3.3 TVD Scheduling Policy

This section describes the details of the TVD scheduling
priority functions that were developed from the attributes,
identified in section 2.2.1.

3.3.1 Least Lost Value Policy

The ‘Least Lost Value' (LLV) algorithm is the TVD-based
scheduling policy appears to be able to extract increased
value of processed data in comparison to the other TV
scheduling policies introduced in section 2.2.2 with perfor-
mance results discussed in section 3.5, Further, this pol-
icy does attempt to consider all attributes defined in sec-
Hon 2.2.1, while managing to limit the cost of compute to
generate the schedule. LLV was developed from the idea
that given the Time Value of Data for a job is monotoni-
cally decreasing, there is increased value to be gained from
processing a job sooner, rather than later, but in doing
s exposes opportunity cost lost for the jobs not selected,
Put differently, the Potential Gain Value (PGV) is the value
gained by the job selected for processing at current time,
versus starting the job later, after another job completes,
While the Potential Loat Valiwe (PLV) is the value lost from all
the jobs not selected for processing at current ime, versus
starting these jobs later, after the selected job has completed.
The LLV priority function draws inspiration from the Con-
strained Scheduling Problems (CSP) method that looks at
each variable (i.e. TVD attribute) as a constraint that needs
to be satisfied, while trying to limit the complexity of the
search, especially in a dynamic environment, where each
attribute can take on multiple values [10], [18], [30], [41].
[43], [53]. LIV further tries to improve its effectiveness in
using the CSI" approach by considering, what Keng refers to
as the cruciality of the solution, that measures how a solution
impacts the tasks not selected and what he terms as the
least dmpact policy | 30]. Therefore, the scheduling metric for
LIV considers both the value gained, (PGV) and the value
lost, (PLV), to produce a scheduling metric Net Lost Value,

Author: Shireen Seakhoa-King 17/06/2018

LLV will order jobs with the lowest Net Lost Value, first,
to produce a schedule that is aimed at extracting increased
value for the user, by limiting the net value lost {for the jobs
not selected) while increasing the net value gained (for the
selected job).

Formally, given a set of jobs J, the Nef Lost Value (NLV)
for selecting job j; is defined as follows:

NLV(3;) = PLV () — PGV (5;) (1)

As this scheduling policy will need to work in a big data
environment where the task duration cannot be predicted
in any amount of certainty, both PLV and PGV will use
the Expected Value from the task duration distribution’s
probability density function and the TVD function, in its
caleulation. Therefore, the Expected Value (EV) for job j;
with TVD} Function Vi, current time {. and a probability
density function f;(1) of the task duration distribution, is
defined as follows:

EV (s 1) = f Vi(t).fult — t.) dt @)

The Potential Lost Value(PLV) of selecting job j5; is the sum
of the lost value of all other remaining jobs () not selected
for processing, defined as:

PLV(G) = Y. (EV(kt) — EV(ir, b +p:)) 6)

el ki k=1

where:

n: number of jobs in set of job .J

1.: current time

iz nom-weighted expected value of the task duration distri-
bution for job j; given probability density function f;{t —2.),
defined as:

o= - Pl TR)

I

The Potential Gain Value (PGV) of selecting job j; is the
difference of value between processing job j; at current ime
{.. versus at later time, {. + @, defined as

PGV(i) = (BV(ji) — EV(ji i+ 7)) i)

where T is calculated wsing the non-weighted expected
value of the task duration distribution of the jobs not se-
lected k with probability density function fi(f—¢..), defined

as; "
mi=(Y. m)n-1) (6)
Kyt ke 1
and
= L —). — 1) ol
Pk _/;[o) St — te) ot i7)

One advantage of FLV is that in considering the value lost
from the jobs not selected it inadvertently considers discon-
tinuity of value in the TVD function, described in Figure 2 as

well as impending penalties, where TVD function starts to
accrue negative value. Therefore, jobs within the workload
are likely to be scheduled for completion, before the critical
value loss discontinuities and penalties.

Author: Shireen Seakhoa-King 17/06/2018

Algorithm Least Lost Value (LLV)

Algorithm 1 LLV Scheduling algorithm

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20
21:
22:
23:
24:
25:
26:
27
28:
29:
30
31:
32:
33:

1:
2:
':5‘
4
B
&
7
8
9

procedure LLVJOBSORT(jobsSortedbyV alue, time Passed

jobSet +— jobsSortedbyV alue

currentime ¢ limePassed

lost « 0.0

won +— (0.0

141

for job; € jobSel do
lost = PLV(joby, jobSet, currentTime)
won = PGV (job;, jobSet, currentTime)
job;.net LostValue — (lost — won)
=it +

jobsSortedbyV alue o

sort jobs in jobSet by increasing least LostValue

return jobsSortedbyV alue

t- Potential Lost Value calculation

procedure PLV(job, jobSel, currentT'ime)

lostValueJob + 0.0
j+1
job.timelLe ft = expectedV alue Duration Distr(job)
— getTime Processed(job)
for job; € jobSel do
if job; # job then
lostValueJob = lostValueJob +
expectedV alue(job;, currentTime) -
expectedV alue(job;, currentTime +
job.timeLeft)
pIEEE I C s
return lostV alueJob

- Potential Gain Value calculation

procedure PGV (job, jobSel, currentTime)

wonValueJob « 0.0
j+1
expectedV alueOnDuration +— MINVALUE
= MINVALUE is the smallest positive non-

zero value of type double

for job; € jobSet do
if job; # job then
expectedV alueOn Duration —
Math.max(expectedV alueOn Duration,
expectedV alue BasedOn Duration(job;))
S e e
wonV alueJob + expectedV alueOnDuration

Author: Shireen Seakhoa-King

17/06/2018

Code Extract: START
//LLVRa - actual final LLVRa

public static final TimeValueComparator LleastLostValueAccRA = new TimeValueComparator("LLVRA") {
private double lostValue(Job job, Collection<Job> allJobs, long time) {

double lostValue = 0;

long timelLeft = (long)expectedValueBasedOnDuration(job) - job.getTimeProcessed();

for(Job j : alllobs) {
if(!j.equals(job)) {
lostValue += expectedValue(j, time)

- expectedValue(j, time + timelLeft);

}

double expectedValueOnDuration = Double.MIN_VALUE;
for(Job j : allJobs){
if(!j.equals(job)) {

expectedValueOnDuration = Math.max(expectedValueOnDuration,

expectedValueBasedOnDuration(j));

}
}

double wonValue = expectedValue(job, time)

- expectedValue(job, time + (long)expectedValueOnDuration);

return lostValue - wonValue;

}

@Override

public List<Job> sort(List<Job> jobs, long time, int machinesAvailable) {

Set<Job> jobsSet = new HashSet<>(jobs);

Comparator<Job> comp = (jl1, j2) -> Double.compare(lostValue(jl, jobsSet, time), lostValue(j2,

jobsSet, time));
jobs.sort(comp);

return jobs;

};

Author: Shireen Seakhoa-King

17/06/2018

public static double expectedValue(Job j, long time) {
AbstractRealDistribution duration = j.getDurationDistribution();

double lowerBound = duration.getSupportLowerBound();
double upperBound = duration.getSupportUpperBound();
double mean = duration.getNumericalMean();

// MULTI TVDFUNCTION CALCULATION
// SSK - EV() = Integ(f(t-tc)*vi(t)) lowbound - upperbound
//
double wholeMedianValue = 9;
for(int num=@; num<j.getMultiTvdFunc().size(); num++){
double medianValue = 0;
double i;
for(i = mean; i < upperBound; i++) {
double prob = duration.density(i);

// SSK - f(t-tc)*vi(t)
medianValue += prob * j.getSingleValue((long) (time - j.getTimeProcessed() + i),
j.getMultiTvdFunc().get(num), j.getWeightFuc().get(num));
if(prob < 0.00001) {
break;
}
}

for(i = mean-1; i > lowerBound; i--) {
double prob = duration.density(i);
medianValue += prob * j.getSingleValue((long) (time - j.getTimeProcessed() + i),
j.getMultiTvdFunc().get(num), j.getWeightFuc().get(num));
if(prob < 0.00001) {
break;
}
}

wholeMedianValue += medianValue;

}

return wholeMedianValue;

Author: Shireen Seakhoa-King 17/06/2018

public static double expectedValueBasedOnDuration(Job j) {
AbstractRealDistribution duration = j.getDurationDistribution();

double lowerBound = duration.getSupportLowerBound();
double upperBound = duration.getSupportUpperBound();
double mean = duration.getNumericalMean();

double medianValue = 0;
double i;

for(i = mean; i < upperBound; i++) {
/1 f(t-tc)
double prob = duration.density(i);

/7 f(t-tc)*(t-tc)
medianValue += prob * i,
if(prob < 0.00001) {
break;
}
}

for(i = mean-1; i > lowerBound; i--) {
double prob = duration.density(i);
medianValue += prob * ij;
if(prob < 0.00001) {
break;
}
}

return medianValue;

}

Code Extract: END

Author: Shireen Seakhoa-King 17/06/2018

