Detecting traffic problems with ILP
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Abstract

Expert systems for decision support have recently been successfully introduced
in road transport management. These systems include knowledge on traffic problem
detection and alleviation. The paper describes experiments in automated acquisition
of knowledge on traffic problem detection. The task is to detect road sections where a
problem has occured (critical sections) from sensor data. It is necessary to use inductive
logic programming (ILP) for this purpose as relational background knowledge on the
road network is essential. In this paper, we apply three state-of-the art ILP systems
to learn how to detect traffic problems.



1 Introduction

Expert systems for decision support have recently been successfully introduced in road trans-
port management. Some of the proposals in this direction are TRYS [4], KITS [3] and
ARTIST [6]. From a general perspective, the goal of a real time traffic expert system for
decision support is to advise traffic management center operators by proposing control ac-
tions to eliminate or reduce problems according to the global state of traffic. To asses the
global state of traffic, the system periodically receives readings from sensors on the road,
which measure magnitudes such as speed (Km/h), flow (veh/h) and occupancy (percentage
of time that the sensor is occupied by vehicles), as well as information about the current
state of control devices, such as traffic signals at intersections, traffic signals at sideway on-
ramps, CMS (Changeable Message Signs), etc. The system interprets sensor data, detects
the presence of a problem, gives the possible cause and proposes recommendations about
how to solve or reduce it.

The usual approach to building traffic expert systems is to use knowledge based architec-
tures that support the strategies of reasoning followed by operators. This approach requires
to develop knowledge bases using symbolic representations (such as rules, frames, or con-
straints) that include specific domain knowledge of transport management corresponding to
the city for which the system is developed. Among other things, knowledge on detecting
specific traffic problems is necessary.

On the other hand, traffic management centers have databases that include basic infor-
mation about different traffic scenarios, such as congestions at certain locations caused by
lack of capacity due to accidents or excess of demand (rush hours). This data, collected
from sensors on the road, can be used to either generate or improve the knowledge base
for problem (incident) detection of the expert system. The paper explores the possibility
to use inductive learning techniques (such as ILP-inductive logic programming) to generate
knowledge on traffic problem detection from from historical data that contains parameters
recorded by sensors.

The learning experiments described in this paper take place within the context of the traf-
fic management expert system TRYS [4], developed for the cities of Madrid and Barcelona.
The system uses knowledge distributed in a collection of knowledge bases that use differ-
ent representations and address specific tasks (such as data abstraction, incident detection,
problem diagnosis, prediction of behaviour, and recommendation of control actions). The
knowledge for incident (traffic problem) detection has been formulated by domain experts
in a first-order frame-based representation. Therefore, ILP is a suitable tool for learning to
detect traffic problems in this context.

Overall, two kinds of input are available to the learning process. The first type is back-
ground knowledge on the road network, which is present in and used by the TRYS system.
An object oriented representation is used to capture the different types of road sections, the
relations among them, and the placement of sensors on individual road sections. The second
type is sensor readings on three basic quantities describing traffic behaviour: speed, flow and
occupancy. Both types of input will be described in more detail in Section 2. The goal of
the learning process is to identify critical sections (where problems have occured) by using
sensor readings and road geometry. Technically speaking, a critical section is a section of
the road which constrains the road capacity the most, e.g., because an accident has occured



just after this section in the immediate past. In the paper, the term accident critical section
refers to such a section and not to a section where accidents occur frequently.

Let us note at this point that in practice real sensor data are available. However, we
have used simulated data in our experiments for three reasons. The first is that real sensor
data were not immediately available because of management reasons. The second is missing
sensor data from broken sensors (which amounts to approximately 20% of the sensors).
Finally, using a simulator makes it possible to easily generate a wide range of different traffic
problems (including accidents that should not be artificially produced in the real world).

We used AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-
Urban Networks) [1], a software tool able to reproduce the real traffic conditions of any urban
network on a computer. AIMSUN follows a microscopic simulation approach. It means that
the behaviour of each individual vehicle in the network is continuously modelled throughout
the simulation time period it remains inside the system (i.e. the traffic network), according
to several vehicle behaviour models. A model of the urban-ring of the city of Barcelona was
developed using this simulator. This model includes exactly the same variables that the real
information system records using sensors and was calibrated using information from the real
system. Using this model, a collection of examples (including accidents and congestions due
to rush hours) were produced for the learning experiments presented in the paper.

The remainder of the paper is organised as follows. Section 2 describes in some detail the
background knowledge on the road network and the sensor data used in the experiments.
Section 3 describes the dataset used in our experiments. Section 4 presents the results of
applying three ILP systems to this datasets, and Scetion 5 consludes with a discussion.

2 Road network and sensor data

In TRYS [4], the road network is represented in an object oriented fashion. The basic object
in the road network representation is the section. A section refers to a cross-section of
the road and typically has an array of sensors associated to it. There exist several types of
sections, such as off-ramp, on-ramp or highway. Relations between sections, such as previous
and next, are included in the TRY'S knowledge base. The complexity of road structures makes
it possible for a section to have more than two previous or next sections.

A link describes a logical group of sections. For instance, the section just before and just
after an off-ramp, together with the off-ramp itself, form an off-ramp-link. There are about
ten different types of links. TRYS also uses other concepts like nodes, problem areas and
measurement points, but these were not used in our experiments.

The information about sections and links is static. Each section is of a certain type and
is associated to a number of sensors (as many sensors as there are lanes at that cross-section
of the road) and each link is of a certain type and links a predefined set of sections. These
relationships can therefore be considered background knowledge for the learning process.

Sensors provide us with a continuous stream of information, sending five readings each
minute that refer to the last minute and each of the four minutes preceding it. Typically,
flow (number of cars that passed the sensor in the last minute) and occupancy (the pro
mille of time the sensor is occupied) are measured. Some sensors (which are actually double
sensors) also measure the average speed of the cars that passed the sensor during the last



minute. The measurements of sensors related to a single section are aggregated: flow is
summed across lanes, while occupancy and velocity are averaged across lanes. Saturation is
a derived quantity defined as the ratio between the flow and the capacity of a section: the
latter depends on the number of lanes and is part of the background knowledge.

The TRYS system stores its information in two formats: in CONCEL format, which is a
frame-based format, and in Prolog format. The Prolog format is object-oriented and consists
mainly of facts about the predicates instance and value. For simplicity reasons, we trans-
form these facts in the following fashion: facts of the form instance(Instance,Class) are
translated to facts of the form Class(Instance) and facts of the form
value(Instance,Attribute,Value) are translated to Attribute(Instance, Value). For
example, the fact instance(salida a rambla Prim,off ramp) is transformed to
off ramp(salida_a rambla Prim).

3 The dataset and the methodology

A dataset containing 66 examples of congestion and 62 examples of accidents on different
locations (off-ramp, on-ramp and highway sections) was generated using the simulator. The
learning task was formulated as a classification task, with three possible classes accident,
congestion and noncs (noncritical section). Each section at a particular moment of time
was treated as an example, classified into one of the above classes. In this way we obtained
a dataset consisting of 5952 examples.

The background knowledge consisted of facts on sensor values as well as facts on road ge-
ometry. More precisely, the background knowledge predicates velocidadd(Time,Section,
Value), ocupaciond(Time,Section,Value), and saturaciond(Time,Section,Value) were
available. These predicates discretize the continuous sensor measurement values, so Value
takes one of three discrete values: alta (high), media (medium), and baja (low).

As far as road geometry was concerned, the predicates tipo(Section,Type) and
secciones_posteriores(Sectionl,Section2) were available. The first gives the type of
a section, which can be, e.g., carretera (highway). The second captures the relational
structure of the road network: it states that Section2 follows Sectionl. Note that this is
a many to many relation.

Since the class distribution is very skewed, we randomly sampled 128 of the 5952 non-
critical sections. In all experiments presented in the remainder of the paper, we used the
dataset consisting 66 examples of congestion, 62 examples of accidents, and 128 examples of
noncritical sections.

From the dataset of 256 examples, we created 10 folds. Each of the ILP sysetms applied
was applied on the entire dataset and the rules produced were shown to the domain experts.
Also, the time taken to induce a hypothesis from the 256 examples dataset was recorded.
Each of the systems was then applied to the 10 folds, where the induced hypotheses were
tested on unseen cases and the overall accuracy recorded.



Table 1. Performance of three ILP systems at detecting traffic problems.

System  Time Accuracy Rules
ICL 82s  93.36 % 18
PROGOL 27min  93.75 % 13
TILDE 28s  94.14 % 12

Time = Time on entire dataset

Accuracy = Accuracy on unseen cases as measured by 10-fold CV
Rules = Number of rules induced from entire dataset

(for TILDE number of leaves of the induced tree)

4 Results

Three ILP systems were applied to the ILP problem formulated above. ICL and TILDE
operate within the ’learning from interpretations’ setting, while PROGOL operates in the
‘learning from entailment’ setting. This causes the slightly different form of rules induced
by the three systems.

While ICL and PROGOL learn clauses/rules, TILDE learns logical decision trees. The
decision trees can be rewritten as decision lists, where the first rule in the list that applies to
the example classified is taken. Decision lists can be viewed as lists of clauses, each followed
by a Prolog cut (!).

The following settings were used: ICL used a minimal coverage of three examples, instead
of the default one, and a significance threshold of 99%, instead of the default 90%. TILDE
also used the limit of at least three examples in each leaf, as well as a lookahead of two.
PROGOL used its default settings.

The rules induced by each of ICL, PROGOL and TILDE are given in Figures 2, 3, and
4, respectively. In all three cases, two rules are used to characterize congestions. PROGOL
uses three rules to characterize accidents and leaves eight accidents uncovered, while ICL
and TILDE use four rules, resp. leaves, each.

Table 1 summarizes the accuracies of the three systems on unseen cases, as estimated
by 10 fold crossvalidation. The running time and number of rules (res. leaves) on the 256
examples dataset are also listed in the table.
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class(accident) :- section(A), timemoment(B), tipo(A,carretera),
secciones_posteriores(C,A), velocidadd(B,C,baja). % [29,0,0]

class(accident) :- section(A), timemoment(B),
ocupaciond(B,A,alta), saturaciond(B,A,baja),
secciones_posteriores(A,C), velocidadd(B,C,alta). % [36,0,0]

class(accident) :- section(A), timemoment(B), velocidadd(B,A,baja),
secciones_posteriores(C,A), ocupaciond(B,C,alta). % [27,0,0]
class(accident) :- section(A), timemoment (B), ocupaciond(B,A,alta),

saturaciond(B,A,baja), secciones_posteriores(A,C), tipo(C,carretera),
secciones_posteriores(C,D), ocupaciond(B,D,baja). % [22,0,0]

class(congestion) :- section(A), timemoment(B), tipo(A,rampa_incorporacion),
secciones_posteriores(A,C), saturaciond(B,C,alta),
secciones_posteriores(D,C), velocidadd(B,D,baja). % [0,31,0]

class(congestion) :- section(A), timemoment(B), tipo(A,rampa_abandono),
secciones_posteriores(C,A), velocidadd(B,C,baja). % [0,30,0]

class(noncs) :- section(A), timemoment(B), velocidadd(B,A,alta),
secciones_posteriores(C,A), velocidadd(B,C,alta). % [0,0,46]
class(noncs) :- section(A), timemoment(B), ocupaciond(B,A,baja),

secciones_posteriores(C,A), velocidadd(B,C,alta),
secciones_posteriores(D,C),velocidadd(B,D,alta). % [0,0,17]
class(noncs) :- section(A), timemoment(B), tipo(A,carretera),
secciones_posteriores(A,C),ocupaciond(B,C,alta),
secciones_posteriores(C,D),ocupaciond(B,D,alta). % [0,0,26]

class(noncs) :- section(A), timemoment(B), tipo(A,rampa_incorporacion),
ocupaciond(B,A,baja), saturaciond(B,A,baja). % [0,0,8]
class(noncs) :- section(A), timemoment(B), saturaciond(B,A,media),

secciones_posteriores(C,A), velocidadd(B,C,alta), ocupaciond(B,C,alta),
secciones_posteriores(C,D), ocupaciond(B,D,baja). % [0,0,21]
class(noncs) :- section(A), timemoment(B), saturaciond(B,A,media),
secciones_posteriores(A,C), saturaciond(B,C,media),
secciones_posteriores(D,C),velocidadd(B,D ,alta). % [0,0,23]
class(noncs) :- section(A), timemoment(B), tipo(A,rampa_abandono),
secciones_posteriores(C,A), velocidadd(B,C,media),
secciones_posteriores(D,C), saturaciond(B,D,media). % [0,0,6]

class(noncs) :- section(A), timemoment(B), tipo(A,carretera),
saturaciond(B,A,alta). % [0,0,30]
class(noncs) :- section(A), timemoment(B), saturaciond(B,A,media),

secciones_posteriores(A,C), velocidadd(B,C,media),
secciones_posteriores(D,C), velocidadd(B,D,media). % [0,0,6]

class(noncs) :- section(A), timemoment(B), ocupaciond(B,A,alta),
secciones_posteriores(C,A), ocupaciond(B,C,baja). % [0,0,15]
class(noncs) :- section(A), timemoment(B), tipo(A,rampa_incorporacion),

secciones_posteriores(A,C), velocidadd(B,C,baja), saturaciond(B,C,media).
% [0,0,3]

class(noncs) :- section(A), timemoment(B), saturaciond(B,A,baja),
secciones_posteriores(C,A), ocupaciond(B,C,media),
secciones_posteriores(D,C),saturaciond(B,D,baja). % [1,0,8]

Figure 2. The set of rules generated by ICL from the entire traffic problem dataset.



accident (A,B) :- velocidadd(B,A,baja), saturaciond(B,A,baja). % [27,0,0]

accident (A,B) :- secciones_posteriores(C,A), tipo(A,carretera),
velocidadd(B,C,baja). % [29,0,0]
accident (A,B) :- ocupaciond(B,A,alta), saturaciond(B,A,baja),

secciones_posteriores(A,C), velocidadd(B,C,alta). % [36,0,0]

congestion(A,B) :- secciones_posteriores(C,A), tipo(A,rampa_abandono),
velocidadd(B,C,baja). % [0,30,0]
congestion(A,B) :- secciones_posteriores(A,C), saturaciond(B,C,alta),

secciones_posteriores(D,C), velocidadd(B,D,baja). % [0,31,0]

noncs(A,B) :- velocidadd(B,A,alta), saturaciond(B,A,media). % [0,0,32]

noncs(A,B) :- saturaciond(B,A,alta), tipo(A,carretera). % [0,0,30]

noncs(A,B) :- secciones_posteriores(C,A), ocupaciond(B,C,baja). % [0,0,25]

noncs(A,B) :- ocupaciond(B,A,baja), saturaciond(B,A,baja),
tipo(A,rampa_incorporacion). % [0,0,8]

noncs(A,B) :- ocupaciond(B,A,baja), secciones_posteriores(4,C),
saturaciond(B,C,media). % [0,0,5]

noncs(A,B) :- ocupaciond(B,A,baja), secciones_posteriores(C,A),
saturaciond(B,C,alta). % [0,0,11]

noncs(A,B) :- ocupaciond(B,A,baja), saturaciond(B,A,baja),
secciones_posteriores(C,A), ocupaciond(B,C,media). % [0,0,11]

noncs(A,B) :- secciones_posteriores(C,A), saturaciond(B,C,alta),

secciones_posteriores(C,D), velocidadd(B,D,media). % [0,0,12]

Figure 3. The set of rules generated by PROGOL from the entire traffic problem dataset.



section(A), timemoment (B)
secciones_posteriores(A,C), saturaciond(B,A,baja)?
+--yes: secciones_posteriores(D,A), ocupaciond(B,D,alta)?
| +--yes: accident [36 / 36]
| +--no: ocupaciond(B,A,alta)?
| +--yes: velocidadd(B,C,alta)?
I I +--yes: accident [15 / 15]
| | +--no: secciones_posteriores(C,E), ocupaciond(B,E,baja)?
| | +--yes: accident [3 / 3]
| [ +--no: noncs [4 / 4]
| +--no: mnoncs [13 / 13]
+--no: tipo(A,carretera)?
+--yes: secciones_posteriores(F,A), velocidadd(B,F,baja)?
I +--yes: accident [5 / 5]
| +--no: mnoncs [73 / 75]
+--no: secciones_posteriores(G,A), velocidadd(B,G,alta)?
+--yes: noncs [21 / 23]
+--no: secciones_posteriores(H,A), velocidadd(B,H,baja)?
+--yes: congestion [30 / 30]
+--no: secciones_posteriores(A,I), ocupaciond(B,A,alta)?
+--yes: secciones_posteriores(J,I), velocidadd(B,J,baja)?
I +--yes: congestion [31 / 31]
| +--no: mnoncs [5 / 7]
+--no: noncs [12 / 14]

class(accident) :- section(A), timemoment (B),
secciones_posteriores(A,C), saturaciond(B,A,baja),
secciones_posteriores(D,A), ocupaciond(B,D,alta), !.

class(accident) :- section(A), timemoment(B),
secciones_posteriores(A,C), saturaciond(B,A,baja),
ocupaciond(B,A,alta), velocidadd(B,C,alta), !.

class(accident) :- section(A), timemoment (B),
secciones_posteriores(A,C), saturaciond(B,A,baja),
ocupaciond(B,A,alta), secciones_posteriores(C,D), ocupaciond(B,D,baja), !.

class(noncs) :- section(A), timemoment(B),
secciones_posteriores(A,C), saturaciond(B,A,baja), ocupaciond(B,A,alta), !.

class(noncs) :- section(A), timemoment (B),
secciones_posteriores(A,C), saturaciond(B,A,baja), !.

class(accident) :- section(A), timemoment (B),
tipo(A,carretera), secciones_posteriores(C,A), velocidadd(B,C,baja), !.

class(noncs) :- section(A), timemoment(B), tipo(A,carretera), !.

class(noncs) :- section(A), timemoment(B),
secciones_posteriores(C,A), velocidadd(B,C,alta), !.

class(congestion) :- section(A), timemoment (B),
secciones_posteriores(C,A), velocidadd(B,C,baja), !.

class(congestion) :- section(A), timemoment(B),
secciones_posteriores(A,C), ocupaciond(B,A,alta),
secciones_posteriores(D,C), velocidadd(B,D,baja), !.

class(noncs) :- section(A), timemoment(B),
secciones_posteriores(A,C), ocupaciond(B,A,alta), !.
class(noncs) :- true, !.

Figure 4. The tree generated by TILDE from the entire traffic problem dataset and the
equivalent Prolog program.



