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Abstract. In machine learning we are often faced with the problem of incomplete
data, which can lead to lower predictive accuracies in both feature-based and re-
lational machine learning. It is therefore important to develop techniques to com-
pensate for incomplete data. In inductive logic programming (ILP) incomplete data
can be in the form of missing values or missing predicates. In this paper, we inves-
tigate whether an ILP learner can compensate for missing background predicates
through predicate invention. We conduct experiments on two datasets in which we
progressively remove predicates from the background knowledge whilst measuring
the predictive accuracy of three ILP learners with differing levels of predicate inven-
tion. The experimental results show that as the number of background predicates
decreases, an ILP learner which performs predicate invention has higher predictive
accuracies than the learners which do not perform predicate invention, suggesting
that predicate invention can compensate for incomplete background knowledge.
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1. Introduction

In an ideal world machine learning datasets would be complete. In reality, however, we are
often faced with incomplete data, which can lead to lower predictive accuracies in both
feature-based [6,10] and relational [22,17] machine learning. It is therefore important to
develop techniques to compensate for incomplete data.

In inductive logic programming (ILP) [11], a form of relational machine learning,
incomplete background knowledge can be in the form of missing values or missing
predicates [9]. There are several techniques in the literature for handling missing data in
an ILP setting [4,9]. In this paper, we investigate whether predicate invention [23,16] can
compensate for incomplete data by inventing new predicates to replace those missing. We
conduct experiments on two datasets in which we progressively remove predicates from
the background knowledge whilst measuring the predictive accuracy of three ILP systems:
Metagolpi [15], Metagolnopi, and Progol [12], which can, cannot, and cannot perform
predicate invention respectively (all described in Section 3). To our knowledge, this is
the first study to investigate whether predicate invention can compensate for incomplete
background knowledge. The main results of this paper are as follows:

• The experimental results show that a learner which performs predicate invention
(Metagolpi) outperforms learners which do not support predicate invention when



supplied with missing background predicates, indicating the predicate invention
can compensate for incomplete background knowledge.

• In some cases, a learner which performs predicate invention (Metagolpi) maintains
respectable predictive accuracies with only half of the original background predi-
cates, i.e. predicative accuracies do not decrease in proportion to the decrease in
background predicates.

The rest of the paper is organised as follows. Section 2 gives an overview of predicate
invention and meta-interpretive learning (MIL) [14,15], an ILP learning framework which
supports predicate invention and upon which Metagolpi is based. Section 3 details the
experiments on two kinship datasets. Section 4 discusses the results of the experiments
and provides additional examples, including where predicate invention recovers missing
predicates when learning robot plans. Finally, Section 5 concludes the paper.

2. Learning setting

This section describes predicate invention and provides an overview of MIL. We start by
introducing the relevant terms and concepts from logic programming and ILP.

2.1. Logical notation

A variable is denoted as alphanumerics beginning with upper-case letters. A constant
is denoted as alphanumerics beginning with lower-case letters. A predicate symbol is
denoted as alphanumerics starting with lower-case letters with an associated adicity,
where the adicity of a predicate symbol is the number of arguments it takes. Predicate
symbols are monadic when they have adicity one and dyadic when they have adicity
two. Variables and constants are terms. A variable is first-order if it can be substituted
for a term. A variable is higher-order if it can be substituted for a predicate symbol. A
predicate symbol or higher-order variable immediately followed by a bracketed n-tuple
of terms is an atom. The negation symbol is ¬. Both A and ¬A are literals whenever
A is an atom, where A is a positive literal and ¬A is a negative literal. A finite (possi-
bly empty) set of literals is a clause. A clause represents the disjunction of its literals.
The clause {A1, . . . ,Am,¬B1, . . . ,¬Bn} is normally represented in logic programming as
A1, . . . ,Am← B1, . . . ,Bn where← is the logical implication connective. A Horn clause
is a clause with at most one positive literal. A unit clause is a Horn clause with exactly
one literal. A positive unit clause (sometimes called a fact) is unit clause with a positive
literals. A negative unit clause is a unit clause with a negative literal. A denial or goal is a
Horn clause which contains no positive literals. A definite clause is a clause that contains
exactly one positive literal. A definite program is a finite set of definite clauses.

A standard ILP problem consists of an input 〈B,E〉 and an output H, where B is a
definite program representing the background knowledge, E = 〈E+,E−〉 are positive and
negative examples respectively, and H is definite program hypothesis. The goal of the
ILP learner is to find a hypothesis H such that B,H |= E+ and B,H 6|= E−. The following
example illustrates the ILP problem setting for learning the grandparent kinship relation.

Example 2.1.



B =



mother(amy,amelia).

mother(ann,amy).

mother(linda,gavin).

f ather(gavin,amelia).

f ather(steve,amy).

E+ =


grand parent(ann,amelia).
grand parent(steve,amelia).
grand parent(linda,amelia).

E− =
{

grand parent(amy,amelia).

For the aforementioned grandparent problem, the following hypothesis is consistent with
the examples:

grand parent(X ,Y )← f ather(X ,Z), f ather(Z,Y )
grand parent(X ,Y )← f ather(X ,Z),mother(Z,Y )
grand parent(X ,Y )← mother(X ,Z),mother(Z,Y )
grand parent(X ,Y )← mother(X ,Z), f ather(Z,Y )

2.2. Predicate invention

We now describe how predicate invention can be used to improve the performance of an
ILP learner.

Definition 2.1. The non-empty set of all predicate symbols (with their adicities) in a
logic program is named the predicate signature.

Example 2.2. The predicate signature for Example 2.1 is as follows:

{grand parent/2,mother/2, f ather/2}

Predicate invention is the automatic introduction of predicate symbols into the language,
i.e. the addition of predicate symbols into the predicate signature previously unseen in the
examples and background knowledge [18]. There are two primary reasons for introducing
a predicate symbol into the language: program reformulation and bias shift [23].

The idea behind program reformulation is to restructure a program to make it more
readable. For example, for grandparent kinship relation in Example 2.1, learner can
introduce a predicate symbol p1/2 representing the parent kinship relation to learn a more
compact hypothesis of the following form:

grand parent(X ,Y )← p1(X ,Z), p1(Z,Y )
p1(X ,Y )← f ather(X ,Y )
p1(X ,Y )← mother(X ,Y )

Program reformulation is often necessary if the ILP learner enforces meta-constraints,
such as a maximum number of clauses in a solution, or a maximum number of literals in
the body of a clause.



The idea behind bias shift is to introduce predicates to make the target theory learnable.
For example, consider the following example.

Example 2.3.

B =

{
parent(amy,amelia).

parent(gavin,amelia).

E+ =
{

f ather(gavin,amelia).

E− =
{

f ather(amy,amelia).

In this example, it is impossible to construct a hypothesis which covers the positive exam-
ple but not the negative example using only the predicates in the background knowledge
and examples. To learn a hypothesis consistent with the examples, an ILP learner must
introduce a predicate symbol m/1 and the fact m(gavin) to learn a hypothesis of the form
f ather(X ,Y )← m(X), where m/1 can be seen as inventing a male/1 predicate.

2.3. Meta-interpretive learning

We now briefly describe MIL [14,15], an ILP framework which supports predicate inven-
tion and upon which the implementation Metagolpi is based.

MIL is a form of ILP based on an adapted Prolog meta-interpreter. Given definite
background knowledge B and positive and negative unit clauses representing positive
and negative examples E+ and E−, a MIL learner aims to return a definite hypothesis
H such that B,H |= E+ and B,H 6|= E−. The search for hypothesis is delegated to a
meta-interpreter. However, whereas a standard Prolog meta-interpreter attempts to prove
a goal by repeatedly fetching first-order clauses whose heads unify with given goals, a
MIL meta-interpreter additionally attempts to prove a goal by repeatedly fetching higher-
order metarules whose heads unify with given goals. The resulting meta-substitutions
are saved in an abduction store which can be re-used in later proofs. Following the proof
of a set of goals, a hypothesis is formed by projecting the meta-substitutions onto their
corresponding metarules, allowing for a form of ILP which supports predicate invention
and the learning of recursive theories. Completeness of SLD resolution ensures that all
hypotheses consistent with the examples can be constructed. Moreover, unlike many ILP
systems, only hypotheses consistent with all examples are considered [15]. The metarules
are a form of declarative bias [3], and are defined separately from the meta-interpreter as
part of the background knowledge. Figure 1 displays a small sample of metarules.

To demonstrate this technique, suppose that the background knowledge consists
of the single ground atom parent(alice,bob) and the single inverse metarule (Figure
1), and that our goal is the ground atom child(bob,alice). To prove this goal, a MIL
learner fetches the inverse metarule and applies the meta-substitution θ = {P/child}
to unify the head of the metarule with the goal. The unbound existential higher-order
variable Q in the metarule is then bound to parent predicate symbol in the predicate
signature to form the meta-substitution θ ′ = {P/child,Q/parent}. The ground atom
metasub(inverse,child,parent), representing the meta-substitution θ ′, is saved in an ab-
duction store, and the learner continues the proof by attempting to prove the body of



Name Metarule
Base P(x,y)← Q(x,y)
Inverse P(x,y)← Q(y,x)
Precon P(x,y)← Q(x),R(x,y)
Postcon P(x,y)← Q(x,y),R(y)
Chain P(x,y)← Q(x,z),R(z,y)
TailRec P(x,y)← Q(x,z),P(z,y)

Figure 1. Selection of metarules. The uppercase letters P, Q, and R denote existentially quantified higher-order
variables. The lowercase letters x, y, and z denote universally quantified first-order variables.

the metarule. Once a proof is complete, the ground atom metasub(inverse,child,parent),
saved in the abduction store, is projected onto the corresponding metarule to obtain the
inductive hypothesis child(X ,Y )← parent(Y,X).

In MIL, predicate invention is implemented by adding Skolem constants representing
new predicate symbols to the predicate signature. These can then be used as substitutes
for the existentially quantified variables in metarules.

3. Experiments

This section describes experiments to investigate whether predicate invention can com-
pensate for missing background predicates. We test the following null hypothesis.

Null hypothesis Predicate invention cannot compensate for missing background predi-
cates.

3.1. Materials

To test the null hypothesis, we compare the following three ILP systems.

• Metagolpi
1 [15] is a MIL implementation based on an adapted Prolog meta-

interpreter for a fragment of dyadic definite clause logic. This implementation sup-
ports predicate invention. Specifically, the implementation uses iterative deepening
to ensure that the first hypothesis returned contains the minimal number of clauses,
and at each depth d, Metagolpi introduces a new predicate symbol to the predicate
signature.

• Metagolnopi is the same as Metagolpi except that the predicate invention feature is
disabled.

• Progol5 [12] is a popular ILP system which does not perform predicate invention.
Inverse Entailment is used with mode declarations to derive the most-specific
clause within the mode language which entails a given example. This clause is
used to guide a refinement-graph search by performing an admissible A*-like
search, guided by compression, over clauses which subsume the most specific
clause.

We conduct the experiments using the following two datasets.

1Metagolpi is named MetagolD in [15], but we have used an alternative name for clarity



1. Hinton’s kinship data [7] contains 12 dyadic predicates and 104 examples.
2. Custom kinship dataset contains 21 dyadic predicates and 154 examples.

We also conducted experiments using a robot planning dataset. However, both Metagolnopi
and Progol failed to learn solutions in almost every scenario with missing background
predicates. By contrast, Metagolpi was able to learn solutions. This is discussed in Section
4.2.

3.2. Methods

The experimental method is as follows. For each kinship relation in the dataset (the target
predicate), we learn a hypothesis using the complete background knowledge. To do this,
we randomly select m training examples from the set {2,4,6,8,10}, half positive and half
negative, of each target predicate and perform leave-one-out-cross-validation. Predictive
accuracies are averaged over each target predicate over 50 trials. To explore the effect
of missing background predicates, we repeat the aforementioned procedure, but with
incomplete background knowledge. Specifically, for each p in the sets {1, . . . ,12} and
{2,4,6, . . . ,20} (datasets 1 and 2 respectively), we randomly select p predicates to be
removed from the background knowledge.

3.3. Results
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Figure 2. Predictive accuracies when learning kinship relations on Hinton’s kinship dataset (dataset 1).

Figures 2 and 3 show that Metagolpi outperforms Metagolnopi on both datasets, except
when all background predicates are present. In addition, the results show that Metagolpi
generally outperforms Progol in terms of predicate accuracies, except in the case of few
background predicates. Therefore, the null hypothesis is rejected. The results displayed
are for training sizes of m = 10. Results for other values of m are consistent but are
omitted for brevity.



2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

Number of predicate symbols removed from the background knowledge

Pr
ed

ic
tiv

e
ac

cu
ra

cy
(%

)
Metagolpi
Metagolnopi
Progol

Figure 3. Predictive accuracies when learning kinship relations on the Custom kinship dataset (dataset 2).

It is noteworthy that in Figure 2 Metagolpi maintains respectable predictive accuracies
with only half of the original background predicates, i.e. the predictive accuracies do not
decrease in proportion to the decrease in background predicates. In Section 5 we discuss
the implications of this.

4. Discussion

The rejection of the null hypotheses suggests that Metagolpi can compensate for missing
background predicates through predicate invention. We discuss this using two scenarios:
learning great-great-grandparent in dataset 2 of the experiments and learning robot plans.

4.1. Learning great-great-grandparent

To illustrate how predicate invention can compensate for missing background predicates,
consider learning the great-great-grandparent (gggparent/2) kinship relation using only the
mother/2 and father/2 predicates. For this task Metagolpi learns the following definition.

gggparent(X,Y) :- p2(X,Z), p1(Z,Y).
p2(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

Metagolpi invents both the parent (p1/2) and grandparent (p2/2) predicates given only
examples of the gggparent/2 predicate. By contrast, learning a consistent gggparent/2
hypothesis without predicate invention would require a solution with 16 clauses, which is
often either intractable or prohibited by the meta-constraints.



4.2. Learning robot plans

As a second illustration, imagine a robot in a two-dimensional space. The robot can
perform six dyadic actions: left, right, forwards, backwards, grab and drop. The task is
to learn how to move a ball from a start position (1,1) to an end position (3,3). Figure 4
shows a solution to this problem learned by Metagolpi where s1, s2, and s3 are invented
high-level actions.

move(X,Y) :- s3(X,Z), drop(Z,Y).
s3(X,Y) :- grab(X,Z), s2(Z,Y).
s2(X,Y) :- s1(X,Z), s1(Z,Y).
s1(X,Y) :- forwards(X,Z), right(Z,Y).
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Figure 4. Robot plan learned by Metagolpi to move ball when supplied with complete background knowledge.

Now suppose that the actions right, forwards, and drop are removed from the back-
ground knowledge, i.e. the robot can no longer perform those actions. In this scenario,
how can a robot complete the task? Figure 5 shows a solution for this problem learned by
Metagolpi which uses the extra invented predicate s4 which inverts the invented high-level
action s3, thus allowing the actions left, backwards, and grab to indicate their inverse
actions right, forwards, and drop. In this scenario, a single invented predicate has, ef-
fectively, replaced three background predicates. Neither Metagolnopi nor Progol learn a
solution under these conditions.

move(X,Y) :- grab(X,Z), s4(Z,Y).
s4(X,Y) :- s3(Y,X).
s3(X,Y) :- s2(X,Z), s1(Z,Y).
s2(X,Y) :- grab(X,Z), s1(Z,Y).
s1(X,Y) :- left(X,Z), backwards(Z,Y).
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Figure 5. Robot plan learned by Metagolpi to move ball when supplied with incomplete background knowledge.

5. Conclusions and further work

In this paper, we have investigated whether predicate invention can compensate for missing
background predicates. Our results show that as the number of background predicates



decrease, the MIL implementation Metagolpi outperforms Metagolnopi and Progol in
terms of predictive accuracies, indicating that predicate invention can compensate for
incomplete background knowledge.

We have, thus far, implicitly assumed that incomplete background knowledge is due
to error or other unavoidable reason. Our results, however, suggest a possible motivation
for purposely removing background predicates. In [8] it was shown that for a MIL learner,
the number of programs of size n which can be built from p predicate symbols and m
metarules in the H2

2 hypothesis space2 is O(p3nmn). Therefore, if working with many
background predicates, then it might actually be preferable to purposely remove some
predicates to reduce the hypothesis space to make the problem more tractable, whilst
maintaining respectable predictive accuracies. This suggestion is in agreement with the
Blumer bound [1], which says that a smaller hypothesis space leads to higher predictive
accuracies and lower learning times compared to a larger hypothesis space, assuming that
the target theory or its approximations are in both spaces.

5.1. Future work

We have empirically shown that predicate invention can compensate for incomplete data
and in future work we intend to show this theoretically.

In some ways, purposely removing background predicates is analogous to dimen-
sionality reduction, widely applied in other forms of machine learning [20], but which
has so far been neglected in ILP research [5]. In [2], the authors used Plotkin’s clausal
reduction algorithm [19] to logically minimise a maximal set of metarules in a fragment
of dyadic definite clause logic. It seems reasonable to ask whether we can apply a similar
technique to determine whether background predicates are redundant with respect to the
metarules using Plotkin’s algorithm. This involves applying the encapsulation theorem in
[2] to convert first-order background primitives to higher-order clauses. Developing this
theory is left for future work.

One limitation of this work is the relatively small datasets used in the experiments.
Future work should include experiments in substantial domains, such as the mutagenesis
dataset [21].

We also want to investigate whether the ability to compensate for missing background
predicates through predicate invention is specific to the MIL framework, or whether other
ILP learners which perform predicate invention achieve similar results, and empirical
comparisons with other ILP systems that perform predicate invention, such as CIGOL
[13], is left for future work.
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2H j
i consists of definite function-free logic programs with predicates of adicity at most i and with at most j

atoms in the body of each clause
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