Programming Research Group

A LEARNABILITY MODEL FOR UNIVERSAL REPRESENTATIONS

Stephen Muggleton
C. David Page Jr.

PRG-TR-3-97

fo DOMITMINA
NUS | TIO
ILLU | MEA

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

A Learnability Model for Universal Representations

Stephen Muggleton
C. David Page Jr.

Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD
U.K.

Email: {steve,dpage}@prg.oxford.ac.uk

Abstract

This paper defines a new computational model of inductive learning, called U-learnability
(Universal Learnability), that is well-suited for rich representation languages, most notably for
universal (Turing equivalent) representations. It is motivated by three observations. Firstly, ex-
isting computational models of inductive learning—the best known of which are identification in
the limit and PAC-learnability—either fail to provide guarantees of accuracy and computational
efficiency or require severely restricted representation languages. Secondly, practical machine
learning programs use rich representations yet often perform efficiently and achieve high degrees
of accuracy. Thirdly, these machine learning programs often make assumptions about the un-
derlying probability distribution over target concepts; such an assumption provides a soft bias
for learning. This contrasts with existing computational models of inductive learning, which
incorporate only language biases, or hard biases. U-learnability incorporates soft biases in the
form of a Bayesian prior distribution over target concepts. (Other authors have argued for the
use of Bayesian prior distributions in a manner more restricted than their use in U-learnability,
though this has not lead to a new model of polynomial-time learnability.) In addition, due to
problems of undecidability with universal representations, U-learnability makes special provision
for the use of time-bounded concepts. A time bound takes the form of a polynomial function of
the size of an example.

1 Introduction

Learning is a central feature of human cognition. As overwhelming amounts of data are becoming
available in scientific, sensory and linguistic domains, algorithms which allow computers to learn are
becoming increasingly important. For instance, recent papers [20, 19, 23, 36, 35] report a machine
learning algorithm producing novel biological insights beyond those achieved by persistent human
visual inspection of the data. The algorithm induces pure logic programs from data. Universal
(Turing equivalent) representations, such as logic programs, are particularly appropriate in scien-
tific domains due to the complexity of the objects and relationships involved. Clearly universal
representations are also of interest in a number of other learning contexts, including program syn-
thesis [37, 32]. In this paper we present a new computational model of learning which is appropriate
for use with representations up to and including universal ones.

Gold [15], motivated by the problem of human language acquisition, introduced the first com-
putational model of learning. This model, known as “identification-in-the-limit”, describes the

conditions for finite convergence of a language identification procedure. Although Gold’s model is
well suited for learning universal representations [6, 5], it fails to meet our purposes for two reasons.
Firstly, at no point can the learning agent give guarantees on the degree of error of a preferred
hypothesis. Secondly, although convergence is finite it could take arbitrarily long.

Valiant [38], motivated by the needs of expert system technology, developed a model that pro-
vides guarantees on the degree of error and efficiency of convergence for learning. This model,
known as Probably-Approximately-Correct (PAC) learning, has gained wide acceptance and stim-
ulated much high-quality research (for example [8, 26, 18, 27, 2, 1]). However, PAC’s stringent
requirements lead to negative results for universal representations (logic programs are prediction-
hard, even when severely restricted [13]). Even arbitrary propositional formulae and finite state
automata are unlearnable (based on certain cryptographic assumptions) [18], and propositional
formulae in disjunctive normal form are not known to be learnable. This contrasts with the fact
that most machine learning algorithms use representations at least this rich.

Machine learning algorithms that use representations not known to be PAC-learnable—or known
not to be PAC-learnable—make additional assumptions, outside those in the PAC model, about
the distribution of problems and their examples. For instance, a very common assumption used
in Machine Learning is that textually shorter theories are more likely to be correct a priori (Oc-
cam’s Razor). Although Occam algorithms have been studied in PAC-learning [7], this study has
not led to algorithms capable of learning in universal representations, as it has in Inductive Logic
Programming [24]. The Occam assumption was made explicitly by Solomonoff [33] who proposed
universality of the distribution which assigns the prior probability of hypothesis h to be o~ length(h)
More sophisticated versions of this assumption are used in Rissanen’s [29, 30] Minimal Description
Length (MDL) principle. A very different kind of distribution assumption was implicitly imple-
mented by Arbab, Michie [3] and Bratko [9] in an algorithm for constructing decision trees. The
algorithm constructs a decision list (linear decision tree) where one exists and otherwise returns
the most linear decision tree which can be constructed from the data. One can imagine a variety
of similar kinds of distributions; assigning higher prior probabilities to grammars that are regular
or almost so, logic programs that are deterministic or almost so, and Turing machines that run in
linear time or almost so. Yet another form of distribution assumption popular in “clustering” algo-
rithms is that sets of clusters are preferred to the degree that the clusters are small, separated and
dense. This works when examples are known to form small, dense groups, as in the case of celestial
data [12, 11]. A very different kind of hypothesis distribution is required when learning concepts
which mimic human performance in skill tasks [31]. For such tasks predictive accuracy is dependent
on hypotheses being evaluable in time similar to that of human reaction. Within Statistics dis-
tributional assumptions include Fisher’s [14] Maximum Likelihood Principle, which holds when all
hypotheses have almost equal prior probability. According to a recent large scale set of comparative
trials on industrial data [22] the assumptions in machine learning and statistical algorithms often
fit real world problems; in such cases the algorithms succeed. Unlike PAC-learnability, the model in
this paper allows the use of such distributional assumptions. Universal representations are shown
to be polynomially learnable for certain families of distributions. Because this model facilitates
the use of universal representations (as well as restricted ones) it is called Universal-learnability, or
U-learnability.

Owing to non-terminating computations, the use of rich representations often requires time-
bounds on hypotheses. These can take the form of limits on number of resolution steps for logic pro-
grams or bounds on the number of computation steps for a Turing machine. Within U-learnability
distributions range over hypotheses which include a time bound. The use of such time bounds
allows us to characterise not only inductive learning but also speed-up learning. Speed-up learn-

ing cannot be viewed as a special case of PAC-learning although Natarajan [25] has provided a
PAC-style formalisation of speed-up learning, which has as yet yielded few positive results.

U-learnability has a natural interpretation within Bayesian analysis. Distributional assumptions
over hypotheses equate to subjective prior distributions from which, for a given set of examples,
conditional distributions can be derived using Bayes’ Theorem. Bayesian approaches to Machine
Learning have been discussed previously in the literature. For instance, Buntine [10] develops a
Bayesian framework for learning, which he applies to the problem of learning class probability trees.
Also Haussler et al. [16] analyse the sample complexity of two Bayesian algorithms. This analysis
focuses on average case, rather than worst case, accuracy. Nevertheless, unlike U-learnability
(Section 2), neither Buntine nor Haussler et al. considers the additional use of the prior distribution
on hypotheses to measure average case, rather than worst case, time complexity. As a result, neither
Buntine nor Haussler et al. develops a new learning model in which significantly more expressive
representations are learnable. U-learnability differs from the work of Buntine and Haussler et al.
in a number of other ways as well, including the use of a parameterised family of possible prior
distributions on hypotheses, rather than a single prior. Furthermore, the accuracy guarantees need
only hold when the sample size is greater than some particular polynomial in the parameter of the
prior distribution on hypotheses.

It should be noted that the use of a distribution over hypotheses provides a vehicle for incor-
porating “soft” biases, or preferences, into a learning task, in addition to the standard “hard” bias
imposed by a language restriction. The importance of such soft biases has long been recognised in
Machine Learning (for example, see the discussion of preference criteria in [21]), but such biases
have never before been incorporated into a formal computational model of learning.

The paper is arranged as follows. Section 2 defines U-learnability. Section 3 presents some
initial, basic results, and Section 4 points to directions for more advanced results. Section 5
discusses extensions to the definition of U-learnability to allow the use of background knowledge.
Section 6 gives our present conclusions about U-learnability.

2 U-learnability model (simple)

In this section we give the basic definition of U-learnability without incorporating background
knowledge. In a later section this definition will be augmented.

2.1 Preliminaries for U-learning

Let (Xg, X, X¢, R, ¢) be the representation of a learning problem, where X is the domain of exam-
ples (finite strings over the alphabet ¥), R is the class of concept representations (finite strings
over the alphabet ¥¢), and ¢: R — 2% maps concept representations to concepts (subsets of X).

Within PAC-learning it is assumed that concept representations are evaluable in time bounded
by a particular polynomial function.! When R is Universal (Turing equivalent), problems associated
with halting dictate that computations must be truncated according to a time-bound. Thus let P,
a subset of the univariate polynomial functions, be a set of time-bounds. A concept representation
is a pair (r,p),for r € R and p € P. Let A(r,p,z) be an evaluation algorithm that maps any tuple
(ryp,z),forr € R, p€ P,and z € X, to 0 or 1. Let A(r,p,z) run in time bounded by p(|z|).
Furthermore, let A have the following properties. First, for all » € R and z € X, if ¢ ¢(r) then

"We assume throughout the paper that any univariate polynomial function f has the form f(z) = c1z°?, and any
bivariate polynomial f has the form f(z,y) = c12“°y°®, where c1,¢2,c3 > 0.

for every p € P: A(r,p,z) = 0. Second, for all r € R and z € X, if z € ¢(r) then there exists p € P
such that for every p' € P with p(|z|) > p(|z|): A(r,p',2) = 1.

Let F be any family of probability distributions over R x P, where the distributions in F
each have an associated parameter ng > 0 (for example, n might be the greater of the mean and
standard deviation of each distribution). Let G be any family of probability distributions over X,
where the distributions in G each have an associated parameter ng > 0.

The intuition behind these preliminaries is the following. First, the representation as defined
simply provides the description language for examples and concepts. Second, the algorithm A
provides an efficient method for determining how a given concept (together with a time bound)
classifies a given example. The assymetry in the behavior of A relative to a time bound—that
with more time, more examples are labeled positive—reflects the standard conservative use of time
bounds in computing. For example, if the concept representation is the set of time-bounded definite
clause theories, it is standard to say that a given goal is true according to such a program just if
it is provable within the time bound; with more time, possibly more goals—but not fewer goals—
become provable. Third, the families of distributions model the learner’s knowledge or assumptions
about true underlying distributions over hypotheses and examples. Complete knowledge, or strong
assumptions, would be modelled by having particular known distributions over the hypotheses and
examples. But a learner does not necessarily have such complete knowledge or such strong assump-
tions. Incomplete knowledge or weak assumptions are instead modelled by families of distributions
that include the true distributions. Finally, some distributions within a family may make learning
more difficult than do others. For example, a distribution in which the probabilities of hypotheses
decrease rapidly as hypothesis size (or some other measure of difficulty) grows will probably make
learning easier than will a distribution in which the probabilities decrease slowly with a growth in
size. The parameters of the distributions in a family may provide some indication of the difficulty
of the distribution.

2.2 Protocol for U-learning

In U-learning, a Teacher randomly chooses a target (r,p) € R X P, according to some distribution
Dyg in F. The Teacher presents to a learning algorithm L an infinite stream of labeled examples
((z1,01), (x2,13),...) where: each example z; is drawn randomly, independently of the preceding
examples, from X according to some fixed, unknown distribution Dg in G and labeled by I; =
A(r,p, x;). After each example z; in the stream of examples, L outputs a hypothesis H; = (r;, pi),
where r; € R and p; € P.

The intuition behind the protocol comes from a broader view of the inductive learning task than
is usually taken. Consider a task such as structure-activity prediction of pharmaceutical chemicals.
Structure-activity prediction is not actually a single prediction task, but a variety of tasks based
on different receptor sites. A chemical may be active relative to one type of receptor site (that is,
it may exhibit one type of activity) but not another. Therefore, the concept of “active chemical”
varies with the receptor site. Hence each receptor site defines a distinct target concept, but all such
concepts are closely related. Thus this machine learning problem is not defined by a single target
concept, for which a trivial optimal algorithm exists (though we may not know what it is), but
by a set of related target concepts that are drawn according to some distribution. If the language
in which target concepts may be represented is complex, perhaps even universal, then we cannot
expect a machine learning algorithm to perform well on every possible target concept. Rather,
common sense tells us that a machine learning algorithm performs well on the task if, on average
over all target concepts and all example sets, the algorithm efficiently finds an accurate concept.

(It is the job of the U-learnability definition, in the following subsection, to make this sentence
precise.) We claim that many—probably most—machine learning settings (outside of artificial
data sets labeled according to a single target) fit this broader view of inductive learning. For this
reason the teacher begins with a target chosen randomly according to some underlying distribution
within the family of possible distributions.

2.3 Definition of U-learnability

Throughout the following definition, for any positive integer m let X, denote (1, ..., Tm), a vector
of m examples from X.

Definition 1 U-learnability. Let F' and G be families of distributions over R x P and X respec-
tively. The pair (F,G) is U-learnable just if there exist a learning algorithm L and three polynomial
functions, LEARNTIME-BOUND (), DELAY-BOUND(z, y), and ERROR-BOUND (z), such that for every

distribution Dp (with parameter ng) in F, and every distribution D¢g (with parameter ng) in G,
the following hold.

Time Complexity. The average-case time complexity of L at any point in a run is bounded by
LEARNTIME-BOUND (M), where M is the sum of p(|z;|) over the examples x; seen to that

.

point.

Correctness. For all m > DELAY-BOUND(np, ng):

- - 1
> [Prp, pe(rp, Xos)I[EL(r, p, Xong1)] < ERROR—BOUND(E)
all (T’,p,Xm+1)

where E(r,p, AX_’)m_H) = 0 if L correctly classifies example ,,11 given examples (x1, ..., &)
labeled according to (r,p), and Er(r,p, X,;n41) = 1 otherwise.

As with PAC-learning, we can also consider a prediction variant, in which the Teacher draws a
target from R x P but the learner draws hypotheses from any class R’ x P’ with a possibly different
associated evaluation algorithm A’. Also as with PAC-learning, we can consider variants in which
the learner sees positive examples only (or negative examples only). In other words, the learner
receives only the positive examples (or only the negative examples) that are drawn randomly,
independently from X according to Dg. Note that in this case, the definition of correctness cannot
be based on the performance of the hypothesis H,, on the example x,,41, since &,,4+1 is necessarily
a positive example (or necessarily a negative example). Instead, the definition must be based on
the performance of H,, on some independent example, which may be positive or negative, drawn
randomly according to Dg.

2To be more precise, let m be any positive integer. Let Prp, (r,p) be the probability assigned to (r,p) by Dr, and
(with a slight abuse of notation) let Prp, o, (r,p,)_('m) be the product of Prp, (r,p) and the probability of obtaining
the sequence X, when drawing m examples randomly and independently according to Dg. Let TIMEL(r, p,)?m) be
the time spent by L until output of its hypothesis H,,, when the target is (r, p) and the initial sequence of m examples is
X.n. Then we say that the average-case time complexity of L to output H,, is bounded by LEARNTIME-BOUND(z) = z°
(with some appropriate coefficient) if the sum (or integral), over all tuples (r, p,)?m), of

o (TIMEL(r,p, Xm))®
[PTDFHDG (T,p, Xm)](ZML(T P))

(rp,Xm)

is less than infinity, where M, - . is the sum of p(|zi|) over all z; in X,,. See [4] for the motivation of this definition

of average-case complexity.

Notice that the definition of U-learnability is superficially similar to identification in the limit
[15]. Nevertheless neither identification-in-the-limit nor U-learnability is a special case of the other,
because examples are drawn in very different ways in the two models. The following remark notes
that PAC-learnability s a special case of U-learnability.

Remark 2 U-learnability generalises PAC. Let (X5, X, Y, R, ¢) be any representation such
that for some evaluation algorithm A and bivariate polynomial p: A classifies any x € X according
to any r € R in time bounded by p(|r|,|z|). (The existence of A and p is a standard requirement
in PAC-learning.) For any r € R, let p, denote the univariate polynomial such that: for all y,
pr(y) = p(lr|,y). Let F be a family of distributions that contains one distribution D; for each
ri € R, such that D; assigns probability 1 to (r;,p,,). Let n =0 be the parameter for each member
of F. Let G be the family of all distributions over X . Then the representation (Xg, X,¥c, R, c) is
PAC-learnable (PAC-predictable) if and only if (F,G) is U-learnable (U-predictable).

3 Results for simple U-learnability

This section presents initial results about simple U-learnability. In each of these results, let
(Xg, X, X, R, ¢) be the representation of any given learning problem.
Before presenting these results, we develop a useful property similar to the Blumer Bound [8]

that is used in many PAC-learning results. (The Blumer Bound states that for a finite hypothesis

In|H|+ln i . . .
In|H+in 3 |E+ 23 s sufficient for accuracy 1 — e with confidence 1 — 4.)

Let H = (Hy, Hy, ..., Hg) be a sequence of sets of hypotheses, and let Dy be a distribution over
the hypotheses in H. For all 4, let Prp, (H;) denote the sum of the probabilities (under D) of
the hypotheses in H; that do not appear in some H; for j < i. Furthermore, let [H;] denote the
subsequence (Hy, ..., H;) of H. Let |H;| denote the number of hypotheses in H;, and let |[H;]| denote
|Hy| + ...+ |H;|. Then we have the following useful result.

space H, a sample of size m >

Theorem 3 (Average-case Blumer Bound) Let S be any sample of m examples drawn ran-
domly and independently from a domain X according to a distribution Dg on X, and labeled
according to a target concept (r,p) that is drawn randomly according to a distribution D on H.
Let h be any hypothesis in H such that:

e h is consistent with S
e h € H; where: for all1 < j <, H; does not contain a hypothesis that is consistent with S.

We say that h is an earliest consistent hypothesis. Let ES(H) denote

k
Y- Pro, (H:)|[H)

In ES+In +
% then

Forany0< ¢, <1, ifm>
Z [PTDF7DG(T7P7 Xm)][EE(T,p, XM)] <46
all (r,p,Xm)

— —

where E.(r, p, X,) = 0 if every earliest consistent hypothesis h is (1—¢)-accurate, and E.(r,p, X,,) =
1 otherwise. By (1—e¢)-accurate, we mean that the probability that h misclassifies an example drawn
randomly according to D¢ is less than .

Proof: We may rewrite the statement

Z [Prpg,pe(r, p, Xm)][EE(r,p, Xm)] <é
all (r,p,)zm)

in the theorem as

E [Prpg(r,p)] Z [Prpg (Xm)][EE(r,p, Xm)] <9

N

all (r,p) all X,

Consider a given target concept (r,p). Let H; be the first set in H containing (r, p). Then for any
sample X, labeled according to (r, p), all the earliest consistent hypotheses A must be in the same
set H;, for some j < ¢. Given a particular target (r, p) occurring first in H;, the probability that any

such h is consistent with X, and yet is not (1—¢)-accurate is at most I[H;]|(1—e)™ < |[H;]|(1—€)™
Therefore, it is sufficient to show that

k

Y [Pro (H)([HJ(A - ™) <8

=1

This in turn may be rewritten as
k
l—emZPrDF (I[H:]|) < &
=1

Substituting ES(H) for
k
> Prp, (H;)|[Hi]]
i=1
yields
(1—¢)™(ES)<$

This holds just if
N In S +1n %

m
€

(This last step can be verified by the arguments used to derive the Blumer Bound [7].)]
Definition 4 (Polynomial and Exponential Size-Based Enumerations) Let R be countable.
Let E = (Fy, Es, ...) be any enumeration of non-empty subsets of R such that:

1. everyr € R is in some Ej,

2. for any r; € E; and r; € E;, il is the case that |r;| > |r;| only if 7 > ¢, and

3. the members of F;, for each i, can be determined efficiently (by an algorithm that runs in
time polynomial in the sum of the sizes of the members of E;).

FE is a polynomial size-based enumeration of R if there exists a polynomial p such that: for all
i > 1, the cardinality of F; is at most p(i¢). E is an exponential size-based enumeration of R if
there exisls an exponential function® [such that: for alli > 1, the cardinality of E; is at most f(i).

?An exponential function f is taken to be a function of the form e(z) = ¢” for some ¢ > 1.

-~

p(E) || Bm

Figure 1: A distribution in Dp

Definition 5 (Polynomial Size-Based Distribution) Let R have polynomial size-based enu-
meration F = (Fy, Ey,...). Let D' be any distribution, with finite variance, over the positive
integers. Lel D be any distribulion over R such that for each © > 1, the probabilities of the r € F;
sum to Prp:(i). Then D is a polynomial size-based distribution over R. We specify the parameter
n of D to be the mazimum of the mean and standard deviation of D'.

Definition 6 (Exponential Size-Based Distribution) Let R have exponential size-based enu-
meration E = (Fy, Fs,...), with exponential function f(z) = c*. Lel Dy, for a real number ¢’ > ¢,
be the discrete exponential distribution with probability density function (p.d.f.)

Pr(z) = (¢ = 1)™" for all integers z > 1

Let D be any distribution over R such that for each ¢ > 1, the probabilities of the r € F; sum to
Prp_,(i). Then D is an exponential size-based distribution over R. We specify the parameter n of
D to be the maximum of the mean and standard deviation of D.r.

Definition 7 The distribution family Dp. Let k be a positive integer, and let P* be the set of
all univariate polynomial functions p., (z) = c]-ack where c; is a positive integer. For each polynomial
size-based distribution D' over R, and each distribution D" over the positive integers with the p.d.f.
Prpn(z) = a=° for ¢ > 3, we define a distribution D over all (r;,p.;) € R X P* with the following
p.d.f.

Prp(ripe;) =0 if ¢j < il
= [Prp/(r)][Prp»(c; — |rq])] otherwise.

(1t is worth noting that all distributions D" of the form specified have finite variance, and therefore
finite mean and standard deviation, although the standard deviation grows arbitrarily large as c
nears 3.) Let the parameter n of D be the maximum of the parameter of D' and the mean and
standard deviation of D". The distribution family Dp consists of exactly the distributions D defined
in this way, for all choices of D' and D".

The

U-learning algorithm for Dp

Input: Example sequence {(z1,01), (z2,l2),...).
Output: Hypothesis sequence ((r1,p1), (r2,p2), ..).

ot

> W N =

Let m = 1.
Obtain the next labeled example (2, 1y,) from the input sequence.
Let i = 1.

If for some r € F; and |r| < ¢ < |r| 4+ m, the hypothesis (r, p.) is consistent with the m examples seen
thus far (that is, A(r,p., ;) ={;, for all 1 < j < m), then output (7, p;) and go to 7.

If i = m then output (r,p,41) for r € Ey, (or any other hypothesis) and go to 7.

. Increment 7 and go to 4.

. Increment m and go to 2.

Figure 2: The U-learning algorithm for Dp

Theorem 8 U-learnability under Dp. Let the distribution family Dp be defined by a particular
polynomial size-based enumeration and a particular choice of k to specify the set of polynomials P*.
Let G be any family of distributions over X. The pair (Dp,G) is U-learnable.

Proof: The proof is constructive. It shows that the algorithm in Figure 2 U-learns (Dp, G). Time
complexity is first addressed followed by correctness.

Time complexity. Let (r, pg) be the target and let f be the least positive integer such that r € E.

p'(m)m

We must show that there exists a univariate polynomial LEARNTIME-BOUND, such that the
average case time complexity of the algorithm is bounded by LEARNTIME-BOUND (M), where

M= Sl

For any new example (z,,,/[,,), the time taken by the algorithm until output of H,, is at
most the time required to test the hypotheses (r;, p.) for r; € (Ey,.., Ey) and |r;| < ¢ < h,
where g = min(f, m) and h = min(d, |r;| + m). The number of such hypotheses is at most
2 since there are p’(m)m possible choices of r; and m possible choices of ¢ given r;.
Each hypothesis can be generated efficiently (by the definition of Dp). The time taken to
test a given hypothesis (r;, p.) is at most

m

> (pe(lzjl)

J=1

Because ¢ < d + m, and because m < M, the total time to output each H,, is bounded by a
polynomial in M (LEARNTIME-BOUND).*

Correctness. If there exists a consistent hypothesis (r,p.) with r € (Eq,..., Fy) and |r| < ¢ <

|r| + m, then the algorithm outputs a consistent hypothesis. The proof shows that after a

*Thus, for this particular algorithm even the worst-case time complexity is polynomial.

particular number of examples (which is polynomial in the parameters ngy and ng), there
almost certainly exists a consistent hypothesis (r, p.) with r € (Fy,..., Ey) and ¢ € {|r| +

. |r|+m}, and that any such consistent hypothesis almost certainly correctly predicts the
labe% of the next example. More specifically, we now specify4an ERROR-BOUND function of
(L)z = \/I—E and a DELAY-BOUND function of m > ¢+ (3np)?, where ¢ is a constant based
on the polynomial p’ used in defining the distribution family Dp. (It is worth noting that
in this case the DELAY-BOUND does not depend on ng but on only ng.) The proof first
shows that for m > ¢+ (371}7‘)%, the probability (over all possible m-samples drawn randomly,
independently according to D¢ and labeled by a target drawn randomly according to D)

that no hypothesis (r,p.) is consistent, for r € {Fy, Ey, ..., F,} and |r] < ¢ < |r| 4+ m, is

2
and D¢) that a consistent hypothesis (r p.) incorrectly labels an exarnple drawn randomly

at most %(%)% = ﬁ The proof then shows that the probability (again relative to Dp

according to Dg is at most (-)5 = 2\/— Hence for every m > ¢ + (3nF) the probability
(over all targets drawn randomly according to Dg and all (m + 1)-samples drawn randomly,
independently accordrng to Dg) that the hypothesis H,, incorrectly classifies the example

Ty IS at most 2\/——|—2\/— \/—
Chebyshev’s Inequality states that

Pr(

1
)< 3
where Y is a random variable whose probability distribution has mean g and standard de-
viation o, and k£ > 0. Within Chebyshev’s Inequality substitute Y by f and k by 9mi. Tt

follows that for any distribution Dy (with parameter ng) in Dp, the sum of the probabilities
of all possible targets (r, p) such that r does not appear in (E4, ..., E,,,) is less than ﬁ when

m> u+ 2omi. Certainly m > p + 2omi if m > np + QnFm%, since ng > maz(u, o). And
certainly m > nF—I—QnFm% when m > nFm% —|—2nF'm% = 371}7‘77”&% since m is at least 1. Thus
for m > (3np)%, the sum of the probabilities of all targets (r, p) such that r does not appear
in (Ey,..., Fy,) is less than m.

Given that the target (r, p) is such that r € (Ey, ..., Fy,), what is the probability that p = p.
for ¢ > |r|+m? Using the reasoning of the previous paragraph Chebyshev’s Inequality again
shows that for m > (Snp) this probability is less than v Thus the probability (relative
to D) that the hypothesis space searched by the algorithm does not contain the target is
less than 4% + 4\}5 = 2%,

The proof is completed by showing that if the hypothesis space searched by the algorithm
contains the target, then the probability (over all possible (m + 1)-samples drawn randomly,
independently according to D¢) that the hypothesis H,, incorrectly labels the example z,, 41
is less than ﬁ It follows from the Blumer Bound that for any € and ¢ such that

In(p'(m)m?) + In 3 <
<m

€

the hypothesis H,, has the property that with probability at least 1 — & H,, is (1 — €)-
accurate. To ensure that the probability that H,, incorrectly classifies z,,41 is less than ﬁ,

we need simply to choose values for € and § that sum to ﬁ Choose ﬁ for both € and 4.

10

Substituting these values into the Blumer bound, we need m such that

(In(p/ (m)m?) + In 4y/m)ay/m < m

which can be rewritten as

vm

In(p'(m)m?*) < Tm —In4y/m

For any particular p’(m) used in defining the distribution family Dp, there exists a least posi-
tive integer ¢ such that for m = ¢ this inequality holds. Thus, letting DELAY-BOUND (ng, ng) =

q+ (SnF)% guarantees that for all m > DELAY-BOUND(ng,ng) the probability that H,, in-
correctly classifies z,,41 is at most Q%/E This completes the proof.

a

Example 9 Time-bounded logic programs are U-learnable under Dp. Let R be the set of
all logic programs that can be built from a given alphabet of predicate symbols P, function symbols
F, and variables V. Let k be a positive integer and P* be the set of all time-bounds p(z) of the
form p(z) = c;z*, where each ¢; is a positive integer and z is the size of (number of terms in)
the goal. Let the domain X of examples be the ground atoms constructed from P and F. Let the
symbol t-,, denote SLDNF' derivation time-bounded by n. A concept (r,p) classifies as positive just
the atoms a € X such that r Fp(q|) @, where |a| is the number of terms in a. Let the family of
distributions Dp be buill using some particular enumeration of polynomially-growing subsets of R
and some choice of k, and let G be the family of all distributions over examples. From Theorem 8,
it follows that (Dp,G) is U-learnable.

Definition 10 The distribution family Dg. Let k be a positive integer, and let P* be the set
of univariate polynomial functions of the form p.,(z) = Cjwk, where c; is any positive integer. Lel
T be a finite set of constants, and let D" be any probability distribution over T. For any r € R,
let P, be the subsel of functions p. € P* such that ¢ = t|r| for some t € T. For each exponential
size-based distribution D' over R, and each distribution D" over T, we define a distribution D over
all (ri,pe;) € R X P* with the following p.d.f.

Prp(ri,pe,) =0 if ¢; € Py,
= [Prp/(r)][Prp=(t)] where c¢; = t|r;| for t € T, otherwise.

Let the parameter n of D be the parameter of D'. The distribution family D consists of exactly
the distributions D defined in this way, for all choices of D' and D".

Theorem 11 U-learnability under Dg. Let the distribution family Dy be defined by particular
choices of the constants ¢, k, T, and the enumeration of subsels of R. Let G be any family of
distributions over X. The pair of distributions (Dg,G) is U-learnable.

Proof: Again the proof is constructive. The learning algorithm (Figure 3) is similar to that for
Dp, the primary difference being that after any number m of examples, this algorithm considers
hypotheses in the sets Fjy, ..., EL\/n_zJ rather than Fjy, ..., E,,. The proof has much the same form
as that for Theorem 8, except that the use of average-case time complexity rather than worst-case
time complexity is crucial. Time complexity is addressed first, followed by correctness.

11

The U-learning algorithm for Dg
Input: Example sequence {(z1,01), (z2,12), ...).
Output: Hypothesis sequence ((r1,p1), (72, p2), -..).

1. Let m = 1.

2. Obtain the next labeled example (2, Ly) from the input sequence.

3. Let i = 1.

4. If for some r € E; and p. € P,, the hypothesis (7, p.) is consistent with the m examples seen thus far,
then output (r, p.) and go to 7.

5. If i = |+/m| then output any hypothesis and go to 7.

6. Increment ¢ and go to 4.

7. Increment m and go to 2.

Figure 3: The U-learning algorithm for Dg

Time complexity. We must show that there exists a constant b such that for all integers m > 1
and for all distributions D¢ over X, the following sum converges® (where L is the learning

algorithm for (Dg, G)).

- 1
~ TIME X))o
Z [PTDE7DG(T7 Pd, va)] (L(T7 Pd,)) -

all (r,pd,Xm) (7’7pd7Xm)

We choose b = 2. The preceding sum can be rewritten as the following sum.

[o.¢]
Z Sumy,
k=1

where Sumy, is:

—

1
- TIME X,))2
Z [PTDEvDG(r7pd7 Xm)] (L(r’pd7))2

. M(T %)
{(rpa,Xm)ir€Eg,pa€Pr} PdrAm

The value of Sumy is bounded by the value of the following sum, where @ and a’ are appro-
priately chosen constants, and ¢’ is the largest time-bound coefficient in T'.

[a erilln(ki\/mj) (Cia/ E;n:1 P (|$J|))]%
> = pallz;l)

E [PTDE,DG (r7pd7)zm)]
{(rpa,Xm):r€Ex,pa€Py}

To see that the value of this sum is greater than the value of Sumy, note that M(rp %) has

simply been expressed explicitly as

> palla)

5Each term in the sum is obviously positive, so to say the sum converges is to say that it is less than infinity.

12

—

and TIMEy (r, p, X,,,) has been replaced by the upper bound
min(k,|v/m]) m

a Z (Cia/Z:Pt‘|r|(|xj|))

=1
To verify the correctness of this upper bound, notice that L searches through the possible
choices of r in F4, ..., E[\/ﬂ—” and all possible choices of time-bound p for a hypothesis (r, p)

that is consistent with the examples X, L outputs the first hypothesis it finds that is
consistent with the examples; thus, if the target is (r,ps), where r € Fj and pg € P, and
if & < [\/m], then L will search through at most Ei, ..., Ex. As a result, TIMEf(r, p,)?m) is
bounded by the sum, for ¢ from 1 to min(k, |\/m|), of a constant (a) times the product of:

1. the time to determine whether a given hypothesis in F; is consistent with 1, ..., z,,, and
2. the number of hypotheses in F;
Item (1) is bounded by a constant times Y72 py). (|z;]). Item (2) is bounded by |T|c'. (We

may include both the constant of item (1) and the constant |T'| in item (2) in the constant
a'.) Tt follows that TIMEL(r, p, X,,) is bounded by

minelm) m
a Y (cd" Y py(lzg))
7=1

=1

The preceding bound on Sumy can be rewritten, trivially, as
Z Sumy,)
{(r,p):r€Ey,pePr}

where Sumg, ;) is

[a oD g s (1250)))2
S palles])

Z I:PTDE,Dg(T’p7Xm):|
all X,,

Once again using the notation M(and recognising that py.(z) is only a constant

rp,Xom)?
factor @’ greater than py(z), for all z (since d must also be in P, and therefore is also a
constant multiple of |r|), it is straightforward to verify that Sumg,) is bounded by the value

of the following sum.

" . k4
Z{WDD&pfﬂm%whﬂNmﬂQ
E, (€] b b m .

all Xm (ﬁpme)

Recognising that M(rpXm) > /m reveals that the value of this sum is in turn bounded by
the value of

Z [Prpg.pe(r,p,)_()m)]a”acg
all X,

which evaluates to a”achrDE(r,p). Substituting this value back for Sumy,) in the upper
bound on Sumy, we can rewrite this upper bound to

Y. (d"actProp,(r,p)
{(r,p):r€Ey,peP;)=k}

13

which can be rewritten as

a"acg Z Prp,(r,p))
{(r,p):r€Ey,peP;)=k}

Now the sum of Prp g(r,p) over all (r,p) such that r € Eg,p € P, is at most (¢ — 1)c' 7%,
which yields an upper bound of a”acg(c— Delt=* = a"a(c— 1)cl_§ on Sumy. Substituting this
upper bound into the original sum (in its rewritten form) yields the following upper bound
on the original sum.

> k
Z a"a(c—1)c'™2
k=1

This sum can be rewritten as

which converges just if

converges. The latter sum converges just if

X[
S’
o~~~

o

I
S’

(l

ql

I

A
—_

lim ((Cl_g)%) = lim (c
k—oo k—oo

which is obviously the case since ¢ > 1.

Correctness. If Fy, ..., E[\/EJ contains a consistent hypothesis then the algorithm outputs a con-
sistent hypothesis H,,. More specifically, it outputs a consistent hypothesis with the earliest
possible r. In other words, the algorithm outputs a consistent hypothesis (r;, p;) with r; € H;
such that: for all j < 7, any (r;, p;) with r € H; and p; € P, is inconsistent. The proof shows
that after a particular number of examples (which is polynomial in the parameters ny and ng),
there almost certainly exists a consistent hypothesis (r,p) with r € Fy,...,E,, and p € P,
and that any such consistent hypothesis with earliest possible r almost certainly correctly
predicts the label of the next example. More specifically, we now specify an ERROR-BOUND
function of (%)% = \/I—E and a DELAY-BOUND function of m > ¢+ (3np)?*, where ¢ is a con-

stant based on the constant ¢ used in defining the distribution family Dg. The proof first

shows that for m > ¢+ (3np)*, the probability (over all possible m-samples drawn randomly,
independently according to D¢ and labeled by a target drawn randomly according to Dp)
that no hypothesis (r,p) is consistent, for r € (FEy, Es, ""EL\/EJ> and p € P, is at most

11)% _ _1

7(:0)2 = N The proof then shows that the probability (again relative to Dy and Dg)

that a consistent hypothesis (r, p) with earliest possible r incorrectly labels an example drawn
randomly according to D¢ is at most %(%)% = ﬁ Hence for every m > ¢+ (3ng)?, the

probability (over all targets drawn randomly according to Dp and all (m+ 1)-samples drawn

randomly, independently according to D¢) that the hypothesis H,, incorrectly classifies the

example z,,;1 is at most (%)5 = \/LR

Simply using Chebyshev’s Ineqluality in exactly the way we used it in the proof of Theorem 8,
we find that for \/m > 3npm3, the sum of the probabilities of all targets (r, p) such that r
does not appear in (Fjy, '“7EL\/TZJ> is less than ﬁ. Thus for m > (3ng)?, the sum of the

14

probabilities of all targets (r, p) such that r does not appear in Ei, ..., E\ jm) is less than ﬁ,

. . 1 .
which is less than T/ S desired.

The proof is completed by showing that if the hypothesis space searched by the algorithm
contains the target, then the probability (over all possible (m + 1)-samples drawn randomly,
independently according to D¢) that the hypothesis H,, incorrectly labels the example z,, 41

is less than ﬁ Let ES denote

[vm]
Y Prog(E)[E] + ...+ | Ei]]
=1

It follows from the Average-case Blumer Bound that for any € and ¢ such that

lnES—}—ln% <
— 9 <m

€

the hypothesis H,, has the property that with probability at least 1 — & H,, is (1 — €)-

accurate. To ensure that the probability that H,, incorrectly classifies x,,41 is less than ﬁ,

we need simply to choose values for € and § that sum to ﬁ Choose ﬁ for both ¢ and 4.
Substituting these values into the Average-case Blumer bound, we need m such that

(In ES + In 4y/m)4y/m < m

which can be rewritten as

In ES < @—lnél\/ﬁ

It can be verified that for any particular choice of ¢ and ¢’ used in defining the distri-
bution family Dp, there exists a least positive integer ¢ such that for m = ¢ this in-
equality holds.® Thus, letting DELAY-BOUND (np,ng) = ¢+ (3ng)?* guarantees that for all
m > DELAY-BOUND (ng,ng) the probability that H,, incorrectly classifies z,,41 is at most
ﬁ. This completes the proof. a

Example 12 Time-bounded logic programs are U-learnable under Dp. Let R be the sel
of all logic programs that can be built from a given finite alphabet of predicate symbols P, function
symbols F, and variables V. Let the domain X of examples be the ground atoms built from P and
F. Let the distribution family Dy be built from a choice of T' = {1,10,100,1000} (to define the
allowed time-bounds) and from the enumeration (Ey, Fs, ...) of subsets of R such that for alli > 1
FE; contains all logic programs of length 1. Lel G be the family of all distributions over examples.
From Theorem 11, it follows that (Dg,G) is U-learnable.

4 Directions for Further Research into Simple U-Learnability

In some cases it may be inappropriate to assume that the probabilities of target representations
vanish as quickly as they do in the distributions considered in the preceding theorems. In particu-
lar, a more appropriate distribution on target representations in some settings may be one defined

5In fact, the same argument can be made using the Blumer Bound rather than the Average-case Blumer Bound,
but for distributions such as Dy the Average-case Blumer Bound provides much smaller values for g.

15

by combining an exponential size-based enumeration as used in Definition 10 (Dg), with some
distribution in which the probabilities do not decrease exponentially, as in Definition 7 (some dis-
tributions in Dp). U-learnability should be considered with such distributions, perhaps combined
with restricted families of distributions on examples and/or restricted representation languages.
We expect that obtaining positive results for “natural” distributions of this kind will be theo-
retically challenging, and that such results will have a major impact on practical applications of
machine learning. We also expect that negative results for some such distributions will be chal-
lenging and useful. Whereas negative results for PAC-learnability can be obtained by showing that
the consistency problem for a given concept representation is NP-hard (assuming RP # N P) [26],
negative results for U-learnability in some cases can be obtained by showing that the consistency
problem is NP-hard-on-average (or DistNP-hard) [4, 17] relative to particular distributions on hy-
potheses and examples. In addition, just as negative results for PAC-predictability can be obtained
(based on certain assumptions) using hard problems from cryptography [18], negative results for
U-predictability possibly might be obtained in this same way, but would require additional effort.”
Specifically, obtaining negative results for U-predictability will require specifying a particular dis-
tribution (or family of distributions) to be used with a hard problem from cryptography, such as
inverting RSA, and it must be verified that the problem does not become substantially easier under
this distribution (or every distribution in this family). For example, inverting RSA is assumed hard
if encryption/decryption is based on a choice of two large random prime numbers according to a
untform distribution over primes of some large size, but it becomes easy if the distribution over
primes of a given size assigns probability 1 to one particular prime number, or probability .5 to
each of two prime numbers; what about for distributions “in between”, where some primes of a
given size are more likely than others? The distributions used in U-predictability would correspond
to such distributions for RSA.

Another important area in which to search for interesting U-learnability results is in the analysis
of existing machine learning algorithms. We conjecture that for every successful inductive learn-
ing algorithm there exist interesting, “natural” families of distributions F and G for which that
algorithm is a “U-learner”. (In other words, if a learning algorithm performs well in practice, this
is because it usually receives hypotheses and examples drawn according to distributions for which
it is well-suited.) Identifying these distribution families should provide a deeper understanding of
these algorithms, their abilities, and their limitations.

5 Extensions to U-learnability

Background knowledge is an essential aspect of many learning problems. The definition of U-
learnability does not allow the use of background knowledge. There are at least two natural ways
to extend the definition of U-learnability to include the use of background knowledge; this section
presents both extensions. The first extension is suited to any representation language, while the
second is applicable only to first-order logic or subsets of it. A surprising aspect of the second
definition is that it not only captures the notion of inductive learning relative to background
knowledge, as desired, but it also provides an alternative to Natarajan’s PAC-style formalisation of
speed-up learning [25]. Although Natarajan’s formalisation is quite appealing, few positive results
have been proven within it because it is also very demanding.

The first extension (Section 4.1) is the traditional setting used in Inductive Logic Programming,
and its roots go back at least to Plotkin’s study of learning logic programs in the limit [28]. It

"We thank Micheal Kearns of AT&T Bell Labs for a very helpful general discussion, with one of the authors,
related to this point.

16

assumes that the background theory that is provided is, effectively, a syntactic part of the target
concept. When applied to logic programs, one implication of this is that the background theory
entails, or implies, a subset of the ground atoms that the target concept entails. But there are
other implications of this as well. Most importantly, the learner never needs to modify the given
background theory, but only to add to it. The second extension (Section 4.2) assumes only that
the background theory implies a subset of the expressions in the domain X (for example, ground
atoms) that the target implies. Notably, this extension does not assume any syntactic relationship
between the background theory and the target. Thus, it is likely that the learning algorithm will
need to modify the background theory rather than merely add to it. Therefore, this extension is
perhaps more realistic, and it is certainly more appropriate to speed-up learning and knowledge-base
refinement.

5.1 U-learnability with background knowledge (standard setting)
5.1.1 Preliminaries

Let (Xg, X, Yc, R,XpB, B, c) be the representation of a learning problem with background knowl-
edge, where X is the domain of examples (finite strings over the alphabet ¥g), R is the class of
concept representations (finite strings over the alphabet ¥¢), B is the class of background theories
(finite strings over the alphabet ¥p),and ¢: RX B — 2% maps any concept representation together
with any background theory to a concept (subset of X).

Let P, a subset of the polynomial functions in one variable, be a set of time-bounds. A concept
representation is a triple (r,b,p), for r € R, b € B, and p € P. Let A(r,b,p,z) be an evaluation
algorithm that maps any tuple (r,b,p,z),forr € R, b€ B,p€ P,and 2 € X, to 0 or 1. Let A run
in time bounded by p(|z|). Furthermore, let A have the following properties. First, for all r € R,
be B,and z € X, if o & ¢(r,b) then for every p € P: A(r,b,p,z) = 0. Second, forall r € R, b € B,
and z € X, if € ¢(r,b) then there exists p € P such that for every p’ € P with p'(|z|) > p(|z]):
A(r,b,pz) = 1.

Let F be any family of probability distributions over R X B X P, where the distributions in F
each have an associated parameter ny > 0 (np might be the greater of the mean and standard
deviation of each distribution). Let G be any family of probability distributions over X, where the
distributions in G each have an associated parameter ng > 0.

5.1.2 Protocol

In U-learning with background knowledge, a Teacher randomly chooses a target (r, b, p), for r € R,
b € B, and p € P, according to some distribution Dp in F. The Teacher provides the learn-
ing algorithm I with b. The Teacher then presents to L an infinite stream of labeled exam-
ples ((z1,01), (z2,13),...) where: each example z; is drawn randomly, independently of the pre-
ceding examples, from X according to some fixed, unknown distribution D¢g in G and labeled
by I; = A(r,b, p,z;). After each example z; in the stream of examples, L outputs a hypothesis
H; = (ri,pi), where r; € R and p; € P.

5.1.3 Definition of U-learnability with background knowledge (standard setting)

Definition 13 U-learnability with background knowledge (standard setting). Let F' and
G be families of distributions over R X B x P and X respectively. The pair (F,G) is U-learnable
Just if there exist a learning algorithm L and three polynomial functions, LEARNTIME-BOUND (z),

17

The U-learning algorithm for Dg with background knowledge
Input: Background Theory b and Example sequence ((z1,{1), (z2,12),...).
Output: Hypothesis sequence ((r1,p1), (r2,p2), . .).

Let m = 1.
Obtain the next labeled example (2, 1y,) from the input sequence.

Let e = 1.

> W N =

If for some r € E; and p. € P, (where b is the same as the background theory provided as input),
the hypothesis (r, b, p.) is consistent with the m examples seen thus far, then output (r, p.) and go to
7.

5. If i = [+/m| then output any hypothesis and go to 7.

6. Increment ¢ and go to 4.

7. Increment m and go to 2.

Figure 4: The U-learning algorithm for Dg with background knowledge

DELAY-BOUND(z,y), and ERROR-BOUND (z), such that for every distribution Dp (with parameter
ng) in F, and every distribution D¢g (with parameter ng) in G, the following hold.

Time Complexity. The average-case time complexity of L at any point in a run is bounded by
LEARNTIME-BOUND (M), where M is the sum of p(|z;|) over the examples x; seen to that
point.

Correctness. For all m > DELAY-BOUND (ng, ng),

= = 1
> [Prp,y.pe(r, 0,0, X)I[EL(r b, p, Xong1)] < ERROR—BOUND(E)
all (T’,b,p,Xm+1)
where Er,(r, b, p, /\7m+1) = 0 if L correctly classifies example x,,11 given examples (x1, ..., T)
labeled according to (r,b,p), and Er(r,b,p, X,n11) = 1 otherwise.®

It is straightforward to verify that each of Theorem 8 and Theorem 11 holds when background
theories are incorporated in the obvious way. The learning algorithm for Dp with background
information is presented in Figure 4.

Example 14 Time-bounded logic programs with background knowledge are learnable
under Dg. Let R and B be the set of all logic programs thal can be built from a given finile
alphabet of predicate symbols P, function symbols F, and variables V. And again let the domain
X of examples be the ground atoms built from P and F. Let the distribution family Dg be buill
from the enumeration (Ey, F3,...) of subsets of R x B such that for all i > 1 E; contains all pairs
(r,b) such that |r| + |b] = ¢, as well as from a particular choice of a set of constants T used in
specifying the time-bounds P,y for each value of |r| + |b|. Let G be the family of all distributions
over examples. The algorithm in Figure 4 U-learns (Dg,G) with background knowledge. In fact, in

8We take Prp, ps(r,b,p,)?m+1) to be the product of (1) the probability of (r,b, p) according to Dr and (2) the
probability of drawing X m+1 when drawing randomly and independently an (m + 1)-sample according to Dg.

18

the case where r is a single definite clause, this learning algorithm can be viewed as an idealisation
of the program Progol that already has been successfully applied to two significant scientific domains
as well as a number of standard benchmark problems for machine learning [34].

5.2 U-learnability with background knowledge (with re-expression of back-
ground knowledge)

5.2.1 Preliminaries

Let (Xg, X, Y¥¢, R, B, ¢) be the representation of a learning problem with background knowledge,
where X is the domain of examples (first-order expressions over the alphabet ¥g), R is the class
of concept representations (first-order expressions over the alphabet ¥¢), B C R is the class of
background theories, and ¢ : R — 2% maps any concept representation r to a concept (subset of
X)) consisting of exactly the expressions in X that are entailed, or logically implied, by r. We say
that b € B is consistent with » € R just if r entails b. We assume that both R and B contain the
empty theory.

Let P, a subset of the polynomial functions in one variable, be a set of time-bounds. A concept
representation is a pair (r,p), for r € R and p € P. Let A(r,p,) be an evaluation algorithm as
given in the original definition of U-learnability (without background knowledge).

Let F be any family of probability distributions over R x P, where the distributions in F each
have an associated parameter np > 0. Let G be any family of probability distributions over X,
where the distributions in G each have an associated parameter ng > 0.

5.2.2 Protocol

A Teacher randomly chooses a target (r,p), for r € R and p € P, according to some distribution
Dyp in F. The Teacher provides the learning algorithm L with some background theory b € B
that is consistent with r. The Teacher then presents to L an infinite stream of labeled examples
((z1,01), (z2,13),...) where: each example z; is drawn randomly, independently of the preceding
examples, from X according to some fixed, unknown distribution D¢ in G and labeled by I; =
A(r,p, x;). After each example z; in the stream of examples, L outputs a hypothesis H; = (r;, pi),
where r; € R and p; € P.

5.2.3 Definition of U-learnability with background knowledge (with re-expression of
background knowledge)

The definition of U-learnability remains the same as in the standard setting with background
knowledge. The difference is simply in the protocol, that the background theory b may need to be
re-expressed in order to be used efficiently (i.e., with a time-bound not too different from that used
by the target).

Note that in the special case where b is logically equivalent to r we have the traditional setting
for speed-up learning. The learner already has the logical definition of the target concept, but lacks
the appropriate time bound and efficient representation of the target concept that is being used
by the teacher. We suggest that this definition of U-learnability as a formalisation of speed-up
learning will yield more positive results than has the use of Natarajan’s formalisation, and that
these results will be useful in practice.

19

6 Conclusion

Powerful representation languages, such as Horn clause logic and decision trees, often appear to
be tractable in real-world domains. This seems to fly in the face of negative or missing PAC-
learnability results for these representations. The apparent contradiction may be explained by the
fact that very different distributional assumptions are made by various learning algorithms or for
various applications, and the ability to make and to change these assumptions allows an apparently
intractable representation to be used efficiently.

The choice of representation is at the centre of focus in PAC-learning. By contrast, the choice
of distribution is the central theme in U-learnability. The reason for the refocusing of attention is
that once one is committed to a Universal representation, for example as in the case of inductive
logic programming, differences in distributional assumptions become paramount.

Some general initial results of U-learnability are stated in this paper. Much more effort is
required to clearly define the boundaries of what is and is not U-learnable. We expect that this
direction of research will yield results with both theoretical and practical significance.

Acknowledgements

The authors would like to thank Tony Hoare, Donald Michie, and Ashwin Srinivasan of Oxford
University Computing Laboratory for discussions and input to this paper. This work was supported
partly by the Esprit Basic Research Action ILP (project 6020), the SERC project GR/J46623 and
an SERC Advanced Research Fellowship held by the first author. The first author is also supported
by a Research Fellowship at Wolfson College, Oxford.

References

[1] D. Angluin and M. Kharitonov. When won’t membership queries help? In Proceedings of the
23rd ACM Symposium on Theory of Compuling, pages 444-454. ACM, 1991.

[2] Martin Anthony, Norman Biggs, and John Shawe-Taylor. The learnability of formal con-
cepts. In Proceedings of the 1990 Workshop on Computalional Learning Theory, pages 246-257,
Rochester, NY, August 1990. Morgan Kaufmann.

[3] B. Arbab and D. Michie. Generating rules from examples. In IJCAI-85, pages 631-633, Los
Altos, CA, 1985. Kaufmann.

[4] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity.
Journal of Information and System Sciences, 44:193-219, 1992.

[5] A.W. Biermann. The inference of regular LISP programs from examples. IEEFE Transactions
on Systems, Man and Cybernetics, 8(8):585-600, 1978.

[6] A.W. Biermann and R. Krishnaswamy. Constructing programs from example computations.
IEEFE Transactions on Software Engineering, 2(3), 1976.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Information
Processing Letters, 24(6):377-380, 1987.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

20

[9] I. Bratko. Generating human-understandable decision rules. Working paper, E. Kardelj Uni-
versity Ljubljana, Ljubljana, Yugoslavia, 1983.

[10] W. Buntine. A Theory of Learning Classification Rules. PhD thesis, School of Computing
Science, University of Technology, Sydney, 1990.

[11] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. AutoClass: a bayesian
classification system. In Proceedings of the Fifth International Conference on Machine Learn-
ing, pages b4-64, San Mateo, CA, 1988. Morgan Kaufmann.

[12] P. Cheeseman, M. Self, J. Kelly, W. Taylor, D. Freeman, and J. Stutz. Bayesian classification.
In Proceedings of the National Conference on Artificial Intelligence (AAAIS88), pages 607611,
San Mateo, CA, 1988. Morgan Kaufmann.

[13] W. W. Cohen. Cryptographic limitations on learning one-clause logic programs. In AAAI-93,
Menlo Park, CA, 1993. AAAI Press.

[14] J. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, London, 1970.
[15] E. M. Gold. Language identification in the limit. Inf. Control, (10):447-474, 1967.

[16] D. Haussler, M Kearns, and R. Shapire. Bounds on the sample complexity of bayesian learning
using information theory and the vc dimension. In COLT-91: Proceedings of the 4th Annual

Workshop on Computational Learning Theory, pages 61-74, San Mateo, CA, 1991. Morgan
Kauffmann.

[17] D. Johnson. The NP-completeness column—an ongoing guide. Journal of Algorithms, 4:284—
299, 1984.

[18] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite

automata. In Proceedings of the 21st ACM Symposium on Theory of Compuling, pages 433—
444. ACM, 1989.

[19] R. King, S. Muggleton R. Lewis, and M. Sternberg. Drug design by machine learning: The use
of inductive logic programming to model the structure-activity relationships of trimethoprim

analogues binding to dihydrofolate reductase. Proceedings of the National Academy of Sciences,
89(23), 1992.

[20] R. King and M.J.E. Sternberg. A machine learning approach for the prediction of protein
secondary structure. Journal of Molecular Biology, 216:441-457, 1990.

[21] R. S. Michalski. A theory and methodology of inductive learning. In R.S. Michalski, J.G.
Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach,
pages 82-132. Morgan Kaufmann Publishers, 1983.

[22] D. Michie, D. Spiegelhalter, and C. Taylor. Machine Learning, Neural, and Statistical Classi-
fication. Ellis Horwood Limited, New York, 1994.

[23] S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction using logic-
based machine learning. Protein Engineering, 5(7):647-657, 1992.

[24] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal
of Logic Programming, 12, 1994. (to appear).

21

[25] B. K. Natarajan. Learning from exercises. In Proceedings of the 1989 Workshop on Computa-
tional Learning Theory, pages 72-86, San Mateo, CA, 1989. Morgan Kaufmann.

[26] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal of

the ACM, 35(4):965-984, 1988.

[27] L. Pitt and M. Warmuth. Prediction-preserving reducibility. Journal of Computer and System
Sciences, 41:430-467, 1990.

[28] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University,
August 1971.

[29] J. Rissanen. Modeling by Shortest Data Description. Automatica, 14:465-471, 1978.

[30] J. Rissanen. A universal prior for integers and estimation by Minimum Description Length.
Annals of Statistics, 11:416-431, 1982.

[31] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In D. Sleeman and P. Ed-
wards, editors, Proceedings of the Ninth International Workshop on Machine Learning, pages
385-393, San Mateo, CA, 1992. Morgan Kaufmann.

[32] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[33] R.J. Solomonoff. A formal theory of inductive inference. Information and Control, 7:376-388,
1964.

[34] A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis: Ilp experiments in a
non-determinate biological domain. Submitted to the Fourth Workshop on Inductive Logic
Programming, 1994.

[35] M. Sternberg, R. King, R. Lewis, and S. Muggleton. Application of machine learning to
structural molecular biology. Philosophical Transactions of the Royal Society B, 1994 (to

appear).

[36] M. Sternberg, R. Lewis, R. King, and S. Muggleton. Modelling the structure and function
of enzymes by machine learning. Proceedings of the Royal Society of Chemistry: Faraday
Discussions, 93:269-280, 1992.

[37] P.D. Summers. Program construction from examples. PhD thesis, Yale University, New Haven,

CT, 1975.

[38] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
1984.

22

