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Abstract. The ILP system Progol is incomplete in not being able to
generalise a single example to multiple clauses. However, according to
the Blumer bound, incomplete learners such as Progol, can have higher
predictive accuracy using less search than more complete learners. This
issue is particularly relevant in real-world problems, in which it is un-
clear whether the unknown target theory is within the hypothesis space
of the incomplete learner. This paper uses two real-world applications
in systems biology to study whether there exist datasets where a com-
plete multi-clause learning (MCL) method can significantly outperform
a single-clause learning (SCL) method. The experimental results show
that in both applications there do exist datasets, in which hypotheses
derived by MCL have significantly higher predictive accuracies. On the
other hand, for most of the datasets in the two applications, there are
good approximations of the target within the hypothesis space of SCL,
so that MCL does not outperform SCL.

1 Introduction

Progol’s inverse entailment [10] is incomplete, as first pointed out by Yamamoto [21]:
Progol can only generalise a single example to a single clause, but not multiple
clauses. This type of entailment-incompleteness can be characterised by single-
clause learning (SCL). In contrast, entailment-complete methods are referred as
multi-clause learning (MCL) in this paper.

1.1 Relationship between Completeness and Accuracy
It might be imagined that by achieving completeness of search, a learning al-
gorithm necessarily increases the accuracy of prediction on unseen examples.
However, the Blumer bound [2] indicates this is not necessarily the case.

Blumer bound m ≥ 1
ε (ln|H|+ ln 1

δ )

In the above m stands for the number of training examples, ε is the bound on
the error, |H| is the cardinality of the hypothesis space and (1− δ) is the bound
on the probability with which the inequality holds for a randomly chosen set of
training examples. Note that by increasing |H| you increase the bound on the
required training set size. Given a fixed training set for which the bound holds
as an equality, the increase in |H| would need to be balanced by an increase in
ε, i.e. a larger bound on predictive error. Therefore on the face of it, the Blumer
bound indicates that incomplete learning algorithms have lower bounds on error
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Fig. 1: Blumer bound for MCL and SCL Fig. 2: Learning Cycle in ILP

than complete ones. And this difference in error bounds is not insignificant, as
shown in Fig. 1. |H| is 2N for SCL, where N is the number of distinct atoms
derivable from a hypothesis language, while it is 22N

for MCL. Therefore the
Blumer bound for SCL and MCL are as below. In terms of running time, MCL
also takes much longer than SCL, as its |H| is much bigger. Overall, the Blumer
bound indicates that in the case that the target theory is within both hypothesis
spaces, MCL is worse than SCL, both in running time and in terms of predictive
error bounds for randomly chosen training sets.

SCL’s Blumer bound ε ≥ 1
m (Nln2 + ln 1

δ ), |H| = 2N

MCL’s Blumer bound ε ≥ 1
m (2N ln2 + ln 1

δ ), |H| = 22N

However, the Blumer bound only holds if the target theory is within the
hypothesis space for both algorithms. In the case that target theory is within the
hypothesis space of the complete learner but not within the hypothesis space of
the incomplete learner then the complete learner will have a lower error bound.
For an artificial dataset, it is possible to decide whether the target theory is
within the hypothesis space before the learning is carried out. However, this is
not the case for a real-world dataset. So the motivation for this paper was to see
whether completeness in learning does lead to higher accuracy in at least one
real-world dataset.
1.2 Complete and Incomplete ILP systems
Within ILP much effort has been put into designing methods that are complete
for hypothesis finding. Multi-clause learning (MCL) systems like CF-Induction [6],
XHAIL [15], TAL [4] and MC-TopLog [13] were designed to overcome Progol’s
entailment-incompleteness. However, as discussed above, it is not clear whether
completeness is important in real-world applications. Although some of the MCL
systems have been applied to real-world domains [9,16,22], no direct compari-
son to a single-clause learning (SCL) method (e.g. Progol) has been made using
experiments1. On the other hand, Progol’s entailment-incompleteness does not
1 Although [7] has compared CF-Induction to Progol, no predictive accuracies are

provided, but only learned hypotheses ranked by a probability measure. Although
Progol’s hypothesis is only ranked at 13th, it does not mean it has lower predictive
accuracy than the one ranked at top.
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stop it being applied to real-world applications, because in certain cases, it is
possible to construct a multi-clause hypothesis by sequentially adding single
clauses. For example, a network of food webs, whose logical description consists
of multiple clauses, can be constructed from scratch using Progol5 as shown
in [17]. Therefore, it is still unclear, for applications such as those studied in this
paper, whether it is necessary to use MCL, which is much more computationally
expensive than SCL.

The experiments in this paper, where direct comparisons between MC-TopLog
and Progol5 were made using the same datasets, demonstrate that there indeed
exist datasets where a MCL method achieves significantly higher accuracies than
a SCL method. On the other hand, this is not always the case, as there are also
datasets where a good approximation to the target theory exists in the hypoth-
esis space of a SCL method, so that SCL can have lower error than MCL, as
suggested by the Blumer bound.

1.3 Two Biological Applications
The two biological applications studied in this work are of commercial interest to
Syngenta [1], which is a leading agribusiness company providing crop protection
and genetic solutions to growers. Developing tomato varieties optimised for the
shelf life, flavour and nutritional quality is a major part of Syngenta’s breed
selection and seed development program. The aim of applying ILP approach in
this program is to identify genetic control points regulating metabolic changes
that occur during tomato fruit ripening. The other application about predictive
toxicology is important to Syngentas crop protection initiatives. The objective is
to identify control points for metabolic pathway perturbations caused by a model
liver tumour promoter (phenobarbital) in the rat liver. In both applications, the
respective predictive models would potentially influence the experimental design
by generating not only testable hypotheses but providing explanations as well,
thus saving time, experimental cost and labour involved with cycles of trial runs.

Why ILP? For centuries scientists have used telescopes and microscopes to en-
hance their natural abilities to perceive the world. In an analogous way ILP can
be used to magnify the abilities of scientists to reason about complex datasets.
The biological applications to which ILP systems are applied in this work are
typical of situations in which biologists have limited comprehension of the impact
of perturbing a cellular pathway. The scale of the metabolic network and the in-
terconnections among various pathways add another challenge to overcome. For
example, during the tomato ripening, the genes that control the texture may
also indirectly affect the flavour. It would be undesirable to sacrifice the taste
of tomato to its firmness, although the firmness improves the shelf life. There-
fore, all pathways related to flavour, texture and colour have to be considered
together, which is difficult for biologists to conceptualise. Biologists therefore
need a testable hypothesis suggested by an ILP system in order to carry out
their studies. This is where ILP comes to their aid.

ILP has the advantage of suggesting readily comprehensible hypotheses, due
to the use of logic programs as a uniform representation for B, E and H. Biol-
ogists can then examine the hypotheses using their existing knowledge. Those
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plausible hypotheses that are impossible to be disproved can be considered for
further experimental validation, while a biologically non-meaningful hypothesis
may indicate that insufficient background knowledge has been provided. Being
a knowledge discovery task it is often difficult to know a priori, the depth of
the knowledge required to circumvent such non-meaningful hypotheses. For ex-
ample, in the predictive toxicology application, there are candidate hypotheses
that explain the decrease of glucose and fructose from the reactions that produce
them. However, in the given environment a decrease in glucose and fructose can
only be explained by the reactions consuming them. Therefore, we updated the
background knowledge with this knowledge as an integrity constraint to filter
non-meaningful hypotheses. No matter whether a suggested hypothesis is dis-
proved by biologists’ existing knowledge or further tested by experiments, the
background knowledge needs to be updated. It is ILP techniques that make such
learning cycle feasible in a controlled manner. The diagram in Fig. 2 not only
shows such a learning cycle, but also highlights the fact that an ILP system does
need scientists’ help in providing/updating its input and interpreting its output.
This supports our analogy of ILP technique as tools, which enhance scientists’
capacity, rather than making scientists redundant.

Why not Technologies other than ILP? In the two applications considered,
the learning target is the reaction state that is not observable and could be
simply ground facts. Therefore, using abduction alone seems sufficient. However,
an abductive system suggests all of the candidate hypotheses instead of the
most promising ones. Although, an algorithm for ranking abductive hypotheses
has already been proposed [7], it is not applicable to the current study due
to the sheer number of candidate hypotheses generated2. Hence, in this study
compression is used to select the most promising candidate hypotheses for further
interpretation by biologists and/or experimental validation.

Difference from Previous ILP Applications The use of transcriptomics as
well as metabolomics data in the modelling distinguishes the two applications
from the previous biological application of ILP, e.g. MetaLog project [18]. This
integrative omics approach is also different from the traditional approach used by
biologists, where only transcriptomic data from treated groups and the control
group is compared to find differentially expressed genes (control points). The
integration of the metabolic data could potentially complement the affects due to
the post-translational modification and protein-protein interactions that would
otherwise not be captured by the differential gene expression alone.

1.4 Why These Two Applications?
The reason to use these two applications to study the question in the title is
that they could potentialy benefit significantly from multi-clause learning. First,
the background knowledge is highly incomplete, since none of the reaction states
are known beforehand in the two applications. Second, the explanations for each
example inevitably involve multiple reaction states, which will be explained later

2 There are billions of candidate hypotheses, which exceeds the capacity of a Binary
Decision Diagram (BDD), thus the algorithm in [7] is practically inapplicable here.
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in section 3. The same applications were also used in [12] to study how varying
the background knowledge affects the accuracy, but the modelling has been
extended by better way of using transcriptomic data.

The rest of the paper will describe ILP models of the two applications first,
and then explain the definition of multi-clause learning in the context of the
applications. Finally, the experimental results are presented.

2 ILP Models

2.1 Examples

The aim in both applications is to hypothesise the change in reaction states,
which reflects the genetic control of a reaction. Although reaction states are not
observable, they affect the flux through reactions, which leads to the change
in metabolic abundance. Therefore, we can hypothesise the changes in reactions
states through the changes in metabolic abundances that are observable. Accord-
ingly, changes in metabolic abundance are used as examples E for learning. By
comparing the treated group to the control group, three possible changes (i.e. up,
down and no-change) in metabolic abundance can be observed. In the tomato
application, the treated groups are obtained by knocking out specific genes re-
lated to the tomato ripening process, which results in ripening mutants, such
as colourless non-ripening (CNR), ripening-inhibitor (RIN) and non-ripening
(NOR); in the predictive toxicology application, the treated groups are Fischer
F344 rats treated with different doses of phenobarbital.

2.2 Hypothesis Space

The hypotheses are ground facts about reaction states. A reaction state can be
substrate limiting or enzyme limiting. Substrate limiting means the flux through
a reaction is determined by the abundance of its substrates; while enzyme lim-
iting implies that the flux through a reaction is controlled by the activity of
its catalysing enzymes. Depending on the activity of catalysing enzymes, en-
zyme limiting can be further divided into three states: catalytically increased,
catalytically decreased and catalytically no-change. These three states refer to
the relative changes in the treated group against the control group, therefore
they are not exactly the same as being activated or inhibited. For example, a
relatively decreased reaction state doe not necessarily mean inhibited.

An enzyme limiting reaction is assumed to be under genetic regulation, while
a substrate limiting reaction is not, and its flux is affected by the nearby enzyme
limiting reactions. Therefore, a hypothesis he about enzyme limiting contains
more information than a hypothesis hs about substrate limiting. Thus the de-
scription length for different hypotheses is different. Specifically, if hs is encoded
by L bit, then k ∗ L bits are required for he, where k > 1. Considering each
metabolite’s abundance is controlled by one regulatory reaction, each example
is also encoded by L bits to make compression achievable. The difference in
the description length can also be explained using the frequency in information
theory. There are much smaller number of reactions regulated by genes directly
than indirectly. To achieve minimum description length, the more frequent hs is
encoded using shorter description length than he.
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2.3 Background Knowledge
Regulation Rules Fig. 3 lists the eight regulation rules suggested by biologi-
ests. These rules tell how changes in reaction states affect metabolic abundances.
For example, if a reaction is catalytically increased, which means the flux through
that reaction increases, then the concentration of its product goes up, while its
substrate’s concentration goes down because of the quicker consumption. These
are encoded as b1 and b2 in Fig. 3. The rules b1 to b6 are all about enzyme
limiting, and they are non-recursive, because the change in the substrate con-
centration will not affect the flux through the reaction but the enzyme activity
itself. In contrast, the rules about substrate limiting (b7 and b8) are both re-
cursive, because the substrate concentration would determine the flux through
the reaction therefore affect the abundance of the product. These recursive rules
essentially model the indirect effect of gene regulation.

These regulation rules seem to consider only one aspect, either enzyme limit-
ing or substrate limiting, while in reality, both substrate abundances and enzyme
activities may act together. However, it is unnecessary to consider the rules about
the cumulative effect in our models, because the aim is to identify the dominated
effect that is controlling the flux through a reaction, rather than knowing exactly
what happen for each reaction. Similarly, as a node in a well-connected network,
a metabolite’s concentration is not just affected by one reaction’s flux, but all
reactions that consume or produce it. It seems the regulation rules should also
capture this and consider how the fluxes from different reactions are balanced.
However, no matter how fluxes from different branches are balanced, there is
one branch whose effect is dominated and leads to the final observed change.
Therefore, the rules in Fig. 3 are sufficient to our models.

b1: concentration(Metabolite, up, T ime)← produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b2: concentration(Metabolite, down, T ime)← consumed by(Metabolite1,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b3: concentration(Metabolite, down, T ime)← produced by(Metabolite1,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b4: concentration(Metabolite, up, T ime)← consumed by(Metabolite1,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b5: concentration(Metabolite, no change, T ime)← produced by(Metabolite1,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b6: concentration(Metabolite, no change, T ime)← consumed by(Metabolite1,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b7: concentration(Metabolite1, up, T ime)←
produced by(Metabolite1,Reaction), reaction state(Reaction, substrateLimiting, ,Time),
consumed by(Metabolite2,Reaction), concentration(Metabolite2,up,Time).

b8: concentration(Metabolite1, down, T ime)←
produced by(Metabolite1,Reaction), reaction state(Reaction, substrateLimiting, ,Time),
consumed by(Metabolite2,Reaction), concentration(Metabolite2,down,Time).

Fig. 3: Regulation Rules

Metabolic Networks For tomato application, it is derived from the LycoCyc
database [8], which contains 1841 reactions, 1840 metabolites and 8726 enzymes.
For the predictive toxicology application, it is obtained from the rno KEGG
database [14], which consists of 2334 reactions, 1366 metabolites and 1397 en-
zymes. In both applications, each reaction is considered as reversible. Therefore,
the actual number of reactions Nr are doubled in the models. Since a subset of
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these reactions’ states have to be hypothesised in order to explain the observed
changes, the size of hypothesis spaces for the two applications are 24Nr , where
the number 4 corresponds to the four possible reaction states.

Transcript Profiles Transcript profiles represent expression data for the genes
encoding the enzymes. However, gene expression alone is not always indica-
tive of the reaction states. This is due to the other cellular processes, such as
post-translational modification that could change the activity of the enzyme.
Therefore, instead of using transcription profiles as training examples, they were
used as an integrity constraint in our model to filter hypotheses. Any hypothe-
ses about enzyme limiting have to be consistent with their gene expression data.
Specifically, if a reaction state is hypothesised to be catalytically increased, its
expression data, if available, should be increased and vise-versa. For example,
without considering gene expression data, the four hypotheses shown in Fig. 4
are all candidates. However, the hypotheses (b) and (c) have inconsistent re-
action states (arrow color) with the change in the expression (colored squares),
hence these two hypotheses will be filtered after applying the integrity constraint
about gene expression.

Integrity Constraint Apart from the integrity constraint about gene expres-
sion, there is another constraint about reaction states: a reaction can not be in
different states at the same time. Please note that, there is no constraint that a
metabolite’s concentration cannot be both up and down at the same time. Be-
cause as explained earlier, the model is about the dominated branch that leads
to the final observation, while it is possible that different branches to the same
metabolite have different contributions of fluxes.

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

(c)       (d) 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

CITSYN-RXN 

MALATE-DEH-RXN 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

(a)        (b) 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

ACONITATE-DEHYDR-RXN 

Fig. 4: Candidate Hypotheses for the decreased Citrate (Tomato Application). A reac-
tion arrow is grey if it is not hypothesised, otherwise, it is coloured red, green or black
to represent catalytically increased, decreased and substrate limiting reaction states,
respectively. A metabolite is also in grey if not measured, otherwise, it is coloured red,
green and blue to represent up, down and no-change, respectively. Gene expression
levels are represented by the small squares beside the reaction arrows, and are applied
the same colour scheme as that of metabolites.

3 Multi-clause Learning vs Single-clause Learning

The term ‘single-clause learning’(SCL) comes from the entailment-incompleteness
of Progol. As first pointed out by Yamamoto [21], the inverse entailment opera-
tor in Progol can only derive hypotheses that subsume an example e relative to
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B in Plotkin’s sense. This entailment-incompleteness restricts its derivable hy-
pothesis to be a single clause, and that clause is used only once in the refutation
proof of the example e. Thus we define SCL and MCL as follows. More details
about MCL and SCL can be found in [13].

Definition 1. Let ci be a clause, which is either from background knowledge
B or hypothesis H. Suppose R = 〈c1, c2, ..., cn〉 is a refutation sequence that
explains a positive example e. Let N be the number of ci in R that is from H. It
is single-clause learning (SCL) if N = 1; while it is multi-clause learning (MCL)
if N ≥ 1.

3.1 Examples of MCL
An example of learning odd-numbers was used by Yamamoto [21] to demonstrate
Progol’s entailment-incompleteness. This example involves mutual recursion, so
that the target clause h needs be applied several times in a refutation proof
for an example odd(s(s(s(0)))). According to the definition above, this learning
task is MCL, even though there is only one target clause to be learned. Progol’s
entailment-incompleteness is not only to do with mutual recursion, but also
related to the issues of incomplete background knowledge. When B is incomplete,
the missing clauses in B need to be hypothesised together with the clause about
the observable predicate. In this case, a clause alone will not be able to explain
an example, and have to rely on hypothesising other clauses in B in order to
complete a refutation-proof of that example.

3.2 MCL 6= Global Optimisation
The term ‘learning multiple clauses’(LMC) is used in the description of a global-
optimisation approach, in which multiple clauses that compressed from the whole
set of examples are refined together, as opposed to a local-optimisation approach
like the covering algorithm, where clauses compressed from a subset of examples
are added to the final H iteratively. However, learning multiple clauses (LMC) re-
ferred in the global-optimisation approach and the mutli-clause learning (MCL)
defined in this paper are related to different issues: hypothesis selection and hy-
pothesis generation. LMC is related to the issue of selecting hypotheses globally,
rather than locally. The hypotheses from which it selects can be derived either
from MCL or SCL. Even if a learning algorithm’s hypothesis space consists of
single clauses derived by SCL, its final hypothesis may still have multiple clauses,
which are aggregated from single clauses that generalised from different exam-
ples. In contrast, MCL is to do with generalising an example to multiple clauses,
rather than a single clause. It can be combined with a selection method that is
either global or local. Specifically, after deriving all candidate hypotheses using
a MCL method, the covering algorithm is still applicable to greedily choosing a
hypothesis which is a locally most compressed.

3.3 Difference in Hypothesis Space
The hypothesis space of SCL is a subset of that of MCL. Apart from single-
clause hypotheses, it also considers hypothesising multiple clause together to
handle the incomplete background knowledge. Since the clauses within a multi-
clause hypothesis depend on each other, the increase of search space is dramatic.
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The upper bounds on the hypothesis spaces of SCL and MCL are O(2N ) vesus
O(22N

), where N is the number of distinct atoms derivable from a hypothe-
sis language. As discussed in the introduction, the Blumer Bound of MCL is
ε ≥ 1

m (2N ln2+ ln 1
δ ), where the error bound grows exponentially with increasing

N, thus is not PAC-learnable. Although MCL’s error bound becomes polynomial
when N is fixed, its hypothesis space is still much larger than that of SCL. There-
fore, strong declarative biases are particularly important for MCL to constraint
the hypothesis space. For example, in the two applications, the hypotheses space
is constraint to the reactions whose distance to the observed metabolite is within
six reactions, according to the small-world assumption in biology[19] .
3.4 MCL and SCL in the Context of the Two Applications
This subsection will use specific examples from the two applications to exemplify
what has been discussed so far in this section. The two figures in Fig. 5 are
from the predictive toxicology application. They show two possible explanations
for the increase in the abundances of glutathione and 5-oxoproline. Fig. 5(a)
says it is the reaction ‘L-GLU:L-CYS γ-LIGASE’ that is catalytically increased,
which indirectly leads to the increase of glutathione and 5-oxoproline. In contrast,
Fig. 5(b) suggests, it is the catalytical increase of the reaction ‘γ-L-GLU-L-
CYS:GLY LIGASE’ that directly leads to the increased glutathione, while it is
a different reaction ‘5-GLUTAMYLTRANSFERASE’ whose catalytical increase
results in the increased 5-oxoproline.

The explanation depicted in Fig. 5(a) can be encoded by a logic program as
H1 = {h1, h2, h3}, where hi is in Fig. 6(a)). Similarly, H2 = {h4, h5} encodes the
explanation in Fig. 5(b). H1 comes from two multi-clause hypotheses: Hmc1 =
{h1, h3} and Hmc2 = {h1, h2}, which are generalised from e1 and e2, respectively.
While H2 are aggregated from two single-clause hypotheses: Hsc1 = {h5} and
Hsc2 = {h4}, which are also generalised from e1 and e2, respectively. Although
H2 does consist of two clauses, each of them is derived independently from
different examples, and each alone is sufficient to explain an example. In contrast,
none of the clauses inHmc i is able to explain any examples without other clauses.

In the context of the two applications, single-clause learning means hypothe-
sising a single reaction state for an example. This limitation restricts its derivable
explanations to the reactions that directly connect to the observed metabolites,
e.g. the two reactions coloured in red in Fig. 5(b). In contrast, a multi-clause

Glutamate 

γ-Glutamylcysteine 

Cysteine 

Glutathione 5-oxoproline 

Glycine 

L-GLU:L-CYS γ-LIGASE 

γ-L-GLU-L-CYS:GLY LIGASE 

5-GLUTAMYLTRANSFERASE 

(a) Multi-clause hypotheses H1

Glutamate 

γ-Glutamylcysteine 

Cysteine 

Glutathione 5-oxoproline 

Glycine 

L-GLU:L-CYS γ-LIGASE 

5-GLUTAMYLTRANSFERASE 

γ-L-GLU-L-CYS:GLY LIGASE 

(b) Single-clause hypotheses H2

Fig. 5: Explanations for the increase of Glutathione and 5-oxoproline
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h1: reaction state(‘γ-L-GLU-L-CYS:GLY LIGASE’, substrateLimiting, , day14 ).
h2: reaction state(‘5-GLUTAMYLTRANSFERASE’, substrateLimiting, , day14 ).
h3: reaction state(‘L-GLU:L-CYS γ-LIGASE’, enzymeLimiting, cataIncreased, day14 ).
h4: reaction state(‘5-GLUTAMYLTRANSFERASE’, enzymeLimiting, cataIncreased, day14 ).
h5: reaction state(‘L-GLU:L-CYS γ-LIGASE’, enzymeLimiting, cataIncreased, ‘dat14’).

(a) Predictive Toxicology Application

h6: reaction state(‘CITSYN-RXN’, enzymeLimiting, cataIncreased, ‘NOR Late’).
h7: reaction state(‘MALATE-DEH-RXN’, substrateLimiting, , ‘NOR Late’).
h8: reaction state(‘ACONITATE-DEHYDR-RXN’, enzymeLimiting, cataDecreased, ‘NOR Late’).

(b) Tomato Application

Fig. 6: Candidate Hypothesis Clauses

learner is able to explore any possible regulatory reactions that are several reac-
tions away from the observed metabolites. For example, the reaction coloured in
red in Fig. 5(a) is not directly connected to glutathione and 5-oxoproline. How-
ever, the regulatory effect of this reaction is passed through γ-glutamylcysteine,
which is a common substrate of the two substrate limiting reactions, ‘γ-L-GLU-
L-CYS:GLY LIGASE’ and ‘5-GLUTAMYLTRANSFERASE, producing the two
observed metabolites. The multi-clause explanation (Fig. 5(a)) is also hypothe-
sised by the biologists [20], while it is not derivable by SCL.

As mentioned earlier in the introduction, it is possible to construct a multi-
clause hypothesis by sequentially adding single-clauses. The hypothesis H4a

drawn in Fig. 6(b)(a) gives such an example. H4a consists of two clauses h6

and h7, which are in Fig. ??. The single clause h6 can be derived from the
example of decreased Citrate. After h6 is added to the background knowledge,
another clause h7 can be derived from the example of increased Malate. De-
spite the fact that H4a can be sequentially constructed using Progol5, Progol5
does not necessarily suggest this hypothesis, but instead hypothesise H4d={h8}
shown in Fig. 4(d). Whether a MCL problem can be reduced to a SCL problem
depends on the degree of incompleteness in the background knowledge and the
distributions of given examples. For the two applications studied in this paper,
imagine an extreme case where all metabolites’ abundances are observable, then
we can simply apply SCL to reconstruct each reaction state. However, not all
metabolites’ abundances are practically measurable due to technological limita-
tions.

A multi-clause learner is likely to find a hypothesis with higher compression
than a single-clause learner because of a more complete hypothesis space. Ac-
cording to the description length defined in the previous section, H1 shown in
Fig. 5(a) is more compressed than H2 shown in Fig. 5(b). Intuitively, H1 sug-
gests a single control point for two observed metabolites, while H2 involves two
control points for the same number of observations.

4 Experiments
Two independent experiments were conducted to empirically investigate the null
hypothesis: MCL does not have higher predictive accuracies than SCL for any
real-world datasets.
4.1 Materials
In the tomato application, transcript and metabolite profiles for three devel-
opmental stages (Early, Mid and Late) were obtained for wild type and three
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mutants (CNR, RIN, NOR) from Syngenta. This gave nine datasets in total (3
stages*3 mutants). In the cancer application, transcript and metabolite profiles
were obtained for 1, 3, 7 and 14 days post treatment, which were from a pub-
lished study [20]. All the materials used in the experiments can be found at
http://ilp.doc.ic.ac.uk/mcTopLog.

4.2 Methods

Progol5 [11] and MC-TopLog [13] were used to represent SCL and MCL, re-
spectively. In the tomato application, leave-one-out cross validation was used to
compute the predictive accuracies due to the availability of a limited set of abun-
dance data (22 metabolites). However, in the predictive toxicology application
10-fold cross validation was employed as a larger set of metabolite abundance
data (52 metabolites) was available. The closed world assumption that “a reac-
tion state is substrate limiting if it is not hypothesised” was applied during the
testing phase. The running time for Progol5 and MC-TopLog is not comparable,
because Progol5 has been implemented in C, while MC-TopLog uses Prolog and
was executed using YAP. Since YAP is optimised towards efficiency, it is much
faster, thus MC-TopLog’s running time is even shorter than Progol5 and each
run takes less then 5 mins. Therefore, it is the number of generated hypotheses
that is compared.

4.3 Predictive Accuracies

The predictive accuracies of Progol5 and MC-TopLog are given below. In the
tomato application there are two datasets i.e. NOR MID and NOR LATE in
which MC-TopLog’s accuracies are significantly higher than that of Progol5 at
the 95% confidence level. There is even one dataset CNR EARLY that Progol5
has lower error. In the predictive toxicology application, there also exist one
dataset, i.e. day 14, where MC-TopLog has a significantly higher accuracy than
Progol5. Overall our null hypothesis is rejected by the accuracy results: There
is at least one dataset in both applications where MCL has significantly lower
error than SCL.

Timepoint default(no change),% Progol,% MC-TopLog,% p-value
CNR Early 63.64 86.36±7.32 81.82±8.22 0.576
CNR Mid 36.36 86.36±7.32 86.36±7.32 1.000
CNR Late 40.90 90.91±6.13 90.91±6.13 1.000
NOR Early 86.36 86.36±7.32 86.36±7.32 1.000
NOR Mid 50.00 68.18±9.93 86.86±7.32 0.042
NOR Late 31.82 68.18±9.93 86.36±7.32 0.042
RIN Early 100.00 100±0.00 100±0.00 1.000
RIN Mid 90.91 90.91±6.13 90.91±6.13 1.000
RIN Late 36.36 77.27±8.93 77.27±8.93 1.000

Table 1: Predictive accuracies with standard errors in Tomato Application

Timepoint default(no change),% Progol,% MC-TopLog,% p-value
Day 1 55.0 75.00±6.06 78.0±5.74 0.7304
Day 3 30.6 56.66±6.87 59.00±6.82 0.5554
Day 7 40.6 60.33±6.78 66.00±6.57 0.4250
Day 14 48.0 50.33±6.93 68.00 ±6.47 0.0039

Table 2: Predictive accuracies with standard errors in Predictive Toxicology Application
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4.4 Hypothesis Interpretation
The differences between the hypotheses suggested by Progol5 and MC-TopLog
are explained in this subsection using a concrete example. The dataset used
here is CNR Late from the tomato application. As shown in Fig 8(a), there is
only one ground fact with enzyme limiting, which means only one control point
is hypothesised to explain six metabolites’ concentration changes. In contrast,
all the ground facts suggested by Progol5 are enzyme limiting, which means
hypothesising six control points to explain the same set of observations.

Biological Significance Fig. 7(a) visualises the hypothesis suggested by MC-
TopLog. It is the reaction catalysed by glyoxylate amino transferase that is sug-
gested to be the control point for three organic acids (Citrate, Malate, GABA)
and three amino acids (Alanine, Serine and Threonine). This hypothesis is par-
ticularly interesting to biologists. First, biologists used to believe that the abun-
dance of organic acids is controlled via TCA-Cycle [5], while this hypothesis
indicates that the flux through the Malate can also be regulated by Glyoxylate
shunt, independently of TCA cycle. Second, this hypothesis involves three in-
tricately connected pathways (TCA-Cycle, Glyoxylate Shunt and GABA Shunt
pathway), which is difficult for a human being to come up with. Different from
the multi-clause hypothesis depicted in Fig. 5(a) which is relatively simple and
has been confirmed by biologists [20], no previous study is available to confirm
the one in Fig. 7(a), thus new biological experiments will be designed to test
this hypothesis. Thirdly, this hypothesis could be of industrial interest as the
higher organic acid content in particular Malate is a commercially important
quality trait for tomatoes [3], therefore this plausible hypothesis is subjected to
the experimental investigations.

Why Different Accuracy? Compared to Progol5’s hypothesis, where there
are six control points, the one suggested by MC-TopLog involves a single control
point co-regulating six metabolites. It is not just much simpler, but also poten-
tially has higher predictive accuracy. During the leave-one-out cross validation,
when one of co-regulated metabolites (e.g. Alanine) is left out as test data, a hy-
pothesis with the same control point (e.g. glyoxylate amino transferase) can be
reconstructed using the remaining co-regulated metabolites in the training data.
With the closed world assumption, the hypothesis derived from the training data
will explain the test data since it is co-regulated with other metabolites in the
training data. In contrast, a control point suggested by Progol5 only regulates
a single metabolite in the training set, therefore is less likely to be co-regulated
with the test data, thus may not be able to explain that test data.

However, that is not always the case, as shown by the accuracy results.
It turns out there exist good approximations of such module of co-regulated
metabolites in the hypothesis space of Progol5. That is why MC-TopLog did
not show higher accuracies in those cases. Fig 7(b) shows such a good approxi-
mation, where a pair of metabolites are suggested to be co-regulated by Malate
Dehydrogenase. Although the number of co-regulated metabolites is not as large
as the one in Fig. 7(a), it manages to predict the decrease of Alanine when it is
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GLYOXYLATE 
AMINO  
TRANS-RXN 

Glyoxylate Malate 

Oxaloacetate 2-oxoglutarate Glycine 

Threonine 

Alanine Serine GABA Citrate 

(a)

Malate 

Alanine 

Pyruvate 

Malate 
Dehydrogenase 

(b)
Fig. 7: (a) Three organic acids (Citrate, Malate, GABA) and three amino acids (Ala-
nine, Serine and Threonine) are hypothesised to be controlled by the reaction catalysed
by Glyoxylate Amino Transferase. The decrease in the flux through this reaction would
increase the abundance of the reactants (Glyoxylate) and would decrease the abundance
of the products (Glycine and 2-oxoglutarate). This would subsequently affect the flux
through the Glyoxylate shunt and GABA shunt pathways and a part of the TCA cycle
involved with the synthesis of organic acids. Specifically, decrease in the flux would
lead to the accumulation of glyoxylate and a reversed flux to Malate via malate syn-
thase (2.3.3.9) reaction would lead to an accumulation of Malate. On the other hand,
glycine’s production would be hampered and is reflected in the decreased abundance of
the three amino acids that are being synthesized by glycine in different condensation
reactions. (b) Malate and Alanine are hypothesised to be controlled by the reaction
catalysed by Malate Dehydrogenase.

left-out as test-data. There are other similar small co-regulated modules in Pro-
gol’s hypothesis, so that they together approximate the large module (Fig. 7(a))
suggested by MC-TopLog. The hypothesis with small co-regulated modules is
not disprovable according to biologists’ existing knowledge, and it does not have
existing studies to support either, therefore further experimental test will be car-
ried out. There is no existing evidence that a control point that regulate more
metabolites is always better. It is just Occam’s razor that make biologists prefer
simpler hypothesis with smaller number of control points. Therefore, it is dif-
ficult to conclude that a multi-clause hypothesis (a large co-regulated module)
is better than a single-clause hypothesis (a small co-regulated module), even
though the previous is more compressive.

4.5 Compression and |H|

The following table 3 shows that MC-TopLog always derives hypothesis with
higher compression, while the trade-of is a much larger hypothesis space, as can
be seen from their search nodes. For the datasets NOR EARLY and RIN EARLY,
the difference in search nodes is relatively small. That is because at early time
points, there are few changes in metabolic abundances, while the rule about
no change is non-recursive.

5 Conclusions and Future Work

Applying ILP technique to these two real-world problems not only improve the
efficiency of the whole studies, but also suggest interesting hypotheses that are
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reaction state(reversed-‘GLYCINE-AMINOTRANSFERASE-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
reaction state(‘MALSYN-RXN’,substrateLimiting,sUp,‘CNR L’).
reaction state(reversed-‘ALANINE–GLYOXYLATE-AMINOTRANSFERASE-RXN’,substrateLimiting,sDown,‘CNR L’).
reaction state(reversed-‘GLYOHMETRANS-RXN’,substrateLimiting,sDown,‘CNR L’).
reaction state(reversed-‘THREONINE-ALDOLASE-RXN’,substrateLimiting,sDown,‘CNR L’).
reaction state(‘GABATRANSAM-RXN’,substrateLimiting,sDown,‘CNR L’).
reaction state(reversed-‘RXN-6902’,substrateLimiting,sDown,‘CNR L’).

(a) MC-TopLog’s Hypothesis
reaction state(‘2.6.1.18-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
reaction state(reversed-‘5.1.1.18-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
reaction state(‘THREDEHYD-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
reaction state(reversed-‘ACONITATEDEHYDR-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
reaction state(‘GABATRANSAM-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
reaction state(‘1.1.1.39-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).

(b) Progol’s Hypothesis

Fig. 8: Comparing Induced Hypotheses

Timepoint
Compression Search Nodes

Progol MC-TopLog Progol MC-TopLog

CNR Early 10 845 352 1240
CNR Mid 12265 315095 322 11890
CNR Late 8358 150342 318 3654
NOR Early 5382 64 352 411
NOR Mid 12555 117592 354 11890
NOR Late 11362 129813 312 14032
RIN Early 2940 40 312 350
RIN Mid 2552 404 793 10851
RIN Late 11475 132320 354 14584

Table 3: Comparing Search nodes and Compression

different from what biologists used to think. Those plausible hypotheses without
support from existing studies will be test by biological experiments in future
studies.

As shown by experiments, there do exist datasets, in which hypotheses de-
rived by MCL have significantly higher predictive accuracy than SCL. On the
other hand, for most of the datasets in the two applications, there are good ap-
proximation of the target within the hypothesis space of a single-clause learner,
so that MCL does not necessarily have higher accuracy than SCL.

MCL has a much larger hypothesis space than SCL, and it tends to find a
more compressive hypothesis. However, this does not mean it will gain higher
accuracy.
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