Towards constructive induction in first-order

predicate calculus

Stephen Muggleton
Wray Buntine

August 1987

Abstract. We present a framework for induction of Horn clauses based
around inverting resolution. The framework has its roots in the Duce system
for induction of propositional Horn clauses. We motivate the framework by con-

sidering shortcomings of previous work and relevant theory.

1 Introduction

2 Review

A number of approaches have been put forward to solve the task of, and tasks
related to, Prolog induction. These approaches are unable, however, to introduce
new predicates into the language they are supplied. If existing predicates in the
language have an intended interpretation, this restricts the class of programs that
can be induced from examples.

In this section we review some additional problems with these approaches.

Shapiro’s Model Inference System Shapiro’s system [8] for inducing Horn

clause programs has an extensive theoretical basis. Additional relevant

1



theory has been developed by Buntine [2]. The programs induced by this
system have termination problems because clauses are developed top-down
and no demonstration is required of their use in a successful computation.
Of course, this can be repaired by modifying the algorithm so that clauses
conjectured do have a demonstration of there use in a successful computa-

tion. (this is equivalent to making the justifiability assumption [2]).

Mitchell’s Version Spaces This approach [4] is a general strategy for induc-
tion given a hypothesis space structured using generality. But as a basis
for Horn clause induction, the approach is inappropriate. Similar problems
would exist for the approach when applied to induction in any general log-
ical framework. Firstly, the approach seems not to adequately account for
recursion. Secondly, it is unrealistic to assume that an induction problem
can be set up in such a way that a hypothesis can always be represented as
a single clause (that is, conjunctive rule). Though, this could be overcome
by using some kind of multiple Version Spaces approach. Thirdly, it is usu-
ally impossible to narrow the space of hypotheses (Horn clause programs)
down to a singleton set, as the Version Spaces approach assumes. This is
because, with recursion and function symbols, the hypothesis space is infi-
nite. One result of this is that the hypothesis space will need to be searched
heuristically; but the approach offers no guiding principles. Another result
is that some representation of the full set of potential hypotheses, under
the usual notion of generality, could not normally be maintained. Shapiro
avoids this problem by incorporating clause size as well as generalisation
(f-subsumption) in the ordering of hypotheses. Finally, most specific gen-
eralisations are not a practical concept to work with in the Horn clause
framework [2]. The concept needs, at least, to be weakened by introducing

some notion of relevancy, or some restriction on the class of clauses allowed.



3 Basic Principles

In this paper we propose an alternative framework. It is motivated by experience

with the Duce [5] system for induction of propositional Horn clauses.

3.1 Inverting resolution

Although it is apparent to many researchers in Machine Learning that there is a
strong relationship between deductive theorem-proving mechanisms and induc-
tive inference, this idea has rarely been investigated to any greater depth than
to note that the idea of logical subsumption or logical implication are central to
both. One exception to this is Plotkin [6], who on the suggestion of Popplestone,
investigated the idea that

just as unification was fundamental to deduction, so might a converse

be of use in induction.

From this idea Plotkin went on to develop the concept of least general gener-
alisation, or anti-unification of literals and clauses.

Unification is a basic idea within Robinson’s [7] theory of resolution. Another
important concept within this theory is that of the resolution tautology, or rule of
inference. Given two clauses we can infer their resolvent which is a specialisation

of both clauses. As Plotkin [6] notes

It 1s interesting that ... the similarity between induction and deduc-
tion breaks down ... [with anti-unification]. What is useful is not a
concept of unification of two clauses, but the deduction principle called

resolution.

We now show that the analogy between deduction and induction can be ex-

tended fruitfully, and that in fact the operators used by Duce are merely the



inverse of resolution. Together with a more general method for undoing unifi-
cation than anti-unification we can use this approach to extend the use of Duce

operators to constructive induction within a first-order framework.

3.2 Compaction

The use of compaction as a principle for learning is equivalent to an a prior:

preference for simplicity, i.e. Occam’s razor. How can this be justified?

3.3 The Oracle

The Duce algorithm uses an oracle to check the correctness of generalisations
and ensure comprehensibility of new terms introduced. Is it possible to give a
characterisation of how much information will be required from the oracle with

a given number of examples of a logic program? etc.

4 Preliminaries

We assume basic familiarity with resolution and unification. The terminology
used is that of Lassez, Maher and Marriott [3].

Terms, atoms (predicate symbols applied to terms), literals (positive or neg-
ative atoms), clauses (sets of literals), and Horn clauses (clauses containing less
than 2 positive literals) have there usual meaning. The set of varables occurring
in any syntactic object o is denoted by vars(o).

A substitution, 0 = {v; < t1,v9 < to,...v, < t,} maps terms to variables.
It is applied to a term by simultaneously replacing all occurrences of each v; in
the term by t;. The set of variables {v1,vs,...,v,} is denoted by domain(f).
The set of variables occurring anywhere in a substitution is denoted vars(f).
Finally, each variable v; does not occur in any term ¢;. That is, substitutions are

idempotent.



A most general unifier or mgu for two terms or literals, £; and ¢y, is a most
general substitution, f, for the two terms such that ¢;6 and t,0 are identical terms.
Two terms or literals are unifiable if they have such an mgu.

An inverse substitution for a syntactic object o is a set

{(tla {pl,la .. apl,ml}) > Uly.eny (tna {pn,la .. apn,mn}) — Un}

in which all ¢; are terms in o, all v; are variables such that v; € vars(o), and p; ; are
distinct places within the object 0. To each inverse substitution, there corresponds
a natural substitution that is its inverse, {v; < t1,vy < t9,...v, < t,}. Given
the substitution f, we denote by ! an inverse substitution whose natural inverse
is 6.

Let C; and C5 be two clauses that have no variables in common. We write

the resolvent, or resolved product, of C; and C as
C=0C-Cy

where C' = (Cy — {L1})0 U (Cy — {L2})6, given that L; € C; and L, € Cy, L; and
L, are unifiable, and 6 is a most general unifier for L; and Ly. L; and L, are called
the literals resolved on. Note that the substitution # can be uniquely factored
into component parts #; and 6y such that 8 = 6,6, domain(6,) C vars(C;) and
domain(fz) C vars(Cy). This gives C = (Cy — {L1})6 U (Cy — {L2})bs.

The resolve product is not unique when more than one pair of literals can be
found to resolve on. If only one pair can be found, the resolved product is unique

up to a uniform change of variable names.

5 Inversion of a Single Resolution Step

In this section we show how to invert a single resolution step. We do this using
first-order equivalents of the absorption and identification operators used in Duce.
First we define the absorption operator and its inverse. In the following two

definitions C = C; - Cs, where the literal resolved on in C; is positive.



Definition 1 Given some clauses C, Cy and Csy as described above, and some
Horn clause program P O {C,C:}, the absorption operator, Abs(C,C}), trans-
forms P to P'=P — {C}U{C,}.

Definition 2 Given some clauses C, Cy and Cy as described above, and some
Horn clause program P D {C}, Cs}, the inverse absorption operator, Abs™(Cy, Cy),
transforms P to P' = P — {Cy} U {C}.

These operators are usually non-deterministic. They are inverse in the fol-
lowing sense: if some application of Abs transforms P to P’, then there exists an
application of Abs~! transforming P’ to P, and vice versa for Abs~! and Abs.

The identification operator, Ident, and its inverse are defined analogously,
except that the literal resolved on in (] is negative.

In order to apply either the absorption or the identification operators, we need
to be able to find an inverse to the resolved product. The notion of a resolved
quotient is therefore introduced.

We write the resolved quotient of C; and Cy as
C=C/C, (1)

This must satisfy C; = C - Cy. In the case of Horn clauses we call C' = C;/Cs
an identificant of C'y and Cy just when the literal resolved on in C) is a negative
literal. Similarly, for Horn clauses we call C' = C;/Cs an absorbant of C; and Cs
just when the literal resolved on in Cj is a positive literal.

Suppose C; = C/Cy, then though neither C; nor Cy f-subsume C, they are
both more general than C relative to each other (as C; A Cy — C). In the
propositional case as in Duce the resolved quotient of two clauses is unique. For
first-order clauses, the resolved quotient is not unique in general.

Let us look in more detail at the case in which we attempt to find a resolved

quotient of C and C}. For some L; € (', let ¢; be a most general substitution



whose domain is a subset of domain vars(L;) such that

(Cr={L})¢ € C (2)

Let ¢ be a substitution whose domain is a subset of vars(L;) —vars(Cy —{L:}),
L, be a literal, and 6, be a substitution whose domain is a subset of vars(Ls),
such that ¢, ¢20, is an mgu for L; and Ly. ¢, corresponds to 6, in the definition
of resolved product. Finally, let 6, be an inverse substitution for #, such that

(L_101)92_1 = Ly. In order to invert a single resolution step C} is then given by
Cy = (C — (Cy = {L.1})6: U{L,6:})6,~" (3)

Since the choices for Ly and 0y are usually non-unique, as in Duce we would
apply a search to find solutions for Cs, and offer these to the oracle with a prefer-
ence for low complexity clauses. For the special case of finding the absorbant, the
problem is simplified somewhat as the choice of L; is unique. When ¢ # {}, the
substitution #; can take on an infinite number of different values. The problem
can be avoided by assuming that all substitutions are relevant to the rest of the

clause, and do not introduce unnecessary extra function symbols.

Example 1

First we run the resolution step forward. Let

Cy =  member(H,[H|T]) 6 ={H < 1,T < L} = ¢oandp, = {}
Cy =  a(K) < member(l, K) 0, = {K « [1|L]}
C = a(llL])

Given only C and Cy we first construct Ly = member(H,[H|T]) and so ¢, =

{}. Applying equation (3) we get
Cy = (a([1|L]) < (member(H, [H|T])¢s))0s " (4)
where ¢oby is an mgu for Ly and (Ly¢o)fy".

7



Note that one trivial solution for equation (4) is ¢o = 05 = {}. The correct
solution can only be discovered by testing solutions against the oracle in order
of ascending complexity. In the correct solution, the term [1|L] is equated with
[H|T] giving 6, = {H < 1,T < L} and 6, " = {([1|L], {1,2}) — X}. Applying
(4) this yields Cy = a(X) <= member(1, X), which is an alphabetic variant of the

original Csy.

6 Inversion of multiple resolution steps

In the previous section we showed that there is a way to reverse a single resolution
step. Such an inversion inevitably leads to the generalisation of one of the clauses
involved. In this section we show that predicate symbols can be reconstructed
non-deterministically from the resolvents of multiple resolution steps, as with the
use of the Duce operators of inter-construction and intra-construction.

We first define the (first-order) intra-construction operator and its inverse.
They are inverse in the same sense as the absorption operator. Let L be a
negative literal in clause A, CC = {C},...,C,} and BB = {By,..., B,} be two

sets of clauses such that n > 1and B;=A-C; fori=1...n.

Definition 3 Given a clause A and sets of clauses BB and CC as described
above, and some Horn clause program P O BB, such that the predicate sym-

bol used in L does not occur in P, the intra-construction operator, Intra(BB),

transforms P to P' =P — BB U ({A} U CC).

Definition 4 Given a clause A and sets of clauses BB and CC as described
above, and some Horn clause program P O ({A} U CC), such that the predicate
symbol used in L occurs only once in A and once in each C; and nowhere else

in P, the inverse intra-construction operator, Intra (A, CC), transforms P to

P'=P—(CCU{A})UBB.



The inter-construction operator and its inverse are defined analogously, except
that the literal L is positive.

Application of the operators can be computed as follows.

Let some clause A containing a literal L be resolved against some set of
clauses CC = {C4,...,C,} producing a set of resolvents BB = {By,...,B,}

where n > 1 such that
B; = (A—{L})01; U (C; — {Li})b2; (5)

where 6; = 0, ;65; = mgu(L, L;). If we are given only BB and required to guess
A and CC it will be necessary to reconstruct the literal L, that is, to introduce
a new predicate symbol into the clauses.

To illustrate this, we now consider in more detail the special case in which
each C; is a unit clause, so C; = {L;}. Firstly we note, from equation (5) and
the definition of resolved product,

U (vars(61;) Nvars(A —{L})) C vars(L) (6)

1=1...n

This shows that certain variables must appear in L. Also, for all 4, (A—{L})0,,; =

B;. Therefore there is some substitution 6,4 and most specific clause B such that
(A-{L})0.=B (7)

and are substitutions ¢; such that 6, ; = 04¢; and B; = B¢;.

To reconstruct A and C'C' given only BB in this case, we first construct B and
the ¢; and choose a 4~ ". So A —{L} and theta, ; have now been reconstructed.

Then we choose an L, bearing in mind relation (6). We might assume that L
contains as few extra terms as possible. In principle this allows us to construct L
non-deterministically. Again, as with the inversion of single-step resolution, we
must make some assumptions about the relevance of terms within L in order to
avoid an infinite number of solutions.

Finally, we choose L; under the constraint that 6;;0,; is an mgu for L and

L;. This then yields CC, after choosing f;~" for C;.

9



Example 2

As with the previous example, we first run the resolution steps forward. Let

A = reverse([A|B],C) < reverse(B, D), append(D, [A],C)
C1 = append([], E, E)
02 = append([F]a G; [F|G])

Thus

91’1 = {D — [],C — [A]} 02,1 = {E “— [A]}
9172:{D(—[F],C(—[F,A]} 02,2:{G<— [A]}

B, = reverse([A|B],[A]) « reverse(B,]|)
B, = reverse([A|B], [F, A]) < reverse(B, [F])

Given By and By as a starting point, equation (7) gives us
(A—{L})04 = B = reverse([A|B],[M|N]) < reverse(B, O)
¢ ={M < AN+ [0« [}}

¢o ={M < F,N + [A],O < [F]}

Making 04 ' = {} means that the variables M, N, A, and O must all appear in the literal

L. This can be simplified with the inverse substitution

04~ = {([MIN],{1}) — P}

So by relation (6), L must now contain only the variables A, O and P.
The simplest choice is then L = p(A, O, P), where p is

10



some new predicate symbol. This gives

A = reverse([A|B], P) < reverse(B,0),p(A, O, P)

Lastly if we assume 051 = 055 = {}, then

Cy =p(AaOaP)0A¢102,1_1
Cy = p(AaOaP)0A¢202,2_1

p(4, ], [4])
p(A, [F], [F7 AD

In fact the predicate p is a simplified version of append which appends its
first argument onto its second argument to produce its third argument. This is

perfectly sufficient for reverse to work.

7 Sufficiency of Duce operators

In this section we show that it is possible to learn any “reasonable” logic program
from ground unit clause examples and an oracle, using the operators presented.
By “possible to learn”, we mean that the program can be found by applying
some sequence of operators to the examples. This does not consider the process
of search, however.

Before considering the analysis, we first need two new operators. The first

removes simple cases of redundancy in the rule set.

Definition 5 Given clauses A and B such that A is equivalent to B except for
a change of variable names, and some Horn clause program P D {A, B}, the

subsumption operator, Subs(A, B), transforms P to P' = P — { B}.

Clearly, Subs~! simply creates a duplicate of a clause in a logic program. The

second operator generalises the head of a rule.

11



Definition 6 Given a clause A, an inverse substitution 0~ for A effecting terms
in the head of A, and some Horn clause program P containing A, the generalise-

head operator, GenHead(A), transforms P to P' = P — {A} U {A0~'}.

Given a logic program P, we denote by (Abs/Intra/Inter/Ident/Subs/GenHead)x
(P) the set of logic programs that can be produced by some finite sequence of
applications of the Abs, Intra, Inter, Ident, Subs and GenHead operators to
P. Likewise, (Abs/GenH ead)+ for some finite sequence of the Abs and GenHead
operators.

We secondly, need to introduce some properties of logic programs that will be
used. A deadend clause is when that can never be used in a successful derivation.

Of cause this is relative to the context in which the derivation is being constructed.

Definition 7 We say a logic program P has a deadend clause if there exists some
clause contained in P that is never used in any successful derivation constructed

with clauses only from P.

Now we define the algorithm Cigol(Abs, Intra) (Cigol is logiC backwards).
In the following an inverse deriwation E — P, — ... — P, is a mixed sequence
of absorption and intra-construction transformations of the example set E into

the logic program P,. We call P, an inverse derivative or id of E.

Definition 8 The algorithm Cigol(Abs, Intra) applies an inverse substitution
to members of a set of ground unit clauses E to produce E' and returns a set of

possible Horn clause programs H = {P : P id of E'}.

We can see H as being the hypothesis space of an algorithm which returns a
single hypothesis. Angluin [1] introduced the notion of a characteristic sample set
of examples for some language L as being a set of examples which are sufficient
to allow the inference of L. Here we use the term somewhat loosely to define
the notion of a set of examples which induces a hypothesis space containing a

particular logic program.

12



Definition 9 Given a logic program P we say that E is a characteristic sample
of P for algorithm C'igol aps,inre) if and only if E consists of ground unit clauses

and P € Cigol aps,intra) ().

Before showing how to construct a finite characteristic sample for any logic

program we will introduce the auxilliary notion of an isolated reference.

Remark 1 If Intra™" is applied to P O ({A}UCC) to produce P' = P— (CCU
{A}) U BB, where A and C; € CC are resolved on an isolated reference L' of p
in P and CC is the set of all clauses containing the predicate symbol p in their

head then the program P' does not contain the predicate symbol p.

The following algorithm Charaps,miray can be used to generates a characteristic sample

of a given logic program P.

algorithm Char(ass,intra) (P)
let i =0, =P
until P; contains only unit clauses do
if 4A such that A is an isolated reference to p in P;
P, is the result of applying Intra=' to remove p in P
else
P, is the result of applying Abs™! to remove reference A in P,
leti=71+1
done
let f=1
E is Py with all variables skolemised
return(E)
end Char

Now we must show that this algorithm will generate a characteristic sample

for a class of logic programs.

13



Theorem 1 Char Abs,mtm)(P) s a characteristic sample of some logic program
P if and only if every clause within P can be used in some derivation of a unit

clause from P.

Proof. Let £ = Char(aps,intra)(P). According to definition 6 E is a a character-
istic sample of P for Cigol(aps,intra) if and only if P € Cigol aps rnire)(F). Let us
assume that F is not a characteristic sample of P.

We will first look at the case in which the until loop in Char aps,mira) ter-
minates. According to the loop termination condition, Py must be a set of unit
clauses. Thus after skolemisation, £ will be a set of ground unit clauses. Since

each step 7 in the derivation P — ... — P; — E was carried out by either Abs™!

or Intra™!

it follows that the sequence of transformations £ — ... — P is an
inverse derivation of P from E. Thus since P id of F, it follows from definition
5 that P € Cigol(aps,intra)(E), and therefore E is a characteristic sample of P.
Thus let us assume that the until loop does not terminate.

Let p be some predicate symbol used in P. There will either be no atomic
formulae A which reference p in P, or several which do. If there are several, then
they will be removed one by one by the else statement, with the last reference
being removed by the if statement, together with all remaining occurrences of p
in P (Remark 2). Furthermore referenced predicate symbols will be removed one
by one until only unreferenced predicate symbols remain. The else statement will
now remove all remaining self-references (Remark 1), leaving unit clauses, and
the until loop will terminate. This contradicts the assumption and completes
the proof. O

We now investigate the size of the characteristic sample set for a given logic

program.

Theorem 2 Let E = Char(ps,intra)(P) and Ps be the set of referenced predicate

symbols in P. The size of the characteristic sample set |E| = |P| — |Ps|.

14



Proof. From definition 2 Abs~! applies the transformation P’ = P — C, U C,
and therefore |P'| = |P|. From definition 4, Intra™! applies the transformation
P'" = (CC U {A}) U BB, where |CC| = |BBJ. Tt follows that for Intra *,
|P'| = |P| — 1. In the proof of lemma 1 we have shown that referenced predicate
symbols are removed one by one using Intra—!. All other transformations employ
Abs™!. Since there must therefore be | Ps| applications of Intra™" it follows that
B|=|P| - |Ps|. O

Not only does this show that characteristic samples are finite, but surprisingly,
less examples are needed to induce a logic program than there are clauses in that
program. This is counter-intuitive to the normal belief in inductive knowledge
engineering, in which we expext to use a large number of examples to induce a

small number of rules.

Example 3

We will demonstrate how Char aps,inira works on a simple example. In the following let

P=P = {(memss(A, B) < member(C, D), member(D, B)),
(member(E, [E|F]) <),
(member (G, [H|I]) + member(G,I))}

Thus Ps = {member}. Applying Abs™' to the second and the third clause we get
P = {(memss(A, B) < member(C, D), member(D, B)),
(member(E, [E|F]) <),
(member(J,[H, J|K]) <)}
Applying Abs™! to the first and the second clause we get
P, = {(memss(C, [L|M]) < member(C, L)),

15



(member(E, [E|F]) <),
(member(J,[H, J|K]) <)}

Applying Intra™" to the first and the second clause we get

Py = {(memss(N, [[N|O]|M]) ),
{(memss(P,[[Q, P|R]|M]) <)}

Skolemising we get

E = {(memss(n, [[n|o]|m]) <),

(memss(p, [[g, p|r]|m]) <)}

As predicted by theorem 2, |E| = |P| — |Ps| = 2.

8 Discussion

In summary, in section 2 we showed that the Duce operators simply represent
the inversion of steps in a resolution proof. In the case of general (non-Horn)
clauses, only two different operators exist, single-step inversion, and multiple-step
inversion. The former lead to generalisations, and the latter to the introduction
of new terms. Since the use of Horn clauses introduce an assymetry, each of these
operators corresponds to two Horn clause operators, giving the original four Duce
operators.

Stephen Muggleton has so far coded a special case of the absorption operator
and tested it on some simple examples of recursive clause. Meanwhile Wray Bun-
tine has coded the characteristic sample generation algorithm Char(Abs, Intra).
One interesting result to come out of the latter encoding is the fact that if we

require the characteristic sample generation algorithm to produce larger P; at

16



each step (allowing gradual compression in reverse), some logic programs require
many more examples than indicated in theorem 2. For instance, naive reverse
requires far fewer examples than fast reverse.

Time complexity of logic programs learned by Duce. In the case of
learning propositional Horn clauses the time complexity of the learned program
was of little consequence, since it is bounded above by the space complexity
of the program. This is merely a property of non-looping programs. However
no first order logic program containing recursion will have its time complexity
constrained in the same way. Is there any way to make a first-order version of

Duce search for low time complexity algorithms?

References

[1] D. Angluin. Inference of reversible languages. JACM, 29:741-765, 1982.

[2] W. Buntine. Induction of horn clauses: methods and the plausible general-
ization algorithm. International Journal of Man-Machine Studies, 26(4):499—
519, 1987.

(3] K. Marriott J.L Lassez, M.J. Maher. Unification revisited. In Who Knows.
Springer-Verlag, 1987.

[4] T.M. Mitchell. Generalisation as search. Artificial Intelligence, 18:203-226,
1982.

[5] S.H. Muggleton. Duce, an oracle based approach to constructive induction.

In IJCAI-87, pages 287-292. Kaufmann, 1987.

6] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, August 1971.

17



[7] J.A. Robinson. A machine-oriented logic based on the resolution principle.

JACM, 12(1):23-41, January 1965.

[8] E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

18



