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Logic Programming (LP) is a subject which has influenced many of the activities of Computer
Science. The subtopic of LP concerned with Machine Learning is known as “Inductive Logic
Programming” (ILP). ILP involves the automatic construction of logic programs from examples
and background knowledge. Most of the theory of ILP has been concerned with logical aspects
of hypothesis formation. In contrast this paper surveys a growing body of literature concerned
with probabilistic and statistical aspects of ILP. A Bayesian statistical framework is provided,
within which probabilities are used to compare the degrees of belief of competing hypotheses.
This approach has been used in the general learning framework of U-learnability. The paper
surveys results of applying Bayesian analysis to the problem of learning from positive examples
as well as that of learning in the presence of incomplete background knowledge and noise. More
recently, probabilities have been used directly within the representation of first-order hypotheses.
A survey of a number of such probabilistic representations is provided together with initial results
on approaches to machine learning of such representations.

Categories and Subject Descriptors: [Computational Logic]: Logic and Machine Learning

General Terms: Inductive Logic Programming, Machine Learning
Additional Key Words and Phrases: U-learning, Computational Learning Theory, Probabilistic
Logics

1. INTRODUCTION

The term “Inductive Logic Programming” (ILP) [Muggleton 1991] is now ten years
old. ILP is a general form of Machine Learning which involves the construction
of logic programs from examples and background knowledge. The subject has
inherited its logical tradition from Logic Programming and its empirical orientation
from Machine Learning. Robert Kowalski [Kowalski 1980] famously described Logic
Programming (LP) with the following equation.

LP = Logic + Control

The equation emphasises the role of the programmer in providing sequencing control
when writing Prolog programs. In a similar spirit we might describe ILP as follows.

ILP = Logic + Statistics + Computational Control

The logical part of ILP is related to the formation of hypotheses while the statistical
part is related to evaluating their degrees of belief. As in LP the Computational

Author’s address: S.H. Muggleton, Department of Computer Science, University of York, Hes-
lington, York, YO10 5DD, United Kingdom.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20ToCL ACM 1529-3785/ToCL/ToCL $5.00



2 . Stephen Muggleton

Control part is related to the sequencing of search carried out when exploring the
space of hypotheses.

While most descriptions of ILP have concentrated on either its logical foundations
[Muggleton and Raedt 1994; Nienhuys-Cheng and de Wolf 1997] or its applications
[Muggleton 1999a; 1999b], the present paper provides an overview of the state of
various statistical aspects of the area. Three different applications of probability
theory and statistics have emerged within ILP. These involve the use of

(1) probabilistic preference functions over competing hypotheses (Bayesian Induc-
tive Logic Programming),

(2) probability theory to reason about the convergence of ILP algorithms (Com-
putational Learning Theory and U-learnability) and

(3) probabilistic logics to explicitly represent degrees of uncertainty within exam-
ples, background knowledge and hypotheses (Learning Probabilistic Logical
Representations).

Though previously distinct, these three statistical aspects of ILP are starting to
merge. For instance, U-learning (Section 2.2) involves aspects 1 and 2, while the
research described in Section 5.2 combines aspects 1 and 3. However, to date no
approach combines all three.

The paper is organised as follows. Section 2 introduces and motivates Bayesian
Learning Frameworks and Bayesian Inductive Logic Programming. The Bayesian
framework of U-learnability is then described in Section 2.2, together with some
general results concerning U-learnable families. Sometimes sample complexity anal-
yses allow the use of mathematical techniques to design efficient algorithms. This
is the case for the results given in Section 3.1 involving learning from positive-only
examples and in Section 3.2 for learning from incomplete background knowledge.
Section 4 discusses approaches to incorporating probabilistic information within
logical representations. Various approaches are discussed including Probabilistic
Relational Models (PRMs) and Stochastic Logic Programs (SLPs). Recent ap-
proaches to learning PRMs and SLPs are briefly reviewed in Section 5. The paper
is summarised and future research directions are discussed in Section 6.

2. BAYESIAN LEARNING FRAMEWORKS

A variety of positive and negative PAC-learnability results exist for subsets of def-
inite clause logic [Haussler 1990; Page and Frisch 1992; Dzeroski et al. 1992; Kietz
1993; Cohen 1993; Raedt and Dzeroski 1994; Cohen and Page 1995]. However, in
contrast to experimentally demonstrated abilities of ILP systems in applications
(see [Muggleton 1999a; 1999b)), the positive PAC results are rather weak, and even
highly restricted forms of logic programs have been shown to be prediction hard [Co-
hen 1993; Nock and Jappy 1998]. Like many other results in PAC-learning, positive
results are only achieved for ILP by setting language parameters to constant values
(eg. k-clauses and I-literals). This provides ‘hard’ boundaries to the hypothesis
space, which often reduces the representation to a propositional level. An alterna-
tive model, U-learnability [Muggleton 1994; Muggleton and Page 1994], is better
suited to Universal (Turing computable) representations, such as logic programs.
U-learnability provides a ‘soft’ boundary to hypothesis spaces in the form of a prior
probability distribution over the complete representation (eg. time-bounded logic
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programs). Other authors (eg. [Haussler et al. 1991]) have argued for the use of
Bayesian prior distributions, though this has not lead to a new model of polynomial-
time learnability. U-learnability allows standard distributional assumptions, such
as Occam’s razor, to be used in a natural manner, without parameter settings.
Although Occam algorithms have been studied in PAC-learning [Board and Pitt
1989], this has not led to algorithms capable of learning in universal representa-
tions, as it has in Inductive Logic Programming. In the early 1980’s a distribution
assumption very different to Occam’s razor was implicitly implemented by Arbab,
Michie [Arbab and Michie 1985] and Bratko [Bratko 1983] in an algorithm for con-
structing decision trees. The algorithm constructs a decision list (linear decision
tree) where one exists and otherwise returns the most linear decision tree which
can be constructed from the data. This distributional assumption is based on the
fact that decision lists are generally easier to comprehend than arbitrary decision
trees. Other interesting kinds of distributions along these lines can be imagined;
assigning higher prior probabilities to grammars that are regular or almost so, logic
programs that are deterministic or almost so and logic programs that run in linear
time or almost so. One can imagine very different kinds of prior distributions on
hypotheses. For example, when learning concepts which mimic human performance
in skill tasks [Sammut et al. 1992] predictive accuracy is dependent on hypotheses
being evaluable in time similar to that of human reaction, and so such hypotheses
should be preferred a priori.

2.1 Bayesian Inductive Logic Programming

Familiarity with standard definitions from Logic Programming [Lloyd 1987; Hog-
ger 1990] is assumed in the following. A Bayesian version of the usual (open world
semantics) setting for ILP is as follows. Suppose P, F and V are sets of predicate
symbols, function symbols and variables and C4; and Cj are the classes of definite
and Horn clauses constructed from P, F and V. The symbol I,, denotes SLDNF
derivation bounded by n resolution steps. An ILP learner is provided with back-
ground knowledge B C C4 and examples E = (Et E~) in which ET C C4 are
positive examples and E~ C (Cp, — C4) are negative examples. Each hypothesis is a
pair H,, = (H,n) where H C Cq, H = B and n is a a natural number. H,, is said
to hold for examples E, or holds(H,, E), when both the following are true.

Sufficiency: . H +, Et
Satisfiability: . HN E~ t/, O

The prior probability, p(H,,), of an hypothesis is defined by a given distribution D.
According to Bayes’ theorem, the posterior probability is

p(E|H,).p(Hn)
p(E)
where p(E|Hy,) is 1 when holds(H,, E) and 0 otherwise and
p(E)= Y p(H})

holds(H!, ,E)

p(HnlE) =

! Though most ILP systems can deal with noise, this is ignored in the above definition for the sake
of simplicity.
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Well known strategies for making use of distributional information include a) max-
imisation of posterior probability b) class prediction based on posterior weighted
sum of predictions of all hypotheses (Bayes optimal strategy) c¢) randomly sam-
pling an hypothesis from the posterior probability (Gibbs algorithm). The sample
complexities of strategies b) and c¢) are analysed in [Haussler et al. 1991].

Although no existing ILP system takes an hypothesis distribution D as an input
parameter, such distributions are implicit in FOIL’s [Quinlan 1990] information gain
measure as well as Golem’s [Muggleton et al. 1992] and Progol’s [Muggleton 1995]
compression measure. Additionally, search strategies such as general-to-specific or
specific-to-general, use an implicit prior distribution which favours more general
hypotheses or, conversely, more specific ones.

Bayesian approaches to Machine Learning are discussed elsewhere in the liter-
ature. For instance, Buntine [Buntine 1990] develops a Bayesian framework for
learning, which he applies to the problem of learning class probability trees. Also
Haussler et al. [Haussler et al. 1991] analyse the sample complexity of two Bayesian
algorithms (the sample complexity of a learning algorithm relates the number of
training examples to the out-of-sample accuracy). This analysis focuses on aver-
age case, rather than worst case, accuracy. On the other hand U-learnability uses
average case time complexity and worst case accuracy. Also unlike U-learnability
(Section 2.2) neither Buntine nor Haussler et al. develop a new learning model
which allows significantly larger polynomially-learnable representations, such as
logic programs. The applications in [Muggleton 1999a; 1999b] show that ILP sys-
tems are effective at learning logic programs in significant real-world domains. This
is consistent with the fact that time-bounded logic programs are U-learnable under
certain distributions (see Section 2.2).

2.2 U-learning

The learnability model defined in this section allows for the incorporation of a
priori distributions over hypotheses. The definition of this model, U-learnability,
is motivated by the general problems associated with learning Universal (Turing
computable) representations, such as logic programs. Nevertheless U-learnability
can be easily applied to other representations, such as decision trees. U-learnability
is defined using the traditional notation from computational learning theory rather
than that typically used in ILP (see Section 2.1).

2.2.1 Background for U-learning. Let (Xg,X,Yc, R,c¢) be the representation
of a learning problem (as in PAC-learning), where X is the domain of examples
(finite strings over the alphabet X g), R is the class of concept representations (finite
strings over the alphabet X), and ¢ : R — 2% maps concept representations to
concepts (subsets of X). Hence the concept class being learned is the actual range
of ¢ (a subset of 2%). Let P be a subset of the class of polynomial functions in
one variable. From this point on, a concept representation will be a pair (r, p), for
r € Rand p € P.

Let A(r,p, ) be an algorithm that maps any tuple (r,p,z), for r € R, p € P, and
z € X,to00r 1. Let A run in time bounded by ¢(|r|, p(|z|)), where g is a polynomial
in two variables. Furthermore, let A have the following properties. First, for all
r € Rand z € X, if 2 & ¢(r) then for every p € P: A(r,p,z) = 0. Second, for all
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r € Rand z € X, if z € ¢(r) then there exists p € P such that for every p' € P
with p'(|z]) > p(Jz|): A(r,p',z) = 1. Intuitively, p specifies some form of time
bound that is polynomially related to the size of the example. It might specify the
maximum derivation length (number of resolution steps) for logic programs or the
maximum number of steps in a Turing Machine computation. Greater derivation
lengths or more computation steps are allowed for larger inputs.

Let F be any family of probability distributions over R x P, where the distribu-
tions in F' have an associated parameter n > 0. Let G be any family of probability
distributions over X.

2.2.2  Protocol for U-learning. In U-learning, a Teacher randomly chooses a
pair (r,p), for r € R and p € P, according to some distribution D; in F. The
Teacher presents to a learning algorithm L an infinite stream of labeled examples
((z1,11), (x2,12),...) where: each example z; is drawn randomly, independently of
the preceding examples, from X according to some fixed, unknown distribution
D, in G and labeled by I; = A(r,p,z;). After each example z; in the stream of
examples, L outputs a hypothesis H; = (r;,p;), where r; € R and p; € P.

2.2.3  Definition of U-learnability

DEFINITION 1. Polynomial U-learnability. Let F' be a family of distributions
(with associated parameters) over RX P, and let G be a family of distributions over
X. The pair (F,G) is polynomially U-learnable just if there exist polynomial func-
tions p1(y) = y¢, for some constant ¢, p2(y), p3s(y1,y=2), and a learning algorithm L,
such that for every distribution D1 (with parameter n) in F', and every distribution
Dy in G, the following hold.

—The average-case time complexity of L at any point in a run is bounded by py (M),
where M is the sum of q(|r|,p(|z;|)) over the ezamples z; seen to that point.”
(Recall that (r,p) is the target concept chosen randomly according to Di, and
that q describes the time complezity of the evaluation algorithm A.)

—For all m > pa(n), there exist values € and 6, 0 < €,6 < 1, such that: ps(L,%) >
m, and with probability at least 1 — § the hypothesis Hy, = (T, Pm) is (1 —€)-
accurate. By (1 — €)-accurate, we mean that the probability (according to Ds)
that A(Tm,Dm, Tm+1) 7# Im+1 s less than e.

As with PAC-learning, we can also consider a prediction variant, in which the
hypotheses H,,, need not be built from R (in addition to P), but can come from a
different class R’ and can have a different associated evaluation algorithm A’.

2To be more precise, let m be any positive integer. Let Prp, (r,p) be the probability assigned to
(r,p) by D1, and (with a slight abuse of notation) let Prp, p,(r,p,(z1,...,Zm)) be the product of
Prp, (r,p) and the probability of obtaining the sequence (z1, ...,Zm) when drawing m examples
randomly and independently according to D2. Let TIMEL(r,p,{z1,...,Zm)) be the time spent
by L until output of its hypothesis H,,, when the target is (r,p) and the initial sequence of m
examples is (z1,...,£m). Then we say that the average-case time complexity of L to output Hm
is bounded by p1(y) = y° just if the sum (or integral), over all tuples (r,p, (1, ..., Zm)), of

(TIME L (r,p, (21, .0rr T1n))) ¢
M

is less than infinity, where M is the sum of g(|r|,p(|z;|)) over all ; in z1, ...,Zm. See [Ben-David
et al. 1992] for the motivation of this definition of average-case complexity.

[PTDl,DZ(Tap5 ('1“15 5mm))]
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2.2.4  U-learnability results. This section presents results about polynomial U-
learnability and suggests directions for further work. To conserve space the proofs
are omitted, but they appear in [Muggleton and Page 1994]. In each of these results,
let (Xg,X,Yc,R,c) be the representation of any given learning problem. The
following theorem shows that PAC-learnability is a special case of U-learnability.

THEOREM 2. U-learnability generalises PAC. Let p be the polynomial func-
tion p(x) = x. Let F be a family of distributions that contains one distribution
D; for each r; € R, such that D; assigns probability 1 to (r;,p). Let n = 0 be
the parameter for each member of F. Let G be the family of all distributions over
X. Then the representation (Xg,X,Xc, R,c) is PAC-learnable (PAC-predictable)
if and only if (F, Q) is polynomially U-learnable (U-predictable).

The polynomial distribution family Dp is now introduced.

DEFINITION 3. The distribution family Dp. Let R be countable, let p'(y)
be a polynomial function, and let E, = (E1, E»,...) be an enumeration of subsets
of R such that: (1) for all i > 1, the cardinality of E; is at most p'(i), (2) every
r € R is in some E;, and (3) the members of E;, for each i, can be determined
efficiently (by an algorithm that runs in time polynomial in the sum of the sizes
of the members of E;). Let F' be the family of all distributions D', with finite
variance, over the positive integers, and let the parameter n' of D' be the mazimum
of the mean and standard deviation of D'. For each such distribution D' in F’,
define a corresponding distribution D" over R as follows: for each i > 1, let the
probabilities of the r € E; be uniformly distributed with sum Prp:(i). Let the
parameter associated with D" also be n'. Let P be the set of all linear functions
of the form p(x) = cx, where ¢ is a positive integer. Let D} be any probability
distribution over the positive integers that has a probability density function (p.d.f.)
Prp (z) = wik, for some k > 3 (appropriately normalised so that it sums to 1).
For each distribution DY, define a distribution Dy, over P to assign to the function
p(z) = cx the probability assigned to ¢ by DY.. Finally, for each pair of distributions
D" and Dy, as defined above, define a distribution D over R x P as follows: for
each pair (r,p), where r € R and p € P, Prp(r,p) = [Prp-(r)][Prp, (p)]. Let the
parameter n of D be n'. Dp is the family of all such distributions D, each with
associated parameter n.

THEOREM 4. Polynomial U-learnability under Dp. Let F be the distribu-
tion family Dp defined by a particular enumeration of subsets of R. Let G be any
family of distributions over X. The pair (F,G) is polynomially U-learnable.

The following example relates U-learnability to the ILP definitions given in Section
2.1.

EXAMPLE 5. Time-bounded logic programs are U-learnable under Dp.
Let R be the set of all logic programs that can be built from a given alphabet of pred-
icate symbols P, function symbols F, and variables V. Notice that R is countable.
Let P be the set of all bounds p(x) on derivation length of the form p(z) = cx,
where ¢ is a positive integer and x is the size of (number of terms in) the goal. Let
the domain X of examples be the ground atomic subset of Cq, which is the set of
definite clauses that can be built from the given alphabet. Notice also that a concept
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(r,p) classifies as positive just the definite clauses d € X such that r Fp(q)) d, where
|d| is the number of terms in d. Let F be the family of distributions Dp built using
some particular enumeration of polynomially-growing subsets of R, and let G be the
family of all distributions over examples. From Theorem /4, it follows that (F,G) is
polynomially U-learnable.

3. SAMPLE COMPLEXITY RESULTS

U-learnability is based on bounding both the sample complexity and the time com-
plexity of a learning algorithm. It is often simplest to start the analysis by con-
sideration of sample complexity alone. The cases in this section show that the use
of mathematical techniques to minimise sample complexity sometimes leads natu-
rally to the resultant algorithms having polynomial time-complexity. This section
summarises results which first appeared in [Muggleton 2000a; Parson et al. 1999].
Proofs from the original papers are omitted due to lack of space.

3.1 Learning from positive-only examples

The following is a simplified version of the U-learnability framework presented in
Section 2.2. X is taken to be a countable class of instances and # C 2%X to be a
countable class of concepts. Dx and Dy are probability distributions over X and ‘H
respectively. For H € H, Dx(H) =}, .y Dx(x) and the conditional distribution
of Dx associated with H is as follows.

B _Dx(.’L'ﬂH)_ 0 ife g H
Dx|n(z) = Dx(z|H) = “Dx(H) { D otherwise

The teacher randomly chooses a target theory T from D and randomly and inde-
pendently chooses a series of examples E = (z, .., 2y,) from T according to D x/r.
Given E, Dy and Dx a learner L chooses an hypothesis H € ‘H for which all ele-
ments of E arein H. The teacher then assesses Error(H) as Dx(H\T)+Dx(T\ H).

Unlike the setting in U-learnability it is assumed in the present paper that L is
given Dy, and Dx.

3.1.1 Bayes’ posterior estimation. Gold’s negative result [Gold 1967] for iden-
tification of the regular languages over the symbol set 3 is based on the fact that
for any sequence of positive examples E there will always be at least two possible
candidate hypotheses, 1) ¥*, the language containing all possible sentences and 2)
the language corresponding to elements of E alone. It is clear that 1) is the most
general hypothesis, and has a compact finite automaton description, while 2) is
the least general hypothesis and has a complex finite state automaton description.
Since these two extreme hypotheses will maximise errors of commission and omis-
sion respectively it would seem desirable to find a compromise between the size of
the hypothesis description and its generality. Size and generality of an hypothesis
can be defined within the Bayes’ framework of the previous section as follows.

sz(H) = —In Dy(H)
g(H) = Dx(H)
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Bayes’ theorem allows us to derive a tradeoff between sz(H) and g(H). In its
familiar form, Bayes’ theorem is as follows.

_ p(H)p(E|H)
p(E)
With respect to the Bayes’ framework of the previous section p(H|E) is interpreted

from the learner’s perspective as the probability that H = T given the example
sequence is E. Similarly, p(H) is defined as the probability that H = T, which is

p(H|E)

p(H) = Dy(H).

Meanwhile p(E|H) is the probability that the example sequence is E given that
H =T. Since examples are chosen randomly and independently from Dx g then
for any consistent hypothesis this is as follows.

P(E|H) = H DX|H(37i)

_ 11 Dx (=)
=I5

The prior p(E) is the probability that the example sequence is E irrespective of T
This is as follows.

m
p(E) =" Dy(T) [[ Dxjr(=;)
TeH j=1
The Bayes’ equation can now be rewritten as follows.
m D i
Dy(H) [T, 5550
p(E)

P(H|E) =

™ Dx(z:) . . .
Since % is common to all consistent hypotheses, it will be treated as a

normalising constant ¢, in the following.

Dyu(H) (f(m)mcm

Inp(H|E) = mIn (ﬁ) —sz(H)+dp

p(H|E)

In the above d,, = In ¢,;,. The tradeoff between size and generality of an hypoth-
esis can be seen in the final equation above. The function In p(H|E) decreases
with increases in sz(H) and g(H). Additionally, as m grows, the requirements on
generality of an hypothesis become stricter. A function f,, with similar properties
was defined in [Muggleton 1995] and it was shown there that for every hypothesis
H except T there is a value of m such that for all m' > m it is the case that
fmr (H) < fm(T). This result indicates a form of convergence, somewhat different
from Gold’s identification in the limit.
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3.1.2  Analysis of expected error. Haussler et al. [Haussler et al. 1994] argue the
advantages of analysing expected error over VC dimension analysis. Analysis of
expected error is the approach taken below.

It is assumed that class membership of instances is decidable for all hypothe-
ses. Also the hypotheses in H are assumed to be ordered according to decreas-
ing prior probability as Hy, Ha,.... For the purposes of analysis the distribution
Dy (H;) = z is assumed, where a is a normalising constant. This is similar to
the prior distribution assumptions used in Progol4.1 [Muggleton 1995] and is a
smoothed version of a distribution which assigns equal probability to the 2° hy-
potheses describable in b bits, where the sum of the probabilities of such hypothe-
ses is 27°. Within this distribution ¢ has infinite mean and variance. It is also
assumed that the hypothesis space contains only targets T for which Dx (T) < .
This assumption, which holds for most target concepts used in Inductive Logic
Programming, is not a particularly strong restriction on the hypothesis space since
if T is the complement of T' and Dx (T') > 1 then clearly Dx (T) < 1.

The following theorem gives an upper bound on the expected error of an algo-
rithm which learns from positive examples only by maximising the Bayes’ posterior
probability function over the initial am hypotheses within the space.

THEOREM 6. Expected error for positive examples only. Let X be a count-
able instance space and Dx be a probability distribution over X. Let H C 2% be a
countable hypothesis space containing at least all finite subsets of X, and for which
all H € H have Dx(H) < }. Let Dy be a probability distribution over H. Assume
that H has an ordering Hy, Hs, ... such that Dy (H;) > Dy (Hj) for all j > i. Let
Dy (H;) = % where 2 =Y &~ 5hc. Let Hpy ={H; : H; € H andi <n}. T
is chosen randomly from Dy and the z; in E = (x1,..,Zy) are chosen randomly
and independently from Dxr. Let fm(H) = DH(H)(ﬁ(H))m and let n = am.
L is the following learning algorithm. If there are no hypotheses H € H, such
that H D Hg = {z1,..,Zm} then L(E) = Hg. Otherwise L(E) = H,(E) = H
only if H € H,, H O Hg and for oll H € H, for which H DO Hg it is
the case that fo(H) > fm(H'). The error of an hypothesis H is defined as
Error(H,T) = Dx(T \ H) + Dx(H \T). The expected error of L after m ex-
amples, EE(m), is at most W

Note that this result is independent of the choice of Dx and that L considers
only O(m) hypotheses to achieve an expected error of O(lnTm) For comparison a
similar algorithm which learns from a mixture of positive and negative examples
has a corresponding bound of EE(m) < %, which is within a small additive
term of the bound for learning from positive examples only.

3.2 Learning with incomplete background knowledge

The results in the previous section assume the learner knows the teacher’s prior.
In ILP this corresponds to a situation in which complete and correct background
knowledge has been provided. We now consider the case in which background
knowledge is incomplete.

We consider an extension of the model in Section 3.1. Previously it was as-
sumed that the learner knew precisely the teacher’s distribution Dy over hypothe-
ses. Clearly there is no reason why this should hold in practical machine learning



10 . Stephen Muggleton

situations. We now relax this assumption and consider what happens to the ex-
pected error of learning when the learner does not know the exact form of the
teacher’s prior. In particular we consider an incorrect prior over hypotheses in-
duced by an incomplete background theory.

3.2.1 The Modified Model. The learner’s background theory By is assumed to
be missing certain predicate definitions P = By \ Br which occur in the target
predicate. The teacher’s prior is now D7 and the learner’s (incorrect) prior is D.

The hypotheses in { are ordered by the teacher according to decreasing prior
probability Dy (H;) = & as Hy, Ha,. .., H;,.... The learner only has partial infor-
mation about this ordering in that its prior is a corrupted version of the teachers
distribution. In particular, those hypotheses Hp C H which reference predicates
in P are assigned different information content under the two distributions. This
results in H € Hp having differing indices H; and H; in the orderings of D7 and
D,. In fact if we assume that the information content of the missing predicates P
is at most k bits then for any hypothesis H; € H:

N
IN

‘ HEBL)

_ ‘ BB

—logy D (Hj) + logy D7(H;)
a a
= —log, J_Q + log, 2

2log, j —2log, ¢
J
= 2log, =
082 i
Therefore j < 2F/2 4.
3.2.2 Expected Error

THEOREM 7. Let X be a countable instance space and H C 2% be a countable
hypothesis space containing at least all finite subsets of X. Let D, D, be probability
distributions over H. Let Dx be a probability distribution over X. Assume that
‘H has an ordering Hy,Hs,...,H;,... such that Dy (H;) > Dy(H;t1) for all i
and an ordering Hi,Hy,...,H,... such that D(H}) > Dg(Hj, ) for all j. Let
Dr(H;) = & where 1 =37 & =7%/6. Let Hp, = {H;: Hre Handi <n. T
is chosen randomly from Dr. Let ex(x,H) = (x,v) where v = True if € H and
v = False otherwise. Let E = (ex(x1,T),...,ex(xm,T)) where each x; is chosen
randomly and independently from Dx. HE = {z : {z,True) € E}. Hypothesis
H is said to be consistent with E if and only if x; € H for each (z;,True) in E
and z; ¢ H for each (x;, False) in E. Let n = am. L is the following learning
algorithm. If there are no hypotheses H € H,, consistent with E then L(E) = Hg.
Otherwise L(E) = H,(E) = H only if H € H,,, H consistent with E and for all
H' € H,, consistent with E it is the case that Do (H) > Do(H'). The error of an
hypothesis H is defined as Error(H,T) = Dx(T\ H)+ Dx(H\T). The expected
error of L after m examples, EE(m), is at most:

151+ 2Inm+kIn2
m

(1)
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3.3 Noise handling

In [McCreath and Sharma 1997] McCreath and Sharma consider a variant of the
positive-only model (Section 3.1) in which a degree of noise is assumed. However,
they did not develop sample complexity results for this model.

4. PROBABILISTIC REPRESENTATIONS

Previous sections have concentrated on the use of probabilistic preference functions
and probability theory as a means of reasoning about convergence of learning al-
gorithms. However, there are good reasons to explicitly represent probabilities in
the inputs and outputs of ILP systems. Since the output of inductive inference has
only a limited degree of certainty, it is preferable that degrees of belief are directly
represented as part of the hypotheses. These can then be taken into account in any
further inductive and deductive reasoning. This implies that probabilities should
be allowed in both hypotheses and background knowledge. The inevitability of
noisy data implies that probabilities should also be allowed in the representation
of individual examples. This argument implies the need for the use of probabilistic
first-order logics within ILP.

Efforts to combine logic and probability can be traced back at least as far as
George Boole [Boole 1854]. However, Carnap [Carnap 1962] was the first to at-
tempt to do so at the level of first-order logic. In the 1970’s and 1980’s further
efforts along these lines were encouraged by the success of expert systems such as
MYCIN [Shortliffe and Buchanan 1975] and Prospector [Duda et al. 1979]. Bayesian
networks [Pearl 1988] can be viewed as a sound approach to doing so at a propo-
sitional logic level. However, arguably Halpern [Halpern 1990] was the first to
develop a sound computational semantics for the combination of first-order logic
and probability. Subsequently a number of efficient representations have been devel-
oped [Poole 1993; Ng and Subrahmanian 1992; Koller and Pfeffer 1998; Muggleton
1996] which are compatible with Halpern’s semantics. These approaches are briefly
surveyed below.

4.1 Halpern's analysis

The following two approaches for a semantics of first-order logics of probability are
considered by Halpern [Halpern 1990].

(1) Probabilities are placed on objects in the domain. This is appropriate for
modeling sentences such as “The probability that a randomly chosen bird flies
is greater than 0.9”.

(2) Probabilities are placed on possible worlds. This is appropriate for modeling
the sentence “The probability that Tweety flies (a particular bird) is greater
than 0.9”.

Halpern shows that these two approaches can be combined and provides an ax-
iomatic system which is sound and complete for a substantial class of probabilistic
statements.

4.2 Probabilistic Horn abduction

In [Poole 1993] Poole presents a framework for Horn-clause abduction, with proba-
bilities being associated with hypotheses. It should be noted that within an abduc-
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tive framework such hypotheses are associated with individual predictions, rather
than with universally quantified beliefs, as they are in ILP.

Poole shows that the probabilistic dependencies in a Bayesian belief network
can be represented in his framework. Moreover, the framework allows Bayesian
networks to be extended beyond a propositional language.

4.3 Probabilistic Logic Programs

In [Ng and Subrahmanian 1992] Ng and Subrahmanian have developed Probabilistic
Logic Programs (PLPs) where literals are annotated with probability intervals. The
approach is consistent with a subset of the semantics developed by Halpern. A fixed
probabilistic strategy is used which assumes independence of events. Evaluation
is carried out using linear programming. Later in [Dekhtyar and Subrahmanian
2000] Dekhtyar and Subrahmanian consider hybrid probabilistic programs in which
the user can select a set of probabilistic strategies which define conjunctive and
disjunctive connectives.

4.4 Probabilistic Relational Models

Koller and Pfeffer [Koller and Pfeffer 1998] recently introduced Probabilistic Re-
lational Models (PRMs) as an alternative representation for efficiently combining
first-order logic and probability theory. Whereas Poole and Subrahmanian et al.
approach the problem from the direction of extending logical representations to deal
with probabilistic inference, Koller and Pfeffer’s approach aims at lifting Bayesian
networks by the addition of logical relations. The end result lays greater emphasis
on the network of relations and less on the underlying logical sentences.

4.5 Stochastic Logic Programs

Whereas Probabilistic Horn abduction and PRMs were directly motivated by an
attempt to generalise Bayesian belief networks, Stochastic Logic Programs (SLPs)
[Muggleton 1996] were originally developed as generalisations of Hidden Markov
Models (HMMs) [Rabiner 1989] and Stochastic Context Free Grammars (SCFGs)
[Lari and Young 1990]. The author viewed them as a compact approach to repre-
senting a probabilistic preference function to provide as a parameter to ILP algo-
rithms.

HMMs and SCFGs have been extremely successful in sequence-oriented applica-
tions in Natural Language and Bioinformatics. They provide a compact represen-
tation of a probability distribution over sequences. This contrasts with Bayesian
networks, which represent conditional independences between a set of propositions.
It is natural to think of HMMs and SCFGs as representing probabilities over objects
in the domain (Halpern’s type 1 approach from Section 4.1) and Bayesian networks
as representing probabilities over possible worlds (Halpern’s type 2 approach). How-
ever, Cussens [Cussens 1999] has shown that directed Bayesian networks are also
special cases of SLPs.

4.5.1 Stochastic automata. Stochastic automata, otherwise called Hidden Markov
Models [Rabiner 1989], have found many applications in speech recognition. An
example is shown in Figure 1. Stochastic automata are defined by a 5-tuple
A ={Q,%,q,F,8). Q is a set of states. X is an alphabet of symbols. ¢p is
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0.4: a 0.7:b

0.6:b 03:c
- (o8

Fig. 1. Stochastic automaton.

(=)

0.4: g0 — aqo
0.6 : go — bq1

0.7:q1 — b1
0.3:q1 — cq2

1.0:g2 > A

Fig. 2. Labelled production rule representation of stochastic automaton.

the initial state and F C @ (F = {g2} in Figure 1) is the set of final states.
0:(Q\F)xX — @ x|[0,1] is a stochastic transition function which associates
probabilities with labelled transitions between states. The sum of probabilities
associated with transitions from any state ¢ € (Q \ F) is 1.

In the following A represents the empty string. The transition function 6* : (@ \
F) x ¥* = @ x[0,1] is defined as follows. 6*(g, A) = (g, 1). *(q, au) = (gau,PaPu)
if and only if 6(q,a) = (¢a, pa) and 6*(¢a,u) = (¢au,Pu). The probability of u being
accepted from state ¢ in A is defined as follows. Pr(u|g, A) = p if 6*(¢,u) = (¢, p)
and ¢' € F. Pr(ulg, A) = 0 otherwise.

The following example illustrates the calculation of probabilities of strings.

ExaMPLE 8. Probabilities associated with strings. For the automaton A
in Figure 1 we have Pr(abbc|A) = 0.4 x 0.6 x 0.7 x 0.3 = 0.0504. Pr(abac|A) = 0.

A can also be viewed as expressing a probability distribution over the language
L(A) = {U : 6*(q07u) = <Q7p) and q€ F}

4.5.2 Labelled productions. Stochastic automata can be equivalently represented
as a set of labelled production rules. Each state in the automaton is represented
by a non-terminal symbol and each § transition (g,a) — {(q',p) is represented by
a production rule of the form p : ¢ — aq’. Figure 2 is the set of labelled pro-
duction rules corresponding to the stochastic automaton of Figure 1. Strings can
now be generated from this stochastic grammar by starting with the string gy and
progressively choosing productions to rewrite the leftmost non-terminal randomly
in proportion to their probability labels. The process terminates once the string
contains no non-terminals. The probability of the generated string is the product
of the labels of rewrite rules used.
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05:5 = A
0.5: 5 —aSb

Fig. 3. Stochastic context free grammar

[ LP | SLP | es.
Definite Clause | Labelled Definite Clause | 0.3: like(X,Y)
pet(Y,X), ..
Definition Labelled Definition 0.5: coin(head) <«
0.5: coin(tail) «+
Program Labelled Program 0.3: proteinfold1(X) <« ..
0.3: proteinfold2(X) « ..

Fig. 4. Comparison of Syntax of LPs and SLPs

4.5.3 Stochastic context-free grammars. Stochastic context-free grammars [Lari
and Young 1990] can be treated in the same way as the labelled productions of
the last section. However, the following differences exist between the regular and
context-free cases.

—To allow for the expression of context-free grammars the left-hand sides of the
production rules are allowed to consist of arbitrary strings of terminals and non-
terminals.

—Since context-free grammars can have more than one derivation of a particular
string u, the probability of w is the sum of the probabilities of the individual
derivations of u.

—The analogue of Theorem ?? holds only in relation to the length of the derivation,
not the length of the generated string.

ExAMPLE 9. The language a™b". Figure 3 shows a stochastic context-free
grammar G expressed over the language a™b™. The probabilities of generated strings
are as follows. Pr(AG) = 0.5, Pr(ab|G) = 0.25, Pr(aabb|G) = 0.125.

4.5.4 Syntaz for SLPs. Every context-free grammar can be expressed as a defi-
nite clause grammar [Clocksin and Mellish 1981]. For this reason the generalisation
of stochastic context-free grammars to stochastic logic programs (SLPs) is reason-
ably straightforward.

The syntax of SLPs is illustrated in Figure 4 by comparison with the more familiar
syntax of Logic Programs. SLPs consists of a set of labelled clauses p : C where p is
from the interval [0,1] and C' is a range-restricted definite clause. The probability
labels on any predicate definition must sum to no more than 1.

4.5.5 Semantics for SLPs. The semantics of SLPs is illustrated in Figure 5 by
comparison with that of Logic Programs. SLPs have a distributional semantics, that
is one which assigns a probability distribution to the atoms of each predicate in the
Herbrand base of the underlying (unlabelled) logic program. An interpretation M
is a model of an SLP S if all the atoms a have a probability assigned by M which
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[ LP | SLP [ eg. |
Interpretation | Distributional Interpretation | 0.3: p(a) ..
0.4: g(a) ..
Model Distributional Model 0.3: p(a) ..
0.3: g(a) ..
PEQ PFQ 0.3 q(a),
1.0: p(X) « q(X)
= 0.3: p(a)

Fig. 5. Comparison of Semantics of LPs and SLPs

[LP | SLP [ eg. |
SLD derivation | SSLD derivation | {0.3: q(a),

1.0: p(X) « q(X) }
refutes goal 0.3: «+ p(a)

Fig. 6. Comparison of Proof for LPs and SLPs

is at least the sum of the probabilities of derivations of a with respect to S.

4.5.6 Proof for SLPs. Proof for SLPs is illustrated in Figure 5. Probabilities
are assigned to atoms according to an SLD-resolution strategy which employs a
stochastic selection rule. Derivations can be viewed as Markov chains in which each
stochastic selection is made randomly and independently. Thus the probability of
deriving any particular atom a is the sum of products of the probability labels on
the derivations of a.

5. LEARNING PROBABILISTIC LOGIC REPRESENTATIONS

The section describes some of the initial approaches which have been taken to
learning probabilistic logic representations.

5.1 Learning PRMS

PRMs share the underlying probabilistic semantics and local independence assump-
tions of Bayesian Networks. This has allowed many of the Bayesian net learning
techniques to be extended to PRMs. For instance, Koller and Pfeffer [Koller and
Pfeffer 1997] have used EM (Expectation Maximisation [Dempster et al. 1977]) to
estimate the parameters g of a PRM for which the dependency structure is known.
More recently Friedman et al. [Friedman et al. 1999] have also attacked the more
difficult problem of learning the dependency structure S directly from data.

5.2 Learning SLPs

The task of learning SLPs, like that of learning PRMs, can also be divided into that
of parameter estimation and structure learning. Cussens [Cussens 2000] presents a
new algorithm called Failure-Adjusted Maximisation (FAM) which estimates from
data the parameters of an SLP for which the underlying logic program is given.
FAM is an instance of the EM algorithm that applies specifically to normalised
SLPs. Recently the author [Muggleton 2000b] has presented a preliminary algo-
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rithm for learning both the parameters of an SLP and the underlying logic program
from data. The algorithm is based on maximising Bayes’ posterior probability, and
has been demonstrated on problems involving learning an animal taxonomy and a
simple English grammar.

6. CONCLUSION

This paper reviews three distinct applications of Statistics within Logic-Based Ma-
chine Learning. These approaches involve 1) the use of Bayesian probabilistic
preference functions (Bayesian Inductive Logic programming), 2) the analysis of
convergence of Machine Learning algorithms (Computational Learning Theory and
U-learnability) and 3) the learning of probabilistic representations.

Machine Learning and Uncertainty Reasoning are presently dealt with by a va-
riety of research communities using a wide array of approaches. These approaches
are separated largely by differences in the underlying representation of the knowl-
edge being learned and reasoned about (eg. Hidden Markov Models, Bayes’ nets,
decision trees and Logic Programs). Each formalism has representational advan-
tages for particular tasks. However, large-scale applications, such as those found
in Bioinformatics require a broad mix of these representations. This is not sup-
plied by any one approach. Amalgams of representations can be used successfully.
However, such amalgams do not scale well because of the lack of uniformity of rea-
soning both about and within such systems. A radically new approach to unifying
the underlying representations is required. The author believes research into learn-
ing of probabilistic logic representations has an important long-term potential in
providing a unifying framework for Machine Learning and Uncertainty Reasoning.
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