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INTRODUCTION

Over recent years, the use of protein–ligand docking

programs has become an increasingly widely used tech-

nique in drug discovery. In parallel, protein–protein

docking has become more reliable and due to the bene-

fits that researchers in biotechnology, systems biology,

and molecular biology would gain from models of pro-

tein–protein associations, it is an important and rapidly

growing field. Many different protein–ligand software

packages and scoring functions have been reported and

compared in the literature.1–3 In common with protein–

ligand docking, various methods for protein–protein

structure generation have been reported4,5 along with a

range of diverse scoring protocols to choose the best

model.6–11 It is commonly accepted that the majority of

the docking programs are often successful at accurately

positioning the ligand in the active site (as judged by

comparison to X-ray structures).1,3 However, ranking a

series of ligands in terms of their affinity for a particular

protein is more problematic and in this work, we address

this problem. Because of the comparative ranking prob-
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ABSTRACT

Despite the increased recent use of protein–ligand and pro-

tein–protein docking in the drug discovery process due to

the increases in computational power, the difficulty of accu-

rately ranking the binding affinities of a series of ligands or

a series of proteins docked to a protein receptor remains

largely unsolved. This problem is of major concern in lead

optimization procedures and has lead to the development of

scoring functions tailored to rank the binding affinities of a

series of ligands to a specific system. However, such methods

can take a long time to develop and their transferability to

other systems remains open to question. Here we demon-

strate that given a suitable amount of background informa-

tion a new approach using support vector inductive logic

programming (SVILP) can be used to produce system-specific

scoring functions. Inductive logic programming (ILP) learns

logic-based rules for a given dataset that can be used to

describe properties of each member of the set in a qualita-

tive manner. By combining ILP with support vector machine

regression, a quantitative set of rules can be obtained. SVILP

has previously been used in a biological context to examine

datasets containing a series of singular molecular structures

and properties. Here we describe the use of SVILP to pro-

duce binding affinity predictions of a series of ligands to a

particular protein. We also for the first time examine the

applicability of SVILP techniques to datasets consisting of

protein–ligand complexes. Our results show that SVILP per-

forms comparably with other state-of-the-art methods on

five protein–ligand systems as judged by similar cross-vali-

dated squares of their correlation coefficients. A McNemar

test comparing SVILP to CoMFA and CoMSIA across the

five systems indicates our method to be significantly better

on one occasion. The ability to graphically display and

understand the SVILP-produced rules is demonstrated and

this feature of ILP can be used to derive hypothesis for

future ligand design in lead optimization procedures. The

approach can readily be extended to evaluate the binding

affinities of a series of protein–protein complexes.
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lems associated with generic scoring functions, attempts

have been made to produce system-specific scoring func-

tions to rank a series of ligands binding to a common

protein.12,13 However, such strategies normally involve

many separate steps and therefore may not easily be

implemented to a new system. We report here a general

procedure using a machine learning approach (support

vector inductive logic programming, SVILP) to use infor-

mation from known X-ray structures and ligand binding

affinities as background knowledge to obtain system-spe-

cific scoring functions. On the condition that sufficient

background knowledge exists, the smallest test set

described here contained 25 ligands; the method not only

provides accurate binding affinity predictions for novel

ligands but is also able to provide an insight into features

of the ligands and the protein binding site, which are im-

portant for determining activity and hence may be used

to guide the design of future compounds.

Several generic post-docking ligand–protein scoring

functions, such as Drugscore14,15 and Ligscore,16 have

been reported, which show better ranking than the scor-

ing functions within the docking programs. Improved

results have been demonstrated when a consensus score

combining more than one scoring method for each

ligand is used.17–19 The concept of pharamacophore

type restraints or bias has also been employed to assist

scoring ligands to a specific target protein.20–23

Recently, the generation of bit strings based on the inter-

actions seen in X-ray structures of known inhibitors of a

given protein has been reported. Comparison of these

strings to those generated from a series of docked ligands

has been shown to be an effective method of selected

active ligands from a database of decoys.24,25

Inductive logic programming (ILP) is a qualitative

method, which employs logic to learn rules that can

describe certain properties of each member of a dataset. In

a biological context, it has been successfully employed for

automatic identification of chemical substructures that can

be used to describe the toxicity or activity of a com-

pound.26–29 Recently the method has been made quanti-

tative by combining ILP with support vector (SV) machine

technology—support vector inductive logic programming

(SVILP).30 To date, SVILP has only been used on biologi-

cal datasets containing a series of small molecules, in par-

ticular studies on the use of SVILP to identify known

actives from a series of 11 activity classes using the stand-

ard benchmark dataset taken from the MDL drug data

report (MDDR)31 and to predict the toxicity of a series of

compounds.32 In this study we report an SVILP method

to predict accurate binding affinities from datasets contain-

ing protein–ligand complexes.

The techniques described thus far have mainly been

reported in the context of lead identification, selecting

actives from a large database. We report here a general

method that uses knowledge gained from ligands of

known affinity to produce a system-specific scoring func-

tion that can (i) predict the binding affinity of a novel

ligand and (ii) provide an insight into which interactions

within the active site are important for determining the

affinity and as such may be thought of as analogous to

QSAR (quantitative structure-activity relationship) tech-

niques. Rather than lead identification, the method is

more suited to the lead optimization stage of a drug dis-

covery program where the goal is to understand the

effectiveness of, and improve on, features of ligands that

have been previously identified as able to bind to the

protein in question. An advantage over other system-

specific scoring functions is that when sufficient back-

ground knowledge is available, the same procedure is

shown to work on a range of protein inhibitor systems.

We have tested two variations of the method on five

protein systems, HIV protease, carbonic anhydrase II

(CAII), trypsin, thrombin, and factor Xa. In the first two

systems, we learn rules incorporating the protein–ligand

interactions from the crystal structures of known ligands

bound to the proteins and predict the affinity of a com-

putationally docked novel ligand in a leave-one-out pro-

cedure. Using inhibitors of trypsin, thrombin, and factor

Xa, we also show the ability to learn rules from protein–

ligand structures generated by docking when X-ray struc-

tures are not available. In this latter case, rules are learnt

from a training set and predictions made for a separate

testing set in order to compare with a previous report

using these datasets.33 Our predictions compare favor-

ably with those of previous studies and we demonstrate

the potential usefulness of the rules we identify in future

ligand design.

METHODS

Datasets

Five protein inhibitor systems were studied, HIV pro-

tease, carbonic anhydrase II (CA II), trypsin, thrombin,

and factor Xa. The inhibition constants of the inhibitors

of HIV protease were taken from Vinkers et al.12 Various

sources34–41 were used to collect the inhibition con-

stants of the CA II dataset including http://www-mitchell.

ch.cam.ac.uk/pld/energy_kinetic.php. The details of inhi-

bition constants for ligands of trypsin, thrombin, and

factor Xa are given by Bohm et al.33 For the HIV prote-

ase and CA II datasets, X-ray structures for all inhibitor

complexes were available in the protein data bank

(PDB)42 and each inhibitor was selected as the novel

ligand in turn in a leave-one-out procedure. The ligands

for the final three protein systems are the same in each

case. However, they bind to each protein with differing

relative affinities. In order to directly compare our results

with those of the previous QSAR study,33 training and

testing sets were defined. As protein–ligand complexes

were not available for all the inhibitors in these three

datasets, rules were learnt from structures generated by
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docking. The same protein structure was used for all the

docking runs (both to generate the complexes in the

training set used for rule generation and the testing set).

The Tanimoto coefficient of molecule 1 in the dataset

is measured against all the other molecules. The Tani-

moto coefficient (Tc) was calculated based on the num-

ber of similar fragments two molecules share (see follow-

ing for details of the fragmentation method):

Tc ¼ nc

ðnqþ nt� ncÞ

where nc equals the number of fragments to the two

molecules, nq is the total number of fragments in mole-

cule, 1 and nt the total number of fragments in molecule

2. The diversity of the ligands in each dataset was calcu-

lated using a similarity index (T) based on Tanimoto

coefficient:

T ¼ 100 3
N1

Nt

When the calculated Tanimoto coefficient between mole-

cule 1 and another molecule, for example 2, is greater

than 0.8, it is suggested that molecules 1 and 2 have a

large degree of similarity. N1 equals the number of mole-

cules in the dataset that have at least one similar mole-

cule (with Tanimoto coefficient of greater than 0.8) in

the set and Nt is total number of molecules.

A system-specific approach to predicting and ranking

the inhibitors in the HIV protease dataset has previously

been reported12; likewise the compounds known to bind

to trypsin, thrombin, and factor Xa have also been

studied using the CoMFA and CoMSIA QSAR methodol-

ogies.33 In an attempt to provide a back-to-back com-

parison, we also ran CoMFA and CoMSIA on the HIV

protease and CA II datasets (see following for details).

Support vector inductive logic programming

Inductive logic programming (ILP)43 is a machine

learning system, which learns logic rules according to

observations (the known binding affinity of the ligand)

and background knowledge, here distances between frag-

ments of the ligand and protein atoms. The ligand mole-

cules were fragmented according to a layer-based

approach.44 A central non-hydrogen atom and all of the

atoms (including hydrogen atoms) directly bonded to it

were defined as a fragment. The distance between each

fragment’s central atom and all protein atoms in residues

that have at least one atom within 5 Å of a ligand atom

was calculated. Each distance was stored in the format of

ligand fragment—distance �0.5 Å—protein atom in resi-

due X. ILP calculations require that the dataset used to

generate the rules is divided into positives (chemicals

with higher activity) and negatives (chemicals with less

activity). Here all molecules with activity equal to or

above the mean value of the activity of the dataset were

defined as positives and the remaining as negatives.

CProgol43,45 selects which distances have predictive

power and therefore output as the rules. Support vector

machine (SVM) technology is used to quantify ILP rules

via the SVILP methodology.30 A model is built from a

matrix consisting of the activity of each molecule against

each rule. If the rule is present in a molecule then a ‘‘1’’

is entered, if not a ‘‘0’’. A similar matrix is produced for

testing molecules with unknown activities and the model

constructed from training matrix is used for quantitative

prediction of these molecules. For further information

about SVILP, please see our recent report concerning the

prediction of the toxicology of molecules.32

Ligand preparation and docking for HIV
protease and CAII datasets

For the HIV protease and CAII datasets, where X-ray

structures of all the ligands complexed to the proteins

were available, the ligand from each PDB file was com-

pared to all the other ligands using the 2D similarity

function within the SuperLigands website (http://bioinf.

charite.de/superligands/)46 to find its nearest structural

neighbor. The only exceptions were for ligands which

were split into more than one HETATM group where a

visual comparison was performed.

Ligand and protein structures were prepared using

Sybyl7.2. Initially, all the PDB files were superimposed

onto one member of the set using all the protein back-

bone heavy atoms via an in-house program. Hydrogens

and Gasteiger-Marsili charges were added to all ligands

assuming all carboxylic groups to be charged. To ensure

that the docking calculations were not influenced by the

ligand’s conformation being that which is adopted upon

binding, each ligand was subjected to a short simulated

annealing run. The default sybyl parameters and force-

field were used and the final structure was saved in the

mol2 format. Prior to the simulated annealing, each

ligand was saved in its X-ray conformation to be used as

input for the CoMFA and CoMSIA calculations.

Protein structures had hydrogens assigned via the bio-

polymer module within sybyl and were also saved as

mol2 files. All protonation states were assigned assuming

a pH for 7, except for the sidechain of Asp 25 in chain B

of the HIV protease proteins, which was protonated in

agreement with the assumption that one of the active site

aspartic acids should be neutral. In the HIV protease

dataset, if the protein structure of the nearest structural

neighbor of a ligand included the conserved water mole-

cule bound to Ile 50 A and Ile 50 B, then this was

included in the docking run with the ‘‘toggle off ’’ and

‘‘spin on’’ options in Gold3.047 selected. The active site

metal was included in the docking in the CAII protein

structures. For both proteins the search area was defined

as a sphere of radius 16 Å centered in the middle of the

System-Specific Scoring Functions Using SVILP
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active site. Up to four atom–atom distance restraints

were used to direct similar regions of the ligand being

docked to adopt the same interactions within the binding

site as those identified from the X-ray structure of the

neighbor ligand. Gold3.047 was used to dock each ligand

to the protein structure taken from the PDB file of its

nearest structural neighbor. For each ligand, 10 solutions

were generated and the best one as ranked by Gold Score

was kept; this pose was also rescored using the online

version of Drugscore (http://www.agklebe.de/drugscore)

with the CSD and PAIR options selected.

Ligand preparation and docking for
thrombin, trypsin, and factor Xa datasets

For the thrombin, trypsin, and factor Xa datasets, the

ligands in the training set and the testing set were the

same as defined by Bohm et al.33 PDB files 1ets.pdb

(thrombin), 1pph.pdb (trypsin), and 1hcg.pdb (factor Xa)

were used as in the previous report.33 The ligands were

downloaded as SD files from http://www.cheminformatics.

org/datasets. Babel (http://openbabel.sourceforge. net/wiki/

Main_Page) was used to convert each to a mol2 file, which

was visually checked in sybyl and inconsistent atom

types or structural errors were corrected. Hydrogens

were added consistent with the charges displayed in

Tables I and V of the Bohm et al. paper33 Each ligand

was then subjected to a short minimization use the

default settings and saved in the mol2 format. The three

protein files were all prepared using the biopolymer

module in sybyl as described. The search area for each

protein was a sphere of radius 15 Å centered in the

middle of the active site. Atom–atom distance restraints

were used to direct the common core of all the ligands

to make the same interactions as those seen in

1pph.pdb. Ten solutions were generated and the best

one as ranked by Gold Score was kept and rescored

using Drugscore as described.

CoMFA and CoMSIA

Comparative molecular field Analysis (CoMFA)48 and

comparative molecular similarity analysis (CoMSIA)49

were applied to the HIV protease and CAII datasets in

order to compare the results from our SVILP method to

QSAR techniques in all five datasets. The QSAR calcula-

tions reported by Bohm et al.33 were preformed using a

structural alignment generated by building the ligands

within the protein active site using the X-ray structure of

one of the ligands as a base. Therefore, we chose to use

the conformations of the ligands from their original X-

ray structures (after the protein backbones had been

superimposed) to form the alignment for our CoMFA

and CoMSIA calculations. The CoMFA region was

defined 5 Å beyond the volume of all of aligned mole-

cules in the training set. The grid spacing was set to 2 Å

in all directions and an sp3 carbon atom with formal

charge of 11 was defined as the probe atom. The maxi-

mum field values were truncated to 30 kcal/mol for the

steric field energies and �30 kcal/mol for the electrostatic

field energies. The same parameters were used for CoM-

SIA calculations. A leave-one-out cross-validation was

performed on the aligned molecules.

McNemar test

The McNemar test50 is a measure of significance when

two methods are compared. In this study, we calculated

the McNemar v2 using the following equation:

v2 ¼ ðB � CÞ2
B þ C

where B is the number of times method 1 has squared

error less than that of method 2, and C is the number of

times method 2 has squared error less than that of

method 1. Error is the difference between the predicted

and observed values. Statistical significance is then eval-

uated by finding the probability associated with v2. The
improvement is significant if the two-tailed probability is

<0.05.

RESULTS

Predictions

The size, diversity, and range of experimental affinities

for all five datasets used in this study are summarized in

Table I. The HIV protease ligands can be seen to be the

most diverse as judged by their Tanomoto Similarity

Index. Whilst the CAII dataset is less diverse since it is

roughly half the size of the HIV protease set, it was

expected to be a good test of the amount of background

information needed to be able to successfully generate

reasonable predictions using SVILP. The ligands for the

final three protein systems are the same in each case, and

these three datasets are larger and less diverse than the

HIV protease and CAII ligands. However, they bind to

each protein with differing relative affinities and in all

three cases, the range of the binding affinities is much

less than the previous two datasets, again providing a test

of the ability of SVILP to be useful across a wide range

of protein–ligand systems.

SVILP was used to provide binding affinity predictions

for each of the five datasets using protein–ligand com-

plexes as input to SVILP to produce a set of rules which

could be used as a system-specific scoring function to

use with structures obtained from computational docking

experiments. Results for binding affinity predictions

calculated by all the above methods are summarized in

Table II. These results suggest that the use of our SVILP

method to rescore inhibitor–receptor docking is a tech-

A. Amini et al.
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nique that can readily be applied to different protein

systems to produce results at least as good as other state-

of-the-art methods for prediction and understanding of

small molecule to protein binding affinities.

HIV protease and CAII datasets

Table II shows that for the diverse HIV protease data-

set the SVILP predictions compare favorably with the

previous system-specific HIV protease binding affinities

predictions.12 However, the docking we performed used

fully flexible ligands, with only a few distance restraints

to direct the program, whereas the previous study

employed rigid ligand docking using the bound confor-

mation of the ligand taken directly from the X-ray struc-

ture. In addition, this previous study was on only one

system. Four compounds were excluded in our work due

to incomplete protein structures or multiple nonsymmet-

ric ligand binding modes in the available X-ray struc-

tures. The R2
CV for SVILP is larger than for either

CoMFA or CoMSIA and a McNemar test50 confirms our

method to be significantly more accurate than CoMFA.

For the CAII dataset, SVILP and the traditional QSAR

techniques (CoMFA and CoMSIA) produce comparable

accurate results as judged by the R2
CV figures (Table II).

However, the McNemar showed SVILP to be significantly

worse. Whilst not as accurate as the QSAR techniques (as

judged by the McNemar test), the fact that the same

SVILP procedure as that used for the HIV protease data-

set produced a high R2
CV using a dataset roughly half the

size is a pleasing result. When either the GoldScore or

the DrugScore results are used to provide binding affinity

predictions for both the HIV and CAII datasets, the accu-

racy is much lower than SVILP, CoMFA, or CoMSIA

(Table II).

Rmsd values were calculated for the docked solution

of each ligand to its original X-ray structure position (af-

ter superposition of the two protein structures). For both

the HIV and CAII datasets, the maximum Rmsd was 6.12

Å, with the majority of ligands being having values of

less than 3 Å. Acknowledging that some restraints were

used to guide similar regions of the ligands to occupy

the same regions of the active site, these results demon-

strate the ability of the GoldScore function to accurately

position the ligands within the protein. However, the

results in Table II highlight the limitation of using such

generic scoring functions to rank a series of ligands.

Although for these two datasets, rescoring with the

generic knowledge function DrugScore shows improve-

ment over GoldScore, our results show that using the

available X-ray structural information to produce a sys-

tem-specific set of rules via SVILP is a superior approach

(Table II).

Trypsin, thrombin, and factor Xa datasets

The results from the three remaining datasets are also

shown in Table II. The SVILP R2
CV values are similar to

those from both CoMFA and CoMSIA. McNemar tests

across the three datasets show that there is no significant

difference in all of these results. As before predictions

made directly from GoldScore and DrugScore are poor

(Table II). Our standard SVILP approach can produce

predictions on par with state-of-the-art QSAR techniques

even when the range of experimental binding affinities is

smaller than in the previous two examples (Table I).

Table I
Size and Procedure, Range of Experimental Binding Affinties, and Ligand

Diversity of Each of the Five Datasets

Protein
Number of ligands
and procedure Range of pKi Diversitya

HIV protease 49, leave one out 4.30–11.30 (7.00) 24%
CAII 26, leave one out 3.90–10.00 (6.10) 50%
Trypsin 72, training; 16, testing 4.34–7.64 (3.30) 88%
Thrombin 72, training; 16, testing 4.74–8.48 (3.74) 88%
Factor Xa 72, training; 16, testing 4.28–5.51 (1.23) 88%

aAs measured by the Tanimoto Similarity Index (see Methods).

Table II
Results of the Binding Affinity Predictions, References and Methods for Each of

the Five Datasets

Protein Method Reference R2
CV MSE AUC

HIV protease SVILP * 0.67 0.75 0.94
HIV protease HIV protease

specific

12 0.66

HIV protease CoMFA * 0.26 1.75 0.85
HIV protease CoMSIA * 0.33 1.67 0.82
HIV protease GoldScore * 0.08 2.24 0.81
HIV protease DrugScore * 0.34 1.46 0.80
CAII SVILP * 0.84 0.79 0.97
CAII CoMFA * 0.89 0.29 0.89
CAII CoMSIA * 0.80 0.55 0.80
CAII GoldScore * 0.00 n.a. n.a.
CAII DrugScore * 0.18 2.11 0.80
Trypsin SVILP * 0.64 0.28 0.76
Trypsin CoMFA 33 0.65 0.30 0.79
Trypsin CoMSIA 33 0.84 0.17 0.81
Trypsin GoldScore * 0.39 1.13 0.86
Trypsin DrugScore * 0.00 n.a. n.a.
Thrombin SVILP * 0.39 0.56 0.79
Thrombin CoMFA 33 0.47 0.45 0.72
Thrombin CoMSIA 33 0.43 0.48 0.67
Thrombin GoldScore * 0.25 2.41 0.78
Thrombin DrugScore * 0.00 n.a. n.a.
Factor Xa SVILP * 0.47 0.13 0.85
Factor Xa CoMFA 33 0.38 0.08 0.81
Factor Xa CoMSIA 33 0.16 0.10 0.84
Factor Xa GoldScore * 0.00 n.a. n.a.
Factor Xa DrugScore * 0.00 n.a. n.a.

*This work.

MSE, mean square error; AUC, area under ROC curve.
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Insights

An important feature of our SVILP approach is that the

rules used to make each prediction are output in ‘‘human

readable’’ form. At the initial input stage, thousands of dis-

tance statements are obtained for each member of the set,

which are reduced to a few hundred that have predictive

power. Some of these rules will be seen as obvious but

since the prediction is derived based on the presence or ab-

sence of all the learnt rules in the testing complex, SVILP

will often be able to provide accurate predictions in cases

where the structure and binding mode of the ligand makes

expert visual analysis of the available data difficult. This

point is illustrated in Figure 1, which shows LIGPLOT51

diagrams of three ligands from the HIV protease dataset.

The ligand from 1a94.pdb52 is a peptide-based inhibitor,

which mainly makes hydrogen bond interactions with the

active site. In contrast, the inhibitor from 1ajv.pdb53 is

bound almost exclusively through hydrophobic contacts

within the active site. However, both these ligands have

been shown experimentally, and correctly predicted via

SVILP, to bind with similar affinities. Moreover, the ligand

from 1qbs.pdb54 appears to be structurally similar to that

from 1ajv.pdb and its mode of binding is again character-

ized by a majority of hydrophobic interactions, yet SVILP

correctly predicts this inhibitor to bind with an affinity

greater than an order of magnitude higher than 1ajv.pdb

(Fig. 1).

As the rules are output ordered by their importance in

a simple text file they can easily be converted to display

in graphical visualization programs such as Rasmol55 to

aid understanding and future ligand design. Each line of

the output file contains a ligand fragment central atom

and the bonded fragment atoms, a protein atom type

and associated residue number and a distance (and cut-

off). For example an aromatic carbon in an aromatic

ring in the ligand being 4.0 (�0.5) Å from an aromatic

carbon in residue 31 would appear as:

C.ar_C.arC.arH, C.ar, 31, 4.000, 0.5

And an oxygen in a carbonyl group in the ligand being

2.8 (�0.5) Å from an amide nitrogen in residue 51

would appear as:

O.2_C.2, N.am, 51, 2.800, 0.5

Simple Perl scripts were used to select certain rules
(lines) from the SVILP output and convert them to a
Rasmol script file to display them. For example we col-
lected all rules where the central ligand fragment atom
was the same atom type and defined each protein atom
and residue from this subset of the rules as a set which
could be selected in Rasmol. When this Rasmol script is
run it informs the user what ligand atom types occurred
in this set of rules and the command used to highlight
the protein atoms associated with each ligand atom type.
To demonstrate how displaying the rules may be useful

in generating hypothesis of future ligand design the follow-

ing experiment was carried out. Two ligands, 1qbs.pdb54

and 1qbt.pdb,56 were omitted from the HIV protease data-

set. The remaining 47 ligands were used to create rules as

normal. These rules were used to make a prediction of the

binding affinity for the ligand from 1qbs.pdb. The pre-

Figure 1
Ligplot51 generated diagrams of the binding interactions of the ligands from 1a94.pdb,52 1ajv.pdb,53 and 1qbs.pdb.54 Standard Ligplot color schemes are used with

hydrogen bonds indicated by dashed lines and hydrophobic interactions by red arcs. The binding affinities are quoted as pKi values. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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dicted pKi of 9.73 was in good agreement with observed

pKi of 9.47. The rules used to make this prediction were

then displayed using Rasmol (Fig. 2). The ligand is dis-

played as thick wireframe bonds colored by atom type and

the protein as a green backbone with the heavy atoms of

all residues involved in rules as spheres. In this example all

protein atoms that are involved in rules where the central

ligand fragment is the same atom type are highlighted in a

common color. In Figure 2(A) all the protein atoms

involved in rules in which the central ligand fragment

atom is an aromatic carbon have been colored gray. Aro-

matic carbons in the ligand can be accommodated almost

everywhere in the active site. However, it can be seen that

an aromatic carbon patch of the active site beyond the ter-

minal hydroxyl group of the ligand is not being filled by

this ligand. Figure 2(B) displays protein atoms involved in

rules with ligand sp3 and sp2 hybridized oxygen atoms.

The terminal hydroxyl group can be seen to be far away

from any areas of the protein where it would be helping to

increase the affinity of the ligand. Figure 2(C) depicts pro-

tein atoms involved in rules with amide and aromatic

nitrogen atoms indicating that both these atom types are

favored in the area of the active site where expansion of

the ligand could occur. Hence a hypothesis could be made

that affinity would be increased by producing a ligand that

had an extension consisting of an aromatic ring containing

nitrogen as well as carbon atoms attached to the original

core via an amide linker. This is the structure of the ligand

from 1qbt.pdb. Using the rules obtained from the 47

ligands (i.e. when neither 1qbs.pdb nor 1qbt.pdb was pres-

ent in the training) to predict the binding affinity of the

ligand leads to an affinity of 10.75, which again compares

well with the observed pKi of 10.62. The predicted binding

of the ligand is shown in Figure 2(D).

CONCLUSION

We have reported the use of SVILP to provide system-

specific binding affinity predictions, which when tested

on five datasets produced results comparable with those

of current state-of-the-art methods. This is to our knowl-

edge the first time SVILP has been applied to biological

complexes rather than ligand only datasets and demon-

strates the capacity of SVILP to handle such input. The

difficulties of simply using generic docking scoring func-

tions to obtain binding affinity predictions have been

Figure 2
Rasmol depictions of rules. Proteins in green with residues involved in rules are shown as green atom spheres. Ligands are wireframe colored by atom type (carbon gray,

nitrogen blue, oxygen red). A: Ligand from 1qbs.pdb54 bound in active site with protein atoms involved in rules with ligand C.ar sybyl atom types are colored gray. B:

Ligand from 1qbs.pdb54 with protein atoms involved in rules with ligand O.3 sybyl atom types are colored red; ligand O.2 atom types are colored orange and both ligand

oxygen atom types are colored brown. C: Ligand from 1qbs.pdb54 with protein atoms involved in rules with ligand N.am sybyl atom types are colored blue and ligand

N.ar atom types are colored cyan. D: Ligand from 1qbt.pdb56 bound in active site.
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highlighted. A major benefit of our SVILP methodology

is that reliable system-specific rescoring functions were

obtained across a range of protein systems using the

same procedure. The ability to distinguish between highly

and moderately active molecules despite a high degree of

structural similarity is an exciting result. The production

of rules in a simple text file, which can easily be manipu-

lated to produce graphical displays, is a feature of the

SVILP method that we believe could be extremely useful

for hypothesis generation in lead optimization processes

within a drug discovery project. Having demonstrated

the applicability of using an SVILP procedure on systems

containing proteins and small molecules, we are confi-

dent that the methodology may be further extended to

protein–protein systems. SVILP has shown consistently

good results across five protein–ligand systems. On these

same systems other methods performed less reproducibly.

As there is a similar variation in both the methods

employed and results obtained in predicting protein–pro-

tein associations, we are currently initiating investigations

to determine the usefulness of rescoring protein–protein

docking using an SVILP procedure.
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