Logic and learning: Turing’s legacy

Stephen Muggleton,
Oxford University Computing Laboratory,
11 Keble Road,
Oxford, OX1 3QD,
UK.

Abstract

Turing’s best known work is concerned with whether universal machines
can decide the truth value of arbitrary logic formulae. However, in this
paper it is shown that there is a direct evolution in Turing’s ideas from
his earlier investigations of computability to his later interests in machine
intelligence and machine learning. Turing realised that machines which
could learn would be able to avoid some of the consequences of Godel’s
and his results on incompleteness and undecidability. Machines which
learned could continuously add new axioms to their repertoire. Inspired
by a radio talk given by Turing in 1951, Christopher Strachey went on to
implement the world’s first machine learning program. This particular first
is usually attributed to A.L. Samuel. Strachey’s program, which did rote
learning in the game of Nim, preceded Samuel’s checker playing program
by four years. Neither Strachey’s nor Samuel’s system took up Turing’s
suggestion of learning logical formulae. Developments in this area were
delayed until Gordon Plotkin’s work in the early 1970’s. Computer-based
learning of logical formulae is the central theme of the research area of
Inductive Logic Programming, which grew directly out of the earlier work
of Plotkin and Shapiro. In the present paper the author describes the state
of this new field and discusses areas for future development.

1 Alan Turing and the history of logic and learn-
ing

1.1 The Hilbert program

At the 1928 International Mathematical Congress David Hilbert, one of the great-
est mathematicians of the previous thirty years, set out three central questions
for logic and mathematics. Was mathematics



1. complete in the sense that every mathematical statement could either be
proved or disproved,

2. consistent in the sense that false statements could never be derived by a
sequence of valid steps and

3. decidable in the sense that there existed a definite method which could
decide the truth or falsity of any mathematical assertion?

Hilbert expected a positive answer to all three questions. Within three years
Kurt Godel [12] had shown that not even arithmetic could be both complete and
consistent. Within a decade both Alonzo Church [6] and Alan Turing [42] had
shown the undecidability of certain mathematical assertions.

Turing’s solution to this problem was based on defining a machine which
emulated an ideal human mathematician who calculated with a pen and a one-
dimensional roll of paper. A universal machine was one which could, when loaded
with the appropriate definitions, simulate any other computing machine. Turing
had purposefully devised a machine which had abilities equivalent to a human
mathematician. However Godel’s result had been proved by showing that certain
statements which were evidently true to a human could not be proved within a
limited logical system. It seems that Turing noticed the clash for in his PhD.
thesis on ordinal logics (published in 1939 [43]) Turing attempted to circumvent
Godel’s result. The idea was to introduce a set of ‘oracles’, each capable of
deciding the truth of unprovable statements. The use of such oracles would
allow for a complete logic. However they required an element of non-mechanical
intuition. This approach failed to reconcile Turing’s belief in purely mechanical
intelligence with Godel’s incompleteness result.

1.2 The war period

It would appear that an alternative solution to the incompleteness problem pre-
sented itself to Turing through his war-time work as a cryptographer. Later, in
1948 [45], he was to say that

There is a remarkably close parallel between the problems of the physi-
cist and those of the cryptographer. The system on which a message
is enciphered corresponds to the laws of the universe, the intercepted
messages to the evidence available, the keys for a day or a message to
important constants which have to be determined.

Clearly, the physicist, like the cryptographer is continuously completing his the-
ories. By learning from experience intelligent machinery should be capable of
avoiding many of the problems of Godel’s incompleteness results. The area of
scientific discovery alluded to by Turing in the above quote is the theme of this
present Machine Intelligence workshop. The workshop paper by Sternberg et al.

2



[39] describes recent progress in applying machine learning techniques to discov-
ery of new scientific knowledge.

At Bletchley Park, in 1943, in numerous out-of-hours contexts Turing dis-
cussed the problem of machine intelligence with both Donald Michie and Jack
Good. According to Andrew Hodges [13], Turing’s biographer,

These meetings were an opportunity for Alan to develop the ideas for
chess-playing machines that had begun in his 1941 discussion with
Jack Good. They often talked about mechanisation of thought pro-
cesses, bringing in the theory of probability and weight of evidence,
with which Donald Michie was by now familiar. ... He (Turing) was
not so much concerned with the building of machines designed to
carry out this or that complicated task. He was now fascinated with
the idea of a machine that could learn.

According to Michie, Turing put more effort into thinking about learning than
anyone else in the group. He circulated for comment an unpublished typescript
covering his ideas. Unfortunately it appears that this manuscript has not sur-
vived, though Michie believes it to have been a conceptual predecessor of Turing’s
1948 N.P.L. report [45] (see section 1.5).

1.3 The Pilot ACE

At the end of the war Alan Turing joined in the race to design and implement
the first general-purpose stored-program computing machine. In 1946, when
working at the National Physical Laboratory, Turing authored the ACE report
[44], describing a proposed ‘large scale electronic digital computing machine’.
The machine and its implications were described by Turing to an audience at the
London Mathematical Society on 20th February 1947 [41]. The end of the lecture
was dedicated to the problem of machine learning.

Let us suppose we have set up a machine with certain initial instruc-
tion tables, so constructed that these tables might on occasion, if good
reason arose, modify those tables. One can imagine that after the ma-
chine had been operating for some time, the instructions would have
altered out of all recognition, but nevertheless still be such that one
would have to admit that the machine was still doing very worthwhile
calculations. Possibly it might still be getting results of the type de-
sired when the machine was first set up but in a much more efficient
manner.

In present day jargon this is known as speed-up learning. The machine does not
increase its set of provable statements, but increases the efficiency of making the
proofs. The talk by Numao et al. [25] in this workshop is aimed at speed-up
learning. Turing goes on as follows



In such a case one would have to admit that the progress of the
machine had not been foreseen when its original instructions were
put in. It would be like a pupil who had learnt much from his master,
but had added much more by his own work. When this happens I
feel that one is obliged to regard the machine as showing intelligence.
As soon as one can provide a reasonably large memory capacity it
should be possible to begin to experiment on these lines. .. One
might reasonably hope to be able to make some real progress with
a few million digits, especially if one confined one’s investigation to
some rather limited field such as the game of chess. It would probably
be quite easy to find instruction tables which would enable the ACE
to win against an average player. Indeed Shannon of Bell Telephone
laboratories tells me he has won games playing by rule of thumb: the
skill of his opponents is not stated. But I would not consider such a
victory very significant. What we want is a machine that can learn
from experience. The possibility of letting the machine alter its own
instructions provides the mechanism for this, but this of course does
not get us very far.

According to Turing learning is an indicator of intelligence. He realised that most
experimentation with machine learning would have to wait until machines had a
few million bytes of memory. Such a size of core-memory was not common until
the 1970’s. Turing also foresaw that chess would be an ideal domain for testing
machine learning programs. Games, especially chess, have been extensively used
for testing machine learning (see Bain and Muggleton’s paper [2] in this work-
shop). Turing follows this passage, which is largely to do with speed-up learning,
by resolving Godel’s incompleteness problem in a discussion of interactive induc-
tive machine learning.

It has for instance been shown that with certain logical systems there
can be no machine which will distinguish provable formulae of the sys-
tem from unprovable, .. Thus if a machine is made for this purpose
it must in some cases fail to give an answer. On the other hand if
a mathematician is confronted with such a problem he would search
around and find new methods of proof, .. fair play must be given
to the machine. Instead of it sometimes giving no answer we could
arrange that it gives occasional wrong answers. .. if a machine is ex-
pected to be infallible, it cannot also be intelligent. There are several
mathematical theorems which say almost exactly that. But these the-
orems say nothing about how much intelligence may be displayed if a
machine makes no pretence at infallibility. .. No man adds very much
to the body of knowledge, why should we expect more of a machine?
Putting the same point differently, the machine must be allowed to



have contact with human beings in order that it may adapt itself to
their standards.

Interestingly, Shapiro’s Model Inference System [37], developed in the early 1980’s,
works just like this. A Prolog program, which is a set of logical assertions, is inter-
actively debugged by checking inferences against a human oracle. Shapiro divides
all possible bugs in the program into three categories: incompleteness, incorrect-
ness and non-termination. The correspondence with Hilbert’s three questions
about mathematics is striking, though this is not commented on by Shapiro.

1.4 Altering the program

Around this time Turing entered into an early discussion on the relative merits
of neural-net learning and logic-based learning. The question is whether the
structure of neural hardware is a prerequisite for machines to learn. In a letter
dated 20th November 1946 [13] to W. Ross Ashby, Turing says

It would be quite possible for the machine to try out variations of
behaviour and accept or reject them in the manner you describe and
I have been hoping to make the machine do this. This is possible
because, without altering the design of the machine itself, it can, in
theory at any rate, be used as a model of any other machine, by
making it remember a suitable set of instructions. .. This theoretical
possibility is attainable in practice, in all reasonable cases, at worst
at the expense of operating slightly slower than a machine specially
designed for the purpose in question. Thus, although the brain may
in fact operate by changing its neuron circuits by the growth of axons
and dendrites, we could nevertheless make a model, within the ACE,
in which the possibility was allowed for, .., instead of building a special
machine.

Turing clearly sees the necessity of making use of an interpreter in machine learn-
ing. This allows the learning program to be distinguished from the program
being learned and is nowadays standard practice. The idea of using an inter-
preter within learning may seem obvious now but it solved a paradox going back
over a hundred years. In 1842, Ada Lovelace [17], describing Babbage’s planned
Analytical Engine noted that

The Analytical Engine has no pretensions whatever to originate any-
thing. It can do whatever we know how to order it to perform.

In the following passage from his 1950 Mind article [46] Turing describes how
secondary (interpreted) rules can be originated.



How can the rules of a machine change? They should describe com-
pletely how the machine will react whatever its history might be,
whatever changes it might undergo. The rules are thus quite time
invariant .. The explanation of the paradox is that the rules which
get changed in the learning process are of a rather less pretentious
kind, claiming only an ephemeral validity. The reader may draw a
parallel with the Constitution of the United States.

1.5 The 1948 NPL report

Prior to his resignation from the National Physical Laboratory in 1948, Turing
submitted a report [45] devoted almost entirely to his ideas on machine learning.
Michael Woodger says that Turing’s report caused a furore at N.P.LL with his
prognostications of intelligent machinery. ‘Turing is going to infest the country-
side’ some declared ‘with a robot which will live on twigs and scrap iron’. They
were reacting to the following section in Turing’s report.

In order that the machine should have a chance of finding things out
for itself it should be allowed to roam the countryside, and the danger
to the ordinary citizen would be serious. .. although this method is
probably the ‘sure’ way of producing a thinking machine it seems to
be altogether too slow and impractical.

Though machines learning from interacting with the real world must have sounded
wild at the time, it is similar in spirit to the experiments in learning to fly a plane
and balancing a pole described in this workshop by Michie and Camacho [18] and
Sammut [33]. The present work grew out of investigations by Michie and Cham-
bers [19] in the 1960’s. Turing cautions about the danger to citizens and the
slowness and impracticality of on-line learning from real-world data. The re-
search reported in this workshop avoids this problem by carrying out all learning
within the safe confines of a simulator.

Much of what Turing wrote in the 1948 report is still relevant to present
research in machine learning. Returning once more to the connection between
learning and Godel’s incompleteness theorem Turing writes as follows.

The argument from Godel’s and other theorems rests essentially on
the condition that the machine must not make mistakes .. Gauss was
asked at school to do the addition 154+18+421+...4-54 .. and immedi-
ately wrote down 483, presumably calculating it as (15+54)(54-12)2.3.
.. imagine a situation where the children were given a number of ad-
ditions to do, of which the first 5 were all arithmetic progressions,
but the 6th was say 23+34+45+ ... +100+1124+122+ ... 199. Gauss
might have given the answer to this as if it were an arithmetic pro-
gression, not having noticed that the 9th term was 112 instead of
111.



This is a neat exposition of the problem of noise in learning. The question is
whether it is better to learn a simple rule which correctly covers 5 out of the 6
progressions or to make an exception of the last incorrectly coded progression.
This topic is addressed in the papers by Tsukimoto and Morita [40] and Srinivasan
et al. [38] in this workshop.

In the report Turing describes the development of the human infant cortex
as that of transforming an unorganised machine into a universal one. He then
goes on to describe an experiment in which, using a hand-simulated program, he
managed to train an unorganised state-transition machine to become a universal
Turing machine. The result is a machine that learns how to accept and interpret
instructions. This goes beyond the aspirations of almost all modern machine
learning algorithms. Commenting on this experiment Turing notes that

One particular kind of phenomenon I had been hoping to find in con-
nection with the P-type machines. This was the incorporation of old
routines into new. One might have ‘taught’ (i.e. modified or organ-
ise) a machine to add (say). Later one might teach it to multiply by
small numbers by repeated addition and so arrange matters that the
same set of situations which formed the addition routine, as originally
taught, was also used in the additions involved in the multiplication.

Here Turing is discussing the problem of incremental learning with background
knowledge. The discussion of learning plus and then multiply is very reminiscent
of Sammut’s Marvin program [34] which was taught in exactly this way.

In the following passage Turing discusses child development with relationship
to machine learning.

The training of the human child depends largely on a system of re-
wards and punishments, and this suggests that it ought to be possible
to carry through the organising with only two interfering inputs, one
for ‘pleasure’ or ‘reward’ (R) and the other for ‘pain’ or ‘punishment’

(P).

This is equivalent to the use of ‘positive’ and ‘negative’ examples in supervised
machine learning. Later in his 1950 Mind article [46] Turing commented on this
system of punishment and reward.

The use of punishments and rewards can at best be a part of the teach-
ing process. Roughly speaking, if the teacher has no other means of
communicating to the pupil, the amount of information which can
reach him does not exceed the total number of rewards and pun-
ishments applied. .. It is necessary therefore to have some other
‘unemotional’ channels of communication. If these are available it
is possible to teach a machine by punishments and rewards to obey
orders given in some language, e.g. symbolic language. .. The use of

7



this language will diminish greatly the number of punishments and
rewards required.

There is a clear understanding here of the information amplifying effect of sym-
bolically encoded background knowledge. Without it one gets only one bit of
information per example. The following passage from the 1948 N.P.L. report
makes clear the kind of symbolic language that Turing intended.

Starting with a UPCM (Universal Practical Computing Machine) we
first put a program into it which corresponds to building in a log-
ical system (like Russell’s Principia Mathematica). This would not
determine the behaviour of the machine completely ..

The language intended for learning is predicate calculus. This is the basis of
what is now called ‘Inductive Logic Programming’ (ILP). Rather than building
in Russell’s Principia, researchers in this area generally make use of a Prolog
theorem-proving interpreter. This provides the power of first-order predicate
calculus through its use of methods based on Alan Robinson’s [31] resolution
theorem-proving. ILP is discussed in Section 2.

1.6 Christopher Strachey and the first machine learning
program

On 15th May 1951 Turing gave a lecture entitled ‘Can Digital Machines Think’
on the BBC’s Third Programme. According to Hodges [13]

This short talk did not include any details of how he proposed to
program a machine to think, beyond the remark that ‘it should bear
a close relation to that of teaching.” This comment sparked off an
immediate reaction in a listener: Christopher Strachey ..

In May 1951 Strachey was working on writing a draught’s program on the recently!
working Pilot ACE machine. On the evening of the broadcast Strachey wrote to
Turing.

. The essential thing which would have to be done first, would be
to get the machine to programme itself from very simple and gen-
eral input data ... It would be a great convenience to say the least
if the notation chosen were intelligible as mathematics ... once the
suitable notation is decided, all that would be necessary would be to
type more or less ordinary mathematics and a special routine called,

! According to Mike Woodger [47] the first program ran on the Pilot ACE in May 1950.
However, the Pilot ACE operated without component error for more than half an hour for the
first time in September 1950. The first ‘large’ program, which solved 17 simultaneous linear
equations, ran on 26th June 1951.



say, ‘Programme’ would convert this into the necessary instructions
to make the machine carry out the operations indicated. This may
sound rather Utopian, but I think it, or something like it, should be
possible, and I think it would open the way to making a simple learn-
ing programme. I have not thought very seriously about this for long,
but as soon as I have finished the Draughts programme I intend to
have a shot at it.

Strachey decided to test his ideas on learning with the game of Nim. In this game
three piles of matches are laid out, and two players take turns to remove as many
matches as they want from any pile. A non-mathematical friend of Strachey’s
had noticed that any player who could achieve the position (n,n,0) had won, since
it was only necessary to copy the opponents moves to reduce the heaps to (0,0,0).
According to Hodges [13]

He (Strachey) had worked out a program which could keep a record
of winning positions, and so improve its play by experience, but it
could only store them individually, as (1,1,0), (2,2,0) and so on. This
limitation soon allowed his novice friend to beat the program.

Strachey wrote

This shows very clearly, I think, that one of the most important fea-
tures of thinking is the ability to spot new relationships when pre-
sented with unfamiliar material ...

Strachey’s was a simple rote learning program. It appears to the author to be
the first implemented machine learning program. Strachey’s comments show that
he had understood the importance of generalisation within machine learning. In
machine learning the the patterns of (1,1,0) and (2,2,0) can be generalised to
(n,n,0) using Plotkin’s [27] least general generalisation operator. Interestingly,
Strachey’s Nim rule is almost isomorphic to the colinearity rule in the King-Rook-
King illegality domain described in [22]. Machine learning of the colinearity rule
has been shown [22] to require relational learning (ILP).

Later A.L. Samuel, in the USA, was also to start work on a draughts (or
checkers) playing program. According to Donald Michie, Samuel inherited Stra-
chey’s draughts playing program. Samuel published a technical report in 1955
in which he had incorporated Strachey’s ideas on rote learning into the checker
player. In his 1959 report [35] the rote learning approach had been extended by
the use of parameter learning. By the late 1960’s Samuel [36] had extended this
method even further to incorporate elements of simple logic learning.

2 Inductive logic programming

In this workshop Alan Robinson gave the opening paper [30] on Turing and the
history of computation. It is a great honour to have been asked to give the clos-

9



ing paper on Turing and machine learning. As every computer scientist knows
Alan Robinson’s 1965 paper [31] on machine-oriented theorem proving has had
and continues to have an enormous effect on computer science and artificial in-
telligence. The modern subject of Logic Programming is based on Robinson’s
theorem-proving techniques. Prolog is the language at the centre of Logic Pro-
gramming.

For the following reasons pure Prolog is also an almost ideal target language
for symbolic learning.

e Prolog has the expressiveness of first-order predicate calculus. It is thus
capable of expressing grammars, plans, mathematical and scientific theories
as well as arbitrary computer programs.

e Prolog programs consist of conjunctions of clauses. Logical conjunction
is both associative and commutative. Because of this clauses represent
independent axioms which can be added to in any order.

e Pure Prolog programs, treated as sets of logical clauses, have a clear and
simple semantics [16].

e Prolog can be efficiently interpreted using SLD resolution. The importance
of an interpreter within a learning system was noted in Section 1.4.

Inductive Logic Programming (ILP) is a research area formed at the intersection
of Machine Learning and Logic Programming. ILP systems develop predicate de-
scriptions from examples and background knowledge. The examples, background
knowledge and final descriptions are all described as logic programs. A unifying
theory of Inductive Logic Programming is being built up [20] around lattice-
based concepts such as refinement [37, 9], least general generalisation [28, 20],
inverse resolution [23] and most specific corrections [1]. In addition to a well
established tradition of learning-in-the-limit convergence results [28, 37, 7|, some
results within Valiant’s PAC-learning framework have been demonstrated for ILP
systems [26, 10].

2.1 Theory

In the general setting an ILP system S will be given a logic program B represent-
ing background knowledge and a set of positive and negative examples (E™, E7),
typically represented as ground literals. In the case in which B & E*, S must
construct a clausal hypothesis H such that

BAHE=E"

where B, H and E~ are satisfiable. In some approaches [37, 29] H is found via
a general-to-specific search through the lattice of clauses. This lattice is rooted

10



at the top by the empty clause (representing falsity) and is partially ordered by
f-subsumption (H #-subsumes H' with substitution # whenever Hf C H'). Two
clauses are treated as equivalent when they both #-subsume each other.

Following on from work by Plotkin [28], Buntine [5] demonstrated that the
equivalence relation over clauses induced by #-subsumption is generally very fine
relative to the the equivalence relation induced by entailment between two al-
ternative theories with common background knowledge. Thus when searching
for the recursive clause for member/2 (list-membership), infinitely many clauses
containing the appropriate predicate and function symbols are #-subsumed by
the empty clause. Very few of these entail the appropriate examples relative to
the base case for member/2.

Specific-to-general approaches based on Inverse Resolution [23, 32, 34| and
relative least general generalisation [5, 24] maintain admissibility of the search
while traversing the coarser partition induced by entailment. For instance Inverse
Resolution is based on inverting the equations of Robinson’s resolution operator
to find candidate clauses which resolve with the background knowledge to give
the examples. Inverse resolution [23] can also be used to add new theoretical
terms (predicates) to the learner’s vocabulary. This process is known as predicate
1nvention.

2.2 ILP applications

Many of the ILP applications to date have been developed using Muggleton and
Feng’s [24] Golem. In [4], Bratko and Muggleton showed that simple naive physics
systems could be learned within an ILP setting. In this case, a qualitative model
of water-filled U-tube was learned by Golem from 5 positive examples 6 negative
examples and background knowledge representing Kuiper’s [15] QSIM theory.

In [11] Cao Feng used Golem to construct a complete and correct set of di-
agnostic rules from a qualitative model of the power subsystem of a European
Space Agency satellite.

Dolsak and Muggleton [8] used Golem to construct design rules for finite
element analysis used within CAD packages.

Golem has also had two major successes in discovering new scientific knowl-
edge in the area of biomolecular modelling. Firstly [21] in the area of predicting
protein secondary structure from primary amino acid sequences Golem produced
reasonably intelligible rules with a higher accuracy than other approach tested
on the same domain. Secondly [14] in a drug design domain Golem produced
structure-activity prediction rules with an accuracy which is at least as good as
the industry-standard Hansch regression technique. The advantage of the Golem
approach lies in the fact that the rules are much easier for medicinal chemists
to understand. These domains are discussed in detail in the paper within this
workshop by Sternberg et al. [39].

11



3 Future trends and developments

In his writings Alan Turing did not make the modern distinction between com-
puter science and artificial intelligence. The universal Turing machine was in
fact inspired by Turing’s idea of an automatic mathematician. It would there-
fore not have surprised him in the least to see automatic theorem proving at the
heart of Logic Programming. With this achievement firmly established it seems
reasonable to take seriously Turing’s other aspirations.

In Section 1 we showed that Turing saw machine learning as a central com-
ponent in the future of computing. Present day machine learning is a specialised
subject area of Artificial Intelligence. One way to increase the impact of machine
learning might be to develop specialised conceptualising tools as Scientific As-
sistants. Such a tool would help scientists by suggesting interesting hypotheses
from data and background knowledge, as has already been started in herbicide
selection, cardiology [3] and molecular chemistry [21, 14, 39]. This kind of tool
certainly seems like something worth aiming for.

However in Turing’s vision of learning machines, the learning played a much
more fundamental role. Every action involving communication between humans
and computers, and even between one computer and another has the potential
for triggering learning processes. It might be possible to achieve Turing’s aims by
making ILP an integral part of machine interfaces. Learning should eventually
become to user-interfaces what theorem proving has become to program execution
within a Logic Programming framework.

Shapiro’s [37] debugging system made a start in this direction. However his
system was inefficient and was never incorporated into any widely-used program
development system. Present ILP systems lack a standard model for their imple-
mentation. Although FOIL [29] and Golem [24] are reasonably widely used and
efficient, their approaches differ considerably.

If we were to take humans and animals as our model of computation then
learning should be a part of every information processing task within comput-
ers. This seems like a very tall order. However, integrating learning sufficiently
strongly into Logic Programming would in a sense achieve this end. The Japanese
Fifth Generation project proved that Logic Programming could be used through-
out an operating system. Although today’s logic programming systems are likely
to be obsolete within a decade, logic will maintain and increase its role within
computing. It has been fifty years since Turing’s initial investigations of logic and
learning. Powerful logic-based learning systems will play a vital and increasingly
central part within the next fifty years.

Acknowledgements.

Thanks are due to Donald Michie for valuable information concerning Alan Tur-
ing’s war-time discussions. His inspiration and support have helped generations

12



of young scientists to share Alan Turing’s vision.

References

[1] M. Bain and S. Muggleton. Non-monotonic learning. In D. Michie, editor,
Machine Intelligence 12. Oxford University Press, 1991.

[2] M. Bain and S. Muggleton. Learning optimal chess endgame strategies. In
Machine Intelligence 13. (to appear).

[3] I. Bratko, I. Mozetic, and N. Lavrac. KARDIO: a study in deep and quali-
tative knowledge for expert systems. MIT Press, Cambridge, 1989.

[4] 1. Bratko, S. Muggleton, and A. Varsek. Learning qualitative models of
dynamic systems. In S. Muggleton, editor, Inductive Logic Programming,
pages 437-452. Academic Press, London, 1992.

[6] W. Buntine. Generalised subsumption and its applications to induction and
redundancy. Artificial Intelligence, 36(2):149-176, 1988.

[6] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345-363, 1936.

[7] L. de Raedt and M. Bruynooghe. An overview of the interactive Concept-
Learner and Theory Revisor CLINT. In S. Muggleton, editor, Inductive
Logic Programming, pages 163-192, London, 1992. Academic Press.

[8] B. Dolsak and S. Muggleton. The application of inductive logic programming
to finite element mesh design. In S. Muggleton, editor, Inductive Logic
Programming, pages 453-472, London, 1992. Academic Press.

[9] S. Dzeroski and N. Lavrac. Refinement graphs for FOIL and LINUS. In
S. Muggleton, editor, Inductive Logic Programming, pages 319-334. Aca-
demic Press, London, 1992.

[10] S. Dzeroski, S. Muggleton, and S. Russell. Pac-learnability of determinate
logic programs. In Proceedings of the International Conference on Learning
Theory (COLTY92), San Mateo, Calif., 1992. Kaufmann.

[11] C. Feng. Inducing temporal fault dignostic rules from a qualitative model.
In S. Muggleton, editor, Inductive Logic Programming, pages 473-494. Aca-
demic Press, London, 1992.

[12] K. Gédel. Uber formal unentscheidbare Sitze der Principia Mathematica
und verwandter System 1. Monats. Math. Phys., 32:173-198, 1931.

13



[13]

[14]

[15]
[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

A. Hodges. The enigma of intelligence. Unwin Paperbacks, Hemel Hemp-
stead, 1985.

R. King, S. Muggleton, R. Lewis, and M. Sternberg. Drug design by machine
learning: the use of inductive logic programming to model the structure-
activity relationships of trimethoprim analogues binding to dihydrofolate
reductase. Proceedings of the National Academy of Sciences, 1992. To ap-
pear.

B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338, 1986.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

A. Lovelace. Lady Lovelace’s memoir on the Analytical Engine. In B.V.
Bowden, editor, Faster than thought. 1953, London, 1953. Republished doc-
ument from 1842.

D. Michie and R. Camacho. Building symbolic represenatations of intu-
itive real-time skills from performance data. In Machine Intelligence 13. (to

appear).

D. Michie and R.A. Chambers. BOXES: An experiment in adaptive control.
In E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137-152.
Oliver and Boyd, Edinburgh, 1968.

S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

S. Muggleton, R. King, and M. Sternberg. Predicting protein secondary-
structure using inductive logic programming, 1992. submitted to Protein
Engineering.

S.H. Muggleton, M.E. Bain, J. Hayes-Michie, and D. Michie. An experimen-
tal comparison of human and machine learning formalisms. In Proceedings
of the Sixzth International Workshop on Machine Learning. Kaufmann, 1989.

S.H. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference
on Machine Learning, pages 339-352. Kaufmann, 1988.

S.H. Muggleton and C. Feng. Efficient induction of logic programs. In
S. Muggleton, editor, Inductive Logic Programming, pages 281-298, London,
1992. Academic Press.

M. Numao, M. Takashi, and M. Shimura. Inductive speed-up learning of
logic programs. In Machine Intelligence 13. (to appear).

14



[26] C. Page and A. Frisch. Generalisation and learnability: a study of con-
strained atoms. In S. Muggleton, editor, Inductive Logic Programming, pages
29-62, London, 1992. Academic Press.

[27] G. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie,
editors, Mchine Intelligence 5, pages 153-164. Edinburgh University Press,
Edinburgh, 1969.

(28] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, August 1971.

[29] R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[30] A. Robinson. Turing, von Neumann and the universal machine. In Machine
Intelligence 13. (to appear).

[31] J.A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, January 1965.

[32] C. Rouveirol. Extensions of inversion of resolution applied to theory com-
pletion. In S.H. Muggleton, editor, Inductive Logic Programming. Academic
Press, London, 1992.

[33] C. Sammut. Recent progress with BOXES. In Machine Intelligence 13. (to
appear).

[34] C. Sammut and R.B Banerji. Learning concepts by asking questions. In
R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach. Vol. 2, pages 167-192. Kaufmann, Los
Altos, CA, 1986.

[35] A.L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3:211-229, 1959.

[36] A.L. Samuel. Some studies in machine learning using the game of checkers,
2 recent progress. IBM Journal of research and development, 11:601-617,
1967.

[37] E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

[38] A. Srinivasan, S. Muggleton, and M. Bain. The justification of logical theo-
ries. In Machine Intelligence 13. (to appear).

[39] M. Sternberg, R. King, and S. Muggleton. Machine learning and biomolec-
ular modelling. In Machine Intelligence 13. (to appear).

15



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

H. Tsukimoto and C. Morita. The discovery of propositions in noisy data.
In Machine Intelligence 13. (to appear).

A. Turing. Lecture to the London Mathematical Society on 20 February
1947. Published in ‘A.M. Turing’s ACE Report of 1946 and other papers’,
MIT Press.

A. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230-265,
1937.

A. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, pages 161-228, 1939.

A. Turing. Proposal for development in the mathematics division of an
Automatic Computing Engine (ACE). Technical report, National Physical
Laboratory, 1946. Published in ‘A.M. Turing’s ACE Report of 1946 and
other papers’, MIT Press.

A. Turing. Intelligent machinery. Technical report, National Physical Labo-
ratory, 1948. First published in Machine Intelligence 5, Edinburgh University
Press.

A. Turing. Computing machinery and intelligence. Mind, 1950. Reprinted
in ‘The Mind’s I’ ed. D. Hofstadter and D. Dennett, pub. by Basic Books,
New York, 1981.

M. Woodger. The history and present use of digital computers at the Na-
tional Physical Laboratory. Process Control and Automation, pages 437442,
November 1958. Reprinted in ‘A.M. Turing’s ACE Report of 1946 and other
papers’, MIT Press.

16



