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Abstract

The application of Inductive Logic Programming (ILP), a
form of machine learning, to derive structure activity
relationships (SAR) and to discover pharmacophores is
reported. The ILP approach was initially applied to model
1D SARs in terms of the attributes of the molecules.
Subsequently 2D ILP SARs were developed describing
chemical connectivity. Finally ILP has been used to model
3D SARs in which the conformation of the pharmaco-
phore can be described. ILP has advantages over many

other widely used methods as it can reason with relations
and hence discover chemical substructures and 3D fea-
tures without these aspects having been explicitly encoded
prior to learning. In particular, there is no requirement for
a structural superposition. Additionally, the results of ILP
provide chemical descriptions that can readily be under-
stood by a medicinal chemist. In several trials, ILP-based
SARs have been shown to be significantly more accurate
than widely-used methods.

1 Introduction

The derivation of structure activity relationships (SARs) is
central to molecular modelling. SARs are widely used in the
systematic design and refinement of pharmaceutical agents
and in the identification of structural alerts of toxicity and
mutagenicity. Because of their widespread importance both
in fundamental and commercial research, many method-
ologies have been developed (see other articles in this
volume and for example [1-7]. In this article we describe
the application of logic-based reasoning (using inductive
logic programming, ILP) to SAR [8, 9]. We will show how
this method naturally enables one to encode and reason with
chemical connectivity, 3D stereochemistry, include infor-
mation from positive (i.e. active) and negative compounds,
does not require molecular superposition, and can express
the resultant rules in a form readily understandable to
chemists.
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2 Some Major SAR Methodologies

We begin by describing a few major approaches for SAR
that have been widely used. This account will inevitably
include some generalisations but the strategies described
have been selected as they have been, or still are, widely
used approaches. In several studies ILP-based SAR were
compared against their performance on test data sets. We
need to identify limitations in these approaches to highlight
where the ILP can provide an alternative methodology.
However we acknowledge that every machine learning
strategy, including ILP, has its strengths and limitations and
today often a combination of approaches provides the best
strategy to develop a SAR.

A widely-used early approach, extensively explored by
Hansch, employed regression on global attributes of the
compounds such as hydrophobicity, molecular refractivity
and other properties e.g. [10]. This approach is effectively
1D taking no account of the chemical structure of the
molecules. However it was extended to 2D by including
stereochemical based indicator variables that identified the
presence or absence of substructures. The choice of these
substructures was by inspection; typically outliers from the
1D SAR would be identified and common chemical sub
structures identified. Subsequent work on 1D and 2D SAR
employed neural networks instead of regression e.g. [11].
The limitations of these types of approaches are:
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e The attribute set, in particular the stereochemical
features, have to be defined and new attributes will not
be learnt.

@ The resultant predictive algorithm can be difficult to
understand.

e The strategy only works well when there is a common
molecular scaffold

o 3D information is not included

Alongside these methods, 2D structure based pharmaco-
phore analysis was used, for example using graph searches
for sub-structures [12—-14]. This approach can identify key
chemical substructures amongst a diverse set of molecules
but is unable to include global properties, such as hydro-
phobicity, in the analysis.

Recently attention has focussed on describing the 3D
properties of the molecules. A widely used approach is
CoMFA [3, 4] (comparative molecular field analysis) (see
the dominance of these methodologies in SAR papers
published in J. Med. Chem. over the last few years).
Typically the lowest energy conformer of each molecule is
identified and superposed in 3D. Molecular properties such
as steric repulsion, hydrophobicity, hydrogen-bonding ac-
ceptor/donor potential are mapped on to an enclosing grid.
Partial least squares analysis is then used to derive the SAR.
The correlation results can then be mapped back onto the
molecular structure and inspected visually to provide
stereochemical insight into possible ligand/receptor inter-
actions. A major limitation of this approach is that align-
ment rules are required to superpose the different struc-
tures. The CoMFA fields that are generated are highly
dependent on the choice of atoms that were superposed.
Another recent approach is the CATALYST package [15]
(from Accelrys, San Diego, CA, USA). This quantitatively
superposes point pharmacophores to derive a QSAR. The
method does not reason with the internal chemical sub-
structures and has difficulties in scaling to large data sets
(100s of compounds).

3 Inductive Logic Programming (ILP)

ILP [16,17]is asubfield of Machine Learning (ML) [18]. ML
involves the automatic construction of high-level knowl-
edge from low-level data. Subfields of ML are separated
largely according to the way in which the learned knowledge
is represented (e.g. Hidden Markov Models, Bayes’ nets,
decision trees and Logic Programs). ILP uses Logic
Programs (a computationally efficient fragment of Mathe-
matical Logic) for representing example data, background
knowledge and hypotheses. Mathematical Logic is one of
the longest-standing and most versatile approaches to
representation of scientific knowledge. It is extensively
used throughout Computer Science. The ability of ILP to
make use of explicit background knowledge within an
expressive representation language is particularly powerful
in complex scientific applications.

We now explain the basis of inductive logic programming
as a machine learning method. The approach learns from
known examples or observations (i.e. it employs the
reasoning known as induction). The observations, the
background knowledge and the resultant rules are ex-
pressed as first order logic programs, such as compound
no 21 contains atom no 12. A typical ILP procedure is
illustrated in Figure 1. The observations form the examples
and in ILP both positive examples (e.g. active molecules)
and negative examples (inactive molecules) can be used.
The background knowledge describes features of these
examples and can encode properties that are 1D (such as
hydrophobicity), or 2D (chemical connectivity) or 3D
(spatial relationships). The learning engine then employs
an algorithm that identifies which combinations of the
background knowledge best cover as many of the positive
examples whilst covering the fewest number of negative
examples. The resultant rule is then output by the learning
algorithm. This rule can be stored and then a further cycle of
learning undertaken to identify rules for positive examples
not previously covered by the first rule. Alternatively the
learnt rule can be added back into the background knowl-
edge. The learning algorithm employs a measure known as
compression (c) rule that describes the power of the rule in
maximising the number of positive examples covered by the
rule (p) whilst having the fewest number of negative
examples also predicted (n).

c=p-—n.

In addition, one often includes a measure that considers the
simplicity of the learnt rule — how many pieces of back-
ground knowledge are included in the rule (b) and the
objective function becomes

c=p—n—b.

The implementation of this procedure of course depends on
the precise algorithm. Our work used programs developed
by Muggleton and coworkers. We initially used GOLEM
[19] and subsequently used the algorithm PROGOL [20].
Both programs encode the examples, the background
knowledge and the resultant rules using the language
PROLOG. The learning algorithm can be in any language

Observations

{(+ve and —ve
examples)

ILP . Learnt
learning rules
program

Background

knowledge

Figure 1. Flow diagram of Inductive Logic Programming (ILP)
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— currently PROGOL has been written in C and in
PROLOG.

4 Potential Advantages of ILP

There are several potential advantages of ILP in developing
aSAR

1. ILP usesrelationships rather than attributes and logic can
infer new relationships. One encodes that atom A is
bonded to atom B and that atom B is bonded to atom C.
The program can infer that atom A is connected to
atom C via atom B without this having to be encoded.
Thus new stereochemical features required for accurate
modelling can be learnt rather than having to be
explicitly encoded as attributes. Attribute-based ap-
proaches, including regression, neural networks, COMFA
and CoMSIA, are unable to learn new attributes being
only able to model the inter-relationships of existing
attributes.

2. Logic-based methods learn from both the active and
inactive set of molecules. Many superposition ap-
proaches, including graph-based searching for common
pharmacophores, focus only on the active set of mole-
cules.

3. Both CoMFA and CoMSIA require molecular super-
position of the series of molecules and the choice of
atoms to be superposed is often ambiguous and markedly
affects the entire subsequent SAR. When there is a
common scaffold superpositions can be made relatively
easily, but with a diverse set, such as those obtained via
high throughput screens, superposition is a major prob-
lem. Logic-based SAR do not require superposition as
they can encode the internal atom-atom distances and
reason with geometry.

4. The resultant rules are expressed as logic programs.
These can readily be converted into descriptions readily
understandable to a chemist (e.g. the active molecules
contain atom A bonded to B and B is then bonded to E).

ILP has certain limitations. The logical representation does
not handle numerical calculations readily. Strategies can
easily be developed to model interatomic distances (see
below). However the quantitative activity of each molecule
cannot be input into the learning. Thus ILP does not model a
quantitative SAR. Instead molecules are classified as active
or inactive, or a rank order of activity is learnt. The ILP
models a qualitative SAR.

5 1D ILP-based SAR

The initial study involving ILP was reported in 1992 [8]. The
program GOLEM was used to model the inhibition of
trimethoprim analogues on Escherichia coli (E. coli) dihy-
drofolate reductase (DHFR) [21]. A training set of 44
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compounds were used and the resultant algorithm tested on
11 further compounds [22]. The trimethoprim derivates had
substituents at the 3, 4 and 5 positions. The chemical
properties of these substituents were encoded manually in
terms of attributes such as polarity, flexibility, size, hydrogen
bond donor and hydrogen bond acceptor potential. A
limitation of ILP is that it has limited capacity for
quantitative reasoning. To circumvent this, the affinity of
each pair of compounds were compared and expressed as
compound A is more active than compound B. ILP was then
used to derive rules to predict that one compound would be
more active than another in terms of the chemical attributes
of the substituents.

There are two major measures of the success of the SAR.
First is, of course, predictive accuracy on data not used in
training. We considered the prediction of ranked activity on
the 11 compounds not used for learning. The result was that
the rank correlation by ILP was 0.46 compared to that using
Hansch regression of 0.42 — the difference is just below
significance at the 5% level. The second measure is the
insight into the stereochemistry. We examined the features
in the rules describing active compounds and these suggest-
ed that the 3 and 5 positions should have properties of the
methoxy (OCHs;) substituent whilst the 4 position should be
polar. These rules agreed with the x-ray crystallographic
structure of trimethoprim — E. coli DHFR complex.

The results of this initial study were therefore encourag-
ing. We were only able to derive a qualitative structure-
activity relationship since only the rank orders and not the
numerical binding affinities were modelled. However in
terms of rank, the results on test data were nearly
significantly better than the widely used regression method.
Importantly, the resultant rules could be interpreted ster-
oechemically.

The general 1D ILP SAR approach was further compared
to neural networks on the DHFR/trimethoprim series [23].
In addition the inhibition of DHFR by triazines was studied
comparing ILP, neural networks and linear regression [24].
The conclusion from the first study was borne out by these
further analyses. ILP will produce rules of comparable
accuracy to neural networks and regression, ILP offered the
advantage of generating rules that were easier to under-
stand.

6 2D ILP-base SAR

The next major development in applying ILP to SAR was to
use a 2D representation of the chemical connectivity of the
molecules [9]. First order logic is ideally suited to describe
relations between atoms and to identify important more
complex chemical substructures not encoded initially. The
data set was 229 aromatic and heteroaromatic nitro
compounds tested for mutagenesis by the Ames test by
the Hansch group [2]. The set is chemically diverse and
cannot be superimposed onto a common template and
therefore presents a challenge to SAR methodologies. In the
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Table 1. Accuracy of different SAR approaches in predicting mutagenicity

Dataset SAR Accuracy %
Algorithm
without indicator variables with indicator variables
188 Regression 85.2 89.3
regression
friendly
Regression + sq 83.0 (*) 88.8
Neural networks 86.2 89.4
CART 82.5 (%) 88.3
PROGOL I 81.4 (1) -
PROGOL II 87.8 -
42 Regression 66.7 (11) 66.7 (11)
regression
unfriendly
Regression + sq 71.8 (1) 69.0 (1)
Neural networks 64.3 (11) 69.0 (1)
CART 83.3 833
PROGOL I 85.7 -
PROGOL II 83.3 -

Accuracy is defined as (no of correct prediction)/(no of predictions made). Regession + sq is regression with squares.

(*) — Accuracy significantly worse (P <0.1) than PROGOL I
() — Accuracy significantly worse (P < 0.025) than PROGOL I
(1) — Accuracy significantly worse (P < 0.025) than PROGOL II

initial study be Debnath and coworkers, the data set was
divided by inspection into 188 compounds considered to be
amenable to regression and a further 42 that could not be
readily modelled by regression. A subsequent study using
neural networks [25] also used this division. Both studies
used an attribute representation involving the energy of the
lowest unoccupied molecular orbital (LUMO) and the
molecular hydrophobicity (the octanol/water patrician co-
efficient, LogP). In addition two binary indicator variables
were introduced (after manual expert inspection) to de-
scribe chemical features of the subsets of the compounds.

The ILP program PROGOL [20] was used in this study.
The molecular representation used was obtained by input-
ting each molecule into a standard modelling program
(QUANTA, Molecular Simulations, Burlington, MA) and
obtaining a typing of the atoms and the connecting bonds.
Thus:

atom(127, 127 1,C, 22,0.191)

stated that in compound no 127, the atom no 1 was a
Carbon of quanta type 22 with a partial charge of 0.191, and

bond(127, 127 1,127 6,7)

stated that in compound 127, atom no 1 and atom no 6 are
connected by a bond of type7 (aromatic). Two ILP
representations were explored (I and II). In ILP represen-
tation I only the above features, which were generated
automatically, were used. A more extensive representation
of the molecules was also developed (II). This used the
information of I with the LUMO and LogP information
together with simple logical statements (PROLOG pro-
grams) that identified certain high level chemical concepts
from representation 1. These high level concepts included
methyl groups, aromatic rings etc.

The study then compared ILP against our implementa-
tion of regression (linear and linear with squares) and neural
networks to derive the SAR. In addition a decision trees was
applied to the data (CART) [26]. The data set was divided
into compounds that were high or low mutagencity. Each
learning study was subject to leave-one-out cross validation
to obtain an average accuracy. The results are given in
Table 1. On the regression friendly data, PROGOL II
performed comparable to the other methods when they used
the manually derived indicator variables. On the 42
regression unfriendly compounds, CART and PROGOL I
obtained significantly better predictions that regression or
neural networks.

A series of structural alerts for mutagenicity were
automatically generated by PROGOL. Importantly PRO-
GOL was able to generate a new structural feature for
mutagenicity for the 42 regression unfriendly compounds
which stated that there is a double bond conjugated to a five
membered aromatic ring.

7 3D ILP-based SAR

Itis well recognised that the stereochemistry of molecules is
often crucial in deriving a SAR. The next major step in ILP-
based SAR was introducing a 3D representation [27]. A
simple PROLOG program was incorporated as background
knowledge that took as input the atomic coordinates of two
atoms and generated their distance of separation. The
system studied was the angiotensin converting enzyme
(ACE) inhibitors that are a widely used form of medication
for hypertension. The data set of 28 compounds was
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a)

Figure 2. ACE inhibitors with the four-point pharmacophore
highlighted.

previously studied by Mayer et al [28] who proposed a
pharmacophore based on a set of postulated 3D structures
for the molecules and a zinc binding site.

The first study using PROGOL aimed to rediscover the
Mayer pharmacophore. Each molecule was represented in
the conformation proposed by Mayer. Atoms and bonds
were represented in a similar approach to the 2D study on
nitro compounds. In addition, the potential for an atom to be
a hydrogen bond donor or an acceptor was included. A
specific rule was included to define a single putative zinc
binding site for each of the molecules. Modifications to the
learning algorithm were included to cope with positive only
data and to generate rules for pharmacophore discovery
including the largest number of atoms. The result was that
PROGOL could rediscover a four point pharmacophore
which was similar to that proposed by Mayer (Figure 2). The
rule learnt was

Molecule A is an ACE inhibitor if:

it can bind to zinc at a site B, and

it contains a hydrogen acceptor C, and

the distance between B and Cis 7.94+1.0 A, and

it contains a hydrogen acceptor D, and

the distance between B and D is 8.5+ 1.0 A, and

the distance between C and D is 2.1 +1.0 A, and

it contains a hydrogen acceptor E, and
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the distance between B and Eis 4.9+1.0 A, and

the distance between C and Eis 3.1 +£1.0 A, and

the distance between D and E is 3.8 + 1.0 A.

The second study addressed the problem that the con-
former with the lowest energy might not be the active
stereochemistry due to either limitations in modelling and/
or that the bound conformer is not that of lowest energy. Ten
low energy conformers were generated for each compound
using modelling software. In addition, rules based on
stereochemistry were introduced to predict potential zinc
binding sites from the chemical properties of the atoms in
the molecules. Thus in this study the zinc binding site (or
sites) would have to be discovered by the program. The
results showed that there might be two locations for zinc
binding and indeed this had been suggested by others [29].

8 3D ILP Compared to CoMFA

A recent study by King and coworkers [30] has compared 3D
ILP SAR to CoMFA on two systems — thermolysin zinc
protease inhibitors and glycogen phosphorylase inhibitors.
The key aspect of COMFA [3]is that the molecules must first
be superimposed in 3D and this can be difficult and
subjective when they present a diversity of substructures.
In 3D ILP that uses internal distances (as in section 7), there
is no requirement for an initial superposition. In the King
and co-workers study, CoOMFA was performed using stand-
ard modelling software (Sybil, Tripos Associates, St Louis,
MO). The results obtained were comparable in the cross
validated squared correlation coefficient regression (1%, ) to
those obtained by other groups studying these systems. The
ILP employed the typing of atom and bonds, the inclusion of
electrostatic charge, the use of chemical knowledge to
define chemical entities (such as aromatic five carbon ring);
hydrogen bond donors and acceptors and internal distances.
The ILP program used was Aleph (developed by A
Shrinivasan). One study employing the three lowest energy
conformers for each molecule and for both data sets ILP
performed significantly better (P < 0.01) than CoMFA [3]
implemented by the King group. The descriptions of the
pharmacophores were in agreement with those proposed by
other groups.

9 Concluding Remarks

We have described a series of studies in which SARs were
derived using ILP. In each of the datasets there was some
commonality of chemical structure, but this could be diverse
(e.g. aromatic and heteroaromatic nitro compounds). For
each of these datasets chemical structures related to activity
(pharmacophores or structural alerts) were derived and
expressed in a form that can be interpreted by a chemist (as
opposed to weights in a regression or a neural network).
Major benefits of using ILP to derive SARs are that
chemical substructures can be learnt without having been
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previously identified and that there is no requirement for an
initial 3D superposition.

Comparisons of accuracy of methods are difficult as on
each test system there often are cycles of methodology
refinement prior to the final study. In addition, the numbers
of compounds are often too few to prove that differences of
accuracy are significant. However the general conclusion
from the studies described above is that ILP SARs are at
least as accurate as many widely used approaches. In some
studies, such as compared to an automatic implementation
of CoMFA [30], ILP was shown to yield significant improve-
ments in accuracy over widely used approaches.

One difficult with ILP is that at present it is non trivial to
implement. Unlike regression, neural networks or decision
trees, one cannot simply run a standard package. The
present state of the software is that there is a substantial
learning curve to use ILP effectively. In addition, there has
been a very limited number of person years invested to date
in applying ILP to SARs. The effort has been on the
development of the methodology (from 1D, via 2D to 3D)
rather than on developing a user-friendly program for
general adoption. We consider that the approach is now
ready for the development of a system suitable for wide-
spread use by the community. Indeed one requires the use by
many groups on diverse datasets to identify the areas for its
improvement.
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