Repeat Learning Using Predicate Invention

Khalid Khan'! 2, Stephen Muggleton®, and Rupert Parson?

! Department of Computer Science, University of York
{kmk , stephen}@cs.york.ac.uk
2 Oxford University Computing Laboratory
rupert.parson@comlab.ox.ac.uk

Abstract. Most of machine learning is concerned with learning a sin-
gle concept from a sequence of examples. In repeat learning the teacher
chooses a series of related concepts randomly and independently from a
distribution D. A finite sequence of examples is provided for each con-
cept in the series. The learner does not initially know D, but progressively
updates a posterior estimation of D as the series progresses. This paper
considers predicate invention within Inductive Logic Programming as a
mechanism for updating the learner’s estimation of D. A new predicate
invention mechanism implemented in Progol4.4 is used in repeat learning
experiments within a chess domain. The results indicate that significant
performance increases can be achieved. The paper develops a Bayesian
framework and demonstrates initial theoretical results for repeat learn-
ing.

1 Introduction

Predicate Invention (PI) has been investigated for some time within Inductive
Logic Programming (ILP) [7, 11, 3, 9, 4, 10]. The literature describes various
mechanisms for the introduction of new predicates into the learner’s vocabulary,
as well as conditions under which this is necessary. However, surprisingly little,
if any, experimental evidence exists to indicate that learners which employ PI
perform better than those which do not. On the face of it, there are good reasons
to believe that since increasing the learner’s vocabulary expands the hypothe-
sis space, PI could degrade both the learner’s predictive accuracy and learning
speed. Indeed this is consistent with what happens in the experiments described
in Sect. 3.

However, the situation is different in the case in which the learner is al-
lowed to repeatedly employ PI to discover background definitions for a series
of related concepts. In this case predicates which successfully help describe one
concept may decrease the sample requirements for subsequent concepts. This is
also supported by experimental evidence in Sect. 3. In this paper we suggest
a theoretical framework for Repeat Learning (RL) over a series of inter-related
concepts. This framework is related to existing theoretical results of Baxter [1].

The paper is organised as follows. Section 2 introduces the experimental
domain involving moves of the various chess pieces on the open board. The

experiments described in Sect. 3 indicate that a) PI does not reduce sample
requirements for learning a single concept and b) does significantly reduce sample
requirements when successful invented predicates are provided as background
knowledge for subsequent concepts. Section 4 describes how constraint solving
in Progol4.4 was used to carry out PI in the experiments. A framework for RL
is described in Sect. 5. Future directions for the research are discussed in Sect.
6. Pointers to an FTP site containing the experimental materials used in this
paper are given in Sect. 7.

2 Examples

Consider the problem of repeat learning the definitions of legal moves on the open
board for chess pieces. A concept will be associated with each piece to represent
its legal moves. For example Fig. 1. shows the legal moves which can be made
by a King and a Knight. Note the symmetries common to the legal moves of the
pieces. In the experiment (Sect. 3) the initial background knowledge does not
take account of symmetries. However once a predicate related to symmetry for
one piece has been learnt it reduces the sample complexity of the learning in the
second.

If we label the squares on a chess board according to file (column letter a-h)
and rank (row number 1-8), we can then define two predicates £diff/2 and
rdiff/2 which compute the difference in file and rank for a move. All the legal
chess piece moves can be defined entirely using these two predicates. However the
size of the resulting theories is large. Both the King and Knight predicates would
need 8 clauses to be defined in this way for each of the 8 possible directions (see
Table 1, Fig. 1). We therefore attempt to introduce symmetry predicates into our
definitions. This is done via PI and is used to demonstrate the general principle
of RL - that a set of related concepts can better be learnt by also learning a
common bias in which to represent those concepts. In the chess setting we might
start off learning one piece, then use bias shift operations such as PI in order to
help in the learning of subsequent pieces.

Table 1. Move definitions - with and without Symmetry Predicates

King Knight
No. Clauses|length|Total|No. Clauses|length |Total
Without Symmetry Predicates 8 3 24 8 3 24
With Symmetry Predicates 2 5,2 7 4 5,5,2,2| 14

a) The King b) The Knight

Fig. 1. The legal moves of the pieces

3 Experiments

3.1 Training Data

The training data was generated by hand-coding a definition of the move for
each piece, then using Progol’s built in sample/3 predicate to generate random
examples. In this domain purely random training data will result in (typically 8
times) more negative examples than positive examples. Given this the positive
and negative examples were generated separately and combined in a ratio of 1:1
in the training sets. For each piece the training sets contained 5,10,15,20,30,40
and 80 positive and negative examples. For each training set size, 20 random
and independent example sets were generated. The results were then averaged
over these 20 example sets to reduce variance.

3.2 Test Data

One of the advantages of using a well defined enclosed domain such as chess is
the ability to obtain a perfect testing metric, based on the fact that there are
only a finite number of possible moves. In particular there are 64 squares on
a chess board, so this gives us a total of 64x64=4096 possible moves, most of
which will clearly be negative examples for any given piece. In the interests of
simplicity each piece was allowed to stay still in its definition of move. It is easy
to compensate for this mis-specification simply by introducing an additional
predicate. If we are trying to build up a move generator as in [2], we would
want to state such a predicate only once, so it would be piece independent. This
justifies our assumption of the existence of such a predicate.

3.3 Progol Settings

The following Progol settings were used when training on the data.

:-set(h,10000), set(c,b5),set(i,2),set(nodes,200)7?

There were two background predicates defined rdiff and fdiff for com-
puting the file and rank difference of two squares. Finally Progol was told to
Prune certiain clauses from its search. The first two prune statements did not
allow clauses with more than 1 rdiff and fdiff literal in the body respectively.
The third allowed a maximum of two invented predicates in any clause. Finally
the last two prune statements ensured that any rdiff and fdiff predicates
operated on two different squares.

3.4 Runs

For each piece there were 4 trials conducted. In the first trial “Ordinary Learn-
ing” Progol was given the opportunity to learn the definition of the piece without
any predicate invention, and with only the fdiff/2 and rdiff/2 predicates as
background knowledge. In the second trial “Predicate Invention”, Progol was
supplied with the same background knowledge, but this time allowed to invent
new predicates. This process is described fully in Sect. 4. In the third trial “Intra-
Repeat Learning”, Progol was supplied with the successful invented predicates
from the second trial as background knowledge. Finally in the fourth trial “In-
ter-Repeat Learning”, the learning of each piece was helped with the invented
predicates from the other piece. This is how it is hoped Repeat Learning would
work in general. Similar concepts would share common defining predicates and
predicate invention performed on some of them could be used to help the learning
of others.

The accuracy results for Ordinary Learning, Predicate Invention and Intra-
Repeat Learning are plotted in Fig. 2 (standard deviations for the sample mean
over 20 runs are shown as error bars). A comparison of Inter-Repeat Learning
to Ordinary Learning is given in Fig. 3.

3.5 Analysis of Results

The results obtained clearly show that predicate invention on the one hand does
not significantly increase accuracy, but on the other hand drastically increases
training time. Taken within a RL setting however, the results indicate that RL
using PI leads to both significant gains in accuracy and training time. In partic-
ular there is approxiamtely a 2-fold reduction in sample complexity for accuracy
levels between 70% and 100%. Although the somewhat ideal and artificial case
of learning the same concept (Intra-Repeat Learning) was primarily considered,
the results are seen to hold also when learning related but not equal concepts
such as the King and Knight move definitions (Inter-Repeat Learning).

Predictive accuracy (%)

100 T - 100 T i
%,/ ’ ? e g g
95 |- Intra-Repeat % Bl o5 | % s
Learning] % / /
90 - : b 9 - ' i EO
DR T % Intra-Repeat | an
ER N S . Learning ! /
85 [{41 & s} % [/ -
80 |- -~ i %"Ordinary Leaning 2 80 | ; A -
5 ! /
75 F % - E ?/Ordinary Learning -
P | Predicate
70 ¢ Invention R /1 Predicate B
B Invention
65 - g
60 1
5 10 15 20 30 40 80 15 20 30 40 80
Training Set Size Training Set Size
a) The King b) The Knight

Fig. 2. Learning curves for each piece (with standard deviations of sample means)

Predictive accuracy (%)

100 100 ————
9% 9%
9 0 |
85 g 85 Inter-Repeat i g
S Leaning /[/
80 g 80 |- -
[}
2
3
75 2 75 b .
T
70 70 b .
65 . 65 .
60 bt — e e— —
5 10 15 20 30 40 80 5 10 15 20 30 40 80

Training Set Size
b) Learning Knight using King symmetries

Training Set Size
a) Learning King using Knight symmetries

Fig. 3. The Inter-Repeat Learning Setting

4 PI Using Constraint Solving

Predicate invention in the chess experiments (Sect. 3) is carried out using the
constraint-solving mechanism of Progol4.4!. To allow invention of arity 1 predi-
cates the following declarations are made within Progol’s input file.

:- modeb(1,invent (#pn,+pmrank))?
:- constraint(invent/2)7

The first argument of invent/2 must be a predicate symbol (actually a pseudo-
predicate symbol) of type pn and the second argument (representing the argu-
ment of the invented predicate) is a variable of type pmrank. The constraint
declaration says that any invent/2 atom in the most-specific clause should have
a Skolem constant in place of the predicate symbol to be invented (#pn above).
In the search, during any clause refinement which introduces a constraint atom,
the flag ‘solving’ is turned on, and invent/2 is called with the second argument
bound to a term representing all substitutions for this variable from the positive
and negative examples. The bound term is given as a list of lists of lists(takes
the form [P,N] where P is from the positive examples and N from the negatives,
and PN are lists of lists, each list giving all substitutions related to a particu-
lar example). The predicate invent/2 returns an appropriate substitution for
the constant, which will be either an existing predicate symbol or a new predi-
cate symbol created using gensym/1. This predicate symbol replaces the Skolem
constant in subsequent testing of the clause and its refinements. Definitions for
constraint predicates have at least two clauses, with guards ‘not (solving)’and
‘solving’ to define respectively the normal application of the predicate and the
procedure for computing the constant. The following is the user-defined defini-
tion of invent/2 used for the experiments.

invent (P,X) :- % Non-solving clause
not (solving),
', defn(P,X), !. % Simply use definition of P
invent (P, [PosA,_]) :-
solving, % Solving clause,
flatten(PosA,PosAl), % Flatten pos substs.
sort(PosAl,PosA2), % Make normal form model for P.

not (element (X,PosA2) ,not (number (X))),
% Check no Skolem constants.
(clause(model (P,PosA2) ,true); % Already exists?
(gensym(P), % Create new pred. symbol P.
asserta(model(P,PosA2)), % Assert the model of P.
assertdef (P,PosA2))). % Assert the definition of P.

The auxiliary predicates defn/2 and model/2 store the definitions and models
of invented predicates respectively. The definition has a set of clauses associated

! This is an adaptation of Srinivasan and Camacho’s lazy evaluation, originally devised
to allow the estimation of numerical constants within clauses

with each invented symbol while the model has a single clause containing a list
of all ground instances of a particular invented predicate. For instance, q8 might
have a definition and model as follows.

defn(q8,-1). defn(q8,0). defn(q8,1).
model (g8, [-1,0,1]).

The model can be used to check whether a new predicate has already been in-
vented. The definition allows for further generalisation of the invented predicate
(given appropriate mode declarations).

Despite the apparent simplicity of the approach, the predicate invention tech-
nique allows simultaneous invention of multiple predicates, and also allows user
choice of arity and argument typing for inventable predicates. In fact, the tech-
nique appears to be at least as powerful as anything in the literature. For in-
stance, in the release examples of Progold.4 (available by anonymous ftp from
ftp.cs.york.ac.uk in directory pub/ML_GROUP/progol4.4), it is shown how
append1/3 can be invented when learning a recursive definition of naive reverse.

5 A Framework for Repeat Learning

The following describes a framework for the Repeat Learning setting, similar
to one described by Baxter in [1]. This framework is then applied to ILP. This
setting is a natural extension of the U-learnability model [8], [5]. The framework
is a generalisation of the setting used in the experiments.

The teacher starts by choosing a distribution D7 over the target space H,
and a distribution Dx over the instance space X, where H C P(X).

The learner £ is given the distribution Dy, and is given a prior distribution
Dy over the target space H. L is also equipped with a repeat—adjustment operator
rc that produces a refined posterior distribution D,,;1 on the basis of all the
data received by L so far.

The teacher uses Dy and Dx to carry out an infinite series of teaching
sessions, starting with session 1. In session n > 1 the teacher chooses a target
concept T, € H according to Dr. T), is used to provide labels from {true, false}
for a new sequence of instances (x1, 3, ...) chosen randomly and independently
from X according to Dx. An instance z; is labelled true if T,, = z;, and false
otherwise. An hypothesis is said to explain a set of examples F whenever it both
entails and is consistent with E.

In session n, having seen the labelled instances E,,, = (e1,ea,..-€m,), L
produces a hypothesis L(E,,,,D,) that explains E,,, , using its current prior
distribution over H, D,,. The teacher stops the session after m, labelled in-
stances, if the learner’s hypothesis L(E,,, ,D;) has expected error less than e
(for some 0 < € < 1) for predicting the correct label of any x € X chosen ac-
cording to Dx. This successful hypothesis is then labelled H,,. The learner then
generates a new prior distribution D, for session n + 1, using r..

A repeat learner would be expected to show an improvement in performance
after a number of sessions, by successively improving its approximation D,, of

the teacher’s distribution Dt over the target space. See Sect. 5.2 for a more
precise description of this criterion.

5.1 Repeat Learning Under a Fixed Representation

The above framework can be extended to learning systems (such as ILP) that
use a fixed representation during learning sessions.

The learning system is given an hypothesis language L that can describe
target concepts in H. We assume the existence of a universal linguistic bias
generator G that, given a target space H, and an hypothesis language L for
it, returns a probability distribution Dy = G(H, L) over the target space. Any
distribution consistent with Occam’s razor can be taken as an example of such
a generator. Such a distribution would assign a higher probability to hypotheses
that can be expressed more simply in the hypothesis language.

It is assumed that the teacher has a predefined hypothesis language L, and
that the bias generator gives the probability distribution Dy = G(#H, Lt) over
‘H for this language.

The learner has an initial hypothesis language L, giving the prior probabil-
ity distribution D; = G(H, L;) as before. The learning protocol for session n
proceeds as before, but with the change that the learning algorithm’s repeat—
adjustment operator adjusts instead the hypothesis language L,, (using, for in-
stance, predicate invention and retraction) to give language L1, and thereby
inducing a new distribution D, 1 over the target space.

The requirements for a repeat learner in this setting are the same as in
Sect. 7?7, except that the performance improvement is achieved by successively
improving the approximation L,, of the teacher’s hypothesis language L.

5.2 A Criterion for Repeat Learning

A tentative set of conditions that a machine learning algorithm must satisfy
in order to qualify as a repeat learning algorithm will now be described. The
authors would like to make it clear that the necessity, sufficiency and satisfiability
of these conditions have yet to be established. The conditions are related to the
U-learnability criteria described in [8].

Let the distributions D, Dx have associated parameters vp, ,vp, > 0 (for
example, the parameters might be the greater of the mean and standard devi-
ation of the distributions). The parameters may provide some indication of the
difficulty of learning from the distributions.

Let LEARNTIME(z) = z¢ for some ¢ > 0. Let IMPROVEMENT-DELAY (z, y),
LEARN-DELAY (z,y), ERROR-BOUND(z,y) be polynomial functions of x
and y. Let X ,, be an m-tuple of instances chosen randomly and independently
from X according to Dx.

Define E;(T, X p41,n) = 0 in session n, if £ correctly classifies (w.r.t T) in-
stance Tpm41, given instances (x1, . . . £,) labelled according to T, and Ez (T, X m41,n) =
1 otherwise (where X 41 = (%1, ... Tmy1))-

Time Complexity The average case time complexity of £ in any learning ses-
sion is bounded by LEARNTIME(M), where M is the sum of p(|z;|) over
the examples x; seen to that point in that session. The time complexity of
the repeat—adjustment operator rj, is unrestricted.

Correctness For all n, For all m > LEARN-DELAY (vp,,vp,):

1
3" Prog.o (Tn, Xmi1)Ec(Ta, X mi1,n) < ERROR-BOUND(—, 1)
all(Thn , X m+1) m
Improvement For all n > IMPROVEMENT-DELAY (vp,,vpy), For all m >
LEARN-DELAY (vp,, vpy):

> Progpx (T, Xmi1)Ec(T, X my1,n) < ERROR-BOUND(
all(T, X m+1)

S|+

)

?

S|~

6 Discussion

This paper has introduced a theoretical framework for machine learning a series
of related concepts, which we call the Repeat Learning setting. This framework
was extended to an ILP setting, and the possibility of using Predicate Invention
under ILP to achieve the aims of the framework was discussed.

We have shown in experiment how Predicate invention under Repeat Learn-
ing can decrease the sample complexity requirements of an algorithm. However
a comprehensive theoretical explanation of this is yet to be found. Surprisingly
little experimental and theoretical evidence of the utility of Predicate Invention
exists. The results of this paper indicate that Predicate Invention is useful under
the Repeat Learning setting.

Many, indeed most, of the real-world domains in which ILP has been suc-
cessful can be rephrased in the repeat learning setting. Consider, for instance,
the Mutagenicity and Predictive Toxicology domains. Chemical bond and struc-
ture relationships learnt in early problems can be reused, and such relationships
could potentially improve the accuracy of the algorithm in later problems.

Machine learning experiments in real-world domains aim to show that an
algorithm is successful at learning a certain type of problem. This is only useful
when there are other unsolved problems of the same type to which a success-
ful algorithm can then be applied. Repeat Learning may be beneficial in such
multiple-problem domains. There is clearly a need for further theoretical anal-
ysis of Repeat Learning in ILP.

7 FTP site

The datasets used in the experiments described in this paper are available from
anonymous ftp at: ftp.cs.york.ac.uk/pub/ML_GROUP/Repeat/

Acknowledgements

Thanks to David Page for vital input in discussions on this topic. This work
was supported partly by the Esprit Long Term Research Action ILP II (project
20237), EPSRC grant GR/K57985 on Experiments with Distribution-based Ma-
chine Learning, an EPSRC Advanced Research Fellowship held by the second
author and EPSRC postgraduate awards held by the first and third authors.

References

[1]

J. Baxter. Theoretical models of learning to learn. In T. Mitchell and S. Thrun,
editors, Learning to Learn. Kluwer, Boston, 1997.

J. Goodacre. Inductive learning of chess rules using progol. Master’s thesis,
Oxford University, Oxford University Computing Laboratory, 1996.

C. Ling. Inventing necessary theoretical terms in scientific discovery and inductive
logic programming. Technical Report 302, Dept. of Comp. Sci., Univ. of Western
Ontario, 1991.

S. Muggleton. Predicate invention and utilisation. Journal of Experimental and
Theoretical Artificial Intelligence, 6(1):127-130, 1994.

S. Muggleton. Inverse entailment and progol. New Generation Computing, 13:245—
286, 1995.

S. Muggleton. Learning from positive data. In Proceedings of the Sizth Workshop
on Inductive Logic Programming, Stockholm, 1996.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by in-
verting resolution. In Proceedings of the 5th International Conference on Machine
Learning, pages 339-352. Kaufmann, 1988.

S. Muggleton and C. D. Page. A learnability model for Universal representations.
In S. Wrobel, editor, Proceedings of the 4th International Workshop on Inductive
Logic Programming, 1994.

I. Stahl. Constructive induction in inductive logic programming: an overview.
Technical report, Fakultat Informatik, Universitat Stuttgart, 1992.

I. Stahl. Predicate invention in inductive logic programming. In L. De Raedt, edi-
tor, Advances in Inductive Logic Programming, pages 34-47. I0S Press, Ohmsha,
Amsterdam, 1996.

R. Wirth and P. O’'Rorke. Constraints on predicate invention. In Proceedings of
the 8th International Workshop on Machine Learning, pages 457-461. Kaufmann,
1991.

