Semantics and derivation for Stochastic L ogic Programs

Stephen Muggleton
Department of Computer Science,
University of York,

York, YO1 5DD,

United Kingdom.

Abstract

Stochastic Logic Programs (SLPs) are a gener-
alisation of Hidden Markov Models (HMMs),
stochastic context-free grammars, and undirected
Bayes’ nets. A pure stochastic logic program
consists of a set of labelled clauses p:C' where
p is in the interval [0,1] and C is a first-order
range-restricted definite clause. SLPs have appli-
cations both as mechanisms for efficiently sam-
pling from a given distribution and as representa-
tions for probabilistic knowledge. This paper dis-
cusses a distributional semantics for SLPs. Ad-
ditionally two derivational mechanisms are in-
troduced and analysed. These are 1) stochas-
tic SLD (Selection-function-Linear-resolution-
for-Definite-clauses) refutation and 2) a program
for enumerating the least Herbrand distributional
model of an SLP in descending order. It is shown
that as with logic programs unfolding transfor-
mations preserve the models of an SLP. Lastly,
we discuss how Bayes’ Theorem might be used
to devise algorithms for learning SLPs.

1 Introduction

Representations of uncertain knowledge can be divided
into a) procedural descriptions of sampling distributions
(eg. stochastic grammars (Lari and Young, 1990) and Hid-
den Markov Models (HMMs)) and b) declarative repre-
sentations of uncertain statements (eg. probabilistic log-
ics (Fagin and Halpern, 1989) and Relational Bayes’ nets
(Jaeger, 1997)). Stochastic Logic Programs (SLPs) (Mug-
gleton, 1996) were introduced originally as a way of lift-
ing stochastic grammars (type a representations) to the
level of first-order Logic Programs (LPs). Later Cussens
(Cussens, 1999) showed that SLPs can be used to represent
undirected Bayes’ nets (type b representations). SLPs are
presently used (Muggleton, 1999b) to define distributions
for sampling within Inductive Logic Programming (ILP)

[LP [SLP

Definite clause Labelled definite clause

Interpretation Distributional interpretation

Model Distribution model

Closed world model | i) Normalised distribution

ii) NF distribution

SLD refutation Stochastic SLD refutation

Enumeration of Descending enumeration of

success-set distribution

Figure 1: Correspondence between LPs and SLPs

(Muggleton, 1999a).

Previous papers describing SLPs have concentrated on
their procedural (sampling) interpretation. This paper aims
at providing semantics and proof techniques for SLPs anal-
ogous to those of LPs. Table 1 shows the correspondences
established in this paper between LPs and SLPs.

The paper is organised as follows. Section 2 introduces
standard definitions for LPs. Existing syntax and proof
techniques for SLPs are given in Section 3 followed by
the new distributional semantics. Incomplete SLPs are
shown to have multiple consistent distributional models.
In Section 4 two distinct “completion” techniques, Nor-
malised and Negation-by-Failure (NF) are discussed which
lead to unique distributional models for SLPs. In Sec-
tion 5 an algorithm for stochastic sampling of SLD refu-
tations is shown to be sound and complete with respect to
Normalised models. A program is then given in Section
6 which allows the enumeration of ground atomic conse-
quences of an SLP in descending probability order. The
program can be adapted for either the Normalised or NF
models of SLPs. In Section 7 it is shown that unfold trans-
formations preserve the semantics of SLPs. Section 8 con-
cludes and discusses further work including the prospects
of algorithms for learning SLPs from data.

2 LPs

The following summarises the standard syntax, semantics
and proof techniques for LPs (see (Lloyd, 1987)).

2.1 Syntax of LPs

A variable is denoted by an upper case letter followed by
lower case letters and digits. Predicate and function sym-
bols are denoted by a lower case letter followed by lower
case letters and digits. A variable is a term, and a func-
tion symbol immediately followed by a bracketed n-tuple
of terms is a term. In the case that n is zero the func-
tion symbol is a constant and is written without brackets.
Thus f(g(X),h) is a term when f, g and h are function
symbols, X is a variable and h is a constant. A predicate
symbol immediately followed by a bracketted n-tuple of
terms is called an atomic formula, or atom. The negation
symbol is: —. Both a and —a are literals whenever a is
an atom. In this case a is called a positive literal and —a
is called a negative literal. A clause is a finite set of lit-
erals, and is treated as a universally quantified disjunction
of those literals. A finite set of clauses is called a clausal
theory and is treated as a conjunction of those clauses.
Literals, clauses, clausal theories, True and False are all
well-formed-formulas (wffs). A wff or a term is said to be
ground whenever it contains no variables. A Horn clause is
a clause containing at most one positive literal. A definite
clause is a clause containing exactly one positive literal and
is written as h « by, .., b, Where h is the positive literal,
or head and the b; are negative literals, which together con-
stitute the body of the clause. A definite clause for which
all the variables in the head appear at least once in the body
is called range-restricted. A non-definite Horn clause is
called a goal and is written « b4, ..,b,. A Horn theory
is a clausal theory containing only Horn clauses. A def-
inite program is a clausal theory containing only definite
clauses. A range-restricted definite program is a definite
program in which all clauses are range-restricted.

2.2 Semantics of LPs

Let 8 = {v1/t1,..,vn/tn}. 6 is said to be a substitution
when each v; is a variable and each ¢; is a term, and for
no distinct ¢ and j is v; the same as v;. Greek lower-
case letters are used to denote substitutions. @ is said to
be ground when all ¢; are ground. Let E be a wff or a term
and 8 = {v1/t1,..,v,/ts} be a substitution. The instanti-
ation of E by 6, written E0, is formed by replacing every
occurrence of v; in E by ¢;. E is an instance of E.

A first-order language L is a set of wffs which can be
formed from a fixed and finite set of predicate symbols,
function symbols and variables. A set of ground literals
I is called an L-interpretation (or simply interpretation) in
the case that it contains either a or —a for each ground atom

ain L. Let M be an interpretationand C = h «+ B be a
definite clause in L. M is said to be an L-model (or simply
model) of C iff for every ground instance b’ «+ B’ of C
in L B" C M implies ' € M. M is a model of Horn
theory P whenever M is a model of each clause in P. P is
said to be satisfiable if it has at least one model and unsat-
isfiable otherwise. Suppose L is chosen to be the smallest
first-order language involving at least one constant and the
predicate and function symbols of Horn theory P. In this
case an interpretation is called a Herbrand interpretation of
P and the ground atomic subset of L is called the Herbrand
Base of P. I is called a Herbrand model of Horn theory
P when I is both Herbrand and a model of P. According
to Herbrand’s theorem P is satisfiable iff it has a Herbrand
model. Let F' and G be two wffs. We say that F' entails G,
or F' = G, iff every model of F' is a model of G.

2.3 Proof for LPs

An inference rule I = F — G states that wff F' can be
rewritten by wff G. We say F' ; G iff there exists a se-
ries of applications of T which transform F' to G. I is said
to be sound iff for each F' F; G always implies F' = G
and complete when F' = G always implies F +; G. T
is said to be refutation complete if I is complete with G
restricted to False. The substitution @ is said to be the uni-
fier of the atoms a and a’ whenever af = a'6. pu is the
most general unifier (mgu) of a and a' if and only if for
all unifiers v of a and o’ there exists a substitution & such
that (ap)d = av. The resolution inference rule is as fol-
lows. ((C\{a})U(D\{-a'}))d is said to be the resolvent
of the clauses C and D whenever C' and D have no com-
mon variables, a € C, —a’ € D and 6 is the mgu of a
and a'. Suppose P is a definite program and G is a goal.
Resolution is linear when D is restricted to clauses in P
and C' is either G or the resolvent of another linear reso-
lution. The resolvent of such a linear resolution is another
goal. Assuming the literals in clauses are ordered, a linear
resolution is SLD when the literal chosen to resolve on is
the first in C'. An SLD refutation from P is a sequence of
such SLD linear resolutions, which can be represented by
Dpg ={(G,Ch,..,Cy,) where each C; is in P and the last
resolvent is the empty clause (ie. False). The answer substi-
tution is 8p,¢ = 616-..6,, where each ; is the substitution
corresponding with the resolution involving C; in Dpg. If
P is range-restricted then 6 p,¢ will be ground. SLD reso-
lution is known to be both sound and refutation complete
for definite programs. Thus for a range-restricted definite
program P and ground atom a it can be shown that P |= a
by showing that P,« a Fgrp False. The Negation-by-
Failure (NF) inference rule says that P, «+ a l/srp False
implies P I_SLDNF Q.

3 SLPs

3.1 Syntax of SLPs

An SLP S is a set of labelled clauses p:C where p is a
probability (ie. a number in the range [0,1]) and C is a
first-order range-restricted definite clause!. The subset S,
of clauses in S with predicate symbol p in the head is called
the definition of p. For each definition S, the sum of prob-
ability labels 7, must be at most 1. S is said to be complete
if m, = 1 for each p and incomplete otherwise. P(S) rep-
resents the definite program consisting of all the clauses in
S, with labels removed.

Example 1 Unbiased coin. The following SLP is com-
plete and represents a coin which comes up either heads
or tails with probability 0.5.

g = 0.5 : coin(head) +
L7 0.5: coin(tail)

S; is a simple example of a sampling distribution?.

Example 2 Pet example. The following SLP is incom-
plete.

g = 0.3:likes(X,Y) « pet(Y,X),pet(Z,X),
2= cat(Y'), mouse(Z)

Sa shows how statements of the form Pr(P(Z)|Q (%)) =
p can be encoded within an SLP, in this case
Pr(likes(X,Y)]...)) = 0.3.

3.2 Proof for SLPs

A Stochastic SLD (SSLD) refutation is a sequence Dg ¢ =
(1:G,p1:C1, .., pn:Cy) in which G is a goal, each p;:C; €
S and Dpsy,a = (G,Ch,..,Cy) is an SLD refutation
from P(S). SSLD refutation represents the repeated ap-
plication of the SSLD inference rule. This takes a goal p:G
and a labelled clause ¢:C and produces the labelled goal
pq:R, where R is the SLD resolvent of G and C. The an-
swer probability of Dg ¢ is Q(Ds,¢) = [Ii;pi. The
incomplete probability of any ground atom a with respect
to Sis Q(alS) = ZDS,(H) Q(Ds,(+~a))- We can state
thisas S Fssrp @(alS) < Pr(a|S) < 1, where Pr(alS)
represents the conditional probability of a given S.

Remark 3 Incomplete probabilities. If a is a ground
atom with predicate symbol p and the definition S, in SLP

! Cussens (Cussens, 1999) considers aless restricted defi nition
of SLPs.

2A more complex sampling distribution example might defi ne
a probability distribution over a language by attaching probabil-
ity labels to productions of a grammar. The grammar could be
encoded as arange-restricted defi nite program.

S is incomplete then Q(a|S) < .

Proof. Suppose the probability labels on clauses in S, are
P1,--,Pn then Q(alS) = pig1 + .. + prg, Where each
g; 1s a sum of products for which 0 < ¢; < 1. Thus
Q(a|5) <pi+..+pp=7p

3.3 Semantics of SLPs

In this section we introduce the “normal” semantics of
SLPs. Suppose L is a first-order language and D,, is a prob-
ability distribution over the ground atoms of pin L. If I is
a vector consisting of one such D,, for every p in L then I
is called a distributional L-interpretation (or simply inter-
pretation). If a € L is an atom with predicate symbol p
and I is an interpretation then I(a) is the probability of a
according to D), in I. Suppose L is chosen to be the small-
est first-order language involving at least one constant and
the predicate and function symbols of Horn theory P(S).
In this case an interpretation is called a distributional Her-
brand interpretation of S (or simply Herbrand interpreta-
tion).

Definition 4 An interpretation M is a distributional L-
model (or simply model) of SLP S iff Q(a|S) < M (a) for
each ground atom a in L3,

Again if M isamodel of S and M is Herbrand with respect
to S then M is a distributional Herbrand model of S (or
simply Herbrand model).

Example 5 Models.

[0.5:p(X) « ¢g(X)
s _{ O.S:Z(a) +— ! }

Q(p(a)|S) = 0.25 and Q(q(a)|S) = 0.5. L has predicate
symbols p, ¢ and constant a, b.

_ / {Ll:p(a),0:p(b)}
11‘<{1:q(a),o:q<b) >

I; is amodel of S.

_ / {0.1:p(a),0.9:p(b)}
L= < {0.5:9(a),0.5:q(b) >

I is not a model of S.

Suppose S, T are SLPs. As usual we write S |= T iff every
model of S is a model of T'.

31t might seem unreasonable to defi ne semantics in terms of
proofsin thisway. However, it should be noted that Q(a|S) rep-
resents a potentially infi nite summation of the probabilities of in-
dividual SSLD derivations. Thisis analogous to defi ning the sat-
isfi ability of afi rst-order formula in terms of an infi nite boolean
expression derived from truth tables of the connectives

4 Completion of SLPs

If we intend to use an incomplete SLP S either for sam-
pling or for a predictive task then, as with LPs, it is nec-
essary to apply some form of completion to .S in order to
identify a unique model. In the case of LPs there is a unique
least Herbrand model. The situation is somewhat different
with SLPs since there is no analogue of the model inter-
section property (Proposition 6.1 in (Lloyd, 1987)). We
suggest two alternative completion strategies, Normalised
and NF completion. These would appear to have advan-
tages to sampling and uncertain knowledge representations
respectively.

4.1 Normalised completion

Suppose S is an incomplete SLP, Bg is the Herbrand
Base of P(S) and B, is the subset of Bg with predicate
symbol p. For each predicate symbol p in S let Q, =
> acn, @(alS). Now for any ground atom a in Bs with
predicate symbol p the normalised Herbrand interpretation
of S is defined as follows.

SNorm(a) = Q(SLS)

Theorem 6 Sygrm is @ Herbrand model of S.

Proof. According to Definition 4 Sy\orm (@) is a Herbrand
model of S iff S\orm (@) is both a Herbrand interpretation
and Q(a|S) < SNorm(a) for each ground atom a in Bs.
SNorm (@) is a Herbrand interpretation since ¢, acts as a
normalising constant for each subset B,, of Bg. Further-
more Q(alS) < SNorm(a) = %}'95) since @, < 1. This
completes the proof.

4.2 NF completion

Negation-by-Failure (NF) completion is analogous to the
use of NF in LPs. In this case we alter the semantics
of SLPs introduced in Section 3.3 in two ways. Firstly
we drop the requirement that each D,, in an interpretation
I should be a probability distribution. Secondly we in-
troduce the requirement that if a is a ground atom then
I(-a) = 1 — I(a). Otherwise the definitions in Section
3.3 remain as they are. This gives us what we will call the
NF semantics of SLPs.

Now for any ground literal [whose atom a is in Bg the NF
Herbrand interpretation of S is defined as follows.

Q(als)
SNF(D) = {)

if I=a
otherwise

Example 7

0.2: fish(X) « legs(X,0)
S =< 0.1:reptile(X) « legs(X,0)
0.9 : legs(eel, 0) «

a SNE(a) | SNE(—a)
legs(eel,0) | 0.9 0.1
fish(eel) 0.18 0.82
reptile(eel) | 0.09 0.91

Figure 2: Probabilities assigned to ground atoms in Exam-
ple 7

The table in Figure 7 gives the probability assigned to var-
ious literals by S\E.

5 Stochastic SLD algorithm

The following algorithm either randomly constructs and re-
turns an SLD refutation or fails.

Algorithm 8 Algorithm for sampling SSLD refutations.
Given incomplete SLP S and goal G =< a where a is an
atom.

1. Partial-refutation := (1:G).

2. Let p be the predicate symbol of a and S, the defini-
tionofpin S.

3. Let r:R be the last SSLD-resolvent of Partial-
refutation.

4. If Ris the empty clause then return Partial-refutation.
5. With probability 1 — 7, Fail.

6. Randomly choose a clause ¢:C' from S, with proba-
bilities proportional to the distribution of labels in Sj,.

7. If Rand C have an SLD resolvent then append ¢:C' to
Partial-refutation and Goto 3.

8. Falil.

We now show some properties concerning the correctness
of Algorithm 8.

Theorem 9 Algorithm 8 returns the SSLD refutation
Dse = (1:G, p1:C1, ..,pn:Cp) with probability
Q(Ds,c) = [Tiz, pi-

Proof. By induction on n. In the base case n = 1 and
Dg ¢ = (1:G, p1:Cy). The algorithm would return this by
traversing steps 1-7 and then step 3 terminating on 4. Since
the transition between steps 5 and 6 would be traversed
with probability 7, and p; :C; would be chosen with prob-
ability ﬁ—; the overall probability of returning Dg ¢ would
be py, which proves the base case. The hypothesis is that
the theorem is true for n < k. Now we prove that the
theorem is consequently true for n = k + 1. Thus we as-
sume that we have correctly iterated steps 3-7 & times with-
out exiting. Thus Partial-refutation is now (1:G, p;:C1,

.., Pk :Cr) when we Goto step 3. Once more steps 5,6 would
be traversed with probability 7, and p1:Cj+1 Would be
chosen with probability %. Thus the overall probability
of returning Dg,¢ = (1:G, p1:Ch, .., Pr+1:Cry1) Would
be pr41 Hle pi. This proves the step and completes the
proof.

Corollary 10 If a is a most general atom p(v1, .., v,,) in
which the v; are all distinct then Algorithm 8 Fails with
probability 1 — Q.

Proof. Follows trivially from Theorem 9 and the definition

of Qp.

Note that if the failure probability 1 — @, of an SLP ap-
proaches 1 Algorithm 8 will rarely succeed.

6 Descending enumeration program

Algorithm 8 is unlike normal SLD-refutation-based Prolog
interpreters in that it does not backtrack, and does not give
a systematic enumeration of proofs for the given goal. The
program in this section is more like a standard Prolog in-
terpreter in these ways. The program returns ground atoms
from the SLP S in descending order of their probability ac-
cording to either the Normalised or NF interpretation of S
(note that the order imposed by probabilities in these two
interpretations is identical). In many applications, such as
diagnosis, it is expected that such a descending enumera-
tion would be informative to the user.

The task of the program might at first seem trivial. How-
ever, any ground atom a may have an arbitrarily large (even
infinite) number of associated refutations. In order to out-
put a in the series we need to be able to decide, after having
considered only a finite number of its refutations, whether
a has the highest probability of all remaining atoms. Thus
suppose R is a finite subset of the refutations of the gen-
eral goal G =« g on SLP S. Let Py be the sum of the
probabilities of all refutations in R and Qr = 1 — Pg.
Suppose 4,, 8, are among the ground answer substitutions
in Rwhere a = g6, and b = g6y. Let p,, py be the summed
probabilities of the refutations in R with answer substitu-
tions 6,, 6, respectively. Clearly there exist probabilities

qa> @ SUCh that p, + g, = Q(alS) and py + g» = Q(b|S).

Remark 11 p, > py + Qg implies Q(a|S) > Q(b|S).
Proof. p, > py + Qg implies p, + qo > pp + QR since
da > 0. pa+qa > pp+Qr implies p, +ga > pp+gp Since
Qr > . Thus Q(alS) > Q(b]S) since pu +qa = Q(alS)
and pp + g, = Q(b|S). This completes the proof.

In the following descending enumeration program the
depth d of an SSLD refutation is simply its sequence length
minus 1, R, is the set of all SSLD refutations of the goal
G of depth at most d and @ 4(a|S) is the summed probabil-
ity of refutations in R4 with answer substitution 8,, where

a = gb,.
Program 12 Descending enumeration of distribution.

Given SLP S and goal G =« ¢
d := 0 and SeenAtoms := ()
Forever
Let AtomQueue be the list of all (¢, Q4(c|S))
pairs sorted in descending order of @ 4(c|.S)
where c is not in SeenAtoms.
Let Pg,q be the sum of probabilities of all
refutations in Ry.
Let QR,d =1- PR,d-
While not empty AtomQueue
(a, po) := Pop(AtomQueue)
If (empty AtomQueue and p, > @ r,q) OF
({b, pp) :=Head(AtomQueue) and
Pa > Py + QR,q) then

Printa
SeenAtoms := SeenAtoms U{a}
Else Break
EndWhile
d:=d+1

Loop

The following theorem concerns the correctness of Pro-
gram 12.

Theorem 13 Given any SLP S and goal G =« g if Al-
gorithm 12 prints atom ¢ after having printed atom a then
Q(alS) > Q(cl9).

Proof. Assume false. Thus assume Algorithm 12 prints
atom c after having printed atom a and Q(c|S) > Q(alS).
Now consider the point in the program at which a is
printed. To have reached this point it must be the case that
either i) {(a,p,) was alone in the queue and p, > Qrq
or ii) the second element of the queue was (b, py) and p, >
by + Qr,q. Butifi) is the case then either c is in SeenAtoms
which contradicts the assumption or Q4(c|S) = p. = 0in
which case according to Remark 11 Q(alS) > Q(c|S),
which again contradicts the assumption. Thus ii) must
be the case. However in this case again either ¢ is in
SeenAtoms, which has already been discounted, or ¢ = b,
or or ¢ is later in the queue than b, or Q4(c|S) = p. = 0.
The last three cases contradict Remark 11. This contradicts
the assumption and completes the proof.

The author has no proof for the “only if” counterpart of this
theorem.

7 Unfold transfor mations

In this section we discuss how unfold program transforma-
tions can be applied to SLPs.

Definition 14 Unfold.
S be a labelled clause.

Let S be an SLP and p:C €
Let Up:c,s = {pq:R|¢:D €

S, R resolventof C, D}. Now S’ = S\ {p:C} U Up:c,s
is called the unfold of S on p:C.

As with logic programs unfold tranformations preserve the
semantics of SLPs.

Theorem 15 Let S be an SLP and p:C € S be a labelled
clause. Every model of SLP S is a model of S’, the unfold
of S on p:C.

Proof. It is sufficient to note that for every SSLD refuta-
tion Dg.¢ = (1:G, p1:C1, p;:C,piy1:D, .., p,:Cy) from
S there is a corresponding SSLD refutation Dg' ¢ = (1:G,
p1:C1, pipiy1:R, .., pr:Cy) from S’ with the same answer
probability. From this it follows that Q(a|S) = Q(alS")
for all atoms a and thus S has the same models as S’ ac-
cording to Definition 4.

The following is a simple example involving unfolding an
SLP defining an exponential decay distribution over the
natural numbers.

Example 16

| 0.5:nat(0) «
5= { 0.5 + mat(s(X)) < nat(X) }

We now perform an unfold on the second labelled clause to
give the following SLP.

0.5 : nat(0)
S' =< 0.25:nat(s(0)) «

(s(
0.25 : nat(s(s(X))) < nat(X)

—_—

S’ represents the same distribution over the natural num-
bersas S.

8 Conclusion

This paper is the first to provide a rigorous semantics
for SLPs. SLPs have been used in Inductive Logic Pro-
gramming to allow efficient sampling from the Herbrand
Base. SLPs differ from Probabilistic Logic Programs (Ng
and Subrahmanian, 1992) and other Probabilistic Log-
ics (Hailperin, 1984; Fagin and Halpern, 1989) which
base their semantics on distributions over models. How-
ever examples 2 and 7 show that SLPs can be used for
representing uncertain first-order knowledge of the form
Pr(P(Z)|Q(¥)) = p. The author believes that the NF com-
pletion semantics in this paper is particularly approriate in
this context.

SLPs are generalisation of the variant of logic programs
given in (Sato, 1995). They have also been shown to be a
generalisation of HMMs, stochastic context-free grammars
and undirected Bayes’ nets.

The author believes that the semantics and derivation algo-
rithms for SLPs given in this paper will be useful in the con-
text of learning SLPs from data. One approach that might

be taken to this task involves finding the SLP S which has
maximum posterior probability given the examples E. This
approach is familiar from ILP. The posterior probability can
be expressed using Bayes theorem as follows.

p(S)p(E|S)
p(E)

p(S) is based on a prior over SLPs, p(E|S) =
p(e1]S)..p(em|S) if the e; are chosen randomly and inde-
pendently and p(E) is a normalising constant. Note that
p(eilS) = Snr(e;) in the case of the NF completion se-
mantics in this paper.

p(S|E) =

In conclusion, SLPs combine high expressivity with effi-
cient reasoning. We hope that in time SLPs will come to
be viewed as an important representation not only for sam-
pling distributions but also for uncertain reasoning in gen-
eral.

Acknowledgements

The author would like to thank Wray Buntine, David Page,
Koichi Furukawa and James Cussens for discussions on the
topic of Stochastic Logic Programming. Many thanks are
due to my wife, Thirza and daughter Clare for the sup-
port and happiness they give me. This work was sup-
ported partly by the Esprit RTD project “ALADIN’ (project
28623), EPSRC grant “Closed Loop Machine Learning”,
BBSRC/EPSRC grant “Protein structure prediction - de-
velopment and benchmarking of machine learning algo-
rithms” and EPSRC ROPA grant “Machine Learning of
Natural Language in a Computational Logic Framework”.

References

Cussens, J. (1999). Loglinear models for first-order proba-
bilistic reasoning. In Proceedings of the 15th Annual
Conference on Uncertainty in Artificial Intelligence,
pages 126-133, San Francisco. Kaufmann.

Fagin, R. and Halpern, J. (1989). Uncertainty, belief and
probability. In Proceedings of 1JCAI-89, San Mateo,
CA. Morgan Kauffman.

Hailperin, T. (1984). Probability logic. Notre Dame Jour-
nal of Formal Logic, (25):198-212.

Jaeger, M. (1997). Relational bayesian networks. In Pro-
ceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence, San Francisco, CA.
Kaufmann.

Lari, K. and Young, S. J. (1990). The estimation of stochas-
tic context-free grammars using the inside-outside al-
gorithm. Computer Speech and Language, 4:35-56.

Lloyd, J. (1987). Foundations of Logic Programming.
Springer-Verlag, Berlin. Second edition.

Muggleton, S. (1996). Stochastic logic programs. In
de Raedt, L., editor, Advances in Inductive Logic Pro-
gramming, pages 254-264. 10S Press.

Muggleton, S. (1999a). Inductive logic programming: is-
sues, results and the LLL challenge. Artificial Intelli-
gence, 114(1-2):283-296.

Muggleton, S. (1999b). Learning from positive data. Ma-
chine Learning. Accepted subject to revision.

Ng, R. and Subrahmanian, V. (1992). Probabilistic
logic programming. Information and Computation,
101(2):150-201.

Sato, T. (1995). A statistical learning method for logic pro-
grams with distributional semantics. In Sterling, L.,
editor, Proceedings of the Twelth International con-
ference on logic programming, pages 715-729, Cam-
bridge, Massachusetts. MIT Press.

