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Abstract. In this paper we examine the problem of repairing incomplete
background knowledge using Theory Recovery. Repeat Learning under
ILP considers the problem of updating background knowledge in order to
progressively increase the performance of an ILP algorithm as it tackles
a sequence of related learning problems. Theory recovery is suggested as
a suitable mechanism. A bound is derived for the performance of theory
recovery in terms of the information content of the missing predicate def-
initions. Experiments are described that use the logical back-propagation
ability of Progol 5.0 to perform theory recovery. The experimental results
are consistent with the derived bound.

1 Introduction

In a previous paper [1], the authors described an extension of the standard ma-
chine learning framework, called repeat learning. In this framework, the learner
is not trying to learn a single concept, but a series of related concepts, all drawn
independently from the same distribution D. A finite sequence of examples is
provided for each concept in the series. The learner does not initially know D,
but progressively updates a posterior estimation of D as the series progresses.

Under Inductive Logic Programming (ILP) [6], the learner’s estimation of
D depends on the linguistic bias conveyed by his hypothesis language. The ILP
learner can therefore alter the estimation of D by making changes to the hypoth-
esis language. The previous paper [1] discussed a mechanism for this process that
adjusted the background knowledge using predicate invention.

One can quantify the expected performance of an ILP algorithm by bounding
the expected error of a hypothesis formed given the number of examples seen.
Previous bounds for Progol [3, 4] have only considered the situation in which the
learner knows the distribution D. In this paper, we construct a bound for the
case when the learner’s estimate is incorrect. Significantly, this bound describes
the difference between the estimate and the true distribution D in terms of the
missing information content in the hypothesis language used by the learner.

Theory recovery is the process of adjusting, or completing background knowl-
edge. In theory recovery, an incomplete logic program is reconstructed on the
basis of examples. The examples indicate the desired behaviour of a particular
predicate in the program, defined in terms of the background knowledge. A new



version of the ILP algorithm Progol, version 5.0, uses logical back-propagation to
perform theory recovery.

The paper is structured as follows. Section 2 describes the formulation of
the new expected error bound, with its proof given in Appendix C. Section
3 describes experiments that give results that are consistent with this bound.
A complete set of results is given in Appendix A. Finally, our conclusions are
drawn in Section 4. Appendix B briefly describes the mechanics of logical back-
propagation in Progol 5.0.

2 A Theory Recovery Error Bound

It was shown in [5] that under suitable assumptions the class of all polynomial
time-bounded logic programs is (U-)learnable. In [4] explicit upper bounds were
given for the error of a Progol-like learning algorithm. The paper considered
the case of positive-only learning compared to the more traditional positive and
negative setting. In both cases upper bounds on expected error were derived
showing that learning could be efficiently achieved. However under both models
a strong assumption was made: that the learner knows the prior distribution
(used by the teacher) over hypotheses. Clearly there is no reason why this should
in general be true. In particular, in the following result we assume that the
background knowledge of the learner is missing some predicate(s) contained in
the target concept. In Subsection 2.1 we review the average case Bayesian model
of learning used in [4] to analyse the expected error of a Progol-like learner.
In Subsection 2.2 we modify the model by assuming that the learner is not in
command of the correct prior distribution and derive adjusted upper bounds.

2.1 Known Prior

The following is a version of the U-learnability framework presented in [5] and
restated in [4].

The Model X is taken to be a countable class of instances and H C 2X to be
a countable class of concepts. Dx and Dy are probability distributions over X
and H respectively. The teacher randomly chooses a target theory T from Dy
then randomly and independently chooses a series of examples E = (z1,...,Zm)
from T according to Dx.

Given E, Dy and Dx a learner L outputs a hypothesis H € ‘H. The error of
the hypothesis is measured as Dx(H \T) + Dx(T \ H).

The hypotheses in ‘H are assumed to be ordered according to decreasing prior
probability as Hi, Ha,.... The distribution Dy (H;) = £ is assumed, where
a = 6/7? is a normalising constant. This is similar to the prior probability
assumptions used in Progol 4.1 [3]. This distribution is a smoothed version of



the universal distribution' which assigns equal probability to the 2° hypotheses
describable in b bits, where the sum of the probabilities of such hypotheses is
270,

Expected Error The following theorem (stated and proved in [4]) gives an
upper bound on the expected error of an algorithm which learns by maximising
the Bayes’ posterior probability over the initial am hypotheses within the space.

Theorem 1. Let X be a countable instance space and H C 2%X be a count-
able hypothesis space containing at least all finite subsets of X. Let Dy, Dx
be probability distributions over H and X. Assume that H has an ordering
Hy, Hs, ... such that Dy (H;) > Dy (Hj) for all j > i. Let Dy (H;) = 3z where
=y a= %2. Let H,, = {H; : H; € H and i < n}. T is chosen randomly
from Dy;. Let ex(xz, H) = (x,v) where v = True if t € H and v = False other-
wise. Let E = (ex(x1,T),...,ex(xn,T)) where each x; is chosen randomly and
independently from Dx. Hg = {z : (z,True) € E}. Hypothesis H is said to be
consistent with E if and only if x; € H for each (x;,True) in E and x; ¢ H
for each (x;, False) in E. Let n = am. L is the following learning algorithm. If
there are no hypotheses H € H,, consistent with E then L(E) = Hg. Otherwise
L(E)=H,(E)=H only if H € H,, H consistent with E and for oll H' € H,
consistent with E it is the case that Dy (H) > Dy (H'). The error of a hypothe-
sis H is defined as Error(H,T) = Dx(T'\H)+ Dx(H\T). The expected error
of L after m examples, EE(m), is at most:

1.514+2Inm
m

(1)

2.2 Unknown Prior

We consider an extension of the above model. Previously it was assumed that
the learner knew precisely the distribution D4, from which the target concepts
were drawn. Clearly there is no reason why this should hold in practical machine
learning situations. We now relax this assumption and consider what happens
to the expected error of learning when the learner does not know the exact
distribution D4,. In particular we consider an incorrect prior over hypotheses
induced by incomplete background knowledge.

The Modified Model We assume the existence of a universal linguistic bias
generator G that, given a target space H, and an hypothesis language B for it,
returns a probability distribution Dy, = G(H, B) over the target space. Occam’s
razor can be taken as an example of such a generator, that always gives a dis-
tribution that assigns a higher probability to hypotheses that can be expressed
more simply in the hypothesis language.

! If we take the universal distribution to be u(#,) = 2721"°82("*1] then the proba-
bility of the 2"th hypothesis is w(Han) = 272" = ﬁ So % is a smoothed and
renormalised version of w.



The teacher selects the target concept from H according to the distribution
D7. The learner’s imperfect hypothesis language B, induces an incorrect prob-
ability distribution Dy = G(H,Bc). We assume the existence of some set of
predicate definitions P such that G(H, (Bz U P)) = D. In other words a set of
“missing” predicates, that, if added to the background knowledge of the learning
algorithm, would mean that the the learner’s induced distribution D, would be
the correct one.

The hypotheses in H are ordered by the teacher according to decreasing prior
probability Dy (H;) = # as Hi, Ha,...,H;,.... The learner only has partial
information about this ordering in that its prior is a corrupted version of the
teachers distribution. In particular, there is a set of hypotheses Hp C H for
which H € Hp & D7(H) < Ds(H). Let the information content in bits of an
hypothesis relative to a distribution D be given by info(D, H) = —log,(D(H)).
The information content of H € Hp under the learner’s distribution D, is
more (in bits) than the information that would be assigned under the teacher’s
distribution D7.

Lemma 1. H € Hp is given different indices H; and H; under the orderings
induced by D1 and D. If the information content of the “missing” predicates
in P is at most k bits, then for any hypothesis H € H the indices i and j satisfy
j < 2k/2q,

Proof.
k > infop, (H) — infop, (H) = —logy, D (H) + log, D7 (H)
a a , . J
= —log, .7—2 + log, 2= 2log, j — 2logy i = 2log, R

Therefore j < 2k/2 .

Expected Error

Theorem 2. Let X be a countable instance space and H C 2% be a countable
hypothesis space containing at least all finite subsets of X. Assume the existence
of a universal linguistic bias generator G that, given a target space H, and an
hypothesis language B for it, returns a probability distribution Dy = G(H, B)
over the target space. Let Dx be a probability distribution over X. Let D,
D, be probability distributions over H, where Dy = G(H, Br) is the probability
distribution induced by the learners hypothesis language. Assume the existence
of some set of predicate definitions P such that G(H,(Bz U P)) = Dt. Let the
information content of the predicate definitions P be at most k bits. Assume that
H has an ordering Hy,Hs, ... H;, ... such that Dy (H;) > Dy (Hiy1) for all i
and an ordering Hi, Hj, ..., H},... such that Dc(H}) > D (H; ) for all j. Let
Dr(H;) = % where L =32 4 =72/6. Let Hp = {H;: H; € H andi <n}.T
is chosen randomly from D. Let ex(z, H) = (x,v) where v = True if x € H and
v = False otherwise. Let E = (ex(x1,T),...,ex(xm,T)) where each x; is chosen
randomly and independently from Dx. Hg = {z : (x,True) € E}. Hypothesis H



is said to be consistent with E if and only if x; € H for each (x;,True) in E
and z; ¢ H for each (x;,False) in E. Let n = am. L is the following learning
algorithm. If there are no hypotheses H € H,, consistent with E then L(E) =
Hg. Otherwise L(E) = H,(E) = H only if H € H,,, H consistent with E and
for all H' € H,, consistent with E it is the case that Do(H) > Dy(H'). The
error of an hypothesis H is defined as Error(H,T) = Dx(T\H)+ Dx(H\T).
The expected error of L after m examples, EE(m), is at most:

1.51+2lnm + kIn2
m

(2)

Proof. Given in Appendix C

3 Experiments

To confirm the assumptions given to derive the bound given in Equation 2,
the following experiments were devised and run. The experiments made use of
the logical back-propagation abilities of Progol 5.0. This ILP algorithm uses an
augmented version of Inverse entailment that includes the completion of back-
ground knowledge in the generalisation process. The mechanism is described in
Appendix B.

The aim of the experiments were to determine how the coverage accuracy
of the logic program would be affected by having a percentage of the clauses of
the program removed, and then using Progol 5.0 to repair the program, given a
varying number of examples.

3.1 The Experimental Domain

The experiments are conducted in an artificial domain, called the base-n-string
domain. The elements of the domain are strings in base n, where n € {2, 3,4, 5},
of length up to a maximum value /.

The target program has a distinct predicate for each distinct length of string.
The predicate that defines strings of length m is defined in terms of the predicate
that defines strings of length m — 1. This means that a missing clause definition
for a predicate defining strings of length m will affect the definition of all strings
of length greater than m.

Table 1.1 shows the program for the binary case - that is, n = 2 where [ = 10.

The maximum string length [ was determined by restricting the total number
of clauses in the logic program to be 20. For the cases n = 2,4, 5, this gave values
1 =10, 5, 4 respectively. For the case n = 3, the value | = 7 was chosen, and then
one of the definitions for p7/1 was excluded from the program.

3.2 Method

In order to be able to encapsulate the entire success set of the logic program,
a meta-predicate ss/1 was defined. For every predicate pred(X) defined, the



pl(zero).

P ey Base Clause
p2(zero(h)) :- pl(A). Z 1l(] mfm%n(;itlon
p2(one(h)) :- pi(A). -
3|7 7.20
.. 4 |5 6.64
pl0(zero(A)) :- p9(A). 5 |4 6.32

pl0(one(h)) :- p9(d).

Table 1.2: Information content (in
bits, to 2 d.p.) of a single clause in
each base.

Table 1.1: The program
for base n =2, [ = 10.

clause ss(pred(X)) :- pred(X). was added to the program. This meant that
calling ss/1 would then return all the ground facts provable in the original logic
program.

In the learning sessions under Progol 5.0, ss/1 was the target to be learned,
and the incomplete logic program is given as background knowledge for ss/1.
The examples given were of the form ss(fact) where fact is a ground fact
that should be provable by the original complete logic program. Logical back-
propagation in Progol 5.0 uses these examples to complete any missing predicates
in the background knowledge. Notice that only positive examples were used.

A complete program can be used to generate the set of all base-n-strings up
to a certain length. An incomplete or partially repaired program will generate
only a subset of these strings. Therefore at each stage we were measuring the
coverage accuracy of the program.

Each run of the experiment was parameterised by two parameters: p, the
percentage of the logic program that was deleted, and m, the number of examples
seen by Progol 5.0 in order to reconstruct the missing predicates.

A run proceeded as follows:

— The original program (defined in the background knowledge) has p percent
of its clauses deleted.

— Measure the accuracy of the program with depleted background knowledge.

— Generate m random examples of the success set of the complete program.

— Run Progol 5.0 with the incomplete program as background knowledge using
the generated examples.

— Measure the accuracy of the repaired program.

Each run was repeated 10 times, for each of the possible combinations of val-
ues of p € {10, 20, 30,40, 50, 60, 70, 80,90, 100} and m € {10, 20,40, 80, 120, 160},
for each of the original logic programs in base n € {2,3,4,5}.

3.3 Theoretical Results for the Domain

The theoretical bound 2 requires that one estimates the size in bits of the infor-
mation content of the missing predicates.

In reconstructing a background clause in base n, Progol 5.0 has a choice of a
certain number, [, of predicate symbols for the head, and a choice of the same [
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Fig. 1. Experimental result for the case n = 4, m = 80. Complete results are shown in
appendix A.

predicate symbols for the one atom in the body. It also has a choice of n function
symbols to add to the string. (one, two, etc).

If it is assumed that all of the possible choices are assigned equal probability,
then the information content of a single clause of this kind is therefore info(n) =
log, (ni?). The values of this function for the different possible values of n are
given in Table 1.2.

The bound on the expected experimental error is then:

< 1.51 4+ 21In(m) + c.info(n) In(2)
- m

EE(m)

where ¢ is the number of missing clauses.

3.4 Results

A typical result is shown in Figure 1. This graph shows the case that n = 4,m =
80. The lower curve is the accuracy of the incomplete logic program before
theory recovery. The upper curve is the accuracy of the logic program after
theory recovery using m examples. The straight line is the theoretical bound.

As the graph shows, the bound fits the results well, and runs parallel to the
observed experimental accuracy. The results for other values of n (the base), and
m (the number of examples) are similar. Results for all the values of n and m
are given in Appendix A.

The experiments are consistent with the theoretical bound, and the calcula-
tion of the information content of clauses in this domain (see Table 1.2).



4 Conclusions

This paper has introduced a theoretical model for analysing learning when per-
forming theory recovery. We derived an average case error bound for the error
of a Progol-like learner in such a situation and showed that the bound held
and was reasonably tight under experiment. The experiments used logical back-
propagation, a feature of Progol 5.0, to perform theory recovery.

This work is part of a wider programme to analyse multiple-task learning
within a relational (ILP) setting. In particular, we analyse a particular issue
raised by the repeat learning framework introduced in [1], that of learning under a
prior distribution that is incorrect. The experiments differ from those conducted
in the previous paper in that theory recovery, rather than predicate invention,
is used to alter background knowledge. However the repeat learning framework
does not specify the particulars of how the linguistic bias of the learner is to be
altered. Although there is no multiple-task learning in this work - we are only
ever learning one concept - the link with repeat learning comes in the form of the
updating of background knowledge and hence the updating of the linguistic bias
of the learner. In both models the learner is missing predicates in the background
knowledge. The analysis could easily be extended to the case when one is learning
more than one task. This would be the natural direction in which to extend the
research.
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B Progol 5.0: Theory recovery by Logical
Back-propagation

The theory recovery mechanism that is applied to the experiments in the paper is
provided by logical back-propagation [2], a form of generalised inverse entailment
[3]. The problem specification for ILP is: given background knowledge B and
examples F; find the simplest consistent hypothesis H s.t. BA H = E. In the
case that both £ and H are single Horn clauses then by inverse entailment it
is possible to generate the conjunction of all ground literals that are true in all
models of BAE, denoted by L (i.e. BAE = L |= H). In logical back-propagation
examples of an observational predicate are used to augment the definition of a
related theoretical predicate. In the following, examples of sentences (predicates
for s) are used to augment a definition for noun phrase (np).

Example 1. Natural language processing. Given background knowledge

_ {S(A,B) « np(4,C),vp(C, D),np(D, B)
np(A, B) + det(A, C),noun(C, B)

example E = s([the, nasty, man, hit,the, dog],[]), and a prior hypothesis H =
np(A, D) « det(A, B), adj(B, C),noun(C, D) then by inverse entailment

1L = —s([the, nasty, man, hit, the, dog], [])
A-np([the, nasty, man, hit, the, dog|, [hit, the, dog])
Ndet([the, nasty, man, hit, the, dog], [nasty, man, hit, the, dog])
A ... Anp([the,dog],])

The most specific (non-definite) clause that results from variablising terms (guided
y mode declarations) is

1 = s(A, B);np(A, C) + det(A, D), adj(D, E), noun(E, C), vp(C, F),np(F, B)

The generation of L in the above example requires derivation of —s and —wp,
which leads to obvious difficulties when using a Horn clause theorem prover.
To overcome this the implementation of logical back-propagation makes use of
mechanisms from Stickel’s Prolog Technology Theorem Prover [7]. Clauses are
constructed to provide definitions for negated literals. For example, for the clause
p < q, the contrapositive clause -q < —p is added, allowing the possibility of
—q being derived using a Prolog interpreter.

Not all clauses of a theory need have their contrapositive added when im-
plementing generalised inverse entailment. A relevance map based on the calling
diagram among predicates is used to determine the additional contrapositives
required. The contrapositive required to generate L for the example above is
—np(A,C) « —s(A, B),vp(C,D),np(D, B). This enables the derivation of —np
for the generalisation of L. The theoretical and observational predicates involved
in the generalisations are communicated by the user to Progol 5.0 by way of mode
declarations.



C Proof of Theorem 2

Proof. For all H; € Hp,

2k

a a a
Dy (H;) = = < ——— = —- Since j < 2¥/2j.
Vo T (g22h) g2
So for the learner’s ordering over hypotheses :
0 i k 0 ok k7 k
a2 a2 a2 a2
ZDT(HJ)S Z .—2_/ .—2d3=[——.] :T
J>nt1 i1 7 izn J I dj=n

The proof now proceeds in a similar manner to the proof of Theorem 1 given in

[4].

EE(m)= Y _ D7(T) Y Dx(E|T)Error(L(E),T)

TeEH EeT™
< Y Dr(T) Y Dx(EIT)Error(Hn(E),T) + Y  Dr(T).1
TEH, EeT™ TeEH\Hn

< > Dr(T) > Dx(E|T)Error(Hn(E),T) +ﬁ

n
TeHR EeT™

Let Tpn(e) = {E': E' € T™ and Error(H,(E'),T) < €}. Then:

> DH(T) Y Dx(E|T)Error(H.(E),T)

TEH EecTm™

= > Dy(T) Y Dx(E[T)Error(Hn(E),T)
TEH, EE€Tmn(€)
+ > Dr(T) > Dx(E|T)Error(Hn(E),T)
TEH, E€T™\Tmn(€)
<e+Pr(3H € H, : Error(H,T) > € and z1,...,2,, € TN H)

<e+ne ™

Thus,
a2k
EE(m)=¢+ne ™+ —
n
Optimal values of n and e are found by successively setting to zero the partial
derivatives of n,e and solving. This gives € = 1“% and n = 2¥am. Substituting
gives

< 2+ kln2+2Inm+1Ina < 1.51+2Inm + kIn2

EE(m) — —



