
Can ILP be Applied to Large Dataset?

Hiroaki Watanabe and Stephen Muggleton

Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
Email: {hw3, shm}@doc.ic.ac.uk

Abstract. There exist large data in science and business. Existing ILP
systems cannot be applied effectively for data sets with 10000 data
points. In this paper, we consider a technique which can be used to
apply for more than 10000 data by simplifying it. Our approach is called
Approximative Generalisation and can compress several data points into
one example. In case that the original examples are mixture of positive
and negative examples, the resulting example is ascribed in probability
values representing proportion of positiveness. Our longer term aim is to
apply on large Chess endgame database to allow well controlled evalua-
tions of the technique. In this paper we start by choosing a simple game
of Noughts and Crosses and we apply mini-max backup algorithm to
obtain database of examples. These outcomes are compacted using our
approach and empirical results show this has advantage both in accu-
racy and speed. In further work we hope to apply the approach to large
database of both natural and artificial domains.

1 Introduction

There exist large data in science and business. Although Inductive Logic Pro-
gramming (ILP) [2] has been tackling challenging problems [1], existing ILP
systems cannot be applied effectively for data sets with 10000 data points un-
fortunately. A natural approach for handling such large data is to simplify it by
reducing the amount of information. We could compress several data points into
one example although the resulting example would need to capture proportion
of positiveness especially when the original examples are mixture of positive
and negative examples. Such a data compression technique is expected to be
smoothly integrated into ILP frameworks since it is a part of domain knowledge.
The purpose of this study is to investigate if we could achieve high predictive
accuracies with simplified data in Probabilistic ILP (PILP) [5].

In this paper, our new technique called Approximative Generalisation is for-
mally introduced in Section 2 first. It characterises PILP not only from an un-
certainty but also from a non-deterministic point of view. Then we empirically
study Approximative Generalisation in Noughts and Crosses domain in Section
3. Brief discussions conclude this paper in Section 4.

2

2 Approximative Generalisation

2.1 Learning from Specialised Examples

In a standard ILP setting [3], we search the set of hypotheses, H, which satisfies
the entailment relation:

BK ∪ H |= E (1)

where E is a set of given examples, and BK is background knowledge. We
propose to consider a set of specialised examples, E′, which is a specialisation
of E associated with BK under entailment as follows.

BK ∪ E |= E′ (2)

Then E′ satisfies the following relation.

Theorem 1. Let BK, H, E′ be background knowledge, a set of hypotheses, and
a set of examples. If (1) and (2) are held, the following entailment relation is
also held.

BK ∪ H |= E′

Proof. From (1), BK∪H |= BK∪E. From (2), BK∪E |= E′ is held. Therefore
BK ∪ H |= E′.

Theorem 1 shows that the original concept can still be learned with the spe-
cialised examples. Now we define Approximative Generalisation as follows.

Definition 1 (Approximative Generalisation). A set of hypotheses H ′ is
called Approximative Generalisation of E if BK∪H |= BK∪H ′ |= E′ such that
BK ∪ E |= E′.

Example 1. Let us assume the following BK and E.

BK = {human(s),∀ X mortal(X) → need grave(X)} E = {mortal(s)}

From BK ∪ E, we obtain E′ = {need grave(s)}. Now BK ∪ ¬E′ is:

BK ∪ ¬E′ = {human(s),¬need grave(s),∀X mortal(X) → need grave(X)}

|= {∃X(human(X) ∧ ¬need grave(X))} =
def

¬H ′.

This is equivalent to H ′ = ∀X(human(X) → need grave(X)). Then H can
be H = {human(X) → mortal(X)} since {mortal(X) → need grave(X)} ∪
{human(X) → mortal(X)} |= {human(X) → need grave(X)}.

This example shows that there exist a case such that BK ∪ H ′ 6|= E although
BK ∪ H |= BK ∪ H ′ |= E′.

3

2.2 Numerically Approximating Examples by Surjection

We further characterise the specialised examples by introducing surjective func-
tions from E to E′ in order to transfer the associated Boolean labels of positive
or negative examples. Let us consider a class of projections, surjective functions,
from E to E′ as follows.

Definition 2. A function f : E → E′ is surjective if and only if for every
e′ ∈ E′ there is at least one e ∈ E such that f(e) = e′.

Fig. 1. (a)Surjective and (b)non-surjective functions

Example 2. In Fig. 1, Figure (a) is a surjective function whereas Figure (b) is a
non-surjective function.

Now non-deterministic example is defined as follows.

Definition 3 (Non-deterministic Examples). Let E+ is a set of given posi-
tive examples and E− a set of given negative examples. For E = E+∪E− and a
surjective function f , a non-deterministic example , l : f(e), is a labelled exam-

ple in which l is defined as: l =
|f

E+ (e)|

|fE(e)| where |fE+(e)| is a number of positive

examples surjected onto f(e) and |fE(e)| is a number of examples surjected onto
f(e).

For example in Fig. 1, if we assume e1 ∈ E+ and e2 ∈ E−, we obtain 0.5 : e1′.
In PILP, probabilistic examples can capture such a degree of truth in prob-

ability. Now our task is to compute the approximative generalisation of E, H ′,
with non-deterministic examples. Further discussions on Approximative Gener-
alisation can be found in [7].

3 Example: Noughts and Crosses Domain

In the previous section, we extend the standard ILP setting by adding the
two computations: logical specialisation and numerical approximation. In this
section, we empirically show such an extension can realise learning from large
dataset in PILP.

4

3.1 Generating Never-Lose Sequences of Plays

We show an empirical result of the new framework in Noughts and Crosses
domain where our study shows a more relational representation requires less
number of examples. Noughts and Crosses, also called Tic Tac Toe, is a two-
person, perfect information, and zero-sum game in which two players, Nought
(O) and Cross (X) take turns marking the space of a 3×3 grid. Nought goes first
and the player who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game. Although the setting and the rule are
simple, there exist 9! (= 362880) possible ways of placing noughts and crosses
on the board without regarding to winning combinations.

Noughts and Crosses game is known that there exist a never-lose strategy
for each player [6]. That is, the game is always draw if two players know the
optimal strategy. However, it becomes a probabilistic game once one side plays
randomly. Let us assume that Nought plays in never-lose strategy whereas Cross
plays randomly. Under such a probabilistic setting, we study (1) if a Machine
Learning algorithm can obtain the never-lose strategy by cloning the behaviour
of Nought and (2) how we can reduce the number of examples by changing
knowledge representations from propositional one to relational one via surjective
functions.

Before starting Machine Learning, we perform a retrograde analyse of Noughts
and Crosses game in order to generate never-lose sequences of plays. In two
player zero-sum game theory, mini-max is a rule which always selects a decision
to minimise the maximum possible loss. By “maximum possible loss” we mean
one players assumes the opponent always takes his best action which results
the maximum loss to the other side. Mini-max algorithm evaluates the game in
forward direction from the initial plays to the ends. In the Noughts and Crosses
case, let us assume Nought plays first. Mini-max rule suggests Cross to always se-
lect the play which maximises Nought’s loss whereas Nought to select the action
to minimise such a loss.

Unfortunately mini-max criteria cannot force a player to win, however, an
alternation of mini-max called mini-max backup algorithm [6] can do. It is origi-
nally developed for retrograde analysis of chess endgames in which the algorithm
evaluate the player’s actions and board positions in backward direction from the
ends of the game to the initial plays. The key idea is that we only starts from
Nought-won end-positions of the game and generate only sequences of predeces-
sors which never reach to losing end positions. We apply this idea to generate
the database of all the never-lose sequences of plays.

3.2 Two Logical Representations

We study two logical representations of Noughts and Crosses game. A natural
way to express the 3 × 3 board is in the following atom:

board(p0, p1, p2, p3, p4, p5, p6, p7, p8)

5

Fig. 2. Logical representation of a state of the 3 × 3 board. (a) shows the mappings
between the locations of the grids and arities of the atom. (b) is a state of the board
whose logical expression is shown in (c).

where the term pi is either 1, 2, or 0 to express nought, cross, and empty re-
spectively as shown in Figure 2. The atom, board(2, 1, 0, 0, 0, 0, 0, 0, 0), expresses
the state of the board (b) of Figure 2. Language L1 is defined as: (a)Predicate:
board/9 and (b)Terms: 0,1,2. We also introduce a different relational language,
L2. Figure 3 shows 6 relations in the board. The atoms, corner(mark, pi),

Fig. 3. Relations between grids of the game board

face(mark, pi), and center(mark, pi) take the term “mark” (either 1 for nought
or 2 for cross) and pi (i = 0,...,8) to express the mark being placed at pi. The
atoms, opposed(pi, pj), knight(pi, pj), and neighbor(pi, pj) represent the rela-
tions between two grids, pi and pj . These relations are static and do not es-
sentially depend on the plays, however, we only describe them when any placed
mark has such relations. More precisely, the figures, (e), (f) and (g) in Figure 3,
show the relative grids from the placed noughts. If any mark is placed in the
shadowed grids, the associated relations are expressed. Language L2 is defined
as follows.

– Predicate: corner/2, face/2, center/2, opposed/2, knight/2, neighbor/2
– Terms: 1, 2, p0, p1, p2, p3, p4, p5, p6, p7, p8,

For example, the board (b) in Figure 2 can be expressed in the conjunctions of
the form as corner(2, p0)∧face(1, p1)∧neighbor(p0, p1). Note that L2 expresses
all the marks of nought and cross on the 3×3 boards even after the specialisation
since the second arity of corner/2, face/2, and center/2 tells the grid locations
although L2 cannot express the locations of the empty grid at all.

Logical specialisation from the representation in language L1 to in language
L2 can be expressed in a logic program. A part of such background knowledge
is as follows.

6

corner(X,p0) :- board(X,_,_,_,_,_,_,_,_), X != 0.

face(X,p1) :- board(_,X,_,_,_,_,_,_,_), X != 0.

neighbor(X,Y) :- board(X,Y,_,_,_,_,_,_,_), X != 0.

3.3 Probabilistic Logic Automaton

We introduce Probabilistic Logic Automaton (PLA) [7] as a probabilistic logic.
Intuitively, PLA is a logical extension of Probabilistic Automaton each of whose
node can be an interpretation of an existentially quantified conjunction of literals
(ECOL).

Definition 4 (Logical State). Let L be a first-order language for describing
ECOLs, F . A logical state q is a pair (n, F) where n ∈ N is the name of the
logical state.

Two logical states, (n1, F1) and (n2, F2), are treated as different if n1 6= n2

even if F1 and F2 are logically equivalent. Each edge can be associated with
disjunctions of ground actions.

Definition 5 (Logical Edge). A logical edge is (a) a directed edge between two
logical states and (b) associated with a set of ground atoms called logical actions.

We introduce three probability distributions. Probabilistic transition func-
tion, T : S × Σ → 2S defines probabilistic state transitions from S to 2S via Σ
which is a set of ground atoms for describing logical actions. S0 is a probability
distribution over a set of initial logical states. We assign probability distribution
over a set of logical actions, B = {bij(ak)}, which is a set of probability distri-
butions of taking logical action ak during the state transition from state ni to
nj . Now PLA is defined in the following six tuple.

Definition 6 (Probabilistic Logical Automaton). A probabilistic automa-
ton is a 6-tuple

PLA = (S,Σ, T, S0, B,G)

where S is a finite set of the logical states, Σ is a set of ground atoms for
describing logical actions, T : S × Σ → 2S is a probabilistic transition function,
S0 is a probability distribution over a set of initial logical states, B is a set
of probability distributions over logical actions at each edge, and G is a set of
accept states.

In PLA, an input is a chain of observations of situations and actions as
follows.

Definition 7 (Logical Sequence). A logical sequence: o1a1o2a2...an−1on is
an input of PLA in which oi is ECOLs and ai is a ground atom.

Intuitively oi may be viewed as an observation of a situation at time i and ai is
the action taken at time i. For example, a Nought-won game in a logical sequence
is shown in Figure 4 where each state of the board is expressed as a logical node
and actions of the players are attached to the directed edges.

7

Fig. 4. A positive example of a never-lose sequence of plays in Probabilistic Logic
Automaton.

3.4 Machine Learning of Noughts and Crosses Game

We study Machine Learning of Noughts and Crosses game next. We randomly
sampled never-lose sequences of plays from the database and expressed in PLA
based on the language L1. Let us call this example in L1 as E1. Then the logical
contents in each node in E1 is specialised by a logic program a part of which
is shown in the previous section. This specialised examples are called E2. Note
that E1 is a set of positive example whereas E2 is a set of non-deterministic
examples with l = 1.0.

We learn the Nought strategy both in L1 and L2 by Cellist system [7]
which provides (a) topology learning via Stirling Numbers of the second kind-
based topology sampling algorithm [7], (b) specialisation of ECOLs by adopting
Plotkin’s lgg algorithm [4, 7], and (c) EM algorithm for estimating probabilistic
parameters.

We tested 12 sample sizes, (5 , 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) for
the training examples. Regarding the empirical results, we evaluated predictive
accuracies of the generated PLA models using 100 Nought-won test examples.
For each number of sample sizes, we calculated the average error of the learned
models and plotted in those figures. The best model results 92.3% predictive
accuracy (0.077 error) when m = 55 in language L2.

The results1 are shown in Figure 5 and Figure 6 in which how the error, ε,
is decreased by increasing the number of non-deterministic examples. Clearly,
the knowledge representation in L2 shows better predictive accuracies for all the
sizes of training data.

4 Conclusion

In this paper, we present Approximative Generalisation for tackling large dataset
in PILP. Our approach can compress several data points into one example. If the
given examples are mixture of positive and negative examples, the proportion
of positiveness is captured in probabilistic examples. We empirically confirmed

1 The theoretical bounds shown in Figure 5 and Figure 6 are based on our average-case
sample complexity analysis [7]. The theoretical bound expresses the delay bound;
more than 34 examples are required in theory.

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60

E
rr

or

Number of examples

Empirical bound
Theoretical bound

Fig. 5. Predictive Error Rates in L1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60

E
rr

or

Number of examples

Empirical bound
Theoretical bound

Fig. 6. Predictive Error Rates in L2

that our technique has advantage both in accuracy and speed in Noughts and
Crosses domain even though the compressed examples are more relational than
the original examples. This aspect should encourage PILP to tackle more rela-
tional applications.

In Approximative Generalisation, the data compression is smoothly encoded
in background knowledge. Approximative Generalisation should also be dis-
cussed from an Active Learning point of view since we might need to test several
data compressions repeatedly for finding better predictive accuracies.

In future work, we hope to apply our technique to large database of both
natural and artificial domains including Chess End Game database to allow well
controlled evaluation of our technique.

References

1. R.D. King, K.E. Whelan, F.M. Jones, P.K.G. Reiser, C.H. Bryant, S.H. Muggle-
ton, D.B. Kell, and S.G. Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427:247–252, 2004.

2. S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19(20):629–679, 1994.

3. S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming,
volume 1228 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1997.

4. G. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh
University, UK, 1971.

5. Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming. In
Lecture Notes in Computer Science, volume 3244, pages 19–36. Springer, 2004.

6. Ken Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131–
139, 1986.

7. Hiroaki Watanabe. A Learning Theory Approach for Probabilistic Rela-
tional Learning (DRAFT). PhD thesis, Imperial College London, UK, 2009.
http://www.doc.ic.ac.uk/∼hw3/thesis.pdf.

