Stochastic Logic Programs®

Stephen Muggleton
Oxford University Computing Laboratory,
Parks Road,
Oxford, OX1 3QD,
United Kingdom.

Abstract

One way to represent a machine learning algorithm’s bias over the hy-
pothesis and instance space is as a pair of probability distributions. This
approach has been taken both within Bayesian learning schemes and the
framework of U-learnability. However, it is not obvious how an Induc-
tive Logic Programming (ILP) system should best be provided with a
probability distribution. This paper extends the results of a previous pa-
per by the author which introduced stochastic logic programs as a means
of providing a structured definition of such a probability distribution.
Stochastic logic programs are a generalisation of stochastic grammars. A
stochastic logic program consists of a set of labelled clauses p : C' where
p is from the interval [0,1] and C is a range-restricted definite clause.
A stochastic logic program P has a distributional semantics, that is one
which assigns a probability distribution to the atoms of each predicate in
the Herbrand base of the clauses in P. These probabilities are assigned to
atoms according to an SLD-resolution strategy which employs a stochastic
selection rule. It is shown that the probabilities can be computed directly
for fail-free logic programs and by normalisation for arbitrary logic pro-
grams. The stochastic proof strategy can be used to provide three distinct
functions: 1) a method of sampling from the Herbrand base which can be
used to provide selected targets or example sets for ILP experiments, 2)
a measure of the information content of examples or hypotheses; this can
be used to guide the search in an ILP system and 3) a simple method for
conditioning a given stochastic logic program on samples of data. Func-
tions 1) and 3) are used to measure the generality of hypotheses in the
ILP system Progol4.2. This supports an implementation of a Bayesian
technique for learning from positive examples only.

*This paper is an extension of a paper with the same title which appeared in [12]

1 Introduction

The integration of logic and probability theory has been the subject of many
studies [1, 3, 9, 5, 6, 17, 20]. It has also been investigated within logic pro-
gramming [16, 19]. Recently the motivation for many such studies has been the
development of formalisms for rule-based expert systems which employ uncer-
tain reasoning.

By contrast, the motivation for the present paper comes from machine learn-
ing. One way to represent a machine learning algorithm’s bias over the hypoth-
esis and instance space is as a pair of probability distributions. This approach
has been taken in various ways within the frameworks of PAC-learnability [21],
Bayesian learning [2, 7] and U-learnability [11, 14]. However, it is not obvious
how a machine learning algorithm, in particular an Inductive Logic Program-
ming (ILP) system [10, 15] should best be provided with a probability distribu-
tion over a set of logical formulae. This paper proposes stochastic logic programs
(SLPs) as a means of providing a structured definition of such a probability dis-
tribution. SLPs are a generalisation of stochastic grammars [8]. Although they
have a distributional semantics, SLPs’ relationship to Probabilistic Logic Pro-
grams [16] and BS-programs [19] is unclear.

This paper is organised as follows. In Section 2 the formal framework for U-
learnability is introduced. Stochastic grammars are then defined and described
in Section 3. Section 4 introduces stochastic logic programs as a generalisation of
stochastic grammars. Section 5 describes a Prolog implementation of stochastic
logic programs. A discussion of research issues and applications of stochastic
logic programs concludes the paper in Section 6.

2 U-learnability

The following is a variant of the U-learnability framework presented in [11, 14].
The teacher starts by choosing distributions Dy and Dx from the family of dis-
tributions Dy and Dx over concept descriptions H (wifs with associated bounds
for time taken to test entailment) and instances X (ground wffs) respectively.
The teacher uses Dy and Dx to carry out an infinite series of teaching sessions.
In each session a target theory 7' is chosen from Dy . Each T is used to provide
labels from {m, O} (True, False) for a set of instances randomly chosen according
to distribution Dx. The teacher labels each instance x; in the series (z1, .., zp,)
with B if 7' |= #; and O otherwise. An hypothesis H € H is said to explain a
set of examples £ whenever it both entails and is consistent with £. On the
basis of the series of labelled instances (e, es, .., €Y, a Turing machine learner
L produces a sequence of hypotheses (Hy, Hy,..H,,) such that H; € H explains
{e1,..,ei}. H; must be suggested by L in expected time bounded by a fixed
polynomial function of i. The teacher stops a session once the learner suggests
hypothesis H,, with expected error less than e for the label of any 2,41 chosen

0.4:a 0.7:b

0.6:b 0.3:¢c
— 0,

Figure 1: Stochastic automaton.

(=)

randomly from Dx. (D, Dx) is said to be U-learnable if and only if there ex-
ists a Turing machine learner L such that for any choice of § and ¢ (0 < d,e < 1)
with probability at least (1 — d) in any of the sessions m is less than a fixed
polynomial function of % and %

In [14] positive results were given for the U-learnability of time-bounded
logic programs. For these proofs it was assumed that a logic program P could
be chosen by the teacher according to a distribution Dy and that instances could
be chosen from the Herbrand base of P according to a distribution Dy . Clearly
both Dy and Dx are functions over countably infinite domains. Stochastic
grammars provide one approach to defining a probability distribution over a
countably infinite set.

3 Stochastic grammars

3.1 Stochastic automata

Stochastic automata, otherwise called Hidden Markov Models [18], have found
many applications in speech recognition. An example is shown in Figure 1.
Stochastic automata are defined by a 5-tuple A = (Q,X, g0, F,d). Q is a set
of states. ¥ is an alphabet of symbols. ¢g is the initial state and FF C @
(F = {q2} in Figure 1) is the set of final states. 6 : (Q\ F) x ¥ — @ x [0,1]
is a stochastic transition function which associates probabilities with labelled
transitions between states. The sum of probabilities associated with transitions
from any state ¢ € (Q \ F') is 1.

In the following A represents the empty string. The transition function
0¥ (Q\F) xX* = @ x [0,1] is defined as follows. 6*(g,A) = (¢, 1). §*(¢q, au) =
(qau; Papu) if and only if (g, a) = (¢q, pa) and 6*(¢a, u) = {¢qu, Pu). The proba-
bility of u being accepted from state ¢ in A is defined as follows. Pr(ulq, A) = p
if 0*(¢,u) = (¢',p) and ¢’ € F.. Pr(u|q, A) = 0 otherwise.

Theorem 1 Probability of a string being accepted from a particular
state. Let A = (Q,X, qo, F,d) be a stochastic automaton. For any q € Q the

following holds.
Z Pr(ulg, A) = 1.

uen*

Proof. Suppose the theorem is false. Either ¢ € F or q & F'. Suppose q € F.
Then by the definition of stochastic automata q has no outgoing transitions.
Therefore by definition Pr(u|q, A) is 1 for u = X and 0 otherwise, which is
in accordance with the theorem. Therefore suppose ¢ & F. Suppose in state q
the transitions are §(¢,a1) = (¢, p1),...,0(¢,an) = {q,pn). Then each string
u is accepted in proportions pi1,...,pn. according to its first symbol. That is
to say, > ,cxe Pr(ulg, A) = p1 + .. + po. But according to the definition of d,
p1+ ...+ pa = 1, which means), . Pr(ulg, A) = 1. This contradicts the
assumption and completes the proof. O

If the probability of u being accepted by A is now defined as Pr(u|d) =
Pr(ulqo, A) then the following corollary shows that A defines a probability dis-
tribution over X*.

Corollary 2 Stochastic automata represent probability distributions.
Given stochastic automaton A.

> Pr(uld) = 1.

ueEn*

Proof. Special case of Theorem 1 when q = q¢. O
The following example illustrates the calculation of probabilities of strings.

Example 3 Probabilities associated with strings. For the automaton A

in Figure 1 we have Pr(abbc|A) = 0.4%x0.6x0.7x0.3 = 0.0504. Pr(abac|A) = 0.

A can also be viewed as expressing a probability distribution over the language
L(A) = {u : 6*(qo,u) = {q,p) and ¢ € F}. The following theorem places
bounds on the probability of individual strings in L(A). The notation |u| is
used to express the length of string u.

Theorem 4 Probability bounds. Let A = (Q,X, g0, F,d) be a stochastic
automaton and let pyin, Pmaz be Tespectively the minimum and mazimum prob-
abilities of any transition in A. Let u € L(A) be a string.

pll, < Pr(ul) < plt!

in — mazx "

Proof. Pr(uld) = Hlill pi, where p; is the probability associated with the ith
transition in A accepting u. Clearly each p; is bounded below by ppin, and above
by Pmaz, and thus plul < Pr(u]d) < plmuLx |

min
This theorem shows that a) all strings in L(A) have non-zero probability and
b) stochastic automata express probability distributions that decrease exponen-
tially in the length of strings in L(A).

0.4:q99 = aqo

0.6 : qo — bql
0.7 : q1 — bql
0.3:q1 = cqo
1.0:¢g2 = A

Figure 2: Labelled production rule representation of stochastic automaton.

3.2 Labelled productions

Stochastic automata can be equivalently represented as a set of labelled produc-
tion rules. Each state in the automaton is represented by a non-terminal symbol
and each ¢ transition (g, a) — (¢, p) is represented by a production rule of the
form p: ¢ — aq’. Figure 2 is the set of labelled production rules corresponding
to the stochastic automaton of Figure 1. Strings can now be generated from
this stochastic grammar by starting with the string go and progressively choos-
ing productions to rewrite the leftmost non-terminal randomly in proportion
to their probability labels. The process terminates once the string contains no
non-terminals. The probability of the generated string is the product of the
labels of rewrite rules used.

3.3 Stochastic context-free grammars

Stochastic context-free grammars [8] can be treated in the same way as the
labelled productions of the last section. However, the following differences exist
between the regular and context-free cases.

e To allow for the expression of context-free grammars the left-hand sides of
the production rules are allowed to consist of arbitrary strings of terminals
and non-terminals.

e Since context-free grammars can have more than one derivation of a par-
ticular string u, the probability of u is the sum of the probabilities of the
individual derivations of u.

e The analogue of Theorem 4 holds only in relation to the length of the
derivation, not the length of the generated string.

Example 5 The language a”b”. Figure 8 shows a stochastic context-free

grammar G expressed over the language a”b™. The probabilities of generated

strings are as follows. Pr(A|G) = 0.5, Pr(ab|G) = 0.25, Pr(aabb|G) = 0.125.

05:5—= A
0.5:5 — aSh

Figure 3: Stochastic context free grammar

0.5 : coin(0) +
0.5 : coin(l) +

Figure 4: Simple SLP

4 Stochastic logic programs

Every context-free grammar can be expressed as a definite clause grammar
[4]. For this reason the generalisation of stochastic context-free grammars to
stochastic logic programs (SLPs) is reasonably straightforward. First, a definite
clause C'is defined in the standard way as having the following form.

AFBl,...,Bn

where the atom A is the head of the clause and By, ..., B, is the body of the
clause. C'is said to be range-restricted if and only if every variable in the head
of C'is found in the body of C. A stochastic clause is a pair p : C' where p is in
the interval [0, 1] and C' is a range-restricted clause. A set of stochastic clauses
P is called a stochastic logic program if and only if for each predicate symbol ¢
in P the probability labels for all clauses with ¢ in the head sum to 1.

Example 6 Coin example. Figure 4 shows a simple SLP which mimics the
action of a fair coin. The probability of the coin coming up either head-side up

(0) or tail-side up (1) is 0.5.

4.1 Stochastic SLD-refutations

For SLPs the stochastic refutation of a goal is analogous to the stochastic gen-
eration of a string from a set of labelled production rules. Suppose that P is an
SLP. Then n(P) will be used to express the logic program formed by dropping
all the probability labels from clauses in P. A stochastic SLD procedure will
be used to define a probability distribution over the Herbrand base of n(P).
The stochastic SLD-derivation of atom a is as follows. Suppose < g is a unit
goal with the same predicate symbol as a, no function symbols and distinct
variables. Next suppose that there exists an SLD-refutation of < g with answer
substitution @ such that gf = a. Since all clauses in n(P) are range-restricted,
6 is necessarily a ground substitution. The probability of each clause selection

in the refutation is as follows. Suppose the first atom in the subgoal + ¢’ can
unify with the heads of stochastic clauses p; : C1,...,p, : Cp, and stochastic
clause p; : C; is chosen in the refutation. Then the probability of this choice is
Iﬁ. The probability of the derivation of a is the product of the probability
of the choices in the refutation. As with stochastic context-free grammars, the
probability of a is then the sum of the probabilities of the derivations of a.

This stochastic SLD-strategy corresponds to a distributional semantics [19]
for P. That is, each atom a in the success set of n(P) is assigned a non-zero
probability (due to the completeness of SLD-derivation). For each predicate
symbol ¢ the probabilities of atoms in the success set of n(P) corresponding to
g sum to 1 (the proof of this is analogous to Theorem 1).

4.2 Fail-free SLPs

It should be noted that the definition of SLPs in the previous section has prob-
lems. For instance, consider the case in which P has an empty success set. In
this case the probability distribution is not well defined since it does not sum
to 1. A less extreme case occurs when at least some derivations exist, though
other derivations reach a deadend in which the goal + ¢’ cannot unify with the
heads of any clauses. In this case the probabilities of individual atoms must be
normalised by multiplying each derivation probability by the reciprocal of the
sum of all such probabilities.

Fail-free logic programs avoid this issue, since no selection choice leads to
enforced backtracking. Fail-free clauses, logic programs and SLPs are defined
as follows®.

Definition 7 Fail-free clause. A clause h < B is said to be fail-free if and

only if B contains no function symbols and each variable occurs at most once
in B.

Definition 8 Fail-free logic programs. A logic program P is fail-free if and
only if each clause in P is definite and fail-free, and each predicate symbol in
the body of each clause in P occurs in the head of at least one clause in P.

Definition 9 Fail-free stochastic logic programs. A stochastic logic pro-
gram P is fail-free if and only if n(P) is a fail-free logic program.

We now show fail-free logic programs avoid forced backtracking.

Theorem 10 Non-backtracking of fail-free logic programs. Let P be
a fail-free logic program and < g be a fail-free goal containing only predicate
symbols found in P. Irrespective of the choices made in the stchastic SLD-
derivation of goal < g there will be no subgoal < g’ which fails to resolve with

L Although the following constraints are sufficient to avoid forced backtracking, it is not
clear whether they are also necessary for definition of this class.

0.5 : nate(0) +
0.5 : nate(s(N)) + nate(N)

Figure 5: Exponential distribution over natural numbers

the definition of any predicate in g'.

Proof. Assume the theorem is false. First note that the resolvent of any fail-
free goal and a fail-free definite clause s itself fail-free and that the unification
involved is one-sided. However, there must exist an intermediate goal < g' with
substitution 0' which fails to resolve with the predicate definition for a predicate
p in P. But since every predicate symbol in <+ g has a definition in P and
each predicate symbol in the body of each clause in P has a definition in P it
must be that < ¢'0' fails to unify with any of the clauses in the definition of p.
However, since all unifications are one-sided, ' will contain no substitutions for
the variables in + ¢', and thus the first atom of + ¢’ will have no function
symbols and distinct variables, and thus must be able to resolve with all clauses
of the corresponding definition. This contradicts the assumption and completes
the proof. O

Note that the class of fail-free logic programs includes all normal unary defi-
nitions of types (such as list/1 or natural/1) as well as the standard recursive
definitions of predicates such as member/2 and append/3.

4.3 Polynomial distributions

It is reasonable to ask whether Theorem 4 extends in some form to SLPs. The
distributions described in [14] include both those that decay exponentially over
the length of formulae and those that decay polynomially. SLPs can easily be
used to describe an exponential decay distribution over the natural numbers as
follows.

Example 11 Exponential distribution. Figure 5 shows a recursive SLP
P which describes an exponential distribution over the natural numbers ez-
pressed in Peano arithmetic form. The probabilities of atoms are as follows.
Pr(nate(0)|P) = 0.5, Pr(nate(s(0))|P) = 0.25 and Pr(nate(s(s(0)))|P) =
0.125. In general Pr(nate(N)|P) =2-N-1

However, SLPs can also be used to define a polynomially decaying distribution
over the natural numbers as follows.

Example 12 Polynomial distribution. Figure 6 shows a recursive SLP P
which describes a polynomial distribution over the natural numbers expressed in
reverse binary form. Numbers are constructed by first choosing the length of

1.0 : natp(N) « nate(U), bin(U, N)

0.5 : bin(0,[1]) +
0.5 : bin(s(U), [C|N]) « coin(C), bin(U, N)

Figure 6: Polynomial distribution over natural numbers

the binary representation and then filling out the binary expression by repeated
tossing of a fair coin (see Figure 4). Since the probability of choosing a number
N of length logs(N) is roughly 27'°92(N) and there are 2/°92(N) such numbers,
each with equal probability, Pr(natp(N)|P) ~ 2= %°92(N) = N=2,

5 A Prolog implementation

Stochastic logic programs can be used to provide three distinct functions.

1. A sampler. A method of sampling from the Herbrand base which can
be used to provide selected targets or example sets for ILP experiments,
Sampling targets requires an SLP that implements a grammar describing
the hypothesis space.

2. Information content. A measure of the information content of examples
or hypotheses. The information content of atom a relative to SLP P is
taken here as simply —loga(Pr(a|P)). This could be used to help guide
the search in an ILP system.

3. A conditioner. A simple method for conditioning a given stochastic logic
program on samples of data.

Prolog implementations of these three functions are described in the following
sections.

5.1 The predicate sample/1

This section describes a Prolog interpreter for SLPs. Figure 7 shows the code
for the top-level interpreter, which is similar to a standard ‘proves’ interpreter
for Prolog. Note that backtracking is disabled by the use of cuts. The reason
for this is that each atom should be sampled independently of its predecessors.
The third clause uses the predicate clause/3, the third argument of which is a
unique number associated with the returned clause. Though this predicate is
non-standard it is relatively straightforward to implement. (It is implemented
as a primitive in CProgol4.2 which can be obtained by anonymous ftp from
ftp.comlab.ox.ac.uk in directory pub/Packages/ILP/progol4.2).

sample((Goall,Goal2)) :-—
!, sample(Goall), sample(Goal2). % Conjunction

sample(Goal) :-
not(clause(Goal,_)), !, Goal. % System predicate
sample(Head) :-
bagof ([Head,Body,N],clause(Head,Body,N),Bag),
random_clause(Head,Body,Bag), % Random choice
!, sample(Body). % User predicate

Figure 7: The predicate sample/1

random_clause(Head,Body,Bag) :-
Rand is random, % 0-1 random number
choose(Bag,Head,Body,0,Rand, Sum) .

choose([1,_,_,_,_,0).
choose([[Head,Body,N] | Bag] ,Head1,Bodyl,SoFar,Rand,Rest) :-
label(N,P), SoFarl is SoFar+P,
choose(Bag,Head1,Bodyl,SoFari,Rand,Restl),
Rest is Rest1+P,
((var(Bodyl), P1 is SoFar/(SoFar+Rest), Rand>=P1,
Head1l=Head, Bodyi=Body);
true).

Figure 8: The predicates random_clause/3 and choose/6

The predicate random_clause/3 and its sub-predicate choose/6 are shown in
Figure 8. In choose/6 the probability label of the clause is extracted using the
predicate label/2, which is also implemented as a primitive in CProgol4.2 (see
above). Note that since P is simply a ratio, it is immaterial whether the labels
are themselves in the interval [0, 1] or simply arbitrary positive reals. CPro-
gol4.2 by default assigns all clauses a label value of 1. CProgol4.2 also contains
alterations to a standard Prolog interpreter which allow efficient sampling of
stochastic logic programs using the built-in predicate sample/3.

5.2 Information content

Predicates for computing the information content of atoms are shown in Figures
9 and 10. For simplicity it is assumed here that each atom has at most one proof,
and that each unification is deterministically chosen given the substitution so far.
The predicate info/3 again acts like a ‘proves’ interpreter which computes the

10

info(Goal,Bits) :-
functor(Goal,F,N),
functor(GGoal,F,N),
info(GGoal,Goal,Bits1),
Bits is Bitsl.

info((GGoall,GGoal2), (SGoall,SGoal2),Bits1+Bits2) :— !,
info(GGoall,SGoall,Bits1l),
info(GGoal2,SGoal2,Bits2). % Conjunction
info(GHead,SHead,Bits1+Bits2) :-
bagof ([GBody,GN],clause(GHead,GBody,GN) ,GBag),
clause(SHead, SBody,SN),
info_choice(GBag,SN,GBody,0,_,Bitsl),
!, info(GBody,SBody,Bits2). % User predicate
info(Goal,Goal,0) :—
not(clause(Goal,_)), Goal. Y% System predicate

Figure 9: The predicates info/2 and info/3

info_choice([]1,_,_,_,0,_).
info_choice([[Body,N] |T],N,Body,SoFar,Rest,Bits) :-—
!, info_choice(T,N,_,SoFar,Rest,_),
label(N,P), Bits is -log(P/(SoFar+P+Rest))/log(2).
info_choice([[_,N]|T],M,Body, SoFar,Rest+P,Bits) :-
label(N,P), info_choice(T,M,Body,SoFar+P,Rest,Bits).

Figure 10: The predicate info_choice/6

probabilities of the choices of a given ground goal (Goal) relative to a general
form of the same goal (GGoal). The predicate info_choice/6 acts much like
choose/6 in Figure 8 except that it computes the negative log probability of the
choice.

5.3 The predicate condition/1

Predicate condition/1 in Figure 11 uses label/1 to condition an SLP according
to a given ground goal. The built-in predicate label/I in CProgol4.2 simply
increments an integer label associated with each clause.

The conditioner can be used to learn the parameters of a given distribution
from a given set of ground atomic clauses.

11

condition((Goall,Goal2)) :-
!, condition(Goall), condition(Goal2). % Conjunction
condition(Goal) :-

not(clause(Goal,_)), ', Goal. % System predicate
condition(Head) :-

clause(Head,Body,N), label(N),

!, condition(Body). % User predicate

Figure 11: Predicate condition/1

6 Discussion

This paper introduces stochastic logic programs as a structural description of
a learning system’s biases over the hypothesis and instance spaces. Since SLPs
seem a simple and natural extension of logic programs it is hoped that they
might find further applications within logic programming. Possible areas for
application include robotics, planning and natural language.

SLPs have been applied in the problem of learning from positive examples
only [13]. This required the implementation of the following function which
defines the generality of an hypothesis.

g(H)=>" Dx(x).

rzeH

The generality is thus the sum of the probability of all instances of hypothesis
H. Clearly such a sum can be infinite. However, if a large enough sample is
generated from Dx (implemented as an SLP) then the proportion of the sample
entailed by H gives a good approximation of g(H). CProgol4.2 (see Section 5.1)
uses an implementation of SLPs in this way for learning from positive data.

The implementations of information content and conditioning (Sections 5.2
and 5.3) are both unsatisfactory in that they assume there is only one deriva-
tion of every atom. A complete implementation would sum over all derivations.
Unfortunately, it is possible that an infinite set of derivations exist for certain
atoms. However, since the probabilities associated with such derivations de-
crease exponentially in the length of the description it may be the case that
summing over the short derivations gives good bounds for the complete sum.
This question requires further attention.

The author believes that stochastic logic programs provide an important
new representation for machine learning and logic programming.

Acknowledgements

Thanks are due to David Haussler of the University of Santa Cruz for providing

12

me with references to the literature of stochastic grammars. Thanks also for
useful discussions on the topics in this paper with Donald Michie, John Mc-
Carthy, David Page and Ashwin Srinivasan. This work was supported partly by
the Esprit Basic Resaerch Action ILP (6020), the Esprit Long-term Research
Action ILP II (LTR 20237), EPSRC grant GR/J46623 on Experimental Ap-
plication and Development of ILP, EPSRC grant GR/K57985 on Experiments
with Distribution-Based Machine Learning and an EPSRC Advanced Research
Fellowship held by the author. The author is also supported by a Research
Fellowship at Wolfson College Oxford.

References

[1] G. Boole. The Laws of Thought. MacMillan & Co., London, 1854.

[2] W.Buntine. A Theory of Learning Classification Rules. PhD thesis, School
of Computing Science, University of Technology, Sydney, 1990.

[3] R. Carnap. The logical foundations of probability. University of Chicago
Press, Chicago, 1962.

[4] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, 1981.

[5] A.P. Dempster. A generalisation of bayesian inference. Journal of the Royal
Statistical Society, Series B, 30:205-247, 1968.

[6] R.Fagin and J. Halpern. Uncertainty, belief and probability. In Proceedings
of IJCAI-89, San Mateo, CA, 1988. Morgan Kauffman.

[7] D. Haussler, M Kearns, and R. Shapire. Bounds on the sample complex-
ity of Bayesian learning using information theory and the VC dimension.
In COLT-91: Proceedings of the 4th Annual Workshop on Computational
Learning Theory, pages 61-74, San Mateo, CA, 1991. Morgan Kauffmann.

[8] K. Lari and S. J. Young. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer Speech and Language,

4:35-56, 1990.

[9] J. Lukasiewicz. Logical foundations of probability theory. In L. Berkowski,
editor, Selected works of Jan Lukasiewicz. North Holland, Amsterdam,
1970.

[10] S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

13

[11]

S. Muggleton. Bayesian inductive logic programming. In W. Cohen and
H. Hirsh, editors, Proceedings of the Eleventh International Machine Learn-
ing Conference, pages 371-379, San Mateo, CA, 1994. Morgan-Kaufmann.

S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances
in Inductive Logic Programming. 10S Press/Ohmsha, 1995.

S. Muggleton. Learning from positive data. In Proceedings of the Sizth
Inductive Logic Programming Workshop, Stockholm University, 1996.

S. Muggleton and C.D. Page. A learnability model for universal repre-
sentations. Technical Report PRG-TR-3-94, Oxford University Computing
Laboratory, Oxford, 1994.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19,20:629-679, 1994.

R. Ng and V.S. Subrahmanian. Probabilistic logic programming. Informa-
tion and Computation, 101(2):150-201, 1992.

N. Nilsson. Probabilistic logic. Artificial Intelligence Journal, 28:71-87,
1986.

L.R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

T. Sato. A statistical learning method for logic programs with distribu-
tional semantics. In L. Sterling, editor, Proceedings of the Twelth Interna-
tional conference on logic programmaing, pages 715729, Cambridge, Mas-
sachusetts, 1995. MIT Press.

G. Shafer. A mathematical theory of evidence. Princeton University Press,
Princeton, NJ, 1976.

L.G. Valiant. A theory of the learnable. Communications of the ACM,
27:1134-1142, 1984.

14

