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Abstract. In this paper we explore a topic which is at the intersection of two ar-
eas of Machine Learning: namely Support Vector Machines (SVMd)laduc-

tive Logic Programming (ILP). We propose a general method fostranting
kernels for Support Vector Inductive Logic Programming (SVILPhe kernel
not only captures the semantic and syntactic relational information codtaine
the data but also provides the flexibility of using arbitrary forms of strectur
and non-structured data coded in a relational way. While specialise@l&ern
have been developed for strings, trees and graphs our approestdeslara-
tive background knowledge to provide the learning bias. The use dicip
encoded background knowledge distinguishes SVILP from existingioet
kernels which in ILP-terms work purely at the atomic generalisation levet. T
SVILP approach is a form of generalisation relative to backgrounavietdge,
though the final combining function for the ILP-learned clauses is an 8ther
than a logical conjunction. We evaluate SVILP empirically against related ap
proaches, including an industry-standard toxin predictor called TOPE»alu-
ation is conducted on a new broad-ranging toxicity dataset (DSSTog)eXer-
imental results demonstrate that our approach significantly outpertdtother
approaches in the study.

1 Introduction

In this paper we propose a novel machine learning approadéthvdombines the di-
mensionality independence advantages of Support Vectehies (SVMs) with the
expressive power and flexibility of Inductive Logic Progmraimg (ILP). In particular,
we propose a kernel which is an inner product in the featuaeesppanned by a given set
of first order hypothesised clauses. As with normal ILP, eyas) background knowl-
edge and hypothesised clauses are encoded as logic prograem&ernel not only
captures the semantic and syntactic relational informat@antained in the data but also
provides the flexibility of using arbitrary forms of structdl and non-structured data.
The approach we suggest differs from the relational kersidgiested in [1, 2] by
our use of logical background knowledge. In order to unadeidthe distinction being
made here consider the following three settings for ILP.
Atomic generalisation. This setting is characterised by having examples which are
typically ground atomic formulae and hypotheses congjstiratomic formulae which
entail the examples. Plotkin [3] showed that this hypothepace forms a lattice which



is partially ordered by atomic subsumption.

Clausal generalisationIn this setting examples are ground clauses and hypotheses a
clauses which entail the examples. Plotkin [4] showed thaeanore this hypothesis
space forms a lattice which is partially ordered by clausbksmption.

Clausal generalisation relative to background knowledgeThis third setting [4] is
distinguished by assuming the existence of background letne in the form of a
conjunction of clauses. Examples are ground clauses. Hgpes are clauses which
when conjoined with the background knowledge entail thergtas.

Most ILP research has assumed the third setting, claus&rgisation relative to
background knowledge, since this is the more general apprd#e use of background
knowledge provides a flexible way of encoding the understandf domain experts,
and can increase both the predictive accuracy of the leguand the degree of insight
provided relative to the background knowledge. Howevds $etting brings with it
overheads related to the theorem proving involved in usiack@round knowledge.
For this reason Page and Frisch [5] investigated the useoofiatgeneralisation with
respect to a monadic constraint theory. This is a genetalisaf the first setting, and a
special case of the third setting.

More recently Lloyd [6] and others [2] have investigatedoaithms which use the
setting of atomic generalisation, but with more generahf®of strongly-typed terms. In
particular, terms can consist of arbitrary sets. This allomore flexibility for defining
data types without the overheads associated with backdrkoowledge. In [2] it is
shown that this form of representation and learning can bd tesformulate a relational
kernel. In [1] it is shown that by using the “bag of atoms” reggntation introduced in
[7] a multi-instance kernel approach can even be appliedriwtsirally complex ILP
learning problems involving small molecules.

The SVILP approach is a form of generalisation relative tokigagound knowledge,
though the final combining function for the ILP-learned aasiis an SVM rather than
a logical conjunction. We will now provide a simplified workexample to show the
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Fig. 1. Molecule represented using a) SVILP representation which employsnalkeased on

domain-expert informed chemical background knowledge indicat¢ldebannotations on the fig-
ure and b) @rtner/Chevaleyre bag-of-atoms uses Multi-Instance (MI) kerregtdhan frequency
of occurrences of atoms and atom pairs.

difference in representing molecules using that@er/Chevaleyre approach from the
representation used by our SVILP kernel. Figure 1 shows iadimolecule from the



DSSTox dataset of toxins (see Section 5). In the SVILP amproee start by formu-
lating chemical background knowledge in the form of Proledidtions. These have
been designed by one of the authors (Ata Amini), a biocheynikimain expert, to be
relevant to properties associated with toxins. Such ptm®einclude the existence of
substructures such as aromatic rings, methyl and alcolbstsictures, types of atom,
charge, the existence of hydrogen acceptors and distaatwgedn various critical struc-
tures on the molecule. The ILP system CProgol5.0 is usedrtergée a set of hypothe-
sised clauses based on the given background knowledge ampbss. An SVM kernel
is then used as the combining function for predictions of¢heauses. By contrast, the
Gartner/Chevaleyre features consist simply of the frequerioccurrence of atoms,
bonds and atom pairs within the given molecule. These atoderm a vector repre-
sentation of the molecule. An obvious advantage of this “blgtoms” representation
is that it requires no domain expertise and thus is lesstefiatevelop. By analogy with
the use of the “bag-of-words” [8] representation in texssification one might expect
a simple representation of this form to lead to superior iste® accuracy. However,
this is not the case in the experiments reported in Sectionahich the SVILP kernel
significantly outperforms the &tner/Chevaleyre kernel. In this case, the use of more
highly informed background knowledge in the SVILP appearprovide a significant
advantage.

The paper is arranged as follows. The Background Sectiorir@dinces the ba-
sic ideas behind kernels, SVMs and Inductive Logic Progrargr(iLP). In Section 3
SVILPs are defined and their properties proved. This is Wl by a section which
describes Related Work (Section 4). Next we describe thefixgnts (Section 5) on
toxicity data. The paper then concludes.

2 Background

Kernels and Support Vector Machines:During recent years, there has been increasing
interest in kernel-based methods such as Support Vectohilies (SVMs) [9]. The
non-dependence of these methods on the dimensionalityedetiiure space and the
flexibility of using any kernel make them a good choice forffatiént tasks such as
classification and regression. We can view the learningga®of SVMs as comprising
two stages. 1) Map the input data,, . . ., d,, € D, into some higher dimensional space
H through a non-linear mappingthat is given byy : D — H. The mappingy may
not be known explicitly but be accessed via the kernel famctiescribed below. 2)
Construct a linear functiorf in the space.

The kernel functionk (d;,d;) = (¢(d;), ¢(d;)) computes the inner product be-
tween the mapped instances. The mathematical foundatisnotf a function was es-
tablished during the first decade of the twentieth centufy].[A kernel function is
a symmetric functionk'(d;,d;) = K(d;,d;) fori,j = 1,...,n, and satisfies the
property of positive semi-definiteness, ;_, a;a;K(d;,d;) > 0 fora;,a; € R.
Then x n matrix with entries of the fornk;; = K(d;,d;) is known as the kernel
matrix or the Gram matrix. A kernel matrix is a symmetric, itige definite matrix. In
other words the: Eigen values of this x n kernel matrix are non-negative. Kernel
functions can be defined over general sets [11]. This impbftect has allowed suc-



cessful exploration of novel kernels for discrete spacehb s strings and graphs [12,
13].

Inductive Logic Programming: Inductive Logic Programming (ILP) [14] is the area
of Al which deals with the induction of hypothesised pretkodefinitions. In ILP logic
programs are used as a single representation for examplagyiound knowledge and
hypotheses. ILP is differentiated from most other forms aickine Learning (ML)
both by its use of an expressive representation languagésadility to make use of
logically encoded background knowledge. This has allowetassful applications of
ILP in areas such as molecular biology [15] and chemoinfoicadl6].

In the following it is assumed that the examples, backgrokmulvledge and hy-
potheses each consist of logic programs, ie sets of firgrd#drn clauses. The normal
semantics of ILP is as follows. We are given background (pkoowledgeB and ev-
idenceE. The evidence? = ET A E~ consists of positive evidendgé™ and negative
evidenceE'~. The aim is then to find a hypothedis such that the following conditions
hold.

Prior Satisfiability. B A E~ [~
Posterior Satisfiability. BA H A E~ [
Prior Necessity. B = E™

Posterior Sufficiency. BA H = E*

Since a large number of hypotheses will typically fit such fnitéon, the Bayesian
ILP setting [17] assumes a prior probability distributioefided over the hypothesis
space. Algorithms such as CProgol [18] use such a prior telsdar hypotheses which
maximise the posterior probabilip( H |E).

3 Support Vector Inductive Logic Programming (SVILP)

The SVILP framework builds on the ILP framework. Thus we alssume background
knowledgeB, examplest’ and a hypothesi&l for which the conditions of the normal
semantics hold. The key difference between ILP and SVILRastay in which the set
of clausedH is used for predictive purposes. In ILFPis simply treated as a conjunction,
for which any instancé from the domain of instances is predicted to be true if and
onlyif B,H =d.

By contrast, SVILP bases a kernel on the predictions of thasgdsh in H. This
involves forming a binary hypothesis-instance assoaiatiatrix A/ in which element
M;; = 1 (0 otherwise) if and only if clausk; € H entails instance; € D as follows,
B, h; = d,.

The kernel described in Section 3.2 can be viewed as a funidravhich similarity
of two instances!; andd, is based on the similarity of the rows of clausesiih
associated witld; andds.

3.1 Family example

In this artificial example we assume that the occurrence daé@ade is related to the
inheritance patterns of an observable property (e.g.,d@our) in various families.



father(henry,john). father(david,henry). mother(jane,johrjthar(elizabeth,henry).
father(charles,mary). father(egbert,jill). mother(jill,mary). mothen,jill).

hair(john,blond). hair(mary,black).
air(henry,blond). hair(charles,black).
air(jill,blond).  hair(elizabeth,blond).
hair(egbert,black). hair(ann,blond).
hair(david,black). hair(jane,black).

grandfather(F,P}- father(F,P1), parent(P1,P).
grandmother(M,P}— mother(M,P1), parent(P1,P).
parent(F,P)— father(F,P).

parent(M,P)— mother(M,P).

Fig. 2. Background knowledge for disease inheritance

The background knowledge is shown in Figure 2. This desstifierelationships in the
family tree shown in Figure 6. Examples of individuals havihe disease are shown in
Figure 3 and various hypothesised clauses are shown ind~gurssuming the domain
is limited to the examples, we show the resulting binary lilgpsis-instance association
matrix in Figure 5.

Note that according to the matrix examples 1 and 2 have manisimilarity. This
is despite the fact that the hair colour (the main observidature) of John and Mary
(the individuals involved in the examples) are oppositeridiand black respectively).
The example demonstrates the strong learning bias whichbeartroduced by the use
of background knowledge and hypotheses within the SVIL&Engptin the next section
we define the kernel formally.

1. disease(john) 2. disease(mary) 3. disease(jane) 4. diseasg(Bedisease(charles)

Fig. 3. Examples for disease inheritance

3.2 Definition of kernel

We assume background knowledgeand a set of hypothesised claugésirawn from

a class of hypotheséls and a set of instance3 drawn from a class of instancéx
Each hypothesis claugein H can be thought of as a function of the following form,
h : D — {True Falsg. Conversely ther function gives the hypothesised clauses
covering any particular instance,; D — 29. Where for anyi; in D

7(d;) ={h:3h € H,(B,h |= d;)}

As in the Bayesian ILP framework [17], we assume a prior pbdkg distribution over
the hypotheses. This can be represented as a funcsoich that

m:H —[0,1] and Zw(h)zl
heH

Next we define a function, which maps sets of hypothesisagekto probabilities.

f:28 —0,1]



A. disease(P)— hair(P,Colour), father(F,P), hair(F,Colour)

B. disease(P}— hair(P,Colour), mother(M,P), hair(M,Colour)

C. disease(P)— hair(P,Colour), grandmother(M,P), hair(M,Colour)

D. disease(P}- hair(P,Colour), grandfather(F,P), hair(F,Colour)

E. disease(P}- hair(P,black), father(F,P), mother(M,P),
hair(F,blond), hair(M,black)

F. disease(P}- hair(P,black), father(F,P), grandfather(G,P),
hair(F,blond), hair(G,black)

Fig. 4. Hypothesised clauses for disease inheritance
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Fig. 5. Resulting binary hypothesis-instance ag=ig. 6. Family trees for disease inheritance
sociation matrix

ForallH' C H
fH) =" m(h)

heH’
Now the kernel function is as follows. For all, d; in D

K(di,d;) = f(r(d;) N 7(dy))

It can be easily shown that the kernel is an inner product i spbace.The kernel re-
quires a hypothesised clause $&tIn order to improve the informative power of the
kernel we define a prior probability distribution and fits gvéor to the coordinates in
space spanned by the hypothesised clauses. In this way tabtiset of hypothesised
clauses implies a mappingthat maps the data into an ILP space, where dimensionality
of the space is the same as the cardinality of the set of hgpisthd clauses and each
mapped instance can havaumber of non-zero entries (in a column vector) wheie

in the rangel < r < k. Formally

fi(d) = \/m(hi(d)) fori=1,...,k

Hence the mapping for an instance is given by

¢:d— ((f1(d), f2(d),- .., fe(d)) = (fild)i=y)

and kernel for instance; andd; is given by

K (dis dj) = (6(di), 6(d;)) = 3 fildi) fild;)



Hence, K(di,d;) = f(r(d:) N 7(dy))

The validity of kernel function follows from the definitiors@n inner product how-
ever we can show that it satisfies Mercer’s condition (symmnand positive semi-
definiteness). Clearly the kernel function is symmetric poditive semi-definiteness
occurs since there is mappiggrom D into an ILP space. For all; € R andd; € D,
fori = 1,...,n we have the following expressiod,) ._, a;a; K (d;,d;). We now
use a compact representatidn= (a;)?_, and¢ = (¢(d;))",, hence kernel matrix

=11

Sor._ K(d;,d;) = ¢¢’ and the expression igl¢/¢p A’ = t't > 0.

i,j=1
Given that¢ maps the data into ILP space, we can construct Gaussian RBF ke

nels in ILP spaces psr (d;, d;) = exp( L), where|(6(di) - 6(d;)]| =

VK (di, d;) — 2K(d;,d;) + K(d;,d;). Our method is flexible to construct any kernel
in the space spanned by the clauses. However we select RBEI&dK rzr) con-
structed in ILP space for our experiments in section 5

We now consider the analysis of the complexity of the kegsuming the theorem
prover can test each hypothesised clause against eachdedtatime bounded by a
constantk, the overall time taken to compute the kernel is proporfiomahe number
of hypothesised clausé# | and the number of instanced)|.

4 Related work

Propositionalisation: Within ILP “propositionalisation” [19] techniques tramsf ma-
chine learning problems from a first-order logic settingpiahe which can be handled
by a “propositional” or feature-based learner. Kramer e{¥9] distinguish between
domain-independent ([20-23]) and domain-dependent appes (eg [24]). In most
domain-independent propositionalisation approachesZ2]Lfeatures are introduced
as clauses with a monadic head predicate. For instance, agmied to problems in-
volving molecular descriptions these techniques intrecumw features such as the fol-
lowing.

f1(A) :- has_rings(A [Rl, R2]), hydrophobic(A H, H> 1.0.
f2(A):- atm(A B, ,27, ), bond(A B, C ), atm(AC 29, ).

Though superficially similar to domain-independent pratasalisation, the SVILP
approach described in this paper is not a propositionaisdaéchnique since it does
not transform the representation by the introduction ohsmonadic features. Instead
a general-purpose ILP learning algorithm is used to leaansgs with heads having
arbitrary predicate arities. The heads of these clausecaatain terms with multi-
arity function symbols and constants. In normal ILP the hipsis used for predictive
purposes would consist of these clauses conjoined togéth8VILP the truth-value
predictions of these individual clauses are projected trgdnstance space. The kernel
matrix is then formulated over the instance-space prexfistof the individual clauses.

SVILP is similar in its use of support-vector technology e tdomain-dependent
propositionalisation approach of Kramer and Frank [24]sTuses bottom-up evalua-
tion to fine. The key difference here is that SVILP is domaideipendent, allowing the
use of background knowledge to encode the appropriate matdarning bias.



Kernels within ILP: Within ILP there has recently been interest in the develagme
of kernels which incorporate relational information, faeuwithin support vector ma-
chines[2, 25-27]. Several authors [2, 25] take the appro&aking syntactic measures
of distance between first-order formulae as the basis fdn kamels. Within the ILP
literature it is normal to differentiate betweeyntactic [28, 29] andsemantic [30] dis-
tance measures. Syntactic measures are based on diffefiente structure of first-
order formulae, and tend to be confined to comparison of teratiser than arbitrary
first-order formulae. Semantic measures are based on cmoparf models, making
this approach intractable for all but simple formulae.

The kernel approaches described in [2, 25] are unable to msdef background
knowledge, since they are based on syntactic comparisomohg atoms. By contrast,
a central feature of the SVILP described in this paper isdtsaf generalisation relative
to background knowledge.

5 Experiments

A new dataset was used for evaluating SVILP. The DSSTox dateas made available
to us by Dr Ann Richards of National Health and EnvironmeBtfé¢cts Research Lab-
oratory, USA. The dataset represents the most diverse $exiob presently available
in the public domain. By choosing a new toxin dataset we aaiover-testing prob-
lems associated with molecular datasets such as the M@gEh The 188 molecule
Mutagenic dataset has now been evaluated by so many resesathht it is becoming
hard to argue that some of the higher reported accuraciesmasmply due to chance.
Materials: The DSSTox [32] database contains organic and organometaliecules
with their toxicity values. The dataset consists of 576 rooles. Figure 7 shows an
example of two of the molecules found in DSSTox. As far as wevkmo previous
attempt has been made to quantify the structure and actelagionship for the whole
DSSTox dataset.
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Fig. 7. Examples of compounds in DSSTox

Methods: We now describe the pre-processing stage. Molecules imthedf SMILES
strings, were transformed into 3D structures using thensosét CONCORD 4.0 [33]
(implemented in TRIPOS). All of the molecules contain contus chemical feature
known as the lowest unoccupied molecule orbital (LUMO),es@tctanol partition co-
efficient (LOGP) and dipole moment. LOGP reflects the hydaodgitity of compounds
and the mechanism of toxicities of these chemicals are basdldeir accumulation in
the non-polar lipid phase of the biomembranes. LUMO andldipmoment can describe
electrophilicities of compounds. The key information igagi in the form of atom and
bond description.



We compared the performance of SVILP with a number of reléeetiniques in-
cluding partial least squares (PLS), multi instance ker(MlK) [1, 2], an RBF kernel
using only 3 chemical features (LOGP, LUMO, dipole momeim) ive term as CHEM.
We also compared the performance of SVILP with well known @3%ftware TOP-
KAT (Toxicity Prediction by Komputer Assisted Technology)

As our experimental methodology we used 5-fold cross vatidaFor evaluation
we used mean squared error (MSE) and R-squared (standamiimaed accuracy in
QSAR). In this work we employed-insensitive SVM regression (SVR)[9]. We used
the SVM package SVMTorch [34] for our experimen@s(regularization parameter,
(controls width of insensitive bandy, (width of Gaussian) are the tunable parameters
for kernel-based methods (SVILP, CHEM and MIK). In PLS thedhle parameter is
the "number of components”. These parameters can be setrbg smdel selection
method. The traditional protocol to set the values for thaupeeters is the minimisation
(maximisation) of some criterion relative to the valueshaf parameters using a valida-
tion set. We select the optimal values of the tunable pararsesing a validation set as
described. We set the parameters for each fold using onlydhméng set of the fold. We
randomly selected a subset comprising 75% of the data ifigaset of each fold) for
the training set and used the remaining data as a test setg& td values of the param-
eters were selected. The sets of the values are give® by {10, 100, 1000, 10000},

e ={0.1,0.3,0.5,1.0}, 0 = {0.125,0.25,0.5,4, 16}. For PLS we used the number of
components from 1 to 15. The parameters which give the mimirvlSE on the vali-
dation set were chosen. For the selected parameters waeithie models (created by
the methods) using full training set and performed evabmatin test compounds.

In order to perform the prediction task using SVILP, we firbtained a set of
clauses. Examples and Background knowledge (atom-bogid Jéwel chemical groups
e.g. phenyl ring, aldehyde, carboxylic acids and chemiaflfres) are given to CPro-
gol5.0 [18] which generates a set of hypothesised clauseslRhe folds, the clauses
with positive compression were selected where the numbabtdined clauses for
each fold can vary between 1500-2000. The compression gélaelause is given by
V= M, wherep is the number of positive instances correctly deducible
from the clausep is the number of negative examples incorrectly deducitdenfthe
clausec is the length of the clause artdis number of further atoms to complete the
input/output connectivity of the clause artlis the total number of positive exam-
ples. The hypothesised clauses are then taken by a Prolggapmavhich computes the
hypothesis-instance association (see Section 3), irdgcédr each instance the set of
all hypothesised clauses which imply it. In this work we usedniform probability
distribution over the clauses. We then computed the siityilaetween molecules using
proposed kernel. In order to apply PLS for toxicity prediotiwe used the same set of
hypothesised clauses generated by CProgol5.0 as SVILP.

Results: We conducted a series of experiments to evaluate the peafaeof the pro-
posed method. We conducted the first set of experiments loateathe efficacy of
the new method for predicting the toxicity values. FigurehBwgs the results. The re-
sults are averaged over 5 runs of the methods. Based on tisticasign test method,
SVILP shows significant improvement in comparison with thleeo methods in the
study. In the second set of experiments we assessed themarfce of the methods



MSE |R-squared Accuracy
ILP (CProgol5.0) 55
CHEM| 0.811| 0.519 CHEM 58
PLS [ 0.671] 0.593 PLS 71
MIK |0.838| 0.503 MIK 60
SVILP| 0.574| 0.655 SVILP 73
Fig. 8. MSE and R-squared for Fig. 9. Accuracy for ILP, CHEM,
CHEM, PLS, MIK and SVILP. PLS, MIK and SVILP.

MSE|R-squared
CHEM |1.04| 0.48
PLS [1.03] 0.47
TOPKAT| 2.2| 0.26
SVILP | 0.8| 0.57

Fig. 10.MSE and R-squared for CHEM, PLS, TOPKAT and SVILP.

for qualitative prediction. We evaluated our approach bylewying it for categorising
the molecules into two categories, toxic and non-toxic. l8e aompared the perfor-
mance of SVILP with the standard ILP system CProgol5.0. Athe methods predict
the non-toxic molecules with high accuracy. Figure 9 shdwesésults for the category
"toxic”. According to McNemar test the SVILP method showgrsficant improvement
with respect to the other methods. We finally compared SVIitR WOPKAT. The soft-
ware accepts the structures of the molecules in SMILESgstim automatically split
the molecule into different fragments, and then uses theggrients as well as some
chemical descriptors such as LOGP and shape index for pietic In order to make
a fair comparison of the above methods with the commerciilvaoe TOPKAT, we
must ensure that we only consider predicted accuraciesdteaules that were not in-
cluded in the training data of either method. We therefordusled any of the DSSTox
molecules that TOPKAT had in its database leaving 165 unsedeacules. Figure 10
shows the results. According to sign test, the SVILP shoassifitant improvement in
comparison with all of the other approaches. Our resultsvghat SVILP outperforms
all the other methods in the study. The results confirm theaf§i and usefulness of our
approach.

6 Conclusions and further work

In this paper we introduce a new framework for combining Suppector machine
technology with Inductive Logic Programming. Unlike ekisf relational kernels, the
present approach works within the standard ILP setting obgdisation with respect
to background knowledge, rather than the limited settingtofnic generalisation. A
particular kernel is defined and implemented on top of the $iyBtem CProgol5.0.
This kernel has been tested on an important new toxin datasetir experiments we



compared the performance of the SVILP against related appes. In all cases our
approach produced significantly higher predictive acourac

Further theoretical work is necessary to clarify the effemt performance of vary-
ing the amount of background knowledge used by the kernsb Alrther empirical
work is needed to test the kernel on a wider variety of refeigroblems.
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