Learning Stochastic Logic Programs

Stephen Muggleton
Department of Computer Science,
University of York,

York, YO1 5DD,

United Kingdom.

Abstract

Stochastic Logic Programs (SLPs) have been shown to be a generali-
sation of Hidden Markov Models (HMMs), stochastic context-free gram-
mars, and directed Bayes’ nets. A stochastic logic program consists of
a set of labelled clauses p:C where p is in the interval [0,1] and C is a
first-order range-restricted definite clause. This paper summarises the
syntax, distributional semantics and proof techniques for SLPs and then
discusses how a standard Inductive Logic Programming (ILP) system,
Progol, has been modified to support learning of SLPs. The resulting
system 1) finds an SLP with uniform probability labels on each defini-
tion and near-maximal Bayes posterior probability and then 2) alters the
probability labels to further increase the posterior probability. Stage 1)
is implemented within CProgol4.5, which differs from previous versions of
Progol by allowing user-defined evaluation functions written in Prolog. It
is shown that maximising the Bayesian posterior function involves finding
SLPs with short derivations of the examples. Search pruning with the
Bayesian evaluation function is carried out in the same way as in previous
versions of CProgol. The system is demonstrated with worked examples
involving the learning of probability distributions over sequences as well
as the learning of simple forms of uncertain knowledge.

1 Introduction

Representations of uncertain knowledge can be divided into a) procedural de-
scriptions of sampling distributions (eg. stochastic grammars [4] and Hidden
Markov Models (HMMs)) and b) declarative representations of uncertain state-
ments (eg. probabilistic logics [2] and Relational Bayes’ nets [3]). Stochas-
tic Logic Programs (SLPs) [10] were introduced originally as a way of lifting
stochastic grammars (type a representations) to the level of first-order Logic
Programs (LPs). Later Cussens [1] showed that SLPs can be used to represent
undirected Bayes’ nets (type b representations). SLPs are presently used [9]

to define distributions for sampling within Inductive Logic Programming (ILP)
[7].

Previous papers describing SLPs have concentrated on their procedural (sam-
pling) interpretation. This paper first summarises the semantics and proof tech-
niques for SLPs. The paper then describes a method for learning SLPs from
examples and background knowledge.

The paper is organised as follows. Section 2 introduces standard definitions
for LPs. The syntax, semantics and proof techniques for SLPs are given in Sec-
tion 3. Incomplete SLPs are shown to have multiple consistent distributional
models. Section 4 introduces a framework for learning SLPs and discusses is-
sues involved with construction of the underlying LP as well as estimation of
the probability labels. An overview of the ILP system Progol [6] is given in
Section 5. Section 6 describes the mechanism which allows user-defined evalu-
ation functions in Progol4.5 and derives the user-defined function for learning
SLPs. Worked examples of learning SLPs are then given in Section 7. Section
8 concludes and discusses further work.

2 LPs

The following summarises the standard syntax, semantics and proof techniques
for LPs (see [5]).

2.1 Syntax of LPs

A variable is denoted by an upper case letter followed by lower case letters
and digits. Predicate and function symbols are denoted by a lower case letter
followed by lower case letters and digits. A variable is a term, and a function
symbol immediately followed by a bracketed n-tuple of terms is a term. In the
case that n is zero the function symbol is a constant and is written without
brackets. Thus f(g(X), h) is a term when f, g and h are function symbols, X
is a variable and h is a constant. A predicate symbol immediately followed by a
bracketted n-tuple of terms is called an atomic formula, or atom. The negation
symbol is: —. Both a and —a are literals whenever a is an atom. In this case
a is called a positive literal and —a is called a negative literal. A clause is a
finite set of literals, and is treated as a universally quantified disjunction of those
literals. A clause is said to be unit if it contains exactly one atom. A finite set of
clauses is called a clausal theory and is treated as a conjunction of those clauses.
Literals, clauses, clausal theories, True and False are all well-formed-formulas
(wifs). A wif or a term is said to be ground whenever it contains no variables. A
Horn clause is a clause containing at most one positive literal. A definite clause
is a clause containing exactly one positive literal and is written as h < b1, .., b,
where h is the positive literal, or head and the b; are negative literals, which
together constitute the body of the clause. A definite clause for which all the

variables in the head appear at least once in the body is called range-restricted.
A non-definite Horn clause is called a goal and is written « b1, ..,b,. A Horn
theory is a clausal theory containing only Horn clauses. A definite program
is a clausal theory containing only definite clauses. A range-restricted definite
program is a definite program in which all clauses are range-restricted.

2.2 Semantics of LPs

Let 6 = {v1/t1,..,un/ts}. 6 is said to be a substitution when each v; is a variable
and each t; is a term, and for no distinct ¢ and j is v; the same as v;. Greek
lower-case letters are used to denote substitutions. @ is said to be ground when
all ¢; are ground. Let E be a wif or a term and § = {vy/t1,..,v,/tn} be a
substitution. The instantiation of E by 6, written E6, is formed by replacing
every occurrence of v; in E by t;. E6 is an instance of E. Clause C' #-subsumes
clause D, or C < D iff there exists a substitution theta such that C6 C D.

A first-order language L is a set of wifs which can be formed from a fixed
and finite set of predicate symbols, function symbols and variables. A set of
ground literals T is called an L-interpretation (or simply interpretation) in the
case that it contains either a or —a for each ground atom a in L. Let M be
an interpretation and C = h < B be a definite clause in L. M is said to be
an L-model (or simply model) of C iff for every ground instance h' < B’ of C
in L B' C M implies h' € M. M is a model of Horn theory P whenever M
is a model of each clause in P. P is said to be satisfiable if it has at least one
model and unsatisfiable otherwise. Suppose L is chosen to be the smallest first-
order language involving at least one constant and the predicate and function
symbols of Horn theory P. In this case an interpretation is called a Herbrand
interpretation of P and the ground atomic subset of L is called the Herbrand
Base of P. I is called a Herbrand model of Horn theory P when I is both
Herbrand and a model of P. According to Herbrand’s theorem P is satisfiable
iff it has a Herbrand model. Let F' and G be two wifs. We say that F' entails
G, or F |= G, iff every model of F is a model of G.

2.3 Proof for LPs

An inference rule I = F — G states that wif F' can be rewritten by wff G. We
say F' by G iff there exists a series of applications of I which transform F to G.
I is said to be sound iff for each F -y G always implies F' |= G and complete
when F' = G always implies F' by G. [is said to be refutation complete if
I is complete with G restricted to False. The substitution 6§ is said to be the
unifier of the atoms a and a’ whenever af = a'6. u is the most general unifier
(mgu) of a and a' if and only if for all unifiers v of a and o’ there exists a
substitution § such that (ap)d = ay. The resolution inference rule is as follows.
((C\{a}) U (D \ {—a'}))d is said to be the resolvent of the clauses C' and D
whenever C' and D have no common variables, a € C, —a’ € D and 6 is the

mgu of a and a’. Suppose P is a definite program and G is a goal. Resolution
is linear when D is restricted to clauses in P and C is either G or the resolvent
of another linear resolution. The resolvent of such a linear resolution is another
goal. Assuming the literals in clauses are ordered, a linear resolution is SLD
when the literal chosen to resolve on is the first in C. An SLD refutation from
P is a sequence of such SLD linear resolutions, which can be represented by
Dp¢ = (G,Ch,..,Cy) where each C; is in P and the last resolvent is the empty
clause (ie. False). The answer substitution is p,g = 6165..0,, where each 6;
is the substitution corresponding with the resolution involving C; in Dpg. If
P is range-restricted then 8p g will be ground. SLD resolution is known to be
both sound and refutation complete for definite programs. Thus for a range-
restricted definite program P and ground atom a it can be shown that P = a
by showing that P,+ a Fgrp False. The Negation-by-Failure (NF) inference
rule says that P, <+ a t/spp False implies P FsrpnF —a.

3 SLPs

3.1 Syntax of SLPs

An SLP S is a set of labelled clauses p:C where p is a probability (ie. a number
in the range [0,1]) and C is a first-order range-restricted definite clause’. The
subset S, of clauses in S with predicate symbol p in the head is called the
definition of p. For each definition S, the sum of probability labels 7, must
be at most 1. S is said to be complete if 7, = 1 for each p and incomplete
otherwise. P(S) represents the definite program consisting of all the clauses in
S, with labels removed.

Example 1 Unbiased coin. The following SLP is complete and represents a
coin which comes up either heads or tails with probability 0.5.

g = 0.5 : coin(head) +
L7 0.5 : coin(tail) +

S is a simple example of a sampling distribution?.
Example 2 Pet example. The following SLP is incomplete.

g = 0.3: likes(X,Y) «+ pet(Y, X),pet(Z, X),
2= cat(Y), mouse(Z)

Sy shows how statements of the form Pr(P(Z)|Q (%)) = p can be encoded within
an SLP, in this case Pr(likes(X,Y)|...)) = 0.3.

LCussens [1] considers a less restricted definition of SLPs.

2Section 7 provides a more complex sampling distribution a language by attaching prob-
ability labels to productions of a grammar. The grammar is encoded as a range-restricted
definite program.

3.2 Proof for SLPs

A Stochastic SLD (SSLD) refutation is a sequence Dg,¢ = (1:G, p1:C1, .., pn:Ch)
in which G is a goal, each p;:C; € S and Dp(g), g = (G,C1,..,Cy) is an SLD
refutation from P(S). SSLD refutation represents the repeated application of
the SSLD inference rule. This takes a goal p:G and a labelled clause ¢:C' and
produces the labelled goal pq:R, where R is the SLD resolvent of G and C. The
answer probability of Ds g is Q(Ds,¢) = [[;—; pi- The incomplete probability
of any ground atom a with respect to S is Q(a|S) = ZDS,(H) Q(Ds,(a)). We
can state this as S Fssrp Q(alS) < Pr(alS) <1, where Pr(a|S) represents the
conditional probability of a given S.

Remark 3 Incomplete probabilities. If a is a ground atom with predicate
symbol p and the definition Sp in SLP S is incomplete then Q(a|S) < mp.
Proof. Suppose the probability labels on clauses in Sy, are py, .., p, then Q(a|S) =
P1q1 + - + pnqn where each q; is a sum of products for which 0 < q; < 1. Thus
Q(G|S) <Spr+.+pn= Tip-

3.3 Semantics of SLPs

In this section we introduce the “normal” semantics of SLPs. Suppose L is a
first-order language and D, is a probability distribution over the ground atoms
of pin L. If I is a vector consisting of one such D,, for every pin L then [is called
a distributional L-interpretation (or simply interpretation). If a € L is an atom
with predicate symbol p and I is an interpretation then I(a) is the probability
of a according to D, in I. Suppose L is chosen to be the smallest first-order
language involving at least one constant and the predicate and function symbols
of Horn theory P(S). In this case an interpretation is called a distributional
Herbrand interpretation of S (or simply Herbrand interpretation).

Definition 4 An interpretation M is a distributional L-model (or simply model)
of SLP S iff Q(alS) < M(a) for each ground atom a in L3.

Again if M is a model of S and M is Herbrand with respect to S then M is a
distributional Herbrand model of S (or simply Herbrand model).

Example 5 Models.

_{ 05p(X) « ¢(X)
S—{ 050(a) }

31t might seem unreasonable to define semantics in terms of proofs in this way. However,
it should be noted that Q(a|S) represents a potentially infinite summation of the probabilities
of individual SSLD derivations. This is analogous to defining the satisfiability of a first-order
formula in terms of an infinite boolean expression derived from truth tables of the connectives

Q(p(a)|S) = 0.25 and Q(g(a)|S) = 0.5. L has predicate symbols p,q and con-
stant a,b.

I; is a model of S.

I, is not a model of S.

Suppose S, T are SLPs. As usual we write S |= T iff every model of S is a model
of T.

4 Learning SLPs

4.1 Bayes’ function

This section describes a framework for learning a complete SLP S from examples
E based on maximising Bayesian posterior probability p(S|E). Below it is
assumed that E consists of ground unit clauses. The posterior probability of S
given E can be expressed using Bayes’ theorem as follows.

p(S)p(E|S)

p(sim) = P20

(1)
p(S) represents a prior probability distribution over SLPs. If we suppose (as is
normal) that the e; are chosen randomly and independently from some distri-
bution D over the instance space X then p(E|S) = [, p(e;|S). We assume
that p(e;|S) = Q(e;|S) (see Section 3.2). p(E) is a normalising constant. Since
the probabilities involved in the Bayes’ function tend to be small it makes sense
to re-express Equation 1 in information-theoretic terms by applying a negative
log transformation as follows.

—logap(S|E) = —logap(S) — Z[loggp(eﬂS)] +c (2)

Here —logop(S) can be viewed as expressing the size (number of bits) of S.
The quantity — ;" [logap(e;|S)] can be viewed as the sum of sizes (number of
bits) of the derivations of each e; from S. ¢ is a constant representing logsp(E).
Note that this approach is similar to that described in [9], differing only in the
definition of p(e;|S). The approach in [9] uses p(e;|S) to favour LP hypotheses
with low generality, while Equation 2 favours SLP hypotheses with a low mean
derivation size. Surprisingly this makes the Bayes’ function for learning SLPs
appropriate for finding LPs which have low time-complexity with respect to the
examples. For instance, this function would prefer an SLP whose underlying LP

represented quick-sort over one whose underlying LP represented insertion-sort
since the mean proof lengths of the former would be lower than those of the
latter.

4.2 Search strategy

The previous subsection leaves open the question of how hypotheses are to be
constructed and how search is to be ordered. The approach taken in this paper
involves two stages.

1. LP construction. Choose an SLP S with uniform probability labels on
each definition and near maximal posterior probability with respect to E.

2. Parameter estimation. Vary the labels on S to increase the posterior
probability with respect to E.

Progol4.5 is used to implement the search in Stage 1. Stage 2 is implemented
using an algorithm which assigns a label to each clause C' in S according to the
Laplace corrected relative frequency with which C is involved in proofs of the
positive examples in E.

4.3 Limitations of strategy

The overall strategy is sub-optimal in the following ways: a) the implementation
of Stage 1 is approximate since it involves a greedy clause-by-clause construction
of the SLPs, b) the implementation of Stage 2 is only optimal in the case that
each positive example has a unique derivation.

5 Overview of Progol

ILP systems take LPs representing background knowledge B and examples E
and attempt to find the simplest consistent hypothesis H such that the following
holds.

BAHEE (3)

This section briefly describes the Mode Directed Inverse Entailment (MDIE)
approach used in Progol [6]. Equation 3 is equivalent for all B, H and E to the
following.

BANEEH
Assuming that H and E are ground and that L is the conjunction of ground
literals which are true in all models of B A E we have the following.

BAEEL

Since H is true in every model of B A E it must contain a subset of the ground
literals in L. Hence .
BAEEL1LEH
and so for all H
HE1 (4)

The set of solutions for H considered by Progol is restricted in a number of ways.
Firstly, L is assumed to contain only one positive literal and a finite number of
negative literals. The set of negative literals in L is determined by mode decla-
rations (statements concerning the input/output nature of predicate arguments
and their types) and user-defined restrictions on the depths of variable chains.

Progol uses a covering algorithm which repeatedly chooses an example e,
forms an associated clause L and searches for the clause which maximises the
information compression within the following bounded sub-lattice.

O<H=<1

The hypothesised clause H is then added to the clause base and the examples
covered by H are removed. The algorithm terminates when all examples have
been covered. In the original version of Progol (CProgol4.1) [6] the search for
each clause H involves maximising the ‘compression’ function

f=@—(c+n+h)

where p and n are the number of positive and negative examples covered by H,
¢ is the number of literals in H, and A is the minimum number of additional
literals required to complete the input/output variable chains in H (computed
by considering variable chains in 1). In later versions of Progol the following
function was used instead to reduce the degree of greediness in the search.

f=%<p—<c+n+h)) (5)

This function estimates the overall global compression expected of the final
hypothesised set of clauses, extrapolated from local coverage and size properties
of the clause under construction. A hypothesised clause H is pruned, together
with all its more specific refinements, if either

C
1--<0 6
s (6)

or there exists a previously evaluated clause H' such that H' is an accept-
able solution (covers below the noise threshold of negative examples and the
input/output variable chains are complete) and
/ ! hl
1= ¢ <1- %
p p

where p, ¢ are associated with H and p’,n’,c', h' are associated with H'.

(7)

Variable | Built-in User-defined

D pos_cover(P1) | user_pos_cover(P2)
n neg_cover(N1) | user_neg_cover(N2)
c hyp_size(C1) | user_hyp_size(C2)
h hyp.rem(H1) | user_hyp.rem(H2)

Figure 1: Built-in and user defined predicates for some of the variables from
Equation 5.

6 User-defined evaluation in Progol4.5

User-defined evaluation functions in Progol4.5 are implemented by allowing re-
definition in Prolog of p, n and ¢ from Equation 5. Figure 1 shows the con-
vention for names used in Progol4.5 for the built-in and user-defined functions
for these variables. Though this approach to allowing definition of the evalu-
ation function is indirect, it means that the general criteria used in Progol for
pruning the search (see Inequalities 6 and 7) can be applied unaltered as long
as user_pos_cover and user_neg_cover monotonically decrease and user_hyp_size
monotonically increases with downward refinement (addition of body literals) to
the hypothesised clause. For learning SLPs these functions are derived below.
Equation 2 can be rewritten in terms of an information function I as

m
I(S|B) = I(S) =Y _ I(eilS) + ¢ (8)
i=1
where I(x) = —log,z. The degree of compression achieved by an hypothesis is

computed by subtracting I(S|E) from I(S' = E|E), the posterior information
of the hypothesis consisting of returning ungeneralised examples.

Il

I(S' = E|E) I(E)+I(E|S'=E)+c

= m+mlogym+c

= m(l+logy,m) +c (9)
The compression induced by S with respect to E is now simply the difference
between Equations 9 and 8, which is as follows.

m

m(1 + logym) — I(S) + z I(e;S)
= (o1 +logym) — I(H) + 3~ I(es H)) (10)

Examples class(dog,mammal).
class(trout,fish).

Background | has_covering(dog,hair).
knowledge .
has_legs(dolphin,0).

Figure 2: Examples and background knowledge for animal taxonomy.

In Equation 10 extrapolation is made from the p positive examples covered
by hypothesised clause H. Comparing Equations 5 and 10 the user-defined
functions of Figure 1 are as follows (p,n,c, h represent built-in functions and
p',n', ', h' represent their user-defined counter-parts).

p" = p(1+]logym) (11)
n' = Z I(ej|H) +n
j=1
d = ¢
K = h

7 Worked examples

The source code of Progold.5 together with the input files for the following
worked examples can be obtained from ftp://ftp.cs.york.ac.uk/pub/mlg/progold.5/

7.1 Animal taxonomy

Figure 2 shows the examples and background knowledge for an example set
which involves learning taxonomic descriptions of animals. Following Stage 1
(Section 4.2) the SLP constructed has uniform probability labels as follows*.

0.200: class(A,reptile) :-

has_legs(A,4), has_eggs(A).
0.200: class(A,mammal) :- has_milk(A).
0.200: class(A,fish) :- has_gills(4).
0.200: class(A,reptile) :-

4For this example and the next the value of p’ (Equation 11) was increased by a factor of
4 to achieve positive compression

10

Examples s([the,man,walks,the,dog],[]).
s([the,dog,walks,to,the,man],[]).

Background | np(S1,52) :- det(S1,S3), noun(S3,52).
knowledge ...
noun([man|S],S).

Figure 3: Examples and background knowledge for Simple English Grammar.

has_legs(A,0), habitat(A,land).
0.200: class(A,bird) :-
has_covering(A,feathers).

Following Stage 2 the labels are altered as follows to reflect the distribution of
class types within the training data.

0.238: class(A,reptile) :-
has_legs(A,4), has_eggs(A).
0.238: class(A,mammal) :- has_milk(A).
0.238: class(A,fish) :- has_gills(4).
0.095: class(A,reptile) :-
has_legs(A,0), habitat(A,land).
0.190: class(A,bird) :-
has_covering(A,feathers).

7.2 Simple English grammar

Figure 3 shows the examples and background knowledge for an example set
which involves learning a simple English grammar. Following Stage 2 the learned
SLP is as follows.

0.438: s(A,B) :- np(A,C), vp(C,D),
np(D,B).

0.562: s(A,B) :- np(A,C), verb(C,D),
np(D,E), prep(E,F), np(F,B).

8 Conclusion
This paper describes a method for learning SLPs from examples and background

knowledge. The method is based on an approximate Bayes MAP (Maximum
A Posterior probability) algorithm. The implementation within Progol4.5 is

11

efficient and produces meaningful solutions on simple domains. However, as
pointed out in Section 4.3 the method does not find optimal solutions.

The author views the method described as a first attempt at a hard problem.
It is believed that improvements to the search strategy can be made. This is an
interesting topic for further research.

The author believes that learning of SLPs is of potential interest in all do-
mains in which ILP has had success [7]. In these domains it is believed that
SLPs would the advantage over LPs of producing predictions with attached de-
grees of certainty. In the case of multiple predictions, the probability labels
would allow for relative ranking. This is of particular importance for Natural
Language domains, though would also have general application in Bioinformat-
ics [8].

Acknowledgements

The author would like to thank Wray Buntine, David Page, Koichi Furukawa and
James Cussens for discussions on the topic of Stochastic Logic Programming.
Many thanks are due to my wife, Thirza and daughter Clare for the support
and happiness they give me. This work was supported partly by the Esprit
RTD project “ALADIN’ (project 28623), EPSRC grant “Closed Loop Machine
Learning”, BBSRC/EPSRC grant “Protein structure prediction - development
and benchmarking of machine learning algorithms” and EPSRC ROPA grant
“Machine Learning of Natural Language in a Computational Logic Framework”.

References

[1] J. Cussens. Loglinear models for first-order probabilistic reasoning. In
Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence, pages 126-133, San Francisco, 1999. Kaufmann.

[2] R. Fagin and J. Halpern. Uncertainty, belief and probability. In Proceedings
of IJCAI-89, San Mateo, CA, 1989. Morgan Kauffman.

[3] M. Jaeger. Relational bayesian networks. In Proceedings of the Thirteenth
Annual Conference on Uncertainty in Artificial Intelligence, San Francisco,
CA, 1997. Kaufmann.

[4] K. Lari and S. J. Young. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer Speech and Language,
4:35-56, 1990.

[5] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1987. Second edition.

12

[6] S. Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245-286, 1995.

[7] S. Muggleton. Inductive logic programming: issues, results and the LLL
challenge. Artificial Intelligence, 114(1-2):283-296, December 1999.

[8] S. Muggleton. Scientific knowledge discovery using inductive logic program-
ming. Communications of the ACM, 42(11):42-46, November 1999.

[9] S. Muggleton. Learning from positive data. Machine Learning, 2000. Ac-
cepted subject to revision.

[10] S.H. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Ad-
vances in Inductive Logic Programming, pages 254-264. I0S Press, 1996.

13

