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Abstract. In several recent papers ILP has been applied to Systems
Biology problems, in which it has been used to fill gaps in the descrip-
tions of biological networks. In the present paper we describe two new
applications of this type in the area of plant biology. These applications
are of particular interest to the agrochemical industry in which improve-
ments in plant strains can have benefits for modelling crop development.
The background knowledge in these applications is extensive and is de-
rived from public databases in a Prolog format using a new system called
Ondex (developers BBSRC Rothamsted). In this paper we explore the
question of how much of this background knowledge it is beneficial to in-
clude, taking into account accuracy increases versus increases in learning
time. The results indicate that relatively shallow background knowledge
is needed to achieve maximum accuracy.

1 Introduction

Systems Biology is a rapidly evolving discipline that seeks to determine how
complex biological systems function [6]. It works by integrating experimentally
derived information with mathematical and computational models. Through an
iterative process of experimentation and modelling, Systems Biology aims to
understand how individual components interact to govern the functioning of the
system as a whole. In several recent papers [13, 3], Inductive Logic Programing
(ILP) has been applied to Systems Biology problems, in which it has been used
to fill gaps in the descriptions of biological networks.

Two new industrial applications of this type in the area of plant biology are
being explored within the Syngenta University Innovation Centre (see Section 2).
This centre of excellence in Systems Biology aims to address biological research
questions related to the improvement of plant strains involved in crops. The
centre uses mathematical and computational modelling techniques developed at
Imperial College London [2]. The background knowledge in these applications is
generated by a system called Ondex [7]. Ondex is unique in its ability to generate
large amounts of Prolog background knowledge on cell biochemistry by parsing,
filtering and combining various publicly-available databases.



In this paper we use Ondex to explore the performance effects of varying
the amount of background knowledge available to an ILP learning engine. This
is done by generating variations of background knowledge using the Relation
Neighbours Filter in Ondex together with a tehnique for sampling Relations.
The effects of varying the background knowledge are measured on both learn-
ing time and predictive accuracy. The experimental results indicate that while
learning time increases monotonically with the amount of background knowl-
edge, relatively shallow degree of background knowledge is required to achieve
maximum accuracy.

The paper is arranged as follows. In Section 2 we introduce the applications
on which the experiments were conducted. We then describe the Ondex system
for generating the background knowledge in Section 3. The experiments are then
described in Section 4. Finally we conclude and describe further work in Section
5.

2 Application descriptions

2.1 University Innovation Centre (UIC) overview

Agricultural research relies on understanding interactions of genes and chemicals
in a biological context. The search for a new biological trait to use in a conven-
tional or genetic modification breeding programme is complex. It can take up
to ten years and millions of dollars to bring such a development to market. The
same is true for the search for new agrochemicals. Part of this development pro-
cess is an assessment of the safety of the gene or chemical to the environment
and its potential toxicity to both mammals and beneficial organisms. Systems
Biology takes a new, integrated, approach to address these important challenges.
Syngenta [1] is a leading Agrichemical company with a number one position in
chemicals and is number three in high value seeds. Syngenta has established
a “University Innovation Centre” (UIC) on Systems Biology at Imperial Col-
lege London [2] to implement a “systems approach” to agricultural research.
The centre has begun with two pioneer projects, tomato ripening and predictive
toxicology.

2.2 Tomato application

The characteristics of the tomato fruit that reaches the consumer are defined
by the combination of its biochemical and textural properties. Metabolic com-
ponents (volatiles, pigments, sugars and amino acids) define the appearance
and flavour whilst structural properties (cell adhesion, cell size, cuticle thick-
ness, water content) define mouth-feel and texture perception. Together these
components determine fruit quality and are crucial in influencing the success of
commercial varieties.

At the genetic and biochemical level the regulation of fruit development and
ripening remains poorly understood. In this project we are applying ILP to



deepen our understanding of the metabolic processes controlling tomato fruit de-
velopment. By applying machine learning techniques to transcript and metabo-
lite profiling data we are developing metabolic networks and building a predictive
model of tomato ripening and fruit quality. Through the coordinated analysis
of gene expression and metabolite changes across fruit development we aim to
identify new genetic targets that play a role in controlling the ripening process.
Such knowledge will allow us to focus on these genetic control points in breeding
new tomato varieties, thus producing the most favourable combination of fruit
quality characters in the ripe fruit.

2.3 Predictive Toxicology

An assessment of the potential to cause cancer is a key component of the risk
assessment on a new Crop Protection Active Ingredient. The two year and 80
week bioassays in rats and mice, respectively, provide the Hazard Information
to evaluate this risk. If tumours are observed in these trials, an assessment of
their relevance for human risk may then be required. This typically makes use
of the IPCS/HESI Human Relevance Framework, where the first step is the
development of a mode-of-action case to describe the series of causal key events
that lead to rodent tumours. The second step is to examine the plausibility of
these key events occurring in humans and so guide an assessment of the relevance
of the rodent findings.

This project aims to build a model that integrates the metabolic and gene
expression regulatory networks that underlie initial key events in liver tumour
promotion induced by model non-genotoxic carcinogens. It is envisaged that
cycles of hypothesis generation informed by model building and experimental
testing will allow the identification of those regulatory components that are
key components in liver tumour promoting modes of action. Ultimately this
will allow us to improve mechanistic understanding and so provide key data to
explain the basis of the thresholds in dose and species specificity in response,
thereby allowing more informed human health risk assessments.

3 Ondex: a Biological Background Knowledge Generator

Data integration in the life sciences still remains a significant challenge for bioin-
formatics [5]. Rather than developing a bespoke data integration solution for
assembling the background knowledge for the machine learning task, the open
source data integration framework Ondex [7] was selected as a general solution
to bringing all the required data together. Ondex uses a graph-based approach
with a data warehouse for integrating biological data. The nodes in the graph
represent biological concepts, e.g. enzymes and metabolites. Edges in the graph
represent relations between biological concepts, e.g. a set of enzymes catalyses
a biochemical reaction. Both nodes and edges in the graph can have additional
attributes, e.g. an enzyme name or an amino acid sequence. One of the reasons



for choosing the Ondex system as a background knowledge generator is the nat-
ural correspondence between its graph representation and the requirement of
generating background knowledge as Prolog clauses for ILP learning.

Data from key biological pathway and gene function information resources
including KEGG [11], LycoCyc [4] were transformed into a semantically con-
sistent graph representation using Ondex. In order to create a non-redundant
and coherent knowledge base, mapping methods were used to identify equivalent
and similar entities among the different data sources. Once the databases were
integrated, the resulting knowledge base was available for further analysis and
visualization using the graph-based methods built in Ondex.

A key feature of the Ondex user client is that it allows the extraction of sub-
graphs based on certain criteria. For example, it is simple to extract sub-graphs
selected on by the class of biological concepts or relations, or where concepts
posses a particular attribute, or from a graph-neighbourhood around particular
nodes of interest. Such criteria can be combined in a workflow to manipulate the
information to be included into the background knowledge. In order to support
ILP learning, a general background knowledge generating utility was built that
respected an agreed Prolog syntax, with Ondex concept class names and rela-
tion type names becoming predicate symbols and attributes becoming Prolog
term structures. Every concept and relation was given a unique ID as the first
argument in each predicate, which was used by other predicates to associate
attributes with concepts and relations. The translation of attributes of concepts
and relations were defined using the Ondex-generated Prolog code export utility.
By following agreed conventions it was also possible to translate Prolog format
back into an Ondex graph, thus enabling the results of the machine learning
process to be imported back into Ondex where they could be visualised in the
context of the original knowledge base.

4 Experiments

Two independent experiments were conducted in the study to empirically inves-
tigate the null hypothesis: variations of background knowledge (BK) do not lead
to increased predictive accuracy.

4.1 Materials and methods

Tomato application An initial ground background knowledge base was de-
rived from LycoCyc database [4,9] and exported as Prolog format using the
Ondex system. The knowledge base depicts the relational structure of tomato
biological network (shown in Fig. 1), including the fundamental components,
e.g. compounds, reactions, enzymes, and their relations, e.g. consumed_by, pro-
duced_by, catalysed_by, etc. Two types of raw data were provided by the do-
main experts in the experiments using gene mutants to study altered tomato
ripening - concentration changes of metabolites and gene transcripts for four
genotypes during 13 time slices. The data were expressed in terms of binary



(up/down-regulation) for the purposes of applying ILP. In order to deal with
the many-to-one relationships among gene transcripts, enzymes and reactions,
a set of relevant transcriptomic data were further ‘compressed’ into one value
using SUM aggregate for a reaction. Three datasets were chosen for modeling
tomato aspartate and the connected subnetwork. Each contains the concentration
changes of 10 metabolites as learning examples and 16 transcripts as observed
facts on a particular time point!.

{Enzyme}/EC

Substrate; r

inhibitfon /actiVation?

Fig. 1. [llustration of the relational background knowledge, where a set of compounds
{Substrate}* are consumed by a reaction r, which produce a set of compounds
{Product}?; r is catalysed by a set of enzymes with an EC number {Enzyme}/EC
which is aggregated from a set of gene transcripts; the ILP learning is to abduce inhi-
bition/activation occured in 7.
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Fig. 2. Illustration of biological netv.v.(-)-r.l.(. structure and k-compound-neighbours (k-cn,

k > 1) of a centroid compound C, where {S},{P},{E}, r stand for a set of substrate
compounds, product compounds, enzymes and a reaction, respectively

Variations of the background knowledge were generated using the Ondex re-
lation neighbours filter (RNF), which extracts a subset from an original network
given a set of centroid nodes and some distance k. In our experiments, the subnet-
work consists of k-compound-neighbours (k-cn, as illustrated in Fig. 2) , which
is defined based on a corresponding k-reaction-neighbours (k-rn) as follows.

0-cn = {centroid compounds}

k-rn = U (r | consumed by(c,r)) + U (r | produced_by(c, 1))

ce(k—1)-cn ce(k—1)-cn
k-cn = U (c | consumed_by(c,r)) + U (c | produced_by(c,))
rek-rn rek-rn

Furthermore, a sampling relation neighbours filter (SRNF) is developed in
order to generate a series of evenly varied variations, containing sampled subsets

! They respectively represent three time points - 15 days post anthesis, the breaker
point when the fruit starts to change colour, and 7 days after the breaker stage.



of k-rn in which the size of k-cn can be controlled by a given sampling rate. The
algorithm of SRNF is shown in Table 1.

1.0-cn={learning examples};
2.for each distance k = 1,..., K, where K is a distance threshold corresponding to
the original background knowledge base
2.1.k-rn={}, for each ¢ € (k — 1)-cn
k-rn = k-rn U{r | consumed_by(c,r) V produced_by(c,7)};
2.2.ks-rn = sample(k-rn,sr), where sr is a manually set sampling rate;
2.3.k-cn={}, for each r € ks-rn
k-cn = k-cn U{c | consumed_by(c, r) V produced_by(c, r)};
2.4.output k-cn.

Table 1. Algorithm of sampling relation neighbours filter (SRNF)

The datasets and variations of ground background knowledge were given to
the abductive ILP [13] system Progol5.0 [10] together with a set of non-ground
rules, which describe the underlying transitive behaviour of concentrations of
metabolites and enzymes. Progol5.0 was then required to derive inhibition on
reactions. Predictive performance was tested and evaluated against variations of
the background knowledge (k-cn).

Predictive Toxicology application In the Predictive Toxicology application,
the metabolomic and genomic data reported in [14] were integrated with the
KEGG Rattus norvegicus (rat) database using Ondex. The data integration was
performed in the following four steps. The first step was to extract relational in-
formation from the KEGG database using the Ondex KEGG parser. After pars-
ing an XML version of KEGG database, unnecessary information was discarded
using Ondex’s filtering functions. We constructed an initial model by keeping
the 6 meta concepts (Gene, Protein, Enzyme, Enzyme Classification, Reaction
and Compound) and 6 relations as shown in Figure 3. Note that a meta concept
is a set of unique concepts. For example, the meta concept Compound is a set
of compounds collected in KEGG COMPOUND database.

The second step was to define new relations at the meta-concept level in
order to build our own models. In this paper we design mappings from Gene to
Enzyme Classification (EC) to map the effects of the gene expressions at the EC
level. The following shows a chain of meta concepts in Prolog.

project(Gene, EC) : — is_encoded_by(Protein, Gene), is-a(Enzyme, Protein),
catalyzed_by(Reaction, Enzyme),
part_of _catalyzing_class(Reaction, EC)

In the above formula, the new predicate, project/2, can be used to define the
projection from Gene to EC. In the Predictive Toxicology application, this pro-



Relations From To

is encoded by Protein Gene

isa Enzyme Protein

catalyzed by Reaction Enzyme

part of catalyzing class Reaction Enzyme Classification
consumed by Compound |Reaction

produced by Compound |Reaction

Fig. 3. The 6 meta classes and with their associated relations

jection forms a many-to-one mapping. Part of the projections is included in
Appendix 1.

The third step was to integrate the parsed Ondex model with the numerical
gene expression data at the EC level. We applied the Ondex tab delimited file
parser and stored the parsed numerical data as attribute values in the associ-
ated concepts. The gene expression data at day 14 at 1000 ppm of Phenobar-
bital (PB) [14] were mapped onto EC using the above projections. The SUM
aggregated expression data were used to calculate the fold changes in expression
relative to time-matched controls. The numerical fold changes were transformed
into binary (up/down-regulation) for our ILP experiments.

The final step was to combine the metabolomic data with the above inte-
grated Ondex model. We exported the constructed Ondex model into Prolog
using the Ondex Prolog export utility. The metabolomic data were manually
encoded in Prolog and combined with the Ondex Prolog code. A part of our
Ondex Prolog model is shown in Appendix 2. The metabolite changes (increase
or decrease) at day 14 at 1000 ppm of PB [12] were combined with the exported
Ondex Prolog.

In the Predictive Toxicology application, a new filter was designed for gen-
erating variations of background knowledge. This is called a minimum spanning
tree filter (MiST) in which the projected expression data at the EC level are
treated as weights. Intuitively the filter keeps informative reactions in the path-
way and filters non-informative reactions out of the pathway. The notion of
the informative reaction is based on the level of the projected gene expressions.
If a member of EC, ec, is associated with a strongly expressed gene, we treat
the reaction catalysed by ec as informative regardless of up-regulation or down-
regulation. We implement this idea by defining the weight as w = el'/t9(fo)l in
which fc is a numerical fold change value. Figure 4 shows the MiST algorithm
which is based on Kruskal’s algorithm [8].

We created 20 variations of background knowledge by applying the Ondex
relation neighbours filter (RNF) followed by the MiST filter. More precisely, after
parsing the KEGG rat database in step 1, we applied the RNF filter to the parsed
Ondex model for each neighbourhood distance k£ = 1,...,10. The resulting 10
variations of background knowledge are referred to as the background knowledge



Algorithm MiST
Input: observed metabolites, weighted metabolic pathways.
Output: a subset of the weighted metabolic pathways, OutPath
begin
1. For each pair of the observed metabolites (m1,m2)
» make a set of all the paths P from m/ to m2 in which none of the other
observed metabolite are involved in.
 calculate the average weight of a path in P. The path with the minimum
average weight is selected as the path(m/,m2).
* put path(mi,m2)in a set E.
2. Sort the members of E in ascending order and store them in an ascending list L.
3. Take the first entry of L, /, and select as an edge of OutPath if the new edge does
not create any cycle in OutPath.
4. Delete / from L.
5. Repeat 3 and 4 until all the observed metabolites are connected in OutPath. If fail
to connect, exit.
6. Output OutPath and exit.
end

Fig. 4. MiST algorithm in the minimum spanning tree filter

by RNF. In Appendix 3, we show a visualisation of the background knowledge
generated using RNF (k = 1) in Figure 9 and its meta-level view in Figure 10.

For each of these variations, we performed step 2 and step 3 in order to
compute the weights at the EC level. We applied the MiST filter for each of the
variation and the resulting 10 variants are referred to as the MiST background
knowledge.

The variations of the background knowledge, the integrated examples, and
non-ground Prolog rules were given to the abductive ILP system Progol5.0.
Note that the same non-ground Prolog rules were applied for the Tomato and
Predictive Toxicology experiments. Progol5.0 executed abductive inferences in
order to generate hypotheses of inhibition on reactions for each variation of the
background knowledge.

4.2 Results and discussion

Tomato application Leave-one-out cross validation was used to evaluate the
experiments, in which predictive accuracy and running time were computed for
variation of the background knowledge. Fig. 5(a) shows that the sizes of k-cn
generated by RNF increased sharply when £ < 2 but only have minor changes
when k > 2; whereas the sizes of k-cn generated by SRNF increase gradually
and evenly with increasing values of k. Fig. 5(b) indicates that the running time
increases linearly with the size of the background knowledge. Fig. 6 shows that
(1) all the experiments get at least default predictive accuracy; (2) maximum



accuracy could be achieved with relatively shallow bcakground knowledge (i.e.
smaller k); (3) the sizes of background knowledge generated by SRNF at which
the predictive accuracy reaches its maximum value s smaller than those gener-
ated by RNF for two datasets, and are almost level in the third dataset.

In addition, we define a k-model to be the learning result (inhibition/activation
abduced) using k-cn. A k-model will be referred to as stable if it is equivalent
to a K-model (see step 2 of Table 1) with maximum accuracy. The vertical lines
in Fig. 5 show that SRNF generates a smaller size background knowledge with
less running time to reach the least k values of which k-model starts to be stable
than RNF for all the three datasets (k > 3 for RNF and k > 7 for SRNF). In
summary, it is possible to find more stable, shallow and fine (or smaller) back-
ground knowledge that achieves maximum predictive accuracy with less running
time by using SRNF rather than RNF. SRNF also enables us to investigate the
finer changes between variation of BK in a controllable way. The null hypothesis

set for the experiments has been rejected by these results.

(b) Running time v.s. Variation of BK
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Fig. 5. (a) Size of variation of BK (b) Running time v.s. variation of BK (k-cn) pro-
duced by RNF and SRNF for the three datasets

Predictive Toxicology application Leave-one-out cross validation was per-
formed for the selected 9 metabolites. In Figure 7, the sizes of variation of BKs
by RNF increased gradually whereas the MiST sizes remained constant. Fig-
ure 8 shows that (1) the predictive accuracies of the MiST approach were always
higher than the results of RNF in which RNF only provided the default accuracy
and (2) the best predictive accuracy by MiST was achieved at neighbourhood

distance 1.
In the Predictive Toxicology application, the null hypothesis for the experi-

ments has been rejected by these empirical results.



(a) Predictive accuracy vs. Variation of BK produced by RNF (b) Predictive accuracy vs. Variation of BK produced by SRNF
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5 Conclusions and further work

This paper explores the application of ILP to Systems Biology. These applica-
tions involve modelling interations between components of biological systems
using abductive inductive logic programing. We also introduce a powerful new
system called Ondex which can be used to generate Prolog background knowl-
edge iby parsing and filtering public dataases on cell biochemistry. Two industrial
applications are described which are being studied in the Syngenta University
Innovation Centre. With the extensive background knowledge generated, we ex-
plore the question of how variations of background knowledge affect learning
time and predictive accuracy of the same ILP learning system.

Through two independent experiments in tomato biology and predictive tox-
icology, we conclude that relatively shallow background knowledge can be used
to achieve maximum accuracy. In addition the experiments indicate that use of

10



neighbourhod further reduces the learning time required to achieve maximum
accuracy.

In further work we aim to improve the non-ground background knowledge
rules used in the experiments. We also intend to extend the results using datasets
of all time points, and investigate the biological significance of the learned the-
ories.
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Appendix 1: Sample of projection/2

b

%project (KEGG GeneID, EC_Number).

b

project (’RN0:24788_GE’,’1.1.1.14°).

% rno:24788 is mapped onto EC1.1.1.14
project (’RN0:24534_GE’>,’1.1.1.27°).

% rno:24534 is mapped onto EC1.1.1.27
project(’RN0:24533_GE’,’1.1.1.27°).

% rno:24533 is mapped onto EC1.1.1.27

Appendix 2: Sample of Ondex Prolog in the Predictive Toxicology
domain

enzyme (’4400°,’derived enzyme’,’KEGG’,’IMPD’).

% 24440’ is an Ondex ID

concept_name (°4400°,°Nrkl’).

% ’4400° has the concept name ’Nrkl’
reaction(’14366°,’irreversible’, ’KEGG’,’>IMPD’).

% 214366’ is an Ondex ID
concept_name(’14366°,°cpd:C05841 => cpd:C05841°).
% 214366’ for the reaction ’cpd:C05841 => cpd:C05841°
part_of_catalyzing_class(’4400°,°4401’,’IMPD’).

% 4401’ is classified into EC ’4401°
concept_name(’4401°,°2.7.1.-7).

% ’2.7.1.-’ is an EC
catalyzed_by(’14366°,’4400°, IMPD’).

% 214366’ is catalyzed by ’4400°
relation_dayl14_1500mg(is_related_to,’28501°,°22436°,°1.1385442").
% 228501’ is an Ondex ID

% ’22436° is an Ondex ID

% °1.1385442° is an expression level
probe(°28501°,°UC’,’IMPD’).

% 228501’ is for a probe

concept_name (’28501°,°1396933_s_at’).

% 21396933_s_at’ is a probe name

gene (’22436°,°UC’,”IMPD’) .

% ’22436° is for a gemne
concept_name (’22436° ,’RN0:191574_GE’) .

% ’RN0:191574_GE’ is a gene name

Appendix 3: Sample of Ondex Models



Fig. 9. Visualised concepts in the Predictive Toxicology domain by Ondex (neighbour
distance k = 1). Each node represents a concept and a directed edge represents a binary
relation between two concepts. Users can edit the constructed model by (1) clicking
the object in the view and (2) applying Ondex utilities such as filters and relation

collapsers.
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Fig. 10. Meta View of the Ondex model in Figure 9. Users can edit models also at this

meta level.



