Learning Stochastic Logical Automaton

Hiroaki Watanabe and Stephen Muggleton

Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
Tel.: +44 (0)20 7594 8287; Fax: +44 (0)20 7581 8024
{hw3, shm}@doc.ic.ac.uk

Abstract. This paper is concerned with algorithms for the logical gener-
alisation of probabilistic temporal models from examples. The algorithms
combine logic and probabilistic models through inductive generalisation.
The inductive generalisation algorithms consist of three parts. The first
part describes the graphical generalisation of state transition models.
State transition models are generalised by applying state mergers. The
second part involves symbolic generalisation of logic programs which are
embedded in each states. Plotkin’s LGG is used for symbolic generali-
sation of logic programs. The third part covers learning of parameters
using statistics derived from the input sequences. The state transitions
are unobservable in our settings. The probability distributions over the
state transitions and actions are estimated using the EM algorithm. As
an application of these algorithms, we learn chemical reaction rules from
StochSim, the stochastic software simulator of biochemical reactions.

1 Introduction

Logical Induction from temporal observations is a challenging problem since
the observations could contain uncertainties in many cases. One way to tackle
the uncertainties is to derive statistics from the observations. If we express the
statistical knowledge explicitly, we would need to combine stochastic and logical
knowledge representations.

Logic-based AI has been studying logical representations of dynamic aspects
of temporal data since McCarthy and Hayes proposed Situation Calculus [I] in
first-order logic where dynamic changing world is expressed in time-sliced declar-
ative representations. In the Inductive Logic Programming (ILP) literatures,
a few studies have been reported from the time-sliced representation point of
view [BL[6].

Automata-based representations have also been studied in computer science.
One of the merits of the automata-based representations under uncertainties
would be the applicability of the well-studied statistical learning algorithms such
as EM-algorithm for Hidden Markov Models [2]. In this paper, we combine logic
and probability model from the automata-based representation point of view.
More precisely, we introduce a logical extension of stochastic non-deterministic
finite automata.

We also present its induction algorithm. Dynamic aspects of the model are
generalised by the state merging technique [I0] whereas static (or symbolic)

T. Washio et al. (Eds.): JSAI 2005 Workshops, LNAI 4012, pp. 201-2IT] 2006.
© Springer-Verlag Berlin Heidelberg 2006

202 H. Watanabe and S. Muggleton

knowledge are generalised by Plotkin’s LGG [12]. Regarding learning automata,
inductive inferences of automata are one of the well studied area in the research
of computational complexity theory. Most of the previous works are negative
(that is, non polynomial time learnable) [I3}[14,[15] except [16]. These previous
works suggest us to introduce a relevant constraint over the hypotheses space of
our inductive algorithm in order to obtain an efficiency.

The paper is organised as follows. Section2 introduces our logical automata.
Section3 explains the overview of the inductive algorithms of our model. Section4
contains our initial attempt to learn chemical reaction rules from the biochemical
simulator StochSim[9]. We discuss some related works in Section5. Discussions
and future work conclude the paper in Section6.

2 Logical Automata

2.1 Definitions

Let us start from the definition of a non-deterministic finite automaton (NFA)
that provides the basic idea of state transitions for our model.

Definition 1. (NFA): A non-deterministic finite automaton is a 5-tuple
NFA = (S, 2,T,S80,G) where S is a finite set of states, X' is a finite alphabet,
T is a transition function, Sy is a set of initial states, and G is a set of accept
states.

We extend NFA logically next. Assume a first-order definite clausal language L
is given. Let f be a definite clause in L. Then F, a finite set of clauses, is called
theory. We represent an observation of a dynamic world as a sequence of ground
theories as follows:

Definition 2. (Logical Sequence): logical sequence is defined as
OOA001~-~On—1An—1On

where O; is the ground theory in L that describes the observed facts at time i.
A; is also the ground theory in L for the action (or input) at time i.

We call 0;A4;0;4+1 a unit of the logical sequence. A graphical representation of
the logical sequence is shown in Fig[ll

@ Ao @ An-]
Fig. 1. A logical sequence

In a state transition system, a state is treated as a snapshot of the dynamic
world where the state gives an interpretation (true or false) of each ground atom
in the world.

Learning Stochastic Logical Automaton 203

Definition 3. (Logical State): A logical state q is a pair (n, F) where n € N
s a label for a theory F in L.

We introduce a logical edge and action as follows:

Definition 4. (Logical Edge and Action): A logical edge is an edge between
two logical states. A logical action (or input) is the set of ground theories em-
bedded in the logical edges. All of the logical actions are denoted by E.

Next, we consider relations in the state transition function. In the literatures of
automata theory, equivalence relation is usually employed between each input
alphabet and the members of X. For example, let ¢ and ¢’ = (g, a) be a current
state and a state transition function from the state q to ¢’ caused by the input
a respectively. Now let us assume we receive an input alphabet at g. If the input
is equals to a, the resulted state is ¢’. That is, we check the equivalence relation
between the input alphabet and a.

In this paper, we introduce generality relations instead of the equality between
the logical states (respectively logical edges) and the observed facts (respectively
observed actions) from a logical point of view. For measuring the generality rela-
tions between theories, logical entailment would be a candidate, however, we em-
ploy the subsumption order to avoid the semi-decidability of logical entailment.

Definition 5. (Clause Subsumption): Clause fi; subsumes clause fa, f1 =
fa, iff there exists a substitution 6 such that f16 C fs.

Definition 6. (Theory Subsumption [12]): Theory Fy subsumes theory Fs,
F1 =T FQ, foVCQ S F2 301 S F1 01 - CQ.

Under the above theory subsumption order, we define the logically special state
transition function between the logical states.

Definition 7. (Special State Transition): For a given unit of logical se-
quence O; A; O,11, the state transition ¢' = o(q, E;) between the logical states
g=n,F) and ¢ = (n', F’) occurs iff F =7 O;, E; =1 A; and F' =1 O;41.

Intuitively Special State Transition accepts the unit if the unit is more special
than the related logical states and logical edge. Here F' and F; could be viewed
as the prior conditions, and F’ as the posterior condition.

The scope of the first-order variables is expanded to the adjacent logical states:

Definition 8. (Scope of Variables): For the state transition from the logical
states ¢ = (n, F) to ¢ = (n, F") by the logical action E;, let Vg, Vg, and Vi
be the sets of the first-order variables that appear in F', E;, and F' respectively.
Then the scope of the variables are within Vi U Vg U V.

This extension allows us to represent the relations between the first-order vari-
ables associated with the special state transition.

A Probabilistic Logical Automaton for Special inputs (PLAS) is a non-
deterministic finite automaton whose states and state transitions are defined
as logical states and probabilistic version of special state transitions respectively
as follows:

204 H. Watanabe and S. Muggleton

Definition 9. (PLAS): PLAS is a quintuplet (Q,L,o,I,G) where Q is a fi-
nite set of logical states, L is a definite language, o is a mapping defining the
probabilistic special transition function, o : Q X L x Q@ — [0,1], I is a mapping
defining the initial probability of each state, I : Q — [0,1], and G is a mapping
defining the final probability of each state, G : Q — [0, 1].

Definition 10. (Acceptance): Let M be an PLAS such that (Q,L,0,I,G),
and X be a logical sequence in L. M accepts the logical sequence X if there
exist a sequence of the logical states qo,...,qn (¢ € Q) such that: I(go) = (0,1],
¢i = 0(qi—1, ;) for i=1,....,n, and G(q,) = (0,1]. Then we call the sequence of
the logical states qo...qn an acceptance.

The brief comparisons of Probabilistic NFA (PNFA) and PLAS are given in
Table 1.

Table 1. Comparisons of PNFA and PLAS

PNFA PLAS
Language alphabet definite theory language
Input word logical sequence
Relation equality speciality

Acceptance sequence of states sequence of logical states

2.2 Semantics of Logical States

In the previous section, we introduce the first-order logical extension of NFA
under the theory subsumption order. This extension would bring many benefits
to graphical temporal knowledge representations since we could combine the
automata-based algorithms and logical knowledge representation smoothly. Let
us investigate a semantic aspect of PLAS by focusing on the generality orders.
Let LM(F') be the least Herbrand Model of theory F. We present the following
theorem in order to clarify an essential difference between propositional approach
and our logical approach.

Theorem 1. A PLAS accepts a logical sequence Og, Ay, ..., O, such that its ac-
ceptance is qg-..qn where q; = (n;, F;) (i =0, ...,n), then
LM(O;) € LM(F;).

Proof. F =7 O; implies F = O;. Thus LM (0;) C LM(F) from the definition
of the entailment relation.

Fig2 illustrates an example of the inclusion relations between the logical states
and logical sequences in PLAS such that the acceptance for the observation
0OpAgO1A104 is 595155. Recall that the least Herbrand Model of the theory is
defined by a set of ground atoms. Therefore the inclusion relations explain the se-
mantic aspect of PLAS at the ground atom level. Note that the inclusion relations

LM(4;) C LM(E,)

Learning Stochastic Logical Automaton 205

Fig. 2. Inclusion Relations in PLAS

also hold between the observed action A; and the logical action E; € £ where
E; is the logical action embedded in the logical edge between ¢; and g;41 of the
acceptance qg...qp.-

2.3 Inference in PLAS

PLAS could be applied for the probabilistic inference tasks such as filtering,
prediction, smoothing, and most likely explanation [22]. However, we should re-
call that the inferences in PLAS would need the overheads of computing for
the theory subsumption checks at each logical node and logical edge comparing
with the standard inference algorithms [22]. Subsumption is decidable, however,
it is an NP-complete problem [23]. Therefore the theories embedded in the log-
ical nodes and edges must be restricted [24] for designing tractable inference
algorithms.

For example of the inference tasks in PLAS, let us consider the filtering. The
observations for PLAS could be partial observations as the inclusion relations
show in the previous section. PLAS defines the probability distribution over
belief states given a set of the logical sequences. In Figll let us assume that
the given logical sequence also has another acceptance S.5252. Then the logical
sequence gives

P?"(S?) ‘ OvoOlAlog) =0.3x0.1=0.03
PT(SQ ‘ 00A001A102) =0.7 x 0.8 = 0.56.

3 Learning Stochastic Logical Automata

Our next interest is to learn the stochastic logical automata from observations.
The above definitions indicate that PLAS could be learned by generalising the
given inputs. Our generalisation algorithm combines logic and probabilistic mod-
els through inductive generalisation.

206 H. Watanabe and S. Muggleton

3.1 Setting
Given

— Positive Examples E: A set of Logical Sequences
— Background Knowledge BK: A set of ground atoms

Learn

— A PLAS that accepts E by the special state transitions related with BK.

3.2 Overview of the Algorithms

Our inductive generalisation algorithms consist of three parts. The first part
describes the graphical generalisation of state transition models. Assume two
logical sequences are given as positive examples (FigBl). These sequences could
be viewed as a state transition model. In our algorithm, the state transition mod-
els are generalised by applying state mergers. For example, in Fig[3lif state 2 and
state 8 are merged, the new state 10 in Fig@lis newly generated. The related tran-
sition functions are altered through the generalisation process as shown in Fig[dl

The second part involves symbolic generalisation of theories which are em-
bedded in each states. Plotkin’s LGG is used for symbolic generalisation of the
theories. For example, the two theories in state 2 and state 8 (Figl]) are gener-
alised by LGG when the two states are merged (FigH]).

The third part covers learning of parameters using statistics derived from
the input sequences. The state transitions are unobservable in our settings. The
probability distributions over the state transitions and actions are estimated
using the EM algorithm. These three steps are iterated until the logical states
converge to a logical state.

cl(0,0) act(1,0) acl(2,0)01(3v0
(8,F8)
act(0,1) fact(1,1) act(2,1)

Fig. 3. Positive Examples

<’A\>
) ‘act(3 ,()

act(1,1) H act(2,1)
act(0,1)

Fig. 4. Logical State Merging

Learning Stochastic Logical Automaton 207

4 Example

We implemented our inductive algorithm with two constraints: the depth bound
for the graphical generalisation hypothesis space and the variable depth bound
for LGG. In addition to the scope-extended LGG, our software has a function
to invent is(X,Y,int) atoms that represent X = Y + int where X and Y are
the variables restricted over integers.

4.1 Learning Chemical Reaction Rules from Biochemical Simulator

As an application of the system, we learn chemical reaction rules from StochSim
that is a general purpose biochemical simulator in which individual molecules
or molecular complexes are represented as individual software objects. Chemical
reactions between the molecules occur stochastically according to probabilities
derived from the given rate constants.

To run the simulator, a user needs to specify some definitions such as (1)kinds
of molecules, (2)the initial numbers of molecules, and (3)possible chemical re-
action rules. We assume the following simple chemical reactions in our
experiment:

2H2 + 02 «<— 2H20
N2 + 3H2 < 2NH3

After each simulation, we have a dump file that contains time-series measure-
ments of the concentrations of the molecules. For this experiment, we modify
the StochSim code to output the one-chemical-reaction time-series results. The
following shows two artificial dump files of two simulations:

[First Run] [Second Run]

Time h20 nh3 02 h2 n2 Time h20 nh3 02 h2 n2
0 2 3 2 18 5 0 2 3 2 18 5
1 2 3 2 18 5 1 2 5 2 15 4
2 4 3 1 16 5 2 4 5 1 13 4
3 4 5 1 13 4 3 6 5 0 11 4
4 4 7 1 10 3

where time units are defined as iterations at the one-chemical-reaction time-
scale. Since the reactions occur stochastically, the concentrations do not change
sometimes. For example, in the above First Run file, the initial concentration
(Time 0) does not change at the next iteration (Time 1). This means that the
simulator applied a chemical reaction for the molecules during the iteration, but
the reaction did not happen because of its stochastic nature. During Time 1 and
Time 2 in the first run, we could conclude that the reaction

2H2 4+ 02 = 2H20

happened, because this is only the reaction that could bring the change in our
setting. The outputs are converted into two logical sequences as follows:

208 H. Watanabe and S. Muggleton

[{mo1(h20,2) ,mo0l(nh3,3) ,mol(02,2) ,mo0l(h2,18) ,mol(n2,5)} act(0,0)
{mo1l (h20,2) ,mol(nh3,3) ,mol(02,2) ,mol(h2,18) ,mol(n2,5)} act(1,0)
{mo1l (h20,4) ,mo0l(nh3,3) ,mo0l(02,1) ,mol(h2,16) ,mol(n2,5)} act(2,0)
{mol(h20,4) ,mol(nh3,5),mo0l(02,1) ,mol(h2,13),mol(n2,4)} act(3,0)
{mol(h20,4) ,mol(nh3,7) ,mo0l(o02,1) ,mol(h2,10) ,mol(n2,3)}]

[{mo1(h20,2) ,mo0l(nh3,3) ,mol(02,2) ,mo0l(h2,18) ,mol(n2,5)} act(0,1)
{mo1l (h20,2) ,mol(nh3,5),mo0l(02,2) ,mol(h2,15) ,mol(n2,4)} act(1,1)
{mol(h20,4) ,mol(nh3,5),mo0l(02,1) ,mol(h2,13),mol(n2,4)} act(2,1)
{mo1l (h20,6) ,mol(nh3,5) ,mo0l(02,0) ,mol(h2,11) ,mol(n2,4)}]

Our learning task is set as:

Given

— A set of outputs from StochSim in the form of logical sequences.
Find

— Chemical Reaction Rules happen during the simulations.

Note that learning probability distribution is omitted since the number of ex-
amples is too small in this example.
The graphical representation of the input is shown in Figl3 where

F1 = {mol(h20,2),mol(nh3,3),mol(02,2),mol(h2,18),mol(n2,5)%}
F2 = {mol(h20,2),mol(nh3,3),mol(02,2),mol(h2,18) ,mol(n2,5)%}
F3 = {mol(h20,4) ,mol(nh3,3),mo0l(02,1),mol(h2,16) ,mol(n2,5)%}
F4 = {mol(h20,4) ,mol(nh3,5),mo0l(02,1) ,mol(h2,13),mol(n2,4)}
F5 = {mol(h20,4) ,mo0l(nh3,7),mo0l(02,1) ,mol(h2,10),m0l(n2,3)}
F6 = {mol(h20,2),mol(nh3,3),mol(02,2),mol(h2,18),mol(n2,5)%}
F7 = {mol(h20,2),mol(nh3,5) ,mol(02,2),mol(h2,15),mol(n2,4)}
F8 = {mol(h20,4) ,mol(nh3,5) ,mo0l(02,1),mol(h2,13),mol(n2,4)}
F9 = {mol(h20,6) ,mol(nh3,5),m0l1(02,0) ,mol(h2,11),mol(n2,4)}.

Then our software starts to search the hypothesis space by applying the state
merging with symbolic generalisation. Since our search space is the version space,
the examples are consistent with all hypothesis learned by the software. Our
program returns the state transition model shown in Fig[h] with the following
is/3 atoms:

is(v5,V8,4), is(V3,V9,2), is(V2,V5,-3), is(V2,V8,1), is(V1,V6,-1),
is(vo,Vv1,-1), is(V0,V6,-2)

We can translate the learned rules as:

Through the reaction, the number of H20 increases by two, the number
of 02 decreases by one, and the number of H2 decreases2. The number
of N2 and NH3 do not change.

Learning Stochastic Logical Automaton 209

node39
mol(h20,V6)

node28
mol(h20,V0)

act(1,0) mol(V7.4)
mol(nh3,V1) act(2,1 mol(nh3,V1)
mol(02,V2) mol(02,V8)
nnmloél(:]\iy%) mol(h2,V9)
o (n2,V5) mol(V4.5)

mol(n2,V5)

is(V5,V8,4), is(V3,V9,2), is(V2,V5,-3), is(V2,V8,1), is(V1,V6,-1), is(VO0,V1,-1), is(VO0,V6,-2)

Fig. 5. Logical State Merging: 2H24+02 = 2H20

node57
mol(h20,V0)
mol(V6.4)
mol(nh3,V7)
mol(02,V3)

node46
mol(h20,V0)
mol(nh3,V1)
mol(V2.,5)
mol(02,V3)
mol(h2,V4)
mol(n2,V5)

act(3,0)
act(0,1),

mol(h2,V8)
mol(n2,V9)

is(V0,V7,-3), is(V1,V0,1), is(V1,V7,-2), is(V3,V9,-2), is(V4,V8,3) is(V5,V3,3), is(V5,V9,1)

Fig. 6. Logical State Merging: N2 4+ 3H2 = 2NH3

Our program also returns the model shown in Figlfl with the following is/3
atoms:

is(vo0,Vv7,-3), is(V1,Vv0,1), is(V1,V7,-2), is(V3,V9,-2), is(V4,V8,3)
is(Vv5,V3,3), 1is(V5,V9,1)

Through the reaction, the number of NH3 increases by two, the number
of N2 decreases by one, and the number of H2 decreases3. The number
of O2 and H20 do not change.

The system learns some additional knowledge in the form of is/3.

5 Related Works

There exist many attempts for combining first-order logic and probability
[I°7,[18.19,20). Relational extensions of Bayesian Networks have also reported
including [21]. Logical Hidden Markov Model [7] and Logical Markov Decision
Programs [8] are closely related to our PLAS model. Logical Decision Program
could embed a set of atoms in a state. Since PLAS could put a set of definite
clauses in the logical state, it would be more expressive than Logical Decision
Program.

PLAS is originally designed as a graphical representation of First-order Sto-
chastic Action Language [3] which is a first-order logical version of dynamic
Bayesian networks.

Our logical automata could be viewed as a graphical version of Situation
Calculus. Successor state axioms are encoded in our each conditional state tran-
sitions. Since PLAS defines probability distributions over belief states, PLAS
would be suitable for representing POMDPs.

210 H. Watanabe and S. Muggleton

6 Discussions and Conclusions

In this paper, we propose an extension of stochastic non-deterministic finite au-
tomata. By focusing on the generality order between the logical states and the
partial inputs, the semantic aspect of our models becomes clear. PLAS defines
probability distributions over belief states. We also proposed the inductive learn-
ing algorithms of PLAS by combining graphical and symbolic generalisations
smoothly. Parameter learning of PLAS are implemented using EM algorithm.

Regarding the complexity of the state merging technique, the size of the hy-
potheses space of automata is known as exponential [I0,[IT]. Therefore heuristic
searches would be mandatory to obtain the efficiency for the state merger.

One of the advantages of first-order logic is its compact representation. In
PLAS, each snapshot of dynamic worlds is captured in a definite theory. The
logical state could represent multiple states under the theory subsumption order.
That is, the compactness has been realised at each state level.

Our logical sequence represents temporal changes of theories, that is, we could
input a series of Logic Programs (LPs) to our model. If we learn a PLAS model
from the observed series of LPs, the model should capture how LPs change
proceeding with time. In [4], a STRIPS-like first-order stochastic operator is
proposed in order to modify LPs temporally. The operator is expressed in the
form of dynamic Bayesian networks with add/delete-lists functions. The devel-
opment of the translation algorithms between the operator and PLAS would be
useful for the distributed executions of LPs in the Multi-Agent research.

Since our models are based on Automata, further extensions would be possi-
ble by considering the existing extensions of Automata.

Acknowledgements. The first author would like to thank Katsumi Inoue for
his advice in this research. The research was supported by European Union IST
programme, contract no.FP6-508861, Application of Probabilistic Inductive Logic
Programming II. The authors are also partially supported by National Institute
of Informatics (NII), Joint Research Grant no.A-5.

References

1. J. McCarthy and P. J. Hayes.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4, pages 463502, Edinburgh University
Press, 1969.

2. L. Rabiner.: A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, 77, 1989.

3. First-Order Stochastic Action Language, Hiroaki Watanabe and Stephen Muggle-
ton.: Electronic Transactions in Artificial Intelligence, 7, 2002. http://www.doc.
ic.ac.uk/"hw3/doc/watanabe02FirstSAL.ps

4. Towards Belief Propagation in Shared Logic Program.: Hiroaki Watan-
abe and Stephen Muggleton, BN2003, Kyoto, 2003. http://www.doc.ic.ac.uk/
“hw3/doc/bn2003final2.pdf

5. S. Moyle and S.H. Muggleton.: Learning programs in the event calculus. In N. Lavrac
and S. Dzeroski, editors, Proceedings of the Seventh Inductive Logic Programming
Workshop (ILP97), LNAI 1297, pages 205-212, Berlin, 1997. Springer-Verlag.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Learning Stochastic Logical Automaton 211

R. P. Otero.: Induction of Stable Models, in Proceedings of 11th Int. Conference
on Inductive Logic Programming, ILP-01, pages 193-205, LNAI 2157, Springer,
Strasbourg 2001.

K. Kersting, T. Raiko, and L. De Raedt.: Logical Hidden Markov Models (Extended
Abstract). In J. A. Ga’mez and A. Salmero’n, editors, Proceedings of the First
European Workshop on Probabilistic Graphical Models (PGM-02), pages 99-107,
November 6-8, 2002, Cuenca, Spain.

. K. Kersting, L. De Raedt.: Logical Markov Decision Programs and the Convergence

of Logical TD(A). In A. Srinivasan, R. King, and R.Camacho, editors, Proceedings
of the Fourteenth International Conference on Inductive Logic Programming (ILP-
2004), pages 180-197. Porto, Portugal, September 6-8, 2004.

Morton-Firth, C. J. (1998) Stochastic simulation of cell signalling pathways Ph. D.
Thesis, University of Cambridge.

P. Dupont, L. Miclet and E. Vidal.: What is the search space of Regular Inference?.
Lecture Notes in Artificial Intelligence, No. 862, Springer-Verlag, Grammatical
Inference and Applications, pages 25-37, 1994.

Coste, F., and Fredouille, D.: What is the search space for the inference of non
deterministic, unambiguous and deterministic automata ?. technical report INRIA
RR-4907, 2003.

G. Plotkin.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh
University, UK, 1971.

E. M. Gold.: Complexity of automaton identification from given data. Information
and Control, 37(3): pages 302-320, 1978.

D. Angluin.: Negative Results for Equivalence Queries. Machine Learning, 5, pages
121-150, 1990.

M. Kearns and L. G. Valiant.: Cryptographic limitations on learning boolean for-
mulae and finite automata. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, pages 433-444, New York. ACM, 1989.

D. Angluin.: Learning regular sets from queries and counterexamples. Information
and Computation, 75: pages 87-106, 1987.

Joseph Y. Halpern.: An analysis of first-order logics of probability, Proceedings
of IJCAI-89, 11th International Joint Conference on Artificial Intelligence, pages
1375-1381, 1989.

S. H. Muggleton.: Stochastic logic programs. In L. de Raedt, editor, Advances in
Inductive Logic Programming, pages 254-264. IOS Press, 1996.

Taisuke Sato.: A statistical learning method for logic programs with distribution
semantics. Proc. ICLP’95, Syounan-village, pages 715-729, 1995.

Kristian Kersting and Luc De Raedt. Bayesian Logic Programs. In J. Cussens
and A. Frisch, editors, Proceedings of the Work-in-Progress Track at the 10th
International Conference on Inductive Logic Programming, pages 138-155, 2000.
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, Morgan Kaufmann Publishers Inc, pages 1300-1309, 1999.
Stuart Russell and Peter Norvig.: Artificial Intelligence: A Modern Approach. 2nd
Edition, Prentice Hall, 2003.

M.R.Garey and D.S.Johnson.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. Freeman, New York, 1979.

J-U.Kietz and M.Liibbe.: An efficient subsumption algorithm for inductive logic
programming. Proc. of the 4th International Workshop on Inductive Logic Pro-
gramming (ILP-94), pages 97-105, 1994.

	Introduction
	Logical Automata
	Definitions
	Semantics of Logical States
	Inference in PLAS

	Learning Stochastic Logical Automata
	Setting
	Overview of the Algorithms

	Example
	Learning Chemical Reaction Rules from Biochemical Simulator

	Related Works
	Discussions and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

