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Abstract

This paper traces the development of the main ideas that have led to the
present state of knowledge in Inductive Logic Programming. The story
begins with research in psychology on the subject of human concept
learning. Results from this research influenced early efforts in Artificial
Intelligence which combined with the formal methods of inductive
inference to evolve into the present discipline of Inductive Logic
Programming.

INTRODUCTION

Inductive Logic Programming is often considered to be a young discipline.
However, it has its roots in research dating back nearly 40 years. This paper
traces the development of ideas beginning in psychology and the effect
they had on concept learning research in Artificial Intelligence.
Independent of any requirement for a psychological basis, formal methods
of inductive inference were developed. These separate streams eventually
gave rise to Inductive Logic Programming.

This account is not entirely unbiased. More attention is given to the work
of those researchers who most influenced my own interest in machine
learning. Being a retrospective paper, I do not attempt to describe recent
developments in ILP. This account only includes research prior to 1991 the
year in which the term Inductive Logic Programming was first used
(Muggleton, 1991). This is the reason for the subtitle ‘A Prehistoric Tale’.
The major headings in the paper are taken from the names of periods in
the evolution of life on Earth.
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ARCHÆOZOIC (PRE-LIFE)

In 1956, Bruner, Goodnow and Austin published their book A Study of
Thinking. This was a landmark in psychology and would later have a
major impact on machine learning. The book marked a reaction to
behaviourism which dominated psychology for many years. Bruner and
his colleagues emphasised cognitive processes and were particularly
interested in the information processing model of the brain. The focus for
their experiments was the human ability to categorise observations. In
their preface they state:

We begin with what seems a paradox. The world of experience of any
normal man is composed of a tremendous array of discriminably
different objects, events, people, impressions...But were we to utilize
fully our capacity for registering the differences in things and to respond
to each event encountered as unique, we would soon be overwhelmed by
the complexity of our environment... The resolution of this seeming
paradox ... is achieved by man’s capacity to categorize. To categorise is
to render discriminably different things equivalent, to group objects and
events and people around us into classes... The process of categorizing
involves ... an act of invention... If we have learned the class “house” as
a concept, new exemplars can be readily recognised. The category
becomes a tool for further use. The learning and utilization of categories
represents one of the most elementary and general forms of cognition by
which man adjusts to his environment.

The experiments reported by Bruner, Goodnow and Austin were directed
towards understanding a human’s ability to categorise and how categories
are learned. The results of the experiments were reported as decision-
making strategies which, today, we would call algorithms.

The first question that they had to deal with was that of representation:
what is a concept? They assumed that objects and events could be
described by a set of attributes and were concerned with how inferences
could be drawn from attributes to class membership. Categories were
considered to be of three types: conjunctive, disjunctive and relational.

...when one learns to categorise a subset of events in a certain way, one is
doing more than simply learning to recognise instances encountered. One
is also learning a rule that may be applied to new instances. The concept
or category is basically, this “rule of grouping” and it is such rules that
one constructs in forming and attaining concepts.

Bruner, Goodnow and Austin were also interested in the cost of concept
learning. In particular, they noted an increase in strain on subjects as the
number of attributes increased. They also noted methods used to deal with
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this strain. One was by the reduction of the number of attributes
considered, requiring a ranking on the significance of an attribute. The
other way of reducing the strain of many attributes was to combine or
recode attributes into attribute configurations. Today, we would call this
constructive induction.

One of the strategies which Bruner, Goodnow and Austin identified for
learning conjunctive concepts was the conservative focussing strategy. “In
brief, this may be described as finding a positive instance to use as a focus,
then making a sequence of choices each of which alters but one attribute
value of the focus ... and testing to see whether the change yields a positive
or negative instance. Those attribute values of the focus ... which, when
changed, still yield positive instances are not part of the concept. Those
attribute values of the focus ... which, when changed, yield negative
instances are part of the concept.”

Whereas learning a conjunctive concept focussed on a positive instance,
Bruner, Goodnow and Austin found that all appropriate strategies for
learning disjunctive concepts depended upon the use of one or more
negative instances. “In the most efficient strategy, one finds a negative
instance and chooses instances that differ from it in a single value. If the
change results in another negative instance, (given two-valued attributes),
the attribute in question is irrelevant. If the change yields a positive
instance, the new value is one of those that define the concept. After one
value has been located, one starts  again from a negative instance,
changing the values of other attributes until, in this way, one has located
all the disjunctive defining attributes”. This procedure is called negative
focussing.

PROTEROZOIC (FIRST LIFE)

This period spans the 1960’s and early 70’s. It represents the emergence of
the key computational ideas that would lead to the development of ILP.

Banerji

In the early 1960’s there was no discipline called ‘machine learning’.
Instead, learning was considered to be part of ‘pattern recognition’, which
had not yet split from AI. One of the main problems addressed at that time
was how to represent patterns so that they could be recognised easily.
Symbolic description languages were developed to be expressive and
learnable.

Banerji (1960, 1962) first devised a language which he called a ‘description
list’, which utilised an object’s attributes to perform pattern recognition.
Pennypacker, a masters student of Banerji at the Case Institute of
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Technology, implemented the recognition procedure and also used
Bruner, Goodnow and Austin’s Conservative Focussing Strategy to learn
conjunctive concepts (Pennypacker, 1963). This work had a direct
influence on Cohen (1978), who developed algorithms for learning
concepts expressed in predicate logic. We will describe Cohen’s work later.

Recognising the limitations of simple attribute/value representations,
Banerji (1964) introduced the use of predicate logic as a description
language. Thus, Banerji was one of the earliest advocates of what would,
many years later, become ILP.

We use a simple example from Banerji (1980) to illustrate his concept
description language. There is a language for describing instances of a
concept and another for describing concepts. Suppose we wish to represent
the binary number, 10, by  a left-recursive binary tree of digits ‘0’ and ‘1’:

[head: [head: 1; tail: nil]; tail: 0]

‘head’ and ‘tail’ are the names of attributes. Their values follow the colon.
The concepts of binary digit and binary number are defined as:

x ∈digit ≡ x = 0 ∨ x = 1

x ∈num ≡ (tail(x) ∈digit ∧ head(x) = nil)
∨(tail(x) ∈digit ∧ head(x) ∈num)

Thus, an object belongs to a particular class or concept if it satisfies the
logical expression in the body of the description. Predicates in the
expression may test the membership of an object in a previously learned
concept.

Banerji always emphasised the importance of a description language that
could ‘grow’. That is, its descriptive power should increase as new concepts
are learned. This can clearly be seen in the example above. Having learned
to describe binary digits, the concept of digit becomes available for use in
the description of more complex concepts such as binary number. The goal
of building an incremental system like this strongly influenced Brian
Cohen, my thesis adviser, when he developed CONFUCIUS, and me,
when I developed Marvin.

Plotkin

Plotkin’s (1970) work “originated with a suggestion of R.J. Popplestone that
since unification is useful in automatic deduction by the resolution
method, its dual might prove helpful for induction. The dual of the most
general unifier of two literals is called the least general generalisation”.

At about the same time that Plotkin took up this idea, J.C. Reynolds was
also developing the use of least general generalisations. Reynolds (1970)
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also recognised the connection between deductive theorem proving and
inductive learning:

Robinson’s Unification Algorithm allows the computation of the greatest
common instance of any finite set of unifiable atomic formulas. This
suggests the existence of a dual operation of ‘least common
generalization’. It turns out that such an operation exists and can be
computed by a simple algorithm.

A notion of generality and a way of computing a generalisation is the basic
machinery required to build an effective symbolic learning system. Plotkin
used θ-subsumption as a means of defining generalisation. θ-subsumption
is a partial ordering of generality over clauses. A clause, C, θ-subsumes
another clause, D, if and only if there is a substitution, θ, such that Cθ ⊆ D,
where clauses C and D are treated as sets of literals. A least generalisation
of a set of clauses is a generalisation which is less general than any other
such generalisation.

This basic notion of LGG’s made it possible to perform induction on a set
of clauses provided as data. However, it could not take into account an
existing theory. Plotkin (1971a) imagined a robot that could see, handle
and touch things. It could explore its environment and form
generalisations about the objects it encountered. He assumed that the
robot could start with some theory of the world which would be extended
through experience. Thus, any generalisations that the robot performed
would have to be done relative to its current theory. Plotkin extended the
LGG to the relative least general generalisation (RLGG).

Plotkin (1971b) defines generalisation relative to a background theory (i.e.
a logic program) as follows: C generalises D relative to P if there exists a
substitution θ  such that P |= ∀ Cθ → D( ). Plotkin’s method of constructing
RLGGs could only be guaranteed to produce a clause of finite length if the
background theory, P, was a conjunction of ground literals and even this
computation was intractable.

Despite the computational inefficiencies, Plotkin’s work had profound
influence on researchers many years later. Unfortunately for machine
learning, Plotkin himself, never returned to this subject after he
completed his Ph.D. thesis.

PALÆOZOIC (ANCIENT LIFE)

In the 70’s, machine learning was still emerging as a distinct discipline in
AI. In this section we describe some of the work in this period that is
related to ILP. As we will see there are some dead ends and promising
efforts that were never pursued.
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Michalski

Although Ryszard Michalski is not normally associated with Inductive
Logic Programming, it should be remembered that he and his students
attempted to develop learning systems in which concepts were expressed
in an Augmented Predicate Calculus, as it eventually became known. The
strongest attempt was the INDUCE program, which will be described
presently. This work is presented here as an illustration of good intentions
that could not be fulfilled because of the lack of a unifying principle that
could give the work solid foundations.

Variable Valued Logic was the name originally given by Michalski (1973)
to an augmented form of predicate logic. One of the main reasons for
developing this class of languages was to make concept descriptions more
readable for humans. So Michalski, influenced to some extent by Donald
Michie, was among the first machine learning researchers to pay attention
to the human use of the results of machine learning. Something that,
today, we take very seriously.

To achieve human readability, according to Michalski, the number of
disjunctions should be minimized, the number of predicates in a
conjunction should also be kept small. Recursion must be avoided if
possible.

The basic elements of VL languages are called selectors. Some examples
are:

[colour(box1) = white]
[length(box1) >= 2]
[weight(box1) = 2..5]
[blood-type(P1) = O, A, B]
[on-top(box1, box2)]
[weight(box1) > weight(box2)]
[type(P1).type(P2) = A, B]

Variable Valued Logic was intended to be a general purpose description
language. In order to allow a program using VL to operate in a specific
domain, the user supplied the system with domain knowledge. This was
done by specifying the type and range of the descriptors that would be
used. In addition, the user could describe the properties of predicate
functions such as

∀ x1, x2, x3 ([left(x1, x2)][left(x2, x3)] → [left(x1, x3)])

which states that if x1 is left of x2 and x2 is left of x3 then x1 is left of x3.

While Michalski recognised the importance of background knowledge in
learning, none of his learning systems could add learned knowledge into
its store of background knowledge.
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The learning algorithm used in the program, INDUCE-1.1 is described by
Dietterich (1978) and Michalski (1980). Briefly, the program begins by
augmenting the data rules input by the user, by using the inference rules
in the domain knowledge to produce new rules. For example, if an
example includes a triangle, the fact that it is also a polygon is also added.
When all the inferred rules have been added, the program begins a beam
search for most specific generalisations. Throughout the search there are a
number of mechanisms to limit the branches which are pursued.

The search proceeds as follows: The algorithm builds a sequence of sets
called partial stars, denoted by Pi. An element of a partial star is a product
(i.e. conjunction of selectors). The initial partial star (Pi) consists of the set
of all selectors, ei, from the description of the training example. These are
considered single element products. A new partial star Pi+1 is formed from
an existing partial star Pi such that for each product in Pi, a set of products
is placed into Pi+1 where each new product contains the selectors of the
original product plus one new selector of the ei which is not in the original
product. Before a new partial star is formed, Pi is reduced according to a
user defined optimality criterion to the ‘best’ subset before a new partial
star is formed.

While Michalski’s Aq family of learning algorithms had a strong
influence on machine learning, INDUCE was less successful. The star
method was developed for propositional learning systems and extended,
in INDUCE, to first-order logic. Unfortunately, the method does not scale
well, because of it computational complexity.

In creating the description language and his model of generalisation,
Michalski invented many special cases. The result was a complex system
in which it is difficult to find a unifying principal which the implementor
can take advantage of. As we shall see later, inverse resolution operators
provide all the power of Michalski’s generalisation system, but with much
greater simplicity.

Vere

Steven Vere made great strides in developing a logical basis for machine
learning, yet few people today recognise his efforts. Vere’s work was
concerned with developing formal induction algorithms for expressions
in predicate calculus (Vere, 1975). He saw his work as creating a dual for
deductive theorem proving, in the spirit of the earlier work of Reynolds
and Plotkin and many of his ideas are derived from Plotkin (1970).

In Vere’s concept description language a literal is a list of terms like
(ON .X1 .X2) . An identifier preceded by a period is a variable. Other terms,
such as, ON are constants. A product is a conjunction of literals.



8

To illustrate Vere’s original generalisation algorithm for conjunctive
concepts, we will use one of his own examples (Vere, 1975). We wish to
find a maximal common sub-expression of,

R1 = (B X2) (W X3) (C X2 R) (S X3 X2)
R2 = (W X6) (B X5) (S X6 X5) (D X6 E)

Literals from R1 and R2 which are the same length and contain at least
one term in common in the same position are paired.

P1 = (B X2) (B X5)
P2 = (W X3) (W X6)
P3 = (S X3 X2) (S X6 X5)

Terms in the pairs which do not match are replaced by variables producing
the generalisation,

(W .Y) (B .Z) (S .Y .Z)

In this example, only one set of pairs could be produced but some
matching problems may result in several possible ways of pairing literals.
In this case the pairs which give the longest (most specific) generalisation
are chosen.

If the concept being learned is conjunctive, then it is sufficient to find the
intersection of all the products to produce the generalisation. However, if
the concept is disjunctive then it is not possible to simply match
descriptions of instances. If two instances belong to  different disjuncts,
then the matching descriptions will produce an empty or incorrect
generalisation. Therefore Vere (personal communication) adopts the
following modification:

Suppose the instances shown to the program are I1, I2, I3, I4, I5, I6. The
procedure begins by trying to generalise I1 and I2 to find a maximal
common generalisation (mcg). Suppose also that I1 and I2 are
successfully generalised into mcg G1. We then try to generalise G1 and I3.
Suppose this attempt fails because I3 belongs to a different disjunct to I1
and I2. We jump over I3 and try to generalise G1 and I4. This succeeds
giving mcg G2. Now we try to generalise G2 and I5. This fails. Then we
try to generalise G2 and I6. This succeeds giving mcg G3. The procedure
then begins another pass through the remaining instances, that is, through
the list I3, I5. Suppose I3 and I5 can be successfully generalised into G4,
then we obtain the disjunctive generalisation G3 ∨ G4.

Vere (1977) developed methods for learning in the presence of background
knowledge. For example, to teach the poker concept of a ‘full house’, it is
sufficient to show the program two hands both of which have three cards
with the same number and the remaining two with a different number.
No information is required beyond that present in the description of the
examples. However, to learn the concept ‘straight’, the program must
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know something about the ordering of cards in a suit to recognise that the
hands shown as examples contain a numerical sequence. This background
information may be represented as:

(next 2 3) (next 3 4) ... (next K A)

When a hand is shown as an instance of ‘straight’, the program must be
able associate the description with the background information.  To
describe how relevant background literals are selected, requires the
concepts of an association and association chains.

Two literals L1 and L2 have an association if and only if the ith term of L1 is
identical to the jth term of L2. An association chain is a sequence of
associations. For example:

(next 2 3) (next 3 4) (next 4 5)

Vere’s algorithm looked for association chains in which the first and last
literals are foreground literals (i.e. appear in the example description) and
the rest are background literals. In practice, limits were placed in the
lengths of association chains. In a very informal sense, this method
foreshadows ij-determinacy used in modern ILP systems to reduce search.

Sometimes it is necessary to specify exceptions to a rule. For example, an
almost universal criterion for establishing that an animal is a bird is that it
flies. However, there are some exceptions. Bats are mammals, but they fly.
To express this it is necessary to introduce logical negation. For example,
(flies .X) ~(bat .X)  could describe the concept ‘bird’. Vere’s THOTH
program was capable of learning expressions of the form,

 P ~ (N1 ~ (N2 ~ ...))

P is a product which represents the concept. N1 is a product which
describes an exception to P, N2 is an exception to the exception, etc. The
negative products are called counterfactuals.

Taking another of Vere’s examples (Vere, 1980), the task of the learning
system is to find a description which discriminates between the set of
objects on the right and the set on the left in Figure 1. It is not possible to
produce such a description without making exceptions. The objects on the
left are described as having an object X on top of an object Y. Y is a green
cube. X must not be blue except if it is a pyramid.
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(ON T1 T2)
(SPHERE T1)
(GREEN T1)
(CUBE T2)
(GREEN T2)

G

G

ρ1

(ON T10 T11)
(SPHERE T10)
(BLUE T0)
(CUBE T11)
(GREEN T11)

ν1

(ON T3 T4)
(PYRAMID T3)
(BLUE T3)
(CUBE T4)
(GREEN T4)

ρ2

(ON T12 T13)
(SPHERE T12)
(GREEN T12)
(CUBE T13)
(BLUE T13)

ν2

(ON T5 T6)
(CUBE T5)
(YELLOW T5)
(CUBE T6)
(GREEN T6)

ρ3

(ON T14 T15)
(ON T15 T16)
(CUBE T14)
(YELLOW T14)
(CUBE T15)
(BLUE T15)
(CUBE T16)
(GREEN T16)

ν3

(ON T7 T8)
(ON T8 T9)
(CUBE T7)
(GREEN T7)
(CUBE T8)
(RED T8)
(CUBE T9)
(GREEN T9)

ρ4

(ON T17 T18)
(CUBE T17)
(BLUE T17)
(CUBE T18)
(GREEN T18)

ν4

POSITIVE INSTANCES NEGATIVE INSTANCES

G

B

B

G

G

B

Y

G

Y

B

G

G

G

R
B

G

Figure 1. Vere’s counterfactuals example.

A generalisation of the examples, ρ1, ρ2, ρ3 and ρ4 is
(ON .X .Y)(GREEN .Y)(CUBE .Y)

Without qualification, this is unacceptable since it also admits the
negative examples, ν1, ν3 and ν4. We use these exceptions as the positive
examples of a residual generalisation which yields (BLUE .X) . Thus the
new description for the examples on the left is:

(ON .X .Y)(GREEN .Y)(CUBE .Y)~(BLUE .X)

This now excludes ρ2. So a new residual generalisation is formed for the
exception to the exception. This yields the final description:

(ON .X .Y)(GREEN .Y)(CUBE .Y) ~((BLUE .X) ~(PYRAMID .X))

Much later, Srinivasan, Muggleton and Bain (1992) would use a related
method in their non-monotonic learning.

Cohen

Brian Cohen’s work proceeds directly from Banerji and Pennypaccker.
Banerji (1969) suggested that it would be possible to create effective
descriptions by learning domain knowledge. This is the approach taken by
Cohen in his program, CONFUCIUS (Cohen, 1978; Cohen & Sammut,
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1982) . The description language, called CODE, becomes more expressive as
more knowledge is acquired.

Simple expression are of the form:

colour(X) = red
x ∈  set1

set1 ⊃  set2

For each operator there is also the negation, enabling the representation of
exceptions. There is also another operator, contained-in which is true
when an object is contained in a concept that is in CONFUCIUS’ memory.
Thus,

(X, Y) contained-in connected iff
neighbour(X) = Y and
neighbour(Y) = X

recognises points X and Y which are connected by a line segment.

(X, Y, Z) contained-in triangle iff
 (X, Y) contained-in connected and
 (Y, Z) contained-in connected and
 (Z, X) contained-in connected

 recognises the triangle described by the vertices X, Y and Z. Notice that
triangle used connected in its description. Knowledge of triangles requires
a knowledge of straight lines, as one would expect. This demonstrates the
way in which CONFUCIUS learns to understand more about its world as it
learns more concepts.

Disjunctive concepts can also be expressed in CODE. The language also
allows recursion which is essential for describing abstract concepts of
among other things, numbers and lists. The main goal influencing the
design of CODE was the ability of one concept to refer to another, i.e. CODE
is a growing language.

The original learning algorithm used in CONFUCIUS was derived from
the work of Pennypacker (1963). The algorithm developed by Cohen (1978)
for CONFUCIUS is:

1. An instance is presented to the program by the trainer.

2. The program generates all the true statements it can to describe the
exemplar. This includes statements describing containment in
previously learned concepts.

3. CONFUCIUS then proceeds to remove statements from the description.
Remember that a subset of a description is a more general description.

4. The new hypothesis obtained by the removal is tested to see if it is more
or less general than the target concept. This may be done in either of
two ways:
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• by showing the description of the hypothesis to the trainer and
asking if it is part of the concept to be learned

• or if negative examples have been supplied, by seeing if the
hypothesis recognises any of the negative instances.

In implementing this search method there is one major obstacle to
overcome. Suppose the statements

colour(X) = red ∧ colour(Y) = red ∧ colour(X) = colour(Y)

are in the hypothesis. If only one of the statements is removed, then the
hypothesis is no more general than it was before, because the removed
statement is implied by the remaining two. Thus CONFUCIUS must be
able to keep track of implications and remove sets of statements in order
to generalise the concept.

CONFUCIUS was the first program to learn descriptions in first-order logic
to be able to be able to reuse learned concepts. Learned concepts were
stored by the program and could be used in further learning. To facilitate
matching examples with stored concepts, Cohen developed a complex
pattern matching system. This would later be replaced by unification in
Marvin (Sammut, 1981), the successor to CONFUCIUS.

MESOZOIC (MIDDLE LIFE)

This period marks the emergence of the first programs that could claim to
be performing inductive logic programming. Shapiro’ MIS and my
program, Marvin, were both capable of learning concepts that could be
executed as logic programs.

Sammut

My own learning system, Marvin, was a direct descendent of
CONFUCIUS. The main steps involved in the algorithm are:

Initialise A single example presented by a trainer is described by
a restricted form of First Order Predicate Logic,
equivalent to Horn clauses. This description forms
the first hypothesis for describing the concept to be
learned.

Generalise Marvin tries to generalise the hypothesis. If it is not
possible to create a generalisation, the learning process
stops.

Test The generalisation is tested by constructing an object
belonging to the hypothesised concept. The object is
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shown to the trainer. If he agrees that the object is
recognised by the concept to be learned then
generalise.

Specialise If the hypothesised concept recognises objects not
belonging to the concept to be learned then a new,
more specific hypothesis is created. Test the more
specific hypothesis.

A new example must be shown for each disjunct in disjunctive concept.

My thinking about Marvin evolved over time. Having developed from
the world of concept learning, my original focus was on object descriptions
using attributes and values. These descriptions was turned into
expressions in conjunctive normal form in first order logic. Eventually, I
realised that I was dealing with the equivalent of Horn clauses. So by the
time details of Marvin were published (Sammut and Banerji, 1986), the
program was seen as a true Inductive Logic Programming System.

 The learning algorithm is a combination of generalisation and object
construction procedures. The aim is to begin with an initial hypothesis for
the concept, called trial T0, and using the generalisation procedure, create a
succession of new trials Ti. Eventually there will be a Tn such that any
attempt to produce a further generalisation, Tn+1 will result in an
inconsistent generalisation. A generalisation is said to be inconsistent if
the resulting trial recognises events that the concept to be learned does
not. Tn is called the target.

A new trial can be created in either of two ways: If the current trial, Ti is
consistent, then Ti+1 is created by applying the generalisation procedure
which replaces some literals by a single, more general one. However, if Ti

is inconsistent then we do not want to generalise the trial. Instead we
must create a Ti+1 which is more specific and does not recognise those
events which the target does not. A more specific trial may be created by
adding new literals or returning removed literals to the description.

Marvin made a number of contributions to the development of ILP.

Instance Construction

Marvin was one of the first learning programs to test its generalisations by
showing the trainer instances of its hypotheses. The idea to do this in
Marvin originated with my thesis adviser, Brian Cohen. His program,
CONFUCIUS tested its generalisations by showing the hypothesised
concept to the training. Thus, the trainer had to know the logical
definition of the concept in order to answer correctly. The burden on the
trainer could be eased by asking him to comment only on examples.
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Instance construction necessitated executing the concept description as a
program that builds objects. It became clear to us that we were now
overlapping with two other areas of research, namely, logic programming
and automatic programming (Cohen and Sammut, 1980). At about the
same time, and unknown to us, Shapiro (1981a, b) was also making the
same connections.

Generalisation

Marvin’s generalisation method was used by Buntine (1986, 1988) in his
theory of generalised subsumption and this formed the foundation for
Muggleton and Buntine’s (1988) absorption operator. Rouveirol’s (1990)
saturation operator is also derived from Marvin.

Assuming that concepts are stored as Horn clauses, the basis of Marvin’s
generalisation operation was to find a subset of literals, within the current
hypothesis, that matched the body of a clause already stored in memory.
The matching subset could then be replaced by a new literal constructed
from the head of the clause, under the substitutions that arose from the
match. In Marvin, all matches were performed before any replacement
was attempted. Since Marvin tested hypotheses by constructing instances,
the program had to ensure that all variables could be grounded, thus the
replacement operation had to be modified to preserve this requirement.

One of the difficulties with testing hypotheses by showing examples is that
you can never show enough examples to be sure that the hypothesis is
correct. In Marvin, I made the assumption that all predicates that were
required to describe a concept were already present in memory. I showed,
that this assumption was sufficient to ensure that only one example was
needed to distinguish consistent and inconsistent hypotheses. Without
that assumption, Marvin could not work. This problem could be helped if
Marvin could invent its own predicates.

Although it was never implemented, my Ph.D. thesis (Sammut, 1981)
described what would later be called intra-construction (Sammut, 1985).

Specialisation

Few ILP systems combine both generalisation and specialisation. Marvin
did not attempt to make least general generalisations. Instead, it made
conservative generalisations, which might require refinement. Thus,
when an inconsistent generalisation arose, Marvin employed heuristics
for finding likely specialisations that would be consistent with the target
concept.

Incremental

Like its predecessor, CONFUCIUS, the concepts that Marvin learned were
stored in its memory, available for later use. Concepts that had been



15

learned previously, could take part in pattern matching while learning
new concepts. Thus, these programs fulfilled Banerji’s desire for learning
systems that used a growing description language.

The biggest mistake I made in developing Marvin was in not seeing the
connection between our approach and Plotkin’s. Brian Cohen and I were
aware of his work, but failed to realise that we could merge subsumption
with rewriting operations to invert resolution.

Shapiro

Shapiro (Shapiro, 1981a; 1981b) was one of the first to draw on results from
computational learning theory to build a machine learning program with
a sound theoretical basis. Using Gold’s (1967) framework of learning in the
limit, he was able to prove that his algorithm would eventually learn a
target concept. Shapiro was also the first to explicitly use a Horn clause
representation and employ the resolution procedure in his learning
algorithm. The problem he tried to solve can be expressed as follows
(Shapiro, 1981a):

In a model inference problem we assume some unknown model M for a
given first order language L. We distinguish two types of sentences in L:
observational sentences, which correspond to descriptions of experimental
results, and hypotheses, which can serve as explanations for these results.
The model inference problem is,

Given the ability to test observational sentences for their truth in some
unknown model M, find a finite set of hypotheses, true in M, that imply
all true observational sentences.

The Model Inference System works as follows. The system has an initial
theory, which is empty. It attempts to construct hypotheses to add to the
theory to explain given examples.

If a theory is too general , i.e. it implies a false observational sentence, one
can conclude that at least one of its clauses is false.  Shapiro describes a
contradiction backtracing algorithm which can detect such hypotheses by
performing crucial experiments in the model. The theory can then be
generalised by removing this false hypothesis from it.

When a false hypothesis is added to a theory it becomes possible to derive,
by resolution, a false sentence. Backtracing is  a procedure that works
through the proof tree of this derivation to determine which hypothesis is
false. The resolution tree is ordered so that the atom resolved upon
appears in the condition of the left child and in the conclusion of the right
child of the resolvent. The algorithm starts from the root , and
iteratively tests the atoms resolved upon. If the atom is true in M  it
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chooses the left subtree, otherwise the right subtree, until it reaches  a leaf.
The hypothesis in the leaf is false in M and is removed from the theory.

If a theory is too specific, i.e. true observational sentences cannot be
derived, then the theory is missing a hypothesis. Rather than trying to add
some arbitrary new clause, we can improve the efficiency of the algorithm
by refining an already refuted theory. A refinement operator may add new
literals, replace variables by  functions (which could be zero arity, i.e.
constants) or by binding variables to each other. If there are no previously
refuted hypotheses, the algorithm begins with the null hypothesis.

This MIS learning algorithm is shown below:

Set the theory T to {  }
repeat

Examine the next example
repeat

while the theory T is too general do
Specialise it by applying
contradiction backtracing and remove
from T  the refuted hypothesis

while the theory is too specific do
Generalise it by adding to T
refinements of previously refuted
hypotheses

until the conjecture T is neither too general nor too
specific with respect to the known facts

Output T
forever

Shapiro proved that with the most general refinement operator, MIS will
learn the target concept in the limit. Refinement operators are devices for
searching the space of sentences in the hypothesis language. More
expressive languages and more general refinement operators give rise to
extremely large search spaces. Thus, from a practical standpoint, the major
drawback of Shapiro’s work was that it left open the question of efficient
search.

CAINOZOIC (NEW LIFE)

We now come to the final stage of evolution prior to the first publications
using the term Indutive Logic Programming. Our discussions in this
section are brief since much of the work is well known to today’s
researchers. We only refer to some of the key papers to show how
previous research has influenced current ideas.

Buntine

Wray Buntine revived interest in subsumption as a model for
generalisation in his 1986 and 1988 papers. Buntine was particularly
concerned to improve the notions of generalisation relative to a
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background theory. The generalisation method employed in Marvin
(Sammut, 1981) suggested Buntine’s improved model of generalisation.

The following definition of generalisation is taken from Buntine (1988).
Clause C is more general than clause D with respect to logic program P  if
for any Herbrand interpretation I  such that P is true in I , and for any atom
A, C covers A in I  whenever D covers A. A clause C covers a ground atom
A in interpretation I  if there is a substitution θ such that Cheadθ  is identical
to A and ∃(Bbodyθ )  is true in interpretation I.

Buntine’s work was important because it built a bridge between past
research and what was to come in inverse resolution..

Muggleton

Muggleton’s first foray in ILP was at a propositional level. His program,
DUCE (Muggleton, 1987) used rewriting operators to transform a theory
consisting of propositional Horn clauses into a smaller, more general
theory. The operators are the propositional equivalent of what are now
called inverse resolution operators. This method was, to some extent,
suggested by the absorption operator, which was first used in Marvin
(Sammut, 1981). One of the most interesting features of DUCE, was that it
could invent its own predicates (or theoretical terms). The inter-
construction and intra-construction operators could introduce new
symbols into the description language if they produced a reduction in the
size of the theory. This provided DUCE with a very powerful tool for
growing its language, in the sense of Banerji (1969).

By combining DUCE’s operators with the more powerful generalisation
models of subsumption, it became possible to build a first-order learning
system with similar properties. Muggleton teamed with Buntine
(Muggleton and Buntine, 1988) to produce CIGOL. CIGOL interacts with an
oracle to build logic programs from examples. It was this system that most
clearly demonstrated that induction could be seen as the inverse of
resolution theorem proving.

CIGOL was able to construct quit complex programs, but was limited in its
efficiency. To handle large training sets Muggleton and Feng (1990), with
assistance from Buntine, returned to Plotkin’s relative least general
generalisations to reduce the large search involved in finding
generalisations. In doing so, they had to abandon predicate invention as it
is not yet possible to find an efficient way of discovering relevant new
predicates. This is the subject of ongoing research.

Muggleton’s current research is beyond the scope of this paper. But his
work crystalised the field of ILP and sparked further research.
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Quinlan

Quinlan’s approach to learning relations expressed as Horn clauses is
unusual. Whereas most of the systems discussed in this paper are in some
way related to inverting resolution, FOIL (Quinlan, 1990) uses a purely
data-driven induction method. Quinlan uses a general-to-specific search
based on the covering algorithm in Michalski’s Aq (Michalski, 1983). The
basic algorithm is:

• Find a conjunction of conditions that is satisfied by some objects in the
target class, but no objects from another class;

• Append this conjunction as one disjunct of the logical expression being
developed;

• Remove all objects that satisfy this conjunction and, if there are still
some remaining objects of the target class, repeat the procedure.

FOIL finds conjunctions by specialising a clause. The program searches for
literals to add to the clause and uses information gain, like ID3 (Quinlan,
1986), to choose among the candidate literals.

Although not directy related, FOIL solves some of the problems of
Shapiro’s MIS. MIS uses a general-to-specific search to refine theories, but
this search is very inefficient. Quinlan has presented a method of
performing such a search with greater efficiency by using ideas developed
in other areas of machine learning.

CONCLUSION

There are now too many new ILP systems to mention in this paper. Here, I
have tried to give some of the history of ideas that have lead to the current
research in Inductive Logic Programming. The story began with concept
formation research in psychology which influence early machine learning
efforts. The 1960’s and 1970’s saw the development of the notion of using
logic as a concept description language that could grow. Also, the search
for an inductive dual to the deductive method of resolution began. In the
1980’s, the first ILP systems began to emerge. During, the 1990’s we have
seen this area develop into a well-founded and, at the same time, a
practically useful tool.
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