them
as functors from now on.

Query Part
Let us recall that a BLP defines a (possibly infinite)

Bayesian network whose chance nodes are the atoms
in the least Herbrand model associated to the set of
Bayesian clauses (this set can indeed be identified to a
DCL (Prolog-like) program). Now there are two options:
• A) Either the least Herbrand model HM is fi-

nite: in that case the query clause can contain all atoms
in HM , and the probability of the refutation of a ground
instance of the query clause is exactly the probability of
the corresponding possible world.

In the alarm example, the Herbrand model HM is
finite: it contains exactly alarm(tom), burglary(tom),
neighborhood(tom) and tornado(tom).

Thus the query clause will be:

1 : holds(
tornado(tom,A),
alarm(tom,B),
burglary(tom,C),
neighborhood(tom,D)) ←

holds3(neighborhood(tom,D)),
holds2(burglary(tom,C), neighborhood(tom,D)),
holds4(tornado(tom,A)),
holds1(alarm(tom,B), burglary(tom,C),

tornado(tom,A).
Implementations have been carried out in Prolog, so

that it is possible to query the resulting SLP (data part
+ query clause) by asking Prolog:

?− query(holds(tornado(tom,A), alarm(tom,B),

burglary(tom,C), neighborhood(tom,D))).
The variables A, B, C or D can be replaced by con-

stants (yes, no, good, bad or avg when appropriate),
whenever evidence must be taken into account.
• B)... Or the least Herbrand model HM is in-

finite: then we don’t know what a possible world will
consist of, since it clearly depends on the query. Further-
more, we don’t even know what evidence can be declared
(the actual chance nodes of the Bayesian net depend on
the query). Thus we need some additional stage to
query the SLP, which can replace the -cumbersome-
construction of the Bayesian net with KBMC.

To construct the query clause, we need to have an
idea of the corresponding Bayesian net that would be
generated in the BLP with the same query. In KBMC,
all relevant Bayesian atoms are determined by calculat-
ing the and-or trees of the query and the evidence, and
by merging these trees. We use a slightly different ap-
proach8: given a query (assimilated to a ground Bayesian
atom), we use the structure of the Bayesian clauses to
determine: - all influencers of the query: this is a kind of
deductive approach, since the influencers are the atoms
that appear in the refutation of the query, when assimi-
lating the BLP with a LP. - all influenced atoms of the
query: this is a kind of abductive approach, since we will
look for the Bayesian clauses whose body contains the
query.

4 From SLPs to BLPs
In [Kersting and Raedt, 2000], Kersting and de Raedt

show that any logic program can be formulated in terms
of BLPs: they assign the domain {true, false} to every
atom in the Herbrand base of the logic program, and
associate the naive conditional probability tables to the
clauses, which is defined as follows:
• the probability that the head takes the value true

given that all atoms in the body have the value true
is 1.0.
• the probability that the head takes the value true

given any other distribution of values over the atoms
in the body is 0.0.

Kersting and de Raedt claim that this BLP (together
with the noisy-or or the max combining rule) mimics the
original logic program. How can we lift this translation
mechanism to SLPs?

In order to shift the approach from a possible-worlds
to a domain-frequency perspective (which is essentially a
single-world perspective), the idea is to assign non-zero
probabilities to only one set of values of the body. Here
we propose a way to translate into a BLP: the resulting
BLP can compute the same probabilities as the distri-
butional semantics defined in [Muggleton, 2001].

Definition (translation of an SLP):
Let P denote a complete, range-restricted and non-

recursive SLP.
8This approach is detailed in [Puech, 2003]; this is only a

summary.

• For each stochastic clause p : head ← b1, ..., bn
in P , identify each atom to a Bayesian atom whose
domain is {true, false}.

• Construct the Bayesian clause having the same
head, the same body, and the following conditional
probability table:

head
b1 ... bn true false

true true true p 1− p
true true false 0 1
o o o 0 1

false false false 0 1

• To complete the definition of the BLP, we need to
define a combining rule CR. Suppose that we have
to combine n conditional probability tables CPTi

(1 ≤ i ≤ n). Each CPTi defines the probabili-
ties P (head | Bi), where Bi is the set of ground
Bayesian atoms in the body of the associated clause.
Thus to define CR((CPTi)1≤i≤n), and by us-
ing normalization, we only have to set the val-
ues of P (head = true | ∪n

i=1 Bi) for all possi-
ble instantiations of the ground Bayesian atoms in
(∪n

i=1 Bi). The value of P (head = false|∪n
i=1Bi) =

1− P (head = true| ∪n
i=1 Bi) can then be deduced.

• For each possible instantiation (∪n
i=1 Insti) of

(∪n
i=1 Bi), we take the sum

∑n
i=1 P (head =

true | Bi = Insti) and assign it to P (head =
true | ∪n

i=1 Bi). Since the SLP is complete, this
sum will never be greater than 1, and the CR is well
defined.

We will now examine two examples.
Example (Unbiased coin): Let us recall the coin

example. The SLP is complete, range-restricted and not
recursive.

0.5 : coin(0)←
0.5 : coin(1)←

In the coin problem, the very simple BLP that we con-
struct doesn’t make use of any combining rule. It only
contains 2 Bayesian clauses. The BLP will be written:

coin(0).
coin(1).

coin(0)
true false
0.5 0.5

coin(1)
true false
0.5 0.5

If we query this BLP with, for example, ”?− coin(1).”,
the KBMC will result in the Bayesian net containing the
single chance node coin(1), whose probability of being
true will be 0.5 as required by the distributional seman-
tics in [Muggleton, 2001].

Let us take a more complex example.
Example:
Let P be the complete, range-restricted SLP consisting

of the following stochastic clauses:

0.4 : s(X)← p(X), q(X). 0.3 : q(a).
0.6 : s(X)← r(X). 0.7 : q(b).
0.3 : p(a). 0.2 : r(a).
0.7 : p(b). 0.8 : r(b).

If we follow the method presented above, we obtain
the BLP:

s(X) | p(X), q(X). q(a).
s(X) | r(X). q(b).
p(a). r(a).
p(b). r(b).

s(X)
p(X) q(X) true false
true true 0.4 0.6
true false 0.0 1.0
false true 0.0 1.0
false false 0.0 1.0

s(X)
r(X) true false
true 0.6 0.4
false 0.0 1.0

p(a)
true false
0.3 0.7

The CPTs for p(b), q(a), q(b), r(a) and r(b) are not
detailed.

Now, if we query this BLP with ”? − s(a).”, the re-
sulting Bayesian network will contain 4 chance nodes:
p(a), q(a) and r(a) directly influence s(a). The combin-
ing rule gives the combined conditional probability table
as follows.

s(a)
p(a) q(a) r(a) true false
true true true 1.0 0.0
true true false 0.4 0.6
true false true 0.6 0.4
true false false 0.0 1.0
false true true 0.6 0.4
false true false 0.0 1.0
false false true 0.6 0.4
false false false 0.0 1.0

By using any standard inference algorithm in this BN
(e.g. Pearl’s message passing), we obtain the probabil-
ity P (s(a) = true) = 0.156, which is the result we
were looking for (since the distributional semantics gives:
P (s(a) / P) = (0.4× 0.3× 0.3 + 0.6× 0.2) = 0.156).

Remark: The latter example is different from
Cussens’ example, in that we avoid the double-refutation
of p(X) in the first stochastic clause. This is to prevent
the query s(a) from not being safe with regards to the
translation of the SLP. It is necessary that the query be

safe with regards to the translation of the SLP, according
to the next theorem:

Theorem: Given a complete, range-restricted and
non-recursive SLP S, its translation into a BLP B ob-
tained as defined above , and a ground query G. Let us
associate to G the Bayesian atom Ga, whose domain is
{true, false}, and which is itself associated to a chance
node in the Bayesian net BNB,Ga . If Ga is safe with
regards to B then: P (G/S) = PB,Ga(Ga = true).

5 Conclusion and Further Work

We have demonstrated relations between SLPs’ and
BLPs’ semantics, and we have shown that SLPs aug-
mented with combining functions (namely extended
SLPs) and BLPs can encode the same knowledge, in
that they encode equivalent distributions of probabil-
ities with regards to the latter relations. Since SLPs
need to be augmented with combining rules in order to
be as expressive as BLPs, and BLPs are able to encode
complete, range-restricted and non-recursive SLPs, we
are tempted to conclude that BLPs are more expressive
than strict SLPs.

However, SLPs’ and BLPs’ formalisms are more or
less intuitive, depending on the kind of knowledge we
want to model. It should be noted that BLPs’ query-
answering procedure is cumbersome because of KBMC
and the necessity of using different frameworks (com-
putational logic, Bayesian nets), while inference mecha-
nisms in SLPs are straightforward.

We believe this paper to be a formal basis for further
studies. In the perspective of inductive learning, inter-
translations of e-SLPs and BLPs can be used to extend
learning techniques designed for BLPs to the learning of
e-SLPs (and vice-versa). We think it could be interesting
to investigate the interests of such extensions.

So far e-SLPs have been introduced in a fairly general
way; the definition of suitable constraints on the combin-
ing functions in e-SLPs is also a precondition for their
learnability.

Acknowledgments

The first author was supported by the Engineering
and Physical Sciences Research Council (EPSRC). The
second author acknowledges support from the ESPRIT
IST project Application of Probabilistic Inductive Logic
Programming (APRIL, IST-2001-33053). We would like
to thank Luc De Raedt and Kristian Kersting for helpful
discussions on this topic. We would also like to thank
anonymous reviewers for their comments and construc-
tive criticism.

References

[Cussens, 1999a] J. Cussens. Integrating probabilistic
and logical reasoning. In Electronic Transaction on
Artificial Intelligence, 1999. Machine Intelligence
Workshop (MI16), special issue, (submitted).

[Cussens, 1999b] James Cussens. Loglinear models for
first-order probabilistic reasoning. In Kathryn Black-
mond Laskey and Henri Prade, editors, Proceedings
of the 15th Annual Conference on Uncertainty in AI
(UAI’99), pages 126–133. Morgan Kaufmann, 1999.

[Cussens, 2000] J. Cussens. Parameter estimation
in stochastic logic programs. Machine Learning,
44(3):245–271, 2000.

[Halpern, 1989] J. Y. Halpern. An analysis of first-order
logics of probability. Artificial Intelligence, 46:311–
350, 1989.

[Kersting and Raedt, 2000] Kristian Kersting and
Luc De Raedt. Bayesian logic programs. In
J. Cussens and A. Frisch, editors, Proceedings of the
Work-in-Progress Track at the 10th International
Conference on Inductive Logic Programming, pages
138–155, 2000.

[Muggleton and de Raedt, 2001] S. Muggleton and
L. de Raedt. Application of Probabilistic Inductive
Logic Programming, Final and Periodic Progress
Report. European Union IST programme Assessment,
Project 33053, 2001.

[Muggleton, 2000] S. Muggleton. Learning stochastic
logic programs. Electronic Transactions in Artificial
Intelligence, 4(041), 2000.

[Muggleton, 2001] S. Muggleton. Stochastic logic pro-
grams. Journal of Logic Programming, 2001. Accepted
subject to revision.

[Puech, 2003] A. Puech. Parameter estimation in ex-
tended slps. Technical report, Imperial College Lon-
don, September 2003.

	Introduction
	Motivations
	Outline

	Background
	Stochastic Logic Programs (SLP)
	BLPs
	Formulation of the problem

	From BLPs to SLPs
	Standard Translations
	BN Translations

	From SLPs to BLPs
	Conclusion and Further Work

