
Meta-Interpretive Learning: achievements and
challenges

Stephen H. Muggleton

Imperial College London, UK

Abstract. This invited talk provides an overview of ongoing work in a new sub-
area of Inductive Logic Programming known as Meta-Interpretive Learning.

1 Introduction

Meta-Interpretive Learning (MIL) [12] is a recent Inductive Logic Programming [7, 13,
14] technique aimed at supporting learning of recursive definitions. A powerful and
novel aspect of MIL is that when learning a predicate definition it automatically in-
troduces sub-definitions, allowing decomposition into a hierarchy of reuseable parts.
MIL is based on an adapted version of a Prolog meta-interpreter. Normally such a meta-
interpreter derives a proof by repeatedly fetching first-order Prolog clauses whose heads
unify with a given goal. By contrast, a meta-interpretive learner additionally fetches
higher-order meta-rules whose heads unify with the goal, and saves the resulting meta-
substitutions to form a program. This talk will overview theoretical and implementa-
tional advances in this new area including the ability to learn Turing computabale func-
tions within a constrained subset of logic programs, the useof probabilistic representa-
tions within Bayesian meta-interpretive and techniques for minimising the number of
meta-rules employed. The talk will also summarise applications of MIL including the
learning of regular and context-free grammars, [11], learning from visual representions
[3] with repeated patterns, learning string transformations for spreadsheet applications,
[6], learning and optimising recursive robot strategies [1] and learning tactics for prov-
ing correctness of programs [5]. The paper concludes by pointing to challenges which
remain to be addressed within this new area.

2 Simple worked example

Suppose we machine learn a set of kinship relations such as those in Figure 1. If ex-
amples of the ancestor relation are provided and the background contains only father
and mother facts, then a system must not only be able to learn ancestor as a recursive
definition but also simultaneouslyinvent parent to learn these definitions.

Although the topic of Predicate Invention was investigatedin early Inductive Logic
Programming (ILP) research [8, 18] it is still seen as hard and under-explored [14].
ILP systems such as ALEPH [17] and FOIL [15] have no predicateinvention and lim-
ited recursion learning and therefore cannot learn recursive grammars from example
sequences. By contrast, in [11] definite clause grammars were learned with predicate



Family Tree

Jake

Jo

Sam

Megan

Alice

Jill

Jane

Bob

Liz

John
Mary

Susan

Bill

Matilda

Ted

Harry

Andy

Target Theory
father(ted, bob) ←
father(ted, jane) ←
parent(X, Y ) ← mother(X, Y )
parent(X, Y ) ← father(X, Y )
ancestor(X, Y ) ← parent(X, Y )
ancestor(X, Y ) ← parent(X, Z), ancestor(Z, Y )

First-order Metalogical substitutions
Examples

ancestor(jake, bob) ←
ancestor(alice, jane) ←

N/A

Background Knowledge
father(jake, alice) ←
mother(alice, ted) ←

N/A

Instantiated Hypothesis
father(ted, bob) ←
father(ted, jane) ←
p1(X, Y ) ← father(X, Y )
p1(X, Y ) ← mother(X, Y )
ancestor(X, Y ) ← p1(X, Y )
ancestor(X, Y ) ← p1(X, Z),

ancestor(Z, Y )

metasub(instance, [father, ted, bob])
metasub(instance, [father, ted, jane])
metasub(base, [p1, father])
metasub(base, [p1, mother])
metasub(base, [ancestor, p1])
metasub(tailrec, [ancestor, p1, ancestor])

Fig. 1: Kinship example.p1 invented, representingparent.

invention using Meta-Interpretive Learning (MIL). MIL [9,10, 6] is a technique which
supports efficient predicate invention and learning of recursive logic programs built as
a set of metalogical substitutions by a modified Prolog meta-interpreter (see Figure 2)
which acts as the central part of the ILP learning engine. Themeta-interpreter is pro-
vided by the user withmeta-rules (see Figure 3) which are higher-order expressions
describing the forms of clauses permitted in hypothesised programs. As shown in Fig-
ure 3 each meta-rule has an associated Order constraint, which is designed to ensure
termination of the proof. The meta-interpreter attempts toprove the examples and, for
any successful proof, saves the substitutions for existentially quantified variables found
in the associated meta-rules. When these substitutions are applied to the meta-rules
they result in a first-order definite program which is an inductive generalisation of the
examples. For instance, the two examples shown in the upper part of Figure 1 could
be proved by the meta-interpreter in Figure 2 from the Background KnowledgeBK by
generating the HypothesisH using the Prolog goal

← prove([ancestor, jake, bob], [ancestor, alice, jane], BK,H).



Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(Name, MetaSub, (Atom :- Body), Order),
Order,

save subst(metasub(Name, MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Fig. 2: Prolog code for the generalised meta-interpreter. The interpreter recursively proves a series
of atomic goals by matching them against the heads of meta-rules. After testing the Order con-
straintsave subst checks whether the meta-substitution is already in the program and otherwise
adds it to form an augmented program. On completion the returned program, by construction,
derives all the examples.

Name Meta-Rule Order
InstanceP (X, Y ) ← True

Base P (x, y) ← Q(x, y) P ≻ Q

Chain P (x, y) ← Q(x, z), R(z, y) P ≻ Q, P ≻ R

TailRec P (x, y) ← Q(x, z), P (z, y) P ≻ Q,

x ≻ z ≻ y

Fig. 3: Examples of dyadic meta-rules with associated Herbrand ordering constraints.≻ is a pre-
defined ordering over symbols in the signature.

H is constructed by applying the metalogical substitutions in Figure 1 to the correspond-
ing meta-rules found in Figure 3. Note thatp1 is an invented predicate corresponding
to parent.

Completeness of SLD resolution ensures thatall hypotheses consistent with the ex-
amples can be constructed. Moreover, unlike many ILP systems, only hypotheses con-
sistent with all examples are considered. Owing to the efficiency of Prolog backtracking
MIL implementations have been demonstrated to search the hypothesis space 100-1000
times faster than state-of-the-art ILP systems [11] in the task of learning recursive gram-
mars1.

3 Vision applications

Figure 4 illustrates two applications in which MIL has been used to analyse images.
The staircase learning in Figure 4a was based on data from Claude Sammut’s group [4].
However, the original author’s approach, using ALEPH was not entirely general since
it does not involve recursion. Using MIL it was possible to learn a general recursive
definition of a staircase using predicate invention. A staircase is represented as a set
of ordered planes, where the background predicatesvertical and horizontal describe

1 Metagol
R

and Metagol
CF

learn Regular and Context-Free grammars respectively.



a) Staircase b) Regular polyhedra

Fig. 4: MIL vision applications: a) learning a recursion definition of a staircase from a single
image [11] and b) learning definition relating regular polygons [3].

stair(X,Y) :- a(X,Y).
stair(X,Y) :- a(X,Z),stair(Z,Y) .
a(X,Y) :- vertical(X,Z), horizontal(Z,Y).

Fig. 5: Definition of stiarcase learned in 0.08s on a laptop from single image. Note Predicate
invention and recursion.

adjacent planes. The resulting hypothesis is shown in Figure 5, wherea is an invented
predicate corresponding tostep. Due to its recursive form, this definition has shorter
description length than those found by ALEPH. It is also general in its applicability and
easily understood.

4 Challenges

A number of open challenges exist for Meta-Interpretive Learning. These include the
following.

Generalise beyond Dyadic logic.The dyadic fragment of Prolog has provided an ef-
ficient approach to selecting a compact and efficient universal set of metarules [2]
for MIL. However, many Prolog programs are more natural to represent when rep-
resented with more than two arguments.

Deal with classification noise.Most data sources for machine learning contain both
classification and attribute noise. We are presently developing variants of the Metagol
system which act robustly in the faace of such noise.

Active learning. Most forms of machine learning arepassive in the sense that they take
a given training data set and generate a model. Active learning involves propos-
ing and testing instances which are classified either by a user of by carrying out
experiments in the real world. We are developing probabilistic variants of Meta-
Interpretive Learning [10] which could be adapted for efficient Active Learning.

Efficient problem decomposition. Finding efficient ways of decemposing the defini-
tions in MIL is one of the hardest open problems in the field.

Meaningful hypotheses.In ongoing work [16] we are investigating the issues which
are most important for improving the understandability of learned programs.



References

1. Cropper, A., Muggleton, S.: Learning efficient logical robot strategies involv-
ing composable objects. In: Proceedings of the 24th International JointCon-
ference Artificial Intelligence (IJCAI 2015). pp. 3423–3429. IJCAI(2015),
http://www.doc.ic.ac.uk/s̃hm/Papers/metagolo.pdf

2. Cropper, A., Muggleton, S.: Logical minimisation of meta-rules within meta-interpretive
learning. In: Proceedings of the 24th International Conference on Inductive Logic Program-
ming. pp. 65–78. Springer-Verlag (2015), http://www.doc.ic.ac.uk/s̃hm/Papers/minmeta.pdf,
lNAI 9046

3. Dai, W.Z., Muggleton, S., Zhou, Z.H.: Logical Vision: Meta-interpretive learning for simple
geometrical concepts. In: Late Breaking Paper Proceedings of the 25th International Confer-
ence on Inductive Logic Programming. pp. 1–16. CEUR (2015), http://ceur-ws.org/Vol-1636

4. Farid, R., Sammut, C.: Plane-based object categorization using relational learning. ILP2012
MLJ special issue (2012)

5. Farquhar, C., Cropper, G.G.A., Muggleton, S., Bundy, A.: Typed meta-interpretive learn-
ing for proof strategies. In: Short Paper Proceedings of the 25th International Confer-
ence on Inductive Logic Programming. National Institute of Informatics, Tokyo (2015),
http://www.doc.ic.ac.uk/s̃hm/Papers/typemilproof.pdf

6. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., Muggleton, S.: Biasreformulation
for one-shot function induction. In: Proceedings of the 23rd European Conference
on Artificial Intelligence (ECAI 2014). pp. 525–530. IOS Press, Amsterdam (2014),
http://www.doc.ic.ac.uk/s̃hm/Papers/metabias.pdf

7. Muggleton, S.: Inductive Logic Programming. New Generation Computing 8(4), 295–318
(1991), http://www.doc.ic.ac.uk/s̃hm/Papers/ilp.pdf

8. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolu-
tion. In: Proceedings of the 5th International Conference on Machine Learning. pp. 339–352.
Kaufmann (1988), http://www.doc.ic.ac.uk/s̃hm/Papers/cigol.pdf

9. Muggleton, S., Lin, D.: Meta-interpretive learning of higher-orderdyadic dat-
alog: Predicate invention revisited. In: Proceedings of the 23rd International
Joint Conference Artificial Intelligence (IJCAI 2013). pp. 1551–1557 (2013),
http://www.doc.ic.ac.uk/s̃hm/Papers/metagold.pdf

10. Muggleton, S., Lin, D., Chen, J., Tamaddoni-Nezhad, A.: Metabayes: Bayesian meta-
interpretative learning using higher-order stochastic refinement. In: Zaverucha, G.,
Costa, V.S., Paes, A.M. (eds.) Proceedings of the 23rd International Conference on
Inductive Logic Programming (ILP 2013). pp. 1–17. Springer-Verlag, Berlin (2014),
http://www.doc.ic.ac.uk/s̃hm/Papers/metabayeslong07.pdf, lNAI 8812

11. Muggleton, S., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learn-
ing: application to grammatical inference. Machine Learning 94, 25–49 (2014),
http://www.doc.ic.ac.uk/s̃hm/Papers/metagolgram.pdf

12. Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order
dyadic datalog: Predicate invention revisited. Machine Learning 100(1),49–73 (2015),
http://www.doc.ic.ac.uk/s̃hm/Papers/metagolDMLJ.pdf

13. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. Journal of
Logic Programming 19,20, 629–679 (1994), http://www.doc.ic.ac.uk/s̃hm/Papers/lpj.pdf

14. Muggleton, S., Raedt, L.D., Poole, D., Bratko, I., Flach, P., Inoue, K.: ILP
turns 20: biography and future challenges. Machine Learning 86(1),3–23 (2011),
http://www.doc.ic.ac.uk/s̃hm/Papers/ILPturns20.pdf

15. Quinlan, J.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)



16. Schmid, U., Zeller, C., Besold, T., Tamaddoni-Nezhad, A., Muggleton, S.: How does predi-
cate invention affect human comprehensibility? In: Russo, A., Cussens, J. (eds.) Proceedings
of the 26th International Conference on Inductive Logic Programming(ILP 2016). Springer-
Verlag, Berlin (2016), http://www.doc.ic.ac.uk/s̃hm/Papers/compinv.pdf, in Press

17. Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory, Ox-
ford University (2001)

18. Stahl, I.: Constructive induction in inductive logic programming: an overview. Tech. rep.,
Fakultat Informatik, Universitat Stuttgart (1992)


