Predicate Invention and Utilisation

Stephen MUGGLETON
Ozford Unwversity Computing Laboratory,
11 Keble Road,
Ozford,
0X1 3QD,
United Kingdom.
Tel: +44 865 273838
Email: steve@prg.ozford.ac.uk



Abstract Inductive Logic Programming (ILP) involves the synthesis of logic
programs from examples. In terms of scientific theory formation ILP systems de-
fine observational predicates in terms of a set of theoretical predicates. However,
certain basic theorems indicate that with an inadequate theoretical vocabulary this
is not always possible. Predicate invention is the augmentation of a given theo-
retical vocabulary to allow finite axiomatisation of the observational predicates.
New theoretical predicates need to be chosen from a well defined universe of such
predicates. In this paper a partial order of utilisation is described over such a
universe. This ordering is a special case of a logical translation. The notion of
utilisation allows the definition of an equivalence relationship over new predicates.
In a manner analogous to Plotkin clause refinement is defined relative to given
background knowledge and a universe of new predicates. It is shown that relative
least clause refinement is defined and unique whenever there exists a relative least
general generalisation of a set of clauses. Results of a preliminary implementation
of this approach are given.



1 Introduction

1.1 A logic programming exercise

Imagine the following. You decide to set a programming exercise as an examina-
tion question for a large class of logic-programming students. In the question you
provide a logical specification of the set-union predicate. However, on receipt of the
200 student scripts you find you have a problem. Every student seems to have found
a different way of doing the exercise. A variety of different data types have been
used each with different data operations. You therefore decide to write a program
to mark all the students’ solutions. However, another problem emerges. Where one
student uses the predicate ‘append’ which concatenates two lists, another student
uses the predicate ‘end’ which adds an element to the end of a list. There is no
way of directly comparing the models of two predicates in logic. If the predicate
symbol is different or the argument ordering varies or the constant and function
symbols are different two otherwise similar predicates become incomparable.

1.2 Predicate invention

The same problem turns up in the field of Inductive Logic Programming (ILP)
[9, 10]. ILP involves the automatic construction of logic programs from examples
and background knowledge. The theory and applications of ILP are motivated by
an attempt to model two distinct areas of human activity.

1. Program synthesis. Construction and debugging of logic programs [18].

2. Scientific theory formation. The development of theories of the natural
sciences from observational data and background knowledge (see [12, 4]).

In the context of logic program synthesis, ILP systems such as that of Shapiro [18]
make use of the programmer to provide a complete oracle (extensional specifica-
tion) of the input/output behaviour of each predicate within the program. In the
programming exercise above this would be the equivalent of logically specifying
each predicate which could allowably be used by the students.

The situation within scientific theory formation differs from Shapiro’s program
synthesis approach. Here the results of experimentation provide an oracle for hy-
pothesised statements within the language of observation. In addition to the ob-
servation language there is a theoretical language of relationships which cannot be
directly observed. Since no oracle exists for the theoretical language, the inductive
reasoner is free to choose any convenient logical model for theoretical relationships.
Thus theoretical language is, in a sense, an invented fiction (as opposed to fac-
tual observation) which is introduced to simplify the modelling of observed data.
For this reason the process of introducing new theoretical relationships is called
predicate invention within the ILP literature [13, 17, 21, 7].



Extending Shapiro’s approach to program synthesis in the same way leads to
a situation similar to the programming exercise problem at the beginning of this
section. Namely how are invented predicates compared? A partial order over
invented predicates is introduced in this paper. The semantics of this approach is
a special case of that of logical translation [20]. Intuitively the partial order defines
the notion of predicate utilisation. With reference to this partial order a lattice
of new predicates is defined with unique elements having maximal and minimal
utilisation. This notion is of central importance in defining the logical foundations
of the problem of predicate invention.

This paper is organised as follows. In Section 2 the logical setting for Induc-
tive Logic Programming is described, with special reference to the requirements for
predicate invention. Results are given on finite axiomatisation, with and without
predicate invention. Section 3 contains a description of the logical semantics of
translation between languages with differing vocabularies. A partial order of utili-
sation is defined over individual predicates as a special case of a logical translation.
The utilisation ordering is shown to induce a lattice over predicates in a function-
free language. In Section 4 the utilisation lattice is used to define a partial order
over clauses containing calls to invented predicates. The existence of a unique least
upper-bound is demonstrated for such clauses. Section 5 contains results of an
implementation which constructs relative least refinement clauses.

2 Inductive Logic Programming

Standard definitions from Logic Programming are given in Appendix A. The usual
context for Inductive Logic Programming within this paper is as follows. The
learning agent is provided with background knowledge B, positive examples E*
and negative examples £~ and constructs an hypothesis H. B, Et E~ and H are
each logic programs. The conditions for construction of H are

Necessity: Bl E*

Sufficiency: BAHHF E™

Consistency: BAHAE™ /0O

A logic program is a set of definite clauses each having the form

Head < Body

Usually ET and E~ contain only ground clauses, with empty bodies. If P is a
logic program then the set of all predicate symbols found in the heads of clauses of
P is called the definitional vocabulary of P or V(P). ILP has the following three
definitional vocabularies.

Observational vocabulary: O =V (EtTUE")

Theoretical vocabulary: 7 =V(B) - O



Invented vocabulary: Z =V (H) — (T U O)

The learner carries out predicate invention whenever Z # (). Without loss of
generality it can be assumed that Z C U where U is a denumerable set of predicate
symbols.

2.1 Necessary predicate invention

Ling [6] discusses the requirements for the necessary invention of predicates. This
requires the following addition to the necessity, sufficiency and consistency require-
ments of Section 2.

Necessary invention: 7 # () for each H which provides sufficiency and consis-
tency.

In other words predicate invention is only necessary when there does not exist a
finite axiomatisation of the predicates in O containing only predicate symbols from
T U O. The following theorem is from Stahl [19].

Theorem 1 Decidability with fixed vocabulary. Given a recursively enu-
merable, deductively closed set of formulas C in a first order language L it s
undecidable whether C is finitely axiomatisable in L.

Stahl’s proof is based on an application of Rice’s Theorem [15] on the undecidability
of non-trivial index sets being recursively enumerable. This result means that the
necessity of invention must by needs be heuristic in the general case. However, if
constraints on the language and depth of inference such as those used in Golem
[11] are applied, this problem becomes decidable.

The following result due to Kleene [5] shows the importance of the introduction
of new predicates in constructing finite axiomatisations.

Theorem 2 Finite axiomatisation given additional vocabulary. Any recur-
sively enumerable, deductively closed set C of formulas in a first order language L
s finitely ariomatisable using additional predicate symbols other than those in L.

Although Kleene’s proof is constructive it introduces new predicates regardless of
whether they are necessary. Clearly any one of a potentially infinite set of new
predicates could be introduced. It seems reasonable that when it is necessary
to extend the vocabulary this should be done in as conservative a manner as is
possible. To do so requires a notion of ordering over invented predicates. This
comes back to the problem of the student exercise at the start of this paper. That
is the comparison of models of predicates with differing predicate symbols and
argument orderings.



3 Translations and orderings

3.1 Logical translations

The problem of finding mappings between different languages is known as logical
translation [3]. This approach has had applications in specifying computer pro-
grams [20] and transformational programming [1].

A translation is an interpretation which maps predicate and function symbols
from the language £, of theory 7} into the language £, of theory 75 while preserving
the validity of the theorems of 7 in T5. In particular, the translations of the axioms
of T} must be provable from the axioms of T5. Such an interpretation defines models
of T} in models of T5. The basis required to establish an interpretation of 77 in T,
is

e An interpretation I from £ to Lo

e Proofs of the translations of the axioms of 73 in T5 (including the axioms for
equality if present)

The interpretation maps all predicate symbols, function symbols and constants
from the language £, to the language £o. An implementation of a theory within a
language which has a different vocabulary is defined as follows.

Definition 3 Let 17 and T be theories in first order predicate calculus. Let I be
an interpretation which maps models of Ty to models of Ty. Thus if My is a model
of Ty then Myl is a model of Ty. T, implements T if and only if Ty ):Mg\ITl'

3.2 Utilisation ordering

Next, the ordering of utilisation over individual predicates is defined. First the
definition of a canonical rewrite.

Definition 4 Canonical rewrite. The formula p(z1,..,%m) <> g, 1S a canonical
rewrite if and only if 1, .., T, are distinct variables, ¢, is an atom and {z1, .., T;}
is a subset of vars(qy).

Lloyd [8] defines the success-set of a program.

Definition 5 Success-set. Let P be a logic program. The success-set of P or
SS(P) is the set of all atoms a in the Herbrand base of P such that Pt pa.

The utilisation ordering <, is now defined as follows.

Definition 6 Utilisation ordering. Let P be a logic program which does not
contain the predicate symbols p™ and q". Let pj,; be a set of clauses whose heads
have the predicate symbol p™ and whose bodies contain only predicate in V(P) U
{p™}. Let ges be the same for ™. p™<pq" or p™ has lower utilisation than ¢" in P
if and only if there exists a canonical rewrite R such that PA g4 AR Fgup SS(P A

pTef)-



Note that R plays the part of a translation between the languages of P A gz, and
P /\pgef'

Example 7 male' <,son® since there is a canonical rewrite R =
male(X) < son(X,Y) such that with P empty, son?>, A R = SS(malel,) and
malel, A R - SS(son2,). Natural number lessthan® has lower utilisation than
natural number plus® with R = lessthan(X, Z) < plus(X,Y, 7).

end® has lower utilisation than append® with R = end(X,Y, Z) + append(X,[Y], Z).
harryschild' has lower utilisation than child® with R = harryschild(X) < child(X, harry).

From these examples it can be seen that lower utilisation can be produced by chang-
ing the predicate symbol and dropping arguments, as is the case with male'<,.son?
and lessthan®<,plus®. This is analogous to projecting a shape onto a lower dimen-
sional space. The lowering of utilisation can also be viewed as partial evaluation
as is the case with the relation end®*<,append®. Here end® can be viewed as a
partially instantiated call of append®. In all cases the argument orderings and
predicate symbol names are irrelevant.

3.3 Utilisation is a partial order

It is now shown that <; is a partial order over the set of all predicate definitions.
This is done by showing that <p is transitive, reflexive and antisymmetric.

Lemma 8 Transitivity. <p is transitive.

Proof. It is necessary to show that p™<,.q" and q"<,r° implies p"<,r°. Since
P <pq" and q"<,r° there exist canonical rewrites p(x1, .., Tm) <> ¢n and q(y1, .., Yn) <
ro where q, and r, are atoms with predicate symbols q" and r° respectively. Since
the variables {yi,..,yn} are distinct there must exist a substitution 6, whose do-
main is {y1, .., Yn}, such that q(y1,..,yn)0 = qn. Thus there is a canonical rewrite
R = p(x1, .., Tm) > 700 such that PAT§, (AR Fsn SS(PApG,;). Therefore p™<pr°.

O

Lemma 9 Reflexivity. <p s reflexive.
Proof. It is necessary to show that p™<,p™. This can be shown trivially with the
tautological canonical rewrite p(1, .., Tm) <> P(T1, - Tpy). O

Utilisation equivalence is defined in terms of <, in the standard way.

Definition 10 Utilisation equivalence. p™=.q¢" if and only if p"<,q" and
q"<pp™.

Example 11 child® =p parent® using the canonical rewrite child(X,Y) > parent(X,Y).

From this example it can be seen that predicate equivalence ignores the predicate
symbol used and the argument ordering.



Lemma 12 Anti-symmetry. It must be shown that p™<,.q" and p"<,.q™ implies
p"=pq". This follows trivially from definition 10.

Theorem 13 Partial order. <, is a partial order.

Proof. From Lemmas 8, 9 and 12 <, is transitive, reflexive and anti-symmetric.
a.

3.4 Utilisation as a lattice over predicates

According to Donnellan [2] a lattice can be defined in a set theoretic fashion as
follows.

Definition 14 A lattice is a partially ordered set in which every pair of elements
a,b has a greatest lower bound (represented by a N'b) and a least upper bound
(represented by a U b) within the set.

In this and following sections a restriction to function-free logic programs is made.

Theorem 15 Let p™ be a predicate symbol defined in function-free logic program
P. The set of predicates q", n < m, which can be constructed from subsets of the
arguments of p™ form a lattice ordered by <p. The minimal element in the lattice
is ¢° and the mazimal element is the predicate p™.

Proof. Let ¢™ and r° be formed from the arguments X = {x1,..,2m} and ¥ =
{y1,., Yo} of p™. The greatest lower bound ¢™ N r° is the predicate formed from
the arguments X NY of p™. The least upper bound ¢q™ Nr° is the predicate formed
from the arguments X UY of p™. O

4 Relative clause refinement

In the last section it was shown that the set of predicates having lower utilisation
than a given predicate p™ form a lattice. This section defines a partial order over
clauses constructed from predicates chosen from a given universe of predicates.

Definition 16 Relative clause refinement Let U be a denumerable set of predi-
cate symbols. Let R be the set of canonical rewrites {R : p™ € U,q" € V(P),p™ <p
q"using R}. Let C and D be two clauses constructed using only predicate symbols
fromU. C is finer than D with respect to U if and only if RAC E D.

Example 17 Relative clause refinement. Let C = uncle(U, V) «+ sibling(U, W)A
child(V,W) A male(U). Let D = uncle(U,V) < sibling(U, W) A child(V,W) A
son(U, X). Let U = {male',son?,...}. Then R is {(male(X) ¢ son(X,Y)),...}
and R A C = D. Therefore C is finer than D.

Note from this example that the fineness of a clause increases when higher utilisa-
tion predicates are replaced with lower utilisation ones.

Theorem 18 Fineness partial order. Given a universe U of predicate symbols
fineness forms a partial order over clauses constructed from U.
Proof. Follows from the fact that relative generalisation forms a partial order [14].



4.1 Relative least refinement

The notion of carrying maximally conservative predicate invention can now be
formalised.

Theorem 19 Relative least refinement. Let B be a logic program defining
background predicates and U be a set of “inventable” predicates. Let C' and D be
two clauses. The least upper bound C Npuy D clause in the fineness ordering is
unique but may have infinite cardinality.

Proof. C Npuy D s the relative least generalisation of C' and D with respect
to BUU. Plotkin [14] shows this clause is unique though it may have infinite
cardinality. O

The question now arises as to how U is chosen. In this paper a simple-minded
approach is taken. Suppose the relative least general generalisation of C' and D
with respect to B is E. Let vars(E) = {x1,..,z,}. Let the atom a be p(zy,..,z,).
Suppose FE relatively subsumes C' with substitution - and E relatively subsumes
D with substitution p. Then U is the predicate lattice (see Section 3.4) whose
maximal element is the predicate with definition

0,9() —
U,HD —

For definite clauses C Npyy D is rlgg(C, D, B) V @.

5 Golem implementation

The approach described in the last section has been incorporated into the ILP
system Golem [11]. Since it is undecidable whether predicate invention is necessary
(Theorem 1) Golem takes a heuristic approach.

1. Randomly sample pairs of instances from the positive examples E™.

2. For each pair from the last step check whether the relative least general
generalisation is consistent with E~. If so return this clause.

3. Otherwise transform each clause from the last step to a relative least refine-
ment by introducing a maximal utilisation predicate.

4. Construct definitions for the invented predicates from the last step.

This can produce invented predicates with a large number of arguments. However,
after their definitions have been constructed redundant arguments are dropped.

The following are predicates which have been invented using this implementa-
tion.

e The predicate father-or-father-in-law® as an auxiliary of grandfather? and
background knowledge about mother?.



e The predicate plus-2® which defines the function (Z=X+Y-2). This was
learned from example of multiply® and background knowledge of the successor?.

e The predicate insert® from examples of list-sort? and background of less-than?.

It is notable that with the first and second of these, the predicate which was
invented was not as expected. However, the definitions were more compact than
they would have been for the expected additional predicates. Referring back to
Section 1.2 it is worth noting that in the setting of scientific theory formation the
learner is free to choose any convenient model for theoretical relations.

6 Conclusion

Several systems within the ILP literature [13, 17, 21, 7] have carried out predicate
invention. However, almost no theoretical results have been demonstrated. The
author believes this is due, at least in part, to the lack of a theoretical framework
for describing predicate invention. In this paper the logical setting for predicate
invention is analysed.

A vpartial order over the universe of invented predicates is discussed. It is
demonstrated that unique solutions exist for the most conservative addition of new
predicates. This approach lends itself to efficiency since it replaces exponential
search for new predicates such as that found in [13] by the construction of a unique
most conservative solution. An initial implementation of this approach within
Golem has been shown to give good results.

Acknowledgements.

The author would like to thank Stuart Russell and Ashwin Srinivasan for helpful
and interesting discussions on the topics in this paper. This work was supported
by the Esprit Basic Research Action ILP, project 6020.

Appendix

A Definitions from logic

A.1 Formulae in first order predicate calculus

A variable is represented by an upper case letter followed by a string of lower case
letters and digits. A function symbol is a lower case letter followed by a string of
lower case letters and digits. A predicate symbol is a lower case letter followed by
a string of lower case letter and digits. The negation symbol is: —. A constant
is represented as a solitary function symbol. A variable is a term, a constant is a
term and a function symbol immediately followed by a bracketed n-tuple of terms
is a term. Thus f(g(X), h) is a term when f, g and h are function symbols and X
is a variable. A predicate symbol immediately followed by a bracketted n-tuple of
terms is called an atomic formula. Both A and —A are literals whenever A is an



atomic formula. In this case A is called a positive literal and — A is called a negative
literal. The literals A and —A are said to be each others complements and form,
in either order, a complementary pair. A finite set (possibly empty) of literals
is called a clause. The empty clause is represented by 0. A clause represents
the disjunction of its literals. Thus the clause {A;, As,..mA;, 7 A;11,...} can be
equivalently represented as (A;VAyV..—mA; VA1 V...) or Ay, Ag, .. « Aj, Aigt,y ...
A Horn clause is a clause which contains at most one positive literal. The positive
literal in a Horn clause is called the head of the clause while the negative literals are
collectively called the body of the clause. A set of clauses is called a clausal theory.
The empty clausal theory is represented by M. A clausal theory represents the
conjunction of its clauses. Thus the clausal theory {C1, Cy, ...} can be equivalently
represented as (C; ACyA...). A set of Horn clauses is called a logic program. Apart
from representing the empty clause and the empty theory, the symbols O and ®
represent the logical constants False and True respectively. Literals, clauses and
clausal theories are all well-formed-formulae (wif). Let E be a wif or term. vars(E)
denotes the set of variables in E. F is said to be ground if and only if vars(E) = ().

A.2 Models and substitutions

A set of ground literals which does not contain a complementary pair is called a
model. Let M be a model, C' be a clause and C be the set of all ground clauses
obtained by replacing the variables in C by ground terms. M is said to be a model
of C if and only if each clause in C contains at least one literal found in M. M is
a model for clausal theory 7T if and only if M is a model for each clause in T'. Let
F; and F; be two wif’s. F7 is said to semantically entail Fy, or Fy = F; if and only
if every model of Fj is a model of F;. Fj s said to syntactically entail F5 using
1, or FiF;F,, if and only if F, can be derived from F} using the set of deductive
inference rules I. The set of inference rules I is said to be deductively sound and
complete if and only if Fi-;F, whenever F; = F,. In this case we can drop the
subscript and merely write F} - F5. Let F} and F5 be two wit’s. F} is said to be
more general than F, if and only if F} - F,. A wiff F' is satisfiable if there is a
model for F' and unsatisfiable otherwise. F' is unsatisfiable if and only if F' = O.
Let 0 = {v1/t1,..,v,/t,}. 6 is said to be a substitution when each v; is a variable
and each t; is a term, and for no distinct ¢ and j is v; the same as v;. The set
{v1,..,v,} is called the domain of 6, or dom(f), and {ti,..,¢,} the range of 4, or
rng(f). Lower case Greek letters are used to denote substitutions. Let E be a
well-formed formula or a term and 0 = {v;/t,..,v,/t,} be a substitution. The
instantiation of F by 0, written Ff, is formed by replacing every occurrence of
v; in E by t;. Every sub-term within a given term or literal W can be uniquely
referenced by its place within W. Places within terms or literals are denoted by n-
tuples of natural numbers and defined recursively as follows. The term at place (i)
within f (%o, .., tm) is ;- The term at place (i, .., 4,) within f(%o, .., %) is the term
at place (i1, ..,4,) in t;,. Let t be a term found at place p in literal L, where L is a
literal within clause C. The place of ¢ in C is denoted by the pair (L, p). Let E be
a clause or a term and 6 = {v/t1,..,v,/t,} be a substitution. The corresponding



inverse substitution 7% is {(t1, {p1,1, -, P1ms })/V1s > {tny {Pr1s - PLmn })/Vn}- An
inverse substitution is applied by replacing all ¢; at places p; 1, .., pim, Within E
by v;. Clearly E#9~! = E. Note that an inverse substitution is not strictly a
substitution but rather a rewrite. Let C' and D be clauses. C is said to #-subsume
D if and only if there exists a substitution € such that C'0 C D.

A.3 Resolution

Let F; and F be two wit’s and 6 be the substitution {u;/v,..u,/v,} in which
for every distinct ¢ and j, v; is different from v;. Fi0 and F,0 are said to be
standardised apart whenever there is no variable which occurs in both F;# and
F,0. The substitution @ is said to be the unifier of the atoms A and A’ whenever
A = A'f. p is the most general unifier (mgu) of A and A’ if and only if for
all unifiers v of A and A’ there exists a substitution § such that (Au)d = Ary.
((C = {A}) U (D — {—A"}))0 is said to be the resolvent of the clauses C' and D
whenever C' and D are standardised apart, A € C, =A’ € D, 0 is the mgu of A
and A’. That is to say that (A6, -A'f) is a complementary pair. The resolvent
of clauses C' and D is denoted (C - D) when the complementary pair of literals is
unspecified. The ‘" operator is commutative, non-associative and non-distributive.

Let T be a clausal theory. Robinson [16] defined the function R™(T") recursively
as follows. R%(T) = T. R™(T) is the union of R"~*(T) and the set of all resolvents
constructed from pairs of clauses in R"~!(T"). Robinson showed that T is unsat-
isfiable if and only if there is some n for which R™(T") contains the empty clause

(0).

References

[1] Baine and Goldburg. DTRE - a semi-automatic transformation system. In
B. Moller, editor, Constructing Programs from Specifications. North Holland,
1991.

[2] T. Donnellan. Lattice theory. Pergamon Press, London, 1968.

[3] H. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[4] R. King, S. Muggleton R. Lewis, and M. Sternberg. Drug design by machine
learning: The use of inductive logic programming to model the structure-
activity relationships of trimethoprim analogues binding to dihydrofolate re-
ductase. Proceedings of the National Academy of Sciences, 89(23), 1992.

[5] S. Kleene. Finite axiomatizability of theories in the predicate calculus using
additional predicate symbols. In S. Kleene, editor, Two papers on the predicate
calculus, Memoirs of the American Mathematical Society No. 10. American
Mathematical Society, Providence, RI, 1952.



[6] C. Ling. Inventing necessary theoretical terms in scientific duiscovery and
inductive logic programming. Technical Report 302, Dept. of Comp. Sci.,
Univ. of Western Ontario, 1991.

[7] X. Ling and M. Dawes. Theory reduction with uncertainty: A reason for
theoretical terms. Technical Report 271, University of Western Ontario, 1990.

[8] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

[9] S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

[10] S. Muggleton. Inductive Logic Programming. Academic Press, 1992.

[11] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Mug-
gleton, editor, Inductive Logic Programming, London, 1992. Academic Press.

[12] S. Muggleton, R. King, and M. Sternberg. Predicting protein secondary-
structure using inductive logic programming, 1992. Protein Engineering (to

appear).

[13] S.H. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference
on Machine Learning, pages 339-352. Kaufmann, 1988.

[14] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, August 1971.

[15] H. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 83, 1953.

[16] J.A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, January 1965.

[17] C. Rouveirol and J-F Puget. A simple and general solution for inverting
resolution. In EWSL-89, pages 201-210, London, 1989. Pitman.

[18] E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

[19] L. Stahl. Constructive induction in inductive logic programming: an overview.
Technical report, Fakultat Informatik, Universitat Stuttgart, 1992.

[20] M. Turski and T. Maibaum. The Specification of Computer Programs.
Addison-Wesley, England, 1987.

[21] R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton,
editor, Inductive Logic Programming, London, 1992. Academic Press.



