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Abstract

Recent work on loglinear models in probabilistic
constraint logic programming is applied to first-
order probabilistic reasoning. Probabilities are
defined directly on the proofs of atomic formu-
lae, and by marginalisation on the atomic formu-
lae themselves. We use Stochastic Logic Pro-
grams (SLPs) composed of labelled and unla-
belled definite clauses to define the proof prob-
abilities. We have a conservative extension of
first-order reasoning, so that, for example, there
is a one-one mapping between logical and ran-
dom variables. We show how, in this framework,
Inductive Logic Programming (ILP) can be used
to induce the features of a loglinear model from
data. We also compare the presented framework
with other approaches to first-order probabilistic
reasoning.

Keywords: loglinear models, constraint logic program-
ming, inductive logic programming

1 Introduction

A framework which merges first-order logical and prob-
abilistic inference in a theoretically sound and applicable
manner promises many benefits. We can benefit from the
compact knowledge representation of logic, and still rep-
resent and reason about the uncertainty found in most ap-
plications. Here we propose a conservative extension to the
logic programming framework by defining probabilities di-
rectly on proofs and hence indirectly on atomic formulae.
Our conservatism allows us to tie probabilistic and logical
concepts very closely. Table 1 lists the linkages which the
proposed approach establishes.

This paper is laid out as follows. We begin in Section 2,
with a brief overview of logic programming concepts. Sec-
tion 3 forms the core of the paper where we introduce the
loglinear model and Stochastic Logic Programs. Section 4

Logic Probability
logical variable random variable
instantiation instantiation
relations joint distributions
queries queries
ground definitions probability tables
disjunctive definitions mixture models
defining relations in
terms of other relations

defining distributions in
terms of other distributions

Table 1: Linking logic and probability

then presents SLPs which represent Markov nets and then
more complex models. Section 5 discusses the role of ILP
in learning the structure of the loglinear model, focusing on
the work of Dehaspe. We discuss related work in Section 6
and briefly mention future work in Section 7.

2 Logic programming essentials

We give a very brief overview of logic programming. For
more details, the reader can consult any standard textbook
on logic programming, e.g. (Lloyd, 1987). In this pa-
per we will consider only definite logic programs. Defi-
nite (logic) programs consist of a set of definite clauses,
where each definite clause is a disjunctive first-order for-
mula such as ���������
	��
�����������	��
�������	�������������	��
��������� 	"!#������	 . All variables are implicitly universally
quantified (we will denote variables by names starting with
upper-case letters). A literal is an atomic formula (briefly
atom) or the negation of an atom. Definite clauses consist
of exactly one positive literal (���������$	 ) in our example)
and zero or more negative literals (such as ����������	 and���%� 	 ). The positive literal is the head of the clause and
the negative literals are the body.

A goal or query is of the form �'&�(*),+�-�!.&�(*),+0/1!3242526!
&7(*),+98 . A substitution, such as :<;>= �@?BAC�D�E?4�GF is a
mapping from variables to first-order terms. If a substi-
tution maps variables to terms which do not include vari-



ables, we will call it an instantiation. A substitution : uni-
fies two atoms &�(*),+ - , &7(*),+ / if &7(*),+ - : ( : applied to&7(*),+�- ) is identical to &7(*),+3/ : . Resolution is an infer-
ence rule that takes an atom &7(*),+ selected from a goal�'&�(*),+3-C!�25242�!G&�(*),+ !�24252 !G&7(*),+98 , unifies &�(*),+ with
the head

�
of a clause

� ��� using a substitution : and
returns �%� &�(*),+�- ! 24252 !�� ! 25242 !�&�(*),+08 	 : as a new
goal. Note that � may be empty. With Prolog the selected
atom is always the leftmost atom. An SLD-refutation of
a goal � is a sequence of resolution steps which produce
the empty goal. The SLD-tree for a goal � is a tree of
goals, with � as root node, and such that the children of
any node/goal ��� are goals produced by one resolution step
using � � (the empty goal has no children). Branches of the
SLD-tree ending in the empty goal are success branches
corresponding to successful refutations. The success set
for a definite program is the set of all ground atoms &7(*),+
such that �'&�(*),+ has an SLD-refutation. The success set
for an � -arity predicate � ? � , denoted 	
	 � � ? � 	 , is all those
atoms in the program’s success set that have � ? � as their
predicate symbol. The most general goal for a predicate� ? � is of the form � ����� - ��� / ������4� � 8 	 where the ���
are distinct variables. The computed answer for a goal is
a substitution for the variables in � produced by an SLD-
refutation of � . We will sometimes use Prolog notation,
where �������D�$	��'��������� 	 !@������	 is represented thus:
p(X,Y) :- q(X,Z), r(Z).,
and �'��������A�	 is represented thus:
:- q(X,a).

3 Loglinear models for first-order
probabilistic reasoning

A loglinear probability distribution on a set � is of the fol-
lowing form. For ����� :

��� � 	 ; ��� -���������� � � �"!#��� � 	%$ (1)

where the ! � are the features of the distribution, the � � are
the model parameters and � is a normalising constant.

3.1 Probabilistic Constraint Logic Programming

(Riezler, 1997) develops (Abney, 1997) by defining a log-
linear model on the proofs of formulae with some con-
straint logic program. This requires defining features on
these proofs (the !&� ) and defining the model parameters (the� � ).
The essentials of this approach can be given by using the
logic programming framework. This is a special case of
constraint logic programming where the only constraints
allowed are equational constraints between terms. We will
stay with the standard logic programming framework for
simplicity. Consider the logic program ')(+* given in Fig 1.

s(X) :- p(X,Y), q(Y).
p(a,b). p(a,a). p(a,c). p(d,b).
q(b). q(c).

Figure 1: ')(+* , a simple logic program

Fig 2 shows the SLD-tree generated by the query �-,���� 	
(with empty goals omitted). This shows three refutations
of �.,���� 	 which amount to two proofs of ,���A�	 and one
proof of ,��0/�	 .

:- q(b) :- q(a)

SUCCESS FAIL SUCCESS SUCCESS

:- q(c) :- q(b)

:- s(X)

:- p(X,Y), q(Y)

{X/a,Y/b} {X/d,Y/b}

{X/a,   Y/a} {X/a,  Y/c}

Figure 2: SLD-tree for �1,���� 	 and ')(+*
We can now define a loglinear distribution on refutations
of �2,���� 	 . Firstly, we define the features of the distri-
bution. Consider two features of refutations, ! - and ! / .
For any refutation 3 , ! - � 3 	 ;4� if the goal � ���656	 ap-
pears � times in the 3 , and !B/ � 3 	 ; + if � ���875	 ap-
pears + times in 3 . Let � - ;19 �;: and � / ;<9 � = , then
the leftmost proof of ��� A�	 has probability � � - �>��� � 9 � :@?*BAC9 � =@? 9 	 and the one further to the right has probabil-
ity � � - �>��� � 9 �;:D? 9EAF9 � =G? * 	 . The probability of the
single proof of ���8/�	 is � � - �>��� � 9 � :G? *�AH9 � =�? 9 	 . �
is simply

�>��� � 9 �;:I? *JAC9 � =K? 9 	 A ���L� � 9 �;:I? 9MA�9 � =�?* 	 A ����� � 9 � :E? *NAO9 � =I? 9 	 ; :QPSR�T / A PSRT UWVHXY� Z , so the
three probabilities are 9 � X * � 9 � XQ[ � 9 � X * respectively. Having
defined probabilities � on the proofs of these atomic formu-
lae, it is now trivial to define a distribution � � on the formu-
lae themselves: � � ��&�(*),+9	 ;]\ ^ is a proof of _a`0bdc ��� 3 	 .
We have � � �8,�� A�	�	 ;e9 � fQZ and � � �8,��855	 	 ;e9 � X * , which is a
distribution on 	
	 �6,,? * 	 , the success set for , ? * .
This approach applies very naturally to natural language
processing (NLP). In NLP, a proof that a sentence belongs
to a language amounts to a parse of that sentence, and the
loglinear model can be used to find the most likely parse
of any particular sentence. Riezler extends the improved
iterative scaling algorithm of (Pietra et al., 1997) to induce
features and parameters for a loglinear model from incom-
plete data. Incomplete data here consists of just atoms,
rather than the proofs of those atoms. In an NLP context
this means having a corpus of sentences rather than sen-
tences annotated with their correct parses, the former being
a considerably cheaper resource.



3.2 Stochastic Logic Programs

Riezler’s framework allows arbitrary features of SLD-trees,
and recent experiments have used features “indicating the
number of argument-nodes or adjunct-nodes in the tree, and
features indicating complexity, parallelism or branching-
behaviour” (Stefan Riezler, personal communication).

Here we concentrate on a special case of Riezler’s frame-
work, where the clauses used in a proof are the features
defining the probability of that proof, with clause labels de-
noting the parameters. (Eisele, 1994) examined this ap-
proach from an NLP perspective. (Muggleton, 1995) intro-
duced Stochastic Logic Programs, approaching the issue
from a general logic programming perspective, with a view
to applications in Inductive Logic Programming.

In these cases, Stochastic Context-Free Grammars
(SCFGs) were “lifted” to stochastic feature grammars
(SFGs) and stochastic logic programs (SLPs) respectively.
SCFGs are CFGs where each production is labelled, such
that the labels for a particular non-terminal sum to one. The
probability of a parse is then simply the product of the la-
bels of all production rules used in that parse. Sentence
probabilities are given by the sum of all parses of a sen-
tence. The distributions so defined are special cases of log-
linear models where the grammar rules define the features!#� and their labels are the parameters � � . � is guaranteed
to be one. This is because the labels for each non-terminal
sum to one and because the context-freeness ensures that
we never fail, and hence never have to backtrack, when
generating a sentence from a SCFG—a production rule can
always be applied to a nonterminal. Because of this a num-
ber of techniques (such as the inside-outside algorithm for
parameter estimation (Lari and Young, 1990)) can be ap-
plied to SCFGs, but cannot be lifted to SFGs or SLPs. (See
(Abney, 1997) for a demonstration of this.)

We define a stochastic logic program (SLP) as follows. An
SLP is a logic program where some of the clauses are la-
belled with a non-negative number, and which satisfies the
following constraints:

Constraint 1 If there is a refutation of the most general
goal for a predicate that uses a labelled clause, then the
predicate is distribution-defining. It is required that
the computed answer substitutions for any unit goal
where the predicate is distribution-defining be ground.

Constraint 2 The potential � � 3 	 of any refutation 3 is
the product of all the clause labels of the clauses used
in 3 . If none of the clauses used in 3 have labels, then� � 3 	 is undefined. The potential � � � 	 of a goal is\ ^��������
	��� � � 3 	 , where �#P#!�� � 	 is the set of all refu-
tations 3 of � such that � � 3 	 is defined. If � � 3 	 is
undefined for all refutations 3 of a goal � , then � � � 	
is also undefined. We require that all goal potentials
be finite.

Constraint 3 For every distribution-defining predicate,
the potential of its most general goal must be positive.

Constraint 1 can be met by requiring SLPs to be range-
restricted: every variable appearing in the head of a clause
must also appear in the body. The second condition is triv-
ially met by any SLP where there is a bound on the depth
of any refutation, e.g. non-recursive SLPs, and can also be
met by requiring the clause labels for the clauses defining
any given predicate to sum to at most one. Our definition
generalises that found in (Muggleton, 1995), where Mug-
gleton requires SLPs to be range-restricted and with labels
for the same predicate summing exactly to one. Also, Mug-
gleton does not use SLPs to define a loglinear model as we
do here.

An SLP defines a distribution for every distribution-
defining predicate in the SLP. Suppose � ?#X were a
distribution-defining predicate, then we have a loglinear
distribution over refutations 3 of the most general goal for
this predicate � �����@-B� � / � ���4	 , as follows:

� � � 3 	 ; ��� -� ���L� � � � ����� � � � 	d!�� 3 ���*	 $ (2)

; ��� -��� � � ��	 ^�� � � (3)

where � � is the label of clause � � and !�� 3 ���*	 is the number
of times the clause � � is used in 3 . So we have a loglinear
model where the labelled clauses define features and the
logs of the clause labels are the model parameters.
� � is simply the appropriate normalising constant, which
can be found by simply summing the potentials of all refu-
tations of � ����� - � � / ��� � 	 . By definition, this sum is
the potential of the goal � ����� -B� � / � ���4	 . We have that� � ;�� ���'����&$�d�.� � 	 	 ; \ _a`0b c ������	��� �  � �%�'&�(*),+9	 .
This last equation holds because Constraint 1 ensures that
every refutation of � ����� -B� � /B�����4	 finds a member of	
	 ��� ?#X 	 , and all elements of 	
	 ���B?&X 	 can be found this
way. Constraints 2 and 3 ensure that 9"! � � !$# , so � � -�
is always defined.

We get a marginal distribution over 	
	 ���B?&X 	 : any ground
atom & has probability � �� � & 	 ; \ ^������%��	�& _  � � � 3 	 .
Now consider the ��� in � ����� - � � / ��� � 	 . Each atom in	
	 ��� ?#X 	 defines a joint instantiation of the �K� and there-
fore the distribution on atoms defines a three-dimensional
joint probability distribution over �(' - ��' / ��' � 	 , where 'I�
is the domain of � � which is both a logical and random
variable. ' � is just the set of values found for � � in	
	 ��� ?#X 	 . In a standard logic program the ' � will be fi-
nite or countably infinite.

We have used an example predicate � ?#X to concreteness,
but all of the above applies to predicates of any arity. We
can use the logical structure of SLPs to define complex



multi-dimensional joint distributions. The next section de-
scribes presents some SLPs, beginning with the simplest
SLPs which represent Markov nets.

4 SLP models

4.1 SLPs and Markov nets

Markov nets (or undirected Bayes nets) are representations
of graphical models, a special case of loglinear models.
Fig 3 shows the “Asia” Markov net used as a running ex-
ample in (Lauritzen and Spiegelhalter, 1988).

(D)

(B)

visit to Asia?
(A)

tubercolosis?
(T)

(S)

either tub.
or cancer?

(E)

positive X-ray?
(X)

dyspnoea?

bronchitis?

smoking?

lung cancer?
(L)

Figure 3: “Asia” Markov net

In general, let ��� be the set of cliques of a Markov net� . A potential representation consists of evidence poten-
tials � _ , defined on the cliques. Potentials are real-valued
non-negative functions depending only on the states of the
variables in each clique. The evidence potentials define a
joint distribution on the nodes � of the net as follows:

��� � 	 ; ��� - �_ ����� � _ (4)

where

� ; � � �_ ����� � _ (5)

is a normalising constant. If � ; 9 then � is undefined. ( �
will always be finite.) Consider the Markov net in Fig 3,
which has six cliques. Each of the random variables in this
net is binary, taking values ( or ! . Table 2 gives a potential
function defined on the clique = & �	� F .

Instantiation ��
 _ � ��& ; ( � ; ( 0.0005& ; ( � ; ! 0.0095& ; ! � ; ( 0.0099& ; ! � ; ! 0.9801

Table 2: An evidence potential on the clique = & ��� F

Markov nets consist of a structure with associated param-
eters. Both can be represented easily using SLPs. Clique

potentials are represented as tables of SLP ground facts.
Figure 4 gives an SLP representation of the clique poten-
tial defined in Table 2.

0.0005 : c1(t,t).
0.0095 : c1(t,f).
0.0099 : c1(f,t)
0.9801 : c1(f,f).

Figure 4: Ground SLP representation of clique potential on
= &$��� F

We can then use a single unlabelled clause to represent the
structure of a Markov net. The net in Fig 3 is represented
by the unlabelled clause shown in Fig 5. Let us call SLPs
that represent Markov nets in this fashion Markov net SLPs.
Each ground goal has one refutation, so the probability of
any ground atom is a normalised product; it is clear that the
SLP and the Markov net represent the same loglinear dis-
tribution. Since they represent Markov nets, probabilistic
inference based on such SLPs can use any of the standard
algorithms for Markov nets.

asia(A,B,D,E,L,S,T,X) :-
c6(E,X),
c5(E,B,D),
c4(L,B,X),
c3(L,E,B),
c2(E,L,T),
c1(A,T).

Figure 5: Clausal representation of the “Asia” Markov net

4.2 SLP mixture models for context-specific
independence

Consider the SLP in Figure 6 which represents a simple
linear Markov net. We have that & is independent of �
given � ( &�� ��� � ). This conditional independence phe-
nomenon is central to probabilistic graphical models such
as Markov nets. But note that & is independent of � given
any value of � . Sometimes we may not be justified in mak-
ing such a strong assumption. It may be that & is only
independent of � given particular values of � . This con-
ditional conditional independence

-
or context-specific in-

dependence between & and � crops up often in applica-
tions and has been investigated by a number of workers,
e.g. (Boutilier et al., 1996).

To represent context-sensitive independence, we need to be
able to differentiate between these two sorts of values of� . Let us assume we have two predicates, strong/1 and
weak/1 defined to be mutually exclusive which achieves

�
conditional on a variable and conditional on values of that

variable



linear(A,B,C) :-
c1(A,B),
c2(B,C).

%ground labelled definitions
%of c1 and c2 omitted

Figure 6: Linear Markov net SLP

this. We can then define the SLP in Fig 7 that defines
an appropriate mixture model. A neater alternative might
be to use negation to differentiate, using strong(B) and
\+ strong(B)

/
, but the use of negation in SLPs has yet

to be properly investigated, hence our current restriction to
definite clauses. Mixture models for context-specific inde-
pendence are investigated in (Thiesson et al., 1997), where
learning of such models is considered. (One can view ta-
bles defining discrete distributions as in Fig 4, as mixtures
of degenerate distributions, but we will not do so.)

mixlin(A,B,C) :-
strong(B),
c1(A,B),
c2(B,C).

mixlin(A,B,C) :-
weak(B),
c3(A,B,C).

%ground labelled definitions
%of c1, c2 and c3 omitted

Figure 7: Mixture model SLP defining context-specific in-
dependence

Context-sensitivity occurs whenever backtracking (due to
unification failure) is a possibility in the search for refu-
tations, and is ubiquitous in (real) natural language gram-
mars. Fig 8 shows an SLP defining a distribution over the
non-context-free language = A 8 5 8 7 8�� � � 9 F . Note that
we can define distributions using structured terms, not just
constants, and that the domain of this distribution is count-
ably infinite.

anbncn(A) :- build(A-B,B-C,C-[]).

0.3: build(A-A,B-B,C-C).
0.7: build([a|A]-Ap,[b|B]-Bp,[c|C]-Cp) :-

build(A-Ap,B-Bp,C-Cp).

Figure 8: Stochastic non context-free grammar defined
with an SLP

�����
is ISO Prolog notation for not.

4.3 Inference in SLP models

Markov nets, mixtures of Markov nets and context-
sensitive stochastic grammars are all models that have been
investigated in previous work, as have corresponding algo-
rithms for inference and learning. Our aim here is to use
SLPs as a common framework which can bring out useful
connections and contrasts between these different models
and algorithms.

A basic probabilistic inference problem in SLPs is to take
a query, e.g. � (6��� -,�DAC�����4	 and return ( � ` ���@-,� ��� � � / ;A�	 , where ( � ` is the distribution assocated with the predi-
cate (�?#X . The simple naive approach to inference in SLPs
is to look for all refutations of � (6��� - �DA � � � 	 , record their
potentials and find ( � ` ��� - ��� � � � / ; A�	 by marginalising.
Although this could be used where we know that goals will
have few refutations, in general it will be very inefficient
and will not even terminate for goals with infinitely many
refutations.

We do not have efficient general purpose algorithms for
SLPs, so here we just sketch an approach. For a given
query, find all clauses which have heads which unify with
the goal, then apply the unifying substitution to the clause
body, and then attempt to refute the subgoal composed of
all the literals in the body that are not distribution-defining.
For each clause body, and for each successful refutation,
we have a remaining subgoal involving only distribution-
defining predicates. Some of the variables in this remain-
ing subgoal may be instantiated, so the subgoal represents
a partially instantiated Markov net, but one where the func-
tions defined on the cliques may not be represented by ta-
bles. When they are, we can use standard Markov net in-
ference algorithms. When they are not, one possibility is to
call our sketch algorithm recursively, if the SLP is so de-
fined to guarantee termination. Note that we will only be
interested in the distribution over the variables that appear
in the head of the clause. These distributions can then be
mixed according to the relevant clause labels to produce the
final distribution.

5 Using ILP for feature construction

Since we use clauses to define the structural features of our
distribution, it is natural to look to ILP for techniques which
induce such structural features from data. (Dehaspe, 1997)
does just this using the MACCENT algorithm which con-
structs a log-linear model using boolean clausal constraints
as features. Dehaspe uses the “learning from interpreta-
tions” ILP setting where each example is represented as a
Prolog database. Dehaspe applies MACCENT to classi-
fication, using a simple animal classification task to illus-
trate his approach. To bring out the connections between
Dehaspe’s approach and that presented here, we can re-
write Dehaspe’s clausal constraints as labelled clauses as



in Fig 9. Dehaspe uses negation which is safe here since it
is assumed that all queries are ground.

L1 : p(X,fish) :-
\+ has_legs(X), habitat(X,water).

L2 : p(X,reptile) :-
\+ has_covering(X,hair), \+ has_legs(X).

Figure 9: Dehaspe’s clausal constraints as labelled clauses

Dehaspe associates (modulo our rewrite) boolean features
with each labelled clause, defined on ���C� ��� AL, ,,	 pairs,
where � denotes an, as yet, unclassified instance.

!�� ���C� ��� AL, ,,	 ; � * if �@� � ��� �����C� ��� AL, ,,	9 otherwise� is background knowledge represented by a logic pro-
gram. This defines a distribution over pairs ���C� ��� A�, ,,	 ,
( ���	� � ��� A�, , 	 ; � � - ���L��
� � � � � !�B�	� � ��� A�, ,,	���

and hence, with suitable normalisation, conditional distri-
butions ( ��� ��� A�,S, � ��	 . We have a bijection between proofs
of � ?Q: atoms and � ?Q: clauses, since each proof uses exactly
one � ?Q: clause. This allows Dehaspe to treat each proof as
a feature, where the parameter associated with each fea-
ture (=proof) is the label of the � ?Q: clause used in that
proof. These features are then used to define a probabil-
ity on atoms directly.

This contrasts with the SLP and PFG approach where each
proof has features (e.g. the set of labelled clauses used in
the proof), and these are used to define a probability over
proofs. To get an (unnormalised) probability on an atom
with SLPs we have to sum up the probabilities of the proofs
of that atom.

Dehaspe’s approach allows a more direct definition of a
distribution over atoms, but relies on each proof passing
through exactly one labelled clause. SLPs are not so re-
stricted. Also with SLPs, the probability of an atom always
increases with the number of proofs of that atom, which
seems desirable. Following Dehaspe’s approach this may
not always be the case.

Dehaspe exploits the lattice structure of clauses and ap-
plies ILP techniques to guide the search for suitable con-
straints, searching for clauses with a general-to-specific
beam search using the DLAB declarative bias language for-
malism. Dehaspe, like Riezler, keeps all the old parameters
fixed when searching for the next constraint (= clause).

There are techniques for learning the structure of Bayes
nets which start from an unconnected net and incremen-
tally add arcs. Such techniques are strongly related to ILP
searches (like Dehaspe’s) where we start from a maximally
general clause e.g. ���������"��� 	 � and refine it by adding
literals to the body until a ‘best’ (however defined) clause
is found. ���������"��� 	
� corresponds to an totally uncon-
nected Markov net with three nodes. Refining this, to, say,���������"��� 	1�'���������
	 corresponds adding an arc between
the � and � nodes. Further exploration of this connection
may well yield valuable cross-fertilisation between ILP and
Bayes net structure learning.

6 Related work

We do not give anything like a comprehensive survey of the
work on connecting logic and probability that can be found
in the UAI, philosophical, statistical and logical literature.
Instead we will contrast the approach presented here with a
few examples of particularly closely related work.

This translation of the clique functions of a Markov net to
a generalised relational database is essentially the same as
that of (Wong et al., 1995). Wong et al translate many of the
graphical operations used with Markov nets to database op-
erations: product distributions are constructed using joins,
conditional distributions by projection, and marginals by
database operations which mimic the standard approach in
the Markov net literature. Wong et al’s argument is that
since the operations required for effective use of Markov
nets are defined on tables—for example, tables defining
marginal probability distributions—one should use opti-
mised methods developed by the database community for
manipulating tables. The current work seeks to extend that
of Wong et al by moving from a relational database setting
to the logic programming setting.

In Knowledge-based model construction (KBMC) (Ngo
and Haddaway, 1997; Koller and Pfeffer, 1997; Had-
daway, 1999) first-order rules with associated probabili-
ties are used to generate Bayesian networks for particular
queries. As in SLD-resolution queries are matched to the
heads of rules, but in KBMC this results in nodes repre-
senting ground facts being added to a growing (directed)
Bayesian network. A context is defined using normal first-
order rules, perhaps explicitly as a logic program (Ngo and
Haddaway, 1997), which specifies logical conditions for
labelled rules to be used. The ground facts are seen as
boolean variables (either true or false). Once the Bayesian
network is built it is then used to compute the probability
that the query is true.

In KBMC, as in much of the work connecting logic and
probability, parameterised first-order rules � � 7B��� 	 �
A ��� 	 are connected to conditional probability statements
such as ���87B�855	 � A �656	 	 ;�� . Also the objective is to compute
the probability that an atom is true. In the current paper, we



focus on undirected representations, so that � � ���������
	�����������
	6� ������	 forms part of the definition of a binary dis-
tribution associated with � ?&: defined in terms of distribu-
tions associated with � ?&: and � ? * . We make no attempt to
model causality.

Secondly, we do not use a labelled rule � � ���������$	9�
���������
	6� ������	 to define the probability that some ground
atom ����A � 56	 is true as in KBMC, or to provide bounds on
the probability that ����A � 56	 is true as in (Shapiro, 1983; Ng
and Subrahmanian, 1992). Instead, we have a binary distri-
bution associated with ����������	 which defines the probabil-
ity of instantiations such as = �@? A ��� ?&5 F . In order to reason
about the probability of the truth of atoms, we simply aug-
ment atoms by introducing an extra logical-random vari-
able to represent the truth value of unaugmented atoms, and
then treat this logical-random variable exactly as any other.
This is in keeping with our conservative approach—if we
are interested in the truth value of an atom as it varies across
different “possible worlds”—then we model this variation
in the standard way: with a random variable.

Consider
genotype(P,G) :- (0.5) parent(P,Q),
genotype(Q,G).
an example from (Koller and Pfeffer, 1997), where the
“rule says that when a person’s parent has a gene, the per-
son will inherit it with probability 0.5”. We would en-
code such “degree of belief” probability in an SLP with
a boolean truth-value variable as in Fig 10.

genotype(P,G,T) :- parent(P,Q),
genotype(Q,G,1), half(T).

0.5 : half(1).
0.5 : half(0).

Figure 10: Representing degree of belief with an extra vari-
able

To find the probability that � P � ),(��,� P��65�)&5,� 5 � � P,A��&, 	
is true we are required to use the SLP to com-
pute the probabilities of � P � ),(��,� P��65�)&5,� 5 � � P,A��&, � * 	 and
� P � ),(��,��P��65�)&5,� 5 � � P A��&, � 9 	 . (In fact, all we need are un-
normalised potentials for these, which is simpler.) This
amounts to demanding arguments (=proofs) for the truth of
� P � ),(��,��P��65�)&5,� 5 � � P A��&,,	 and for its falsity. We then effec-
tively balance the strength of these proofs when deciding
on the probability of truth.

Despite these differences in approach there are clear simi-
larities between KBMC query-specific Bayes net construc-
tion and the query-specific exploration of an SLD-tree by
Prolog which deserve further investigation.

Another approach to relational probabilistic reasoning are
the relational Bayesian networks of (Jaeger, 1997). Here
whole interpretations are the nodes of a Bayesian net. It is

conceivable that such networks could be implemented as an
SLP, using some suitable object-level representation of an
interpretation, but it is likely that they would be unwieldy
in practice. Since, at the end of the day, we are interested in
the truth-values of atoms, it seems easier to deal with these
directly, perhaps resorting to quite complex SLPs to model
complex interactions between degrees of belief.

Finally, SLPs are very closely related to the stochastic
(functional) programs of (Koller et al., 1997). Stochastic
execution of the functional program defines a distribution
over outputs of the program. As we have done here, Koller
et al show how Bayesian nets and SCFGs can be repre-
sented in their richer formalism. They base their repre-
sentation of directed Bayes nets on “the observation that
each node in a Bayes net is a stochastic function of its
parent’s values.” They also show how their formalism can
exploit context-sensitive independence. Unlike the present
paper, they also provide details of an efficient algorithm
for probabilistic inference in their formalism, which mim-
ics standard efficient algorithms for Bayesian networks.
(Koller et al., 1997), does not discuss methods for inducing
stochastic functional programs, but it seems highly likely
that ILP techniques could be applied.

7 Open questions and future work

We have shown how various properties of SLPs (shared
variables, multi-clause programs, unification failure and
existential variables) correspond to various existing mod-
els (graphical models, mixture models, context-sensitive
models and marginalisation) and argued that existing algo-
rithms for these models can hence be used for inference and
learning in SLPs. This work remains to be done. It is likely
that suitable algorithms will mimic algorithms those used
in Koller et al’s stochastic programs. Work on the imple-
mentation of randomised algorithms in logic programming
is likely to be relevant too (Angelopoulos et al., 1998). We
also expect techniques from logic programming and com-
putational linguistics, such as Earley deduction and pro-
gram transformation to be useful. For example, when learn-
ing the parameters of SLPs, Riezler’s approach of storing
proofs in a chart using Earley deduction makes a lot more
sense than continually re-refuting goals.

Probabilistic inference and learning by Markov Chain
Monte Carlo is also attractive for SLPs. For example, in
a Gibbs sampling approach, all except one argument of a
goal would be ground on each iteration. Such constrained
goals generally have few refutations which might lead to an
efficient method.

Finally, we hope that the current framework will stimu-
late further research into statistical ILP, and that such re-
search will benefit from and contribute to related work on
inducing models from data in computational linguistics and
Bayesian networks.
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