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Incorporating Virtual Reactions into a Logic-Based Ligand-
Based Virtual Screening Method to Discover New Leads
Christopher R. Reynolds,*[a] Stephen H. Muggleton,[b] and Michael J. E. Sternberg[a]

1 Introduction

Virtual screening methods search databases of molecular
structures for “hits” which synthetic chemists can then ex-
plore by modifying the hits to develop them into lead
series. Small-molecule space has been estimated to contain
1063 molecules,[1] and the subset of drug-like small-mole-
cules at between 1014 and 1030 molecules.[2] This precludes
the tractability of a brute-force search through these
spaces. Even the largest databases, such as the GDB-17 da-
tabase of 1.66 � 1011 molecules containing up to 17 atoms[3]

can only cover a fraction of this space. Previous virtual
screening efforts involving INDDEx[4] have focused on
searching the ZINC database of over 35 million purchasable
compounds.[5,6] Another disadvantage of just searching da-
tabases is that there can also be leaps between hit and
lead activity so potentially active lead series can be missed
by prioritizing only the hits with the highest predicted ac-
tivities. The cost and effort of synthesis are further concerns
when developing leads. There is therefore a requirement
for an in silico method to predict the activity of leads
rather than hits.

One method to explore more of chemical space is to
generate unfocussed combinatorial virtual libraries of bil-
lions of synthesisable molecules to screen, such as Inhib-
Ox’s VSPACE[7] which uses ChemAxon’s virtual reaction tool-
kits.[8] An alternative approach is to use de novo design al-
gorithms, which assemble novel molecules from atoms or
fragments rather than scanning libraries of molecules.
Methods that incorporate de novo design into virtual

screening include PRO_SELECT,[9] DREAM + + [10] and
TOPAS.[11] TRIPOS provides tools for de novo design as part
of its SYBYL-X suite,[12] and Schrodinger provides tools as
part of its Glide software.[13]

When exploring synthetic space, a balance must be
found that provides sufficient recall to generate enough
products to have a reasonable chance of detecting a true
positive active whilst having a predictive method that is
precise enough to keep the number of false positives
below a level where it would still be feasible to synthesise
and test all positives.

INDDEx is a drug discovery technology that performs
ligand-based virtual screening for drug discovery and was
previously described in Reynolds et al.[14] It uses the super-
vised machine-learning technique Support Vector Inductive
Logic Programming (SVILP),[15, 16] which integrates the In-
ductive Logic Programming (ILP) technique,[17] and Support
Vector Machine (SVM) technique.[18] INDDEx learns logical
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mAbstract : The use of virtual screening has become increas-

ingly central to the drug development pipeline, with
ligand-based virtual screening used to screen databases of
compounds to predict their bioactivity against a target.
These databases can only represent a small fraction of
chemical space, and this paper describes a method of ex-
ploring synthetic space by applying virtual reactions to
promising compounds within a database, and generating
focussed libraries of predicted derivatives. A ligand-based
virtual screening tool Investigational Novel Drug Discovery
by Example (INDDEx) is used as the basis for a system of
virtual reactions. The use of virtual reactions is estimated to

open up a potential space of 1.21 � 1012 potential mole-
cules. A de novo design algorithm known as Partial Logical-
Rule Reactant Selection (PLoRRS) is introduced and incor-
porated into the INDDEx methodology. PLoRRS uses logical
rules from the INDDEx model to select reactants for the de
novo generation of potentially active products. The PLoRRS
method is found to increase significantly the likelihood of
retrieving molecules similar to known actives with a p-
value of 0.016. Case studies demonstrate that the virtual re-
actions produce molecules highly similar to known actives,
including known blockbuster drugs.
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rules determining activity and inactivity from a dataset of
active and inactive molecules, and an SVM is used to
weight the rules. Reynolds et al.[14] benchmarked the per-
formance of INDDEx at retrieving molecules on the Directo-
ry of Useful Decoys (DUD)[19] and found INDDEx outper-
formed other the screening methods eHiTS LASSO,[20] Phar-
maGist[21] and DOCK:[22] training on eight ligands, INDDEx
achieved mean Enrichment Factors of 90.4 and 707 on 1 %
and 0.1 % of the database respectively, and an Enrichment
Factor of 66.9 on 1 % of the database when excluding all
similar ligands (defined as ligands with an MCSS (Maximum
Common Substructure) Tanimoto coefficient�0.5 to any of
the ligands in the training data). In addition, SVILP has
been used for molecular toxicology prediction[15] and the
search for SIRT2 inhibitors.[4]

2 Methods

The approach develops INDDEx by using the rules generat-
ed by the SVILP to select potential reactants to participate
in virtual reactions to generate potential leads. The rules
for the virtual reactions are taken from ChemAxon’s reac-
tion toolkits (JChem version 5.2.0, 2009),[8] and a list of the
virtual reactions used is given in Appendix A of the sup-
porting information.

2.1 INDDEx Method

Figure 1 shows activity prediction process performed by
the INDDEx method incorporating SVILP. The cylinders rep-
resent the datasets used and the grey-shaded area indi-
cates the processes performed by the program. These are

discussed in detail below. This is the method previously de-
scribed in Reynolds et al.[14]

1. INDDEx performs supervised machine-learning from
a set of training data. This is comprised of active and in-
active molecules in an energetically minimized 3D struc-
ture, with active molecules assigned a measure of activi-
ty. The minimization field used throughout this paper is
the MMFF94 Merck molecular force field.[23]

2. Each molecule is decomposed into a group of frag-
ments; a series of 2D strings representing molecular
substructure. Each heavy atom in a molecule forms the
central atom of a fragment. A fragment consists of the
central heavy atom element (ignoring hybridisation), all
immediately neighbouring heavy atom elements and
the bond types connecting them and the total number
of hydrogen atoms connected to the central atom and
immediate neighbours. For example, the oxygen in an
acetaldehyde forms the fragment “Oxygen, connected
to carbon by a double bond, hydrogenation of one,”
and each carbon in a benzene ring forms the fragment
“Carbon atom, connected to carbon by an aromatic
bond, connected to another carbon by an aromatic
bond, hydrogenation of three.”

3. Logical rules are generated. An Inductive Logic Pro-
gramming (ILP) algorithm[17] is used to generate rules
that relate the presence or absence of structural fea-
tures to activity. These rules can be readily understood
by a chemist. An inductive logic programming algo-
rithm[17] constructs logical rules that relate molecular
substructure to activity. For each molecule in the train-
ing data set, every fragment is related to every other
fragment of that molecule using the rule format “If Frag-
ment A is x �ngstrçms from Fragment B, there will be
some effect on activity” where x �ngstrçms is the dis-
tance measured between the two fragments in the 3D
minimized structure. The rules are thus the leading and
upper diagonal of an all-by-all fragment comparison
matrix. The rules constructed for all the training data
molecules are pooled and redundant rules (rules sharing
the same two fragments where the difference in x be-
tween the two rules is less than one �ngstrçm) elimi-
nated.

4. Modules from the Java Chemistry Development Kit
(CDK)[24] calculate a range of physicochemical descrip-
tors for each molecule in the training data. These de-
scriptors can be classified as being related to five as-
pects of chemistry:[25] size (molecular weight, mass dis-
tribution and atom counts), hydrophobicity (LogP), elec-
tronic (charge, polarisability, molecular orbital), hydro-
gen bonding (hydrogen donors and acceptors) and
topological (calculated from graph representations of
molecules).

5. The data is used to form a matrix for Support Vector
Machine (SVM) analysis[26]: each molecule in the training
set forms a vector (weighted by bioactivity), while the
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Figure 1. Diagram of INDDEx method incorporating SVILP.
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logical rules from step 3 and the physicochemical de-
scriptors from step 4 are used as features. The SVM con-
structs a hyperplane classification relating rules to activi-
ty. The training data molecules are used as vectors, with
the activity of the molecules as the vector weights and
the rules (all the pairwise fragment-distance rules and
the physicochemical descriptors) as vector features. The
SVM package used was SVM-Light version 6.02[27,28]

using the default linear kernel for all experiments de-
scribed in this paper. The combined process of weight-
ing ILP rules using SVM is known as SVILP.[16,29]

6. A dataset of screening data. The dataset used for
screening in this paper was the “fragment-like” subset
(xLogP�3.5, Molecular weight�250 Daltons, rotatable
bonds�5) given by the ZINC molecular database.[5,6]

These criteria meet the definition of “fragment-like” mol-
ecules defined by Carr et al.[30]

7. The screening stage in which a quantitative prediction
of activity is assigned to each molecule. To calculate
a predicted activity value, the rules generated in step 3
that are fulfilled by the screened molecule are used as
features for a vector to be multiplied by the matrix
model generated by the SVM in step 5.

2.2 Using Chemical Reactions to Extend INDDEx

In order to extend INDDEx’s search into synthetic space,
a module was added to perform virtual chemical reactions
to generate predicted synthetic products, which could then
be rescored using the INDDEx model. The method of virtual
chemical reactions was designed to imitate the work pro-
cess of a chemist using reactions to bring a molecule from
hit to lead. Molecules with high potential for being active
would be taken and derivatives made from them to see if
it improves the predicted activity.

The ChemAxon Reactor tool[8] was selected for the ease
of integrating it into the existing INDDEx technology.
ChemAxon’s Reactor contains a library of organic reactions,
each with a SMIRKS (Simple Molecular Input Reaction Kinet-
ic Strings) description[31] (an example of which is shown in
Figure 2) which expresses reactions as transformations in
mapped atoms and bonds between reactant and product
SMILES (Simplified Molecular Input Line Entry System)[32,33]

which defines the changes in atoms and bonds between
the reactants and the product, and with a list of computa-
tionally formalised chemical rules that the reactants need
to match in order for the reaction to take place. The Chem-
Axon rulesdefine physicochemical properties or take the
form of SMARTS (SMiles ARbitrary Target Specification) ex-
pressions[31] that define areas of molecular substructure. In-
clusive ChemAxon rules must be fulfilled in order for the re-
action to be viable, and fulfilment of exclusive rules pre-
vents reaction viability.

ChemAxon reaction rules were integrated into INDDEx,
allowing INDDEx to test potential reactants and produce

virtual products. SMIRKS (Simple Molecular Input Reaction
Kinetic Strings) were used to describe the structural trans-
formations in the reactions.[31] Figure 3 summarises the
steps involved in this process.

In the virtual reaction process, the first step is to take the
molecule that is desired to be modified. This is termed the
‘initial reactant’. Viable reactions are found finding match-
ing within the molecular structure to the molecular sub-
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Figure 2. Top: The Baylis-Hillman Alkylation reaction, with the
numbers that map to the atoms in the reactants and the corre-
sponding atoms in the product. Middle: The Baylis�Hillman Alkyla-
tion reaction expressed as a SMIRKS. Bottom: An example of a reac-
tion transformation process involving two example molecules un-
dergoing the Baylis�Hillman Alkylation reaction and the subse-
quent transformation of the conformation.

Figure 3. Flowchart summarising the steps in the INDDEx virtual
reaction process.
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structure in a SMIRKS reactant term. A search can then be
made for viable ‘partner reactants’ that can take the place
of the co-reactant in the reaction by looking for matches to
the molecular substructure in the SMIRKS co-reactant term.
The viability of the reaction can be found by applying the
ChemAxon reaction rules to the two reactants. These reac-
tion rules describe structural and physicochemical factors
that are required for the reaction or would exclude the re-
action from taking place. If the reaction is determined to
be viable, the two reactants can be joined together accord-
ing to the SMIRKS transformation to generate a list of bond
and atom graphs of potential reaction products, which can
be rescored using the INDDEx model. Secondary products
of the reaction are discarded.

Due to the INDDEx rules specifying distance measures,
the product must be formed into an approximately ener-
getically favourable conformation with correct bond
lengths and minimising of steric clashes. The when the re-
actants are joined together into a product, the 3D coordi-
nates are transformed so that the newly formed bonds are
the correct length and steric clashes between the reactant
substructures are minimised. Figure 2 shows an example re-
action and its description in SMIRKS format, along with an
example of the whole reaction transformation process for
the example reaction.

A concern of using addition reactions is that products of
these reactions will become too large to act as effective
drugs (95 % of drug weights fall below 625 Daltons).[34] In
order to cut down on synthetically accessible space and
search only a space of reasonably sized molecules, this as-
sessment only searched through the ZINC fragment-like da-
taset for initial reactants and using the same dataset to
search for partner reactants.

2.3 Weights of the ZINC Fragment-Like Molecules

The molecules from the fragment-like subset of the ZINC
database used in these assessments contained 474 770 mol-
ecules. Their weights being 250 Daltons or less means that
when two fragment-like molecules are joined by an addi-
tion reaction, the resultant product will never break the
500 Dalton weight criterion of the Lipinski “rule of five”[35]

for the likelihood of a molecule being an orally bioavailable
drug.

2.4 PLoRRS

INDDEx’s predicted scoring system is based on a matrix of
logical rules (see the “INDDEx method” section), so changes
in the molecular structure that lead to the fulfilment of
more rules will lead to a higher predicted activity. Partial
Logical-Rule Reactant Selection (PLoRRS) is a method devel-
oped to reduce the search space to explore by only consid-
ering molecules that are expected to yield a higher level of
activity when modified with an organic reaction. When
using the INDDEx model of activity, this corresponds to

molecules where reactions could lead to the fulfilment of
more INDDEx logical rules. PLoRRS calculates a measure of
“fulfilment” from the logical rule-based model derived by
INDDEx, based on how many of the rules for activity are
fulfilled, to give an estimate of the potential activity of the
product of a reaction, where molecules with a low fulfil-
ment score are ones that have a higher potential for in-
creased activity through having rules fulfilled. As well as re-
ducing the search space of “initial reactants,” this also re-
duces the search space of corresponding “partner reac-
tants,” as only partner reactants that match a cut-off
number of the unfulfilled rules of the initial reactant are
considered in virtual addition reactions (a cut-off of at least
three rules was used throughout this study).

The PLoRRS method:

1. Finds the top 100 rules that have the highest positive
correlation with the activity data and are in the format
“Fragment A must be x �ngstrçms distant from Frag-
ment B.”

2. For each initial reactant, a score is assigned based on
how many of the rules from step one are half-filled (i.e.
the molecule contains either Fragment A or Fragment B
but not both).

3. Loops through the top 100 rules that are most positive-
ly correlated with activity.

4. If the rule is half-filled and the distance x between the
fragments is greater than two �ngstrçms (to only con-
sider rules that apply to two definitely separate frag-
ments rather than one contiguous piece of substruc-
ture), one point is added to the PLoRRS score.

5. The molecules are then rank ordered from highest to
lowest PLoRRS score (as the score is considered the mol-
ecule’s potential for increased activity with a reaction)
and considered in turn until a cut-off for the number of
molecules to be considered is reached.

6. Take each partner reactant in turn. The reactant frag-
ments are checked against the half-filled rules from
step 4 to see if they have a match for the unfilled half
of the rule.

7. If the reactant has at least three rule fulfilments, then at-
tempt a virtual reaction between the initial reactant and
the partner reactant, and calculate a predicted activity
using the INDDEx model if the reaction is successful.

3 Results

Two assessments were performed. The first assessment was
to estimate the extent to which the virtual reactions
opened up search space and the tractability of that space
to brute-force search. The second assessment was to esti-
mate the power of the PLoRRS method.
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3.1 Assessment 1: Exploring the Extent to Which the Virtual
Reactions Open up Search Space

To quantify an estimate of the size of search space accessi-
ble by using the virtual reactions, the following method
was used:

1. One hundred molecules were randomly chosen from
the unfiltered ZINC database, and another hundred
from the ZINC database filtered for fragment-like mole-
cules only. This generated a ZINC full-database sample
and a ZINC fragment-like sample.

2. Each molecule in the two datasets was checked against
the ChemAxon reactions to form a list of reactions it
could participate in as a reactant.

3. For each reaction in the list, every molecule in the ZINC
fragment database was checked for whether it could
participate in the reaction.

4. Where both reactants can participate in a reaction, the
reaction algorithm was run to generate and enumerate
all products.

Table 1 shows the results of these tests.

The values in Table 1 allow an estimate to be made of
the space opened up by utilising the virtual reactions. Mul-
tiplying the 53 450 average total virtual products per mole-
cule with the number of molecules in the ZINC database
(22 724 825 in the “all purchasable” set as of September
2014) gives an estimate of 1.21 � 1012. This compares with
an estimate of 1060 for the whole of small-molecule space[1]

(see Sect. 4, Discussion, for further comparisons).

3.2 Assessment 2: Estimating the Virtual Screening Power of
the PLoRRS Method

3.2.1 Quantifying the Power of the PLoRRS Method

Figure 4 shows the method used to quantify the ability of
using INDDEx with virtual reactions to search through virtu-
al synthetic space and to compare the use of the SVILP
model with the use of PLoRRS and using them both in con-
sensus.

The null hypothesis was that PLoRRS does not enrich the
virtual screening results when used independently or in
consensus with the standard INDDEx SVILP model. The test
dataset for the comparison were the 40 targets of the DUD
database.[19] The list of DUD targets and their abbreviations
is given in Appendix B of the supporting information. Each
of the DUD targets comprises a set of known actives. The
decoy sets in DUD were not used.

3.2.2 Assessment Methodology

The procedure was:

1. For each of the forty targets, the known actives were di-
vided into two sets: a training set of eight randomly se-
lected active compounds and a held-back test set com-
prising the remaining actives. The eight active com-
pounds were selected at random five times without re-
placement or until there were less than eight com-
pounds remaining. This generated up to five datasets
for each target.

2. INDDEx learned on a set of data and produced an SVILP
model.

3. The ZINC fragment-like database was used as screening
data, filtered for each test to exclude any molecules
structurally similar to the molecules in the test set. A
molecule was defined as structurally similar if it had an
MCSS (Maximum Common Substructure) Tanimoto coef-
ficient[36] of�0.5 to any molecule in the test set. The as-
sumption was that structurally similar molecules would
have similar activity against the same target, though
this is a generalisation and simplification of structure-ac-
tivity relationships.

4. Three assessments were made: using the PLoRRS
method, using only the SVILP model and using a consen-
sus of the two. The PLoRRS method screens all the mol-
ecules in the database and then ranks them by PLORRS
score, it then moves down the ranked list considering
each one as an initial reactant and uses the list of unful-
filled PLoRRS rules to filter the list of partner reactants.
The SVILP method screens all the molecules in the data-
base and then ranks them by activity predicted by the
SVILP model, it then moves down the ranked consider-
ing each one as an initial reactant and must consider
every molecule in the database as a potential partner re-
actant. All products produced by these two methods
were assigned a predicted activity by the SVILP model
and ranked accordingly. The consensus method merges
the list of products produced by the PLoRRS and SVILP
methods to give a consensus result.

5. The virtual product molecules (ranked by activity) were
compared for structural similarity against all molecules
in the training and test sets, to test if INDDEx could use
virtual reactions to generate molecules similar to the
held-back actives.

S
p
e
c
ia

l
Issu

e
U

n
ite

d
K

in
g
d
o
m

Table 1. The number of average reactions, average reactant part-
ners and average virtual products per molecule entered into the
virtual reaction process, enumerated from 100 test molecules ran-
domly selected from ZINC.

Number of
molecules

Random test molecules used as initial reactants 100
Average reactions per molecule 2.28
Average reactant partners per molecule 27 228
Average total virtual products per molecule 53 450
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3.2.3 Exploration and Filtering of Synthetic Space

Step 4 of the previous section generates a large number of
virtual products per target. Figure 5 shows the distribution
of the number of virtual products generated for each of
the forty DUD targets. Because there is no filtering of part-
ner reactants, the SVILP method generates far more virtual
products, even though fewer initial reactants are consid-
ered.

In Assessment 2, the median reduction of partner reac-
tant search space achieved by the PLoRRS filtration across
the forty DUD targets was 97.4 %. Figure E1 in Appendix E
of the Supporting Information shows the percentage
amounts for the individual targets.

3.2.4 Results of PLoRRS vs. SVILP vs. a Consensus of the Two

Figures C1 to C5 in Appendix C of the Supporting Informa-
tion show retrieval graphs of molecules similar to held-back
actives for each of the forty targets, and Table D1 in Appen-
dix D of the Supporting Information tabulates the data
from the retrieval graphs, giving the highest similarity to
known actives achieved within the first 10, 100 and 1000
ranked molecules. As molecules with�0.5 similarity were
removed from the screening set, any similarity greater than
0.5 indicates the production of a molecule more similar to
the held-back set than anything in the screening set. The
number of targets that achieved similarities above 0.6, 0.7
and 0.8 are summarised in Table 2.

Table 3 applies McNemar’s test[37] to the data. These
values result in a p-value of 0.0156 with a one-tailed test
(using an exact binomial distribution) expecting the
PLoRRS method to add additional power, or of 0.0313 with
a two-tailed test.

Table D2 in Appendix D conducts a more detailed statisti-
cal comparison, giving the one-tailed p-values when com-
paring the performances of the methods using the Mann�
Whitney U statistical test.[38] These results indicate that
using the consensus method is preferential to using either
method individually, as using the consensus results in
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Figure 4. Flowchart showing the process used for the assessment of the power of the PLoRRS method against a na�ve use of the SVILP
method.

Figure 5. Box and whisker plots showing the distributions of the
number of virtual products generated across the forty targets. The
left-hand plot gives the distribution when using the PLoRRS
method and the right-hand plot gives the distribution when using
SVILP without PLoRRS. Box and whisker plots represent a five-
number summary of a numerical set: the three horizontal lines
making up the box mark the lower quartile, median and upper
quartile of the set, and the whiskers extend to the maximum and
minimum of the set.
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either an increased number of retrievals or the same
amount.

3.2.5 Case Studies of the Virtual Product Results

This section details two cases from the screening results of
the COX-2 and EGFr targets where virtual products were
formed that were highly similar to members of the held-
back active sets. The COX-2 target screening formed a virtu-
al product ranked 90th in activity using the Heck reaction.
The two fragment reactants and the virtual product formed
are shown in Figure 6.

Figure 7 shows the most similar molecules to the virtual
product from the held-back actives and the training data.
Calculating the Tanimoto coefficient[36] from the common
atom and bond substructure, it can be seen that the virtual
product is much more similar to the most similar molecule
in the held-back actives (Tanimoto of 0.834) than the most
similar molecule in the training data (Tanimoto of 0.552).
An additional similarity between the virtual product and
the closest held-back active is that the fluorine substituted
for chlorine are both halogens and the presence of fluorine
in the closest training active provides additional evidence
that this substitution would not hinder activity. The overall
shape of all three molecules is similar, but the virtual prod-
uct and the held-back active both have a 1,1-diphenyle-
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Table 2. Summary table of the results of the virtual screening power assessment.

Number of tar-
gets with a sim-
ilarity value
greater than

Maximum similarity ach-
ieved by rank using:

0.6 0.7 0.8

PLoRRS 10 1 0 0
100 4 2 1
1000 7 4 2

SVILP 10 1 0 0
100 3 1 0
1000 3 1 0

A consensus of
PLoRRS and
SVILP

10 2 0 0

100 4 1 0
1000 9 5 1

Table 3. McNemar’s test comparing the successes of Na�ve SVILP
against the consensus method incorporating PLoRRS, defining suc-
cess as greater than 0.6 similarity within the top 1000.

SVILP with PLoRRS suc-
cess

SVILP with PLoRRS
fail

Na�ve SVILP suc-
cess

3 0

Na�ve SVILP fail 6 31

Figure 6. The initial reactant (top-left) and partner reactant (top-
right) identified by the screening and the virtual product formed
from them after undergoing the Heck reaction (bottom).

Figure 7. The closest match in the held-back actives,
ZINC03959950 (left), and the closest match in the training data,
ZINC03814680 (right), with the common substructure to the virtual
product from Figure 6 highlighted in red on grey.
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thene structure, while the training set active has a rigid
ortho-terphenyl structure. This exhibits the way that ILP
rules recognise the relational positioning of shape and fea-
ture characteristics in a way that simpler similarity meas-
ures do not.

The EGFr target screening formed a virtual product
ranked 308th in activity using the Ullmann condensation re-
action. The two fragment reactants and the virtual product
formed are shown in Figure 8.

Figure 9 shows the most similar molecules to the virtual
product from the held-back actives and the training data.
As previously, the virtual product is much more similar to
the most similar held-back active (Tanimoto of 0.791) than
the most similar molecule in the training data (Tanimoto of
0.266). The structure of the held-back is a subgraph of the
virtual product, with the virtual product having additional
amine and trifluoromethyl groups. The trifluoromethyl
occurs in the training active but not attached to the quina-
zoline, again exhibiting the ILP recognition of individual
features.

3.2.6 Case Studies of Blockbuster Drug Retrieval

Several of the molecules in DUD fit the definition of
a “blockbuster” drug: a drug that generates over a billion
dollars of revenue in a year. By examining the results, cases
can be found in which blockbuster drugs were retrieved by
INDDEx.

The PPAR g target dataset contains Rosiglitazone
(ZINC00968328); a thiazolidinedione that binds to PPAR re-
ceptors, and sensitises them to insulin.[39] It was sold under
the trade name Avandia by GlaxoSmithKline though sales
fell after a meta-study linked it to an increased risk of heart
attack.[40] The virtual reactions with the Ullmann condensa-
tion reaction generated the molecular structure of Rosigli-
tazone as shown in Figure 10.

3.2.7 Filtering by Drug Likelihood

A preliminary study was conducted into filtering by drug-
likelihood. The most well-known measure of drug-likeli-
hood is the “rule of five”.[35] On average, the virtual product
molecules 62 % have no violations of Lipinski’s rule of five
and 35 % have a single violation, which is allowed by the
rule so it has little discrimination power here. More recently,
a desirability score[34] has been developed to quantify the
drug-likeness of a molecule based on Molecular Weight,
LogP, H-bond Acceptors, and H-bond Donors. Desirability
can be calculated for each virtual product and used to filter
out molecules. Figure 11 shows the decrease in virtual
products as a higher desirability cut-off is used. Bickerton[34]

found that the mean desirability of approved drugs was
0.492. Setting the cut-off at 0.5 desirability removes 76 % of
the virtual products, and a cut-off of 0.7 removes 95 %.

Figure 12 shows that looking at the top two hundred re-
sults of the consensus EGFr screening, 69 % are above 0.5
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Figure 8. The initial reactant (top-left) and partner reactant (top-
right) identified by the screening and the virtual product formed
from them after undergoing the Ullmann condensation reaction
(bottom).

Figure 9. The closest match in the held-back actives,
ZINC03815386 (left), and the closest match in the training data,
ZINC03815044 (right), with the common substructure to the virtual
product from Figure 8 highlighted in red on grey.

Figure 10. The initial reactant (top-left), partner reactant (top-
right), and the resultant virtual product (bottom) formed with the
Ullmann condensation reaction, and which is the chemical struc-
ture of Rosiglitazone.
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desirability and 21 % are above 0.7 desirability. Raising the
desirability cut-off to 0.5 decreases the rank of the first sim-
ilar hit (with 0.79 similarity) from 532nd to 166th, and raising
it to 0.7 decreases it to 12th.

Further work needs to be done to determine the best
trade-off between desirability cut-off and retaining the mol-
ecules most likely to be active.

3.3 Speed and Timing Testing

All benchmarking was performed on a single core of an
Intel i7-3820 CPU@3.60GHz, with all data reading/writing
on a Samsung PM83 Solid state drive. The benchmark data-
set was a pooled dataset of all actives and decoys in the
DUD database.

The average time for virtual screening prediction was
3.6 ms per molecule, with descriptors being pre-calculated
for all molecules. When using the virtual reactions, the time
to produce the 3D structure of a single product molecule
and calculate a predicted score was 107 ms. Exploring the
products of a single molecule without PLoRRS filtering took
5719 seconds (95 minutes), and applying the PLoRRS filter
reduces this to 148 seconds. To perform an energetic mini-
misation on the structure took an additional average
460 ms, so is generally not performed during a screening.

4 Discussion and Conclusion

This paper reports a software method of exploring lead
space by performing virtual reactions of molecules predict-
ed to lead to high activity. Existing methods of activity pre-
diction (INDDEx) and reaction prediction (ChemAxon Reac-
tor) were combined to produce a program that explores
virtual synthetic space, and the PLoRRS algorithm has been
developed to guide more effectively the choice of reactants
and virtual reactions.

In Assessment 1, evaluations of a randomly selected
sample of molecules were used to estimate the synthetical-
ly accessible search space opened up by the use of virtual
reactions with INDDEx. The estimate was 1.21 � 1012 mole-
cules, a space five orders of magnitude larger than the
ZINC database, and the speed and timing estimates indi-
cate that this space is so large as to be relatively intractable
to a brute-force search, making clear the need for
a method that can select reactants, implemented here as
the PLoRRS algorithm. This potential search space was
compared with previous estimates of chemical space in the
literature. The estimate most often quoted for the space of
all small molecules is 1060 after the calculation performed
by Bohacek et al.[1] One subset of this space is the number
of small molecules that it would be feasible to synthesise
through organic chemistry, estimates for which vary be-
tween 1020[41] and 1029.[42] A second subset of this space is
the number of drug-like molecules; estimates for which
vary between 108[43] and 1030.[2] These estimates compare
with the sizes of existing databases of drugs as of August
2014: ChEMBL[44] contains 1.4 million compounds and
ZINC[5] contains 16 million. There are currently 1584 FDA
approved small-molecule drugs.[45]

The fragment-like database limits the products to a maxi-
mum size of 500 Daltons. While this is below the “rule of
five” weight criterion,[35] it also limits the explorable space,
potentially missing out larger molecules with high poten-
tial. A larger area of synthetic space could be searched by
relaxing some of the criteria for the database used for the
initial and partner reactants.

In Assessment 2, the virtual screening power of the virtu-
al reactions system and the PLoRRS algorithm. As well as
demonstrating the viability of incorporating the virtual re-
actions into a large-scale virtual screening, the results show
a statistically significant advantage in using the PLoRRS al-
gorithm in consensus with the INDDEx SVILP model over
purely using the SVILP model with no means of directing
reactant selection. The results were only significant when
comparing the top 1000 ranked molecules. In actual prac-
tice, synthesising a thousand products would be prohibi-
tive, so the section on filtering by drug likelihood describes
a preliminary study to filter out highly-ranked inactives.

The virtual reactions were used to generate in the order
of hundreds of thousands of products, but within this limi-
tation, the na�ve process was only able to explore the top
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Figure 11. Line graph showing the number of virtual products as
a higher desirability cut-off is used for filtration. Figures averaged
over three representative targets (EGFr, COX-2 and P38).

Figure 12. Desirability plotted against similarity for EGFr for the
two hundred most active virtual product molecules in the consen-
sus screening.

� 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 0000, 00, 1 – 12 &9&

These are not the final page numbers! ��

Full Paper www.molinf.com

www.molinf.com


20 ranked initial reactants, but the PLoRRS filtering allowed
the exploration of the top 150.

Assessment 2 makes two main assumptions. Firstly, that
structural similarity to active molecules is correlated with
activity. This is a simplification of structure-activity relation-
ships, and, although it includes false positives (compounds
with similar structure that would be inactive), ignores the
space of true negatives (compounds with unrelated struc-
ture that would be active). Secondly, that the held-back
molecules are accessible by the virtual reactions and reac-
tants in the fragment database. Where the results do not
show any virtual products with high similarity to actives, it
could be due to a case where success is impossible with
the reactants and reactions used.

The opening up of synthetic space provides additional
value because the virtual molecules formed are likely to
have novel structures, and the use of the ChemAxon rules
means that each virtual product formed has been predicted
to be synthetically accessible from two purchasable reac-
tants and a standard organic reaction. Figure 13 compares
the similarities of the three case study product molecules
to the molecules used as training data, demonstrating how
the virtual products formed are novel molecules distinct
from the training data.

Assessment 2 provides a large underestimation of the
method’s capabilities, because the only molecules consid-
ered active are the ones that were in the DUD active data-
sets and were held back. It cannot consider the possibility
that the search may be identifying active molecules that
are structurally distinct to the ones in the DUD datasets.

Further work would address the need for a system to
filter molecules based on drug-likelihood profiles to arrive
at a more manageable number of virtual products. The
PLoRRS method used here operates on a simple count of

the number of “top 100 ranked” rules half-fulfilled. A more
nuanced version of PLoRRS would give additional weight-
ing to the half-fulfilment of the higher-ranked rules. Further
refinement might open the possibility of using two consec-
utive virtual reactions to open up an exponentially greater
area of virtual space.

The virtual reaction module used in the work in this
study only considers 39 of the most widely used organic re-
actions, but further reaction schemata can be added
(ChemAxon Reactor has a database of 145 reactions).
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