
Reasoned Programming

Krysia Broda Susan Eisenbach Hessam Khoshnevisan

Steve Vickers

i

iv

Contents

Foreword xi

Preface xiii

� Introduction �

��� How do you know a program does what you want it to� �

��� Why bother� �
��� What did you want your program to do� �

��� Local versus global behaviour �
��� Reasoned programs �

��� Reasoned programming �
��� Modules �
��	 Programming in the large �

��
 Logical notation 	
���� The need for formality ��

���� Can programs be proved correct� ��
���� Summary ��

I Programming ��

� Functions and expressions ��

��� Functions ��

��� Describing functions ��
��� Some properties of functions ��

��� Using a functional language evaluator ��
��� Evaluation of expressions ��

��� Notations for functions ��

v

vi Contents

��� Meaning of expressions ��
��	 Summary ��
��
 Exercises ��

� Speci�cations ��

��� Speci�cation as contract ��
��� Formalizing speci�cations �	
��� Defensive speci�cations � what happens if the input is bad� �

��� How to use speci�cations
 fourthroot ��
��� Proof that fourthroot satis�es its speci�cation ��
��� A little unpleasantness
 error tolerances ��
��� Other changes to the contract ��
��	 A careless slip
 positive square roots ��
��
 Another example� min ��
���� Summary �	
���� Exercises �	

� Functional programming in Miranda ��

��� Data types � bool� num and char ��
��� Built�in functions over basic types ��
��� User�de�ned functions ��
��� More constructions ��
��� Summary ��
��� Exercises ��

� Recursion and induction ��

��� Recursion ��
��� Evaluation strategy of Miranda ��
��� Euclid�s algorithm ��
��� Recursion variants ��
��� Mathematical induction ��
��� Double induction � Euclid�s algorithm without division ��
��� Summary ��
��	 Exercises ��

� Lists �	

��� Introduction �	
��� The list aggregate type �	
��� Recursive functions over lists ��
��� Trapping errors ��
��� An example � insertion sort ��
��� Another example � sorted merge 	�
��� List induction 	�
��	 Summary 	�

Contents vii

��
 Exercises 	�

� Types
�

��� Tuples
�
��� More on pattern matching
�
��� Currying
�
��� Types
�
��� Enumerated types ���
��� User�de�ned constructors ���
��� Recursively de�ned types ���
��	 Structural induction ���
��
 Summary ���
���� Exercises ���

	 Higher�order functions ���

	�� Higher�order programming ���
	�� The higher�order function map ���
	�� The higher�order function fold ���
	�� Applications ���
	�� Implementing fold � foldr ���
	�� Summary ���
	�� Exercises ���

 Speci�cation for Modula�� programs ��

�� Writing speci�cations for Modula�� procedures ��

�� Mid�conditions ���

�� Calling procedures ���

�� Recursion ���

�� Examples ���

�� Calling procedures in general ��	

�� Keeping the reasoning simple ��

�	 Summary ��

�
 Exercises ���

�� Loops ���

���� The co�ee tin game ���
���� Mid�conditions in loops ���
���� Termination ���
���� An example ���
���� Loop invariants as a programming technique ��	
���� FOR loops ��

���� Summary ���
���	 Exercises ���

viii Contents

�� Binary chop ���

���� A telephone directory ���
���� Speci�cation ���
���� The algorithm ���
���� The program ��	
���� Some detailed checks ��

���� Checking for the presence of an element ���
���� Summary ���
���	 Exercises ���

�� Quick sort ���

���� Quick sort ���
���� Quick sort � functional version ���
���� Arrays as lists ���
���� Quick sort in Modula�� ���
���� Dutch national �ag ��

���� Partitions by the Dutch national �ag algorithm ���
���� Summary ���
���	 Exercises ���

�� Warshall�s algorithm ���

���� Transitive closure ���
���� First algorithm ��	
���� Warshall�s algorithm �	�
���� Summary �	�
���� Exercises �	�

�� Tail recursion �	�

���� Tail recursion �	�
���� Example
 gcd �		
���� General scheme �	

���� Example
 factorial �
�
���� Summary �
�
���� Exercises �
�

II Logic �
�

�� An introduction to logic �
�

���� Logic �
�
���� The propositional language �
	
���� Meanings of the connectives ���
���� The quanti�er language ���
���� Translation from English ���

Contents ix

���� Introducing equivalence ��	
���� Some useful predicate equivalences ��

���	 Summary ���
���
 Exercises ���

�� Natural deduction ���

���� Arguments ���
���� The natural deduction rules ���
���� Examples ���
���� Summary ���
���� Exercises ���

�� Natural deduction for predicate logic ���

���� ��elimination ��E� and ��introduction ��I� rules ���
���� ��introduction ��I� and ��elimination ��E� rules ���
���� Equality ���
���� Substitution of equality ��

���� Summary ���
���� Exercises ���

�	 Models ���

�	�� Validity of arguments ���
�	�� Disproving arguments ���
�	�� Intended structures ���
�	�� Equivalences ��	
�	�� Soundness and completeness of natural deduction ���
�	�� Proof of the soundness of natural deduction ���
�	�� Proof of the completeness of natural deduction ���
�	�	 Summary ��

�	�
 Exercises �	�

A Well�founded induction �	�

A�� Exercises �	�

B Summary of equivalences �		

C Summary of natural deduction rules �	

Further reading �
�

Foreword

How do you describe what a computer program does without getting bogged
down in how it does it� If the program hasn�t been written yet� we can ask
the same question using a di�erent tense and slightly di�erent wording
 How
do you specify what a program should do without determining exactly how it
should do it� Then we can add the question
 When the program is written�
how do you judge that it satis�es its speci�cation�

In civil engineering� one can ask a very similar pair of questions
 How can
you specify what a bridge should do without determining its design� And�
when it has been designed� how can you judge whether it does indeed do
what it should�

This book is about these questions for software engineering� and its answers
can usefully be compared with what happens in civil engineering� First� a
speci�cation is a di�erent kind of thing from a design� the speci�cation of a
bridge may talk about load�bearing capacity� de�ection under high winds and
resistance of piers to water erosion� while the design talks about quite di�erent
things such as structural components and their assembly� For software� too�
speci�cations talk about external matters and programs talk about internal
matters�

The second of the two questions is about judging that one thing satis�es
another� The main message of the book� and a vitally important one� is that
judgement relies upon understanding� This is obviously true in the case of the
bridge� the judgement that the bridge can bear the speci�ed load rests on
structural properties of components� enshrined in engineering principles� which
in turn rest upon the science of materials� Thus the judgement rests upon a
tower of understanding�

This tower is well�established for the older engineering disciplines� for
software engineering� it is still being built� �We may call it �software science���
The authors have undertaken to tell students in their �rst or second year
about the tower as it now stands� rather than dictate principles to them� This

xi

xii Foreword

is refreshing� in software engineering there has been a tendency to substitute
formality for understanding� Since a program is written in a very formal
language� and the speci�cation is also often written in formal logical terms� it
is natural to emphasize formality in making the judgement that one satis�es
the other� But in teaching it is stultifying to formalize before understanding�
and software science is no exception � even if the industrial signi�cance of a
formal veri�cation is increasingly being recognized�
This book is therefore very approachable� It makes the interplay between

speci�cation and programming into a human and �exible one� albeit guided
by rigour� After a gentle introduction� it treats three or four good�sized
examples� big enough to give con�dence that the approach will scale up to
industrial software� at the same time� there is a spirit of scienti�c enquiry�
The authors have made the book self�contained by including an introduction
to logic written in the same spirit� They have tempered their care for
accuracy with a light style of writing and an enthusiasm which I believe will
endear the book to students�

Robin Milner
University of Edinburgh
January �

�

Preface

Can we ever be sure that our computer programs will work reliably� One
approach to this problem is to attempt a mathematical proof of reliability�
and this has led to the idea of Formal Methods
 if you have a formal� logical
speci�cation of the properties meant by �working reliably�� then perhaps you
can give a formal mathematical proof that the program �presented as a formal
text� satis�es them�

Of course� this is by no means trivial� Before we can even get started
on a formal proof we must turn the informal ideas intended by �working
reliably� into a formal speci�cation� and we also need a formal account of
what it means to say that a program satis�es a speci�cation �this amounts
to a semantics of the programming language� an account of the meaning of
programs�� None the less� Formal Methods are now routinely practised by a
number of software producers�

However� a tremendous overhead derives from the stress on formality�
that is to say� working by the manipulation of symbolic forms� A formal
mathematical proof is a very di�erent beast from the kind of proof that you
will see in mathematical text books� It includes the minutest possible detail�
both in proof steps and in background assumptions� and is not for human
consumption � sophisticated software support tools are needed to handle it�
For this reason� Formal Methods are often considered justi�able only in �safety
critical� systems� for which reliability is an overriding priority�

The aim of this book is to present informal formal methods� showing
the bene�ts of the approach even without strict formality
 although we use
logic as a notation for the speci�cations� we rely on informal semantics
� a programmer�s ordinary intuitions about what small� linear stretches of
code actually do � and we use proofs to the level of rigour of ordinary
mathematics�

This can� of course� serve as a �rst introduction to strict Formal Methods�
but it should really be seen much more broadly� The bene�ts of Formal

xiii

xiv Preface

Methods do not accrue just from the formality� The very e�ort of writing a
speci�cation prior to the coding focuses attention on what the user wants to
get out of the program� as opposed to what the computer has to do� and the
satisfaction proof� even if informal� expresses our idea of how the algorithm
works� This does not require support tools� and the method � which amounts
really to methodical commenting � is practicable in all programming tasks�
Moreover� the logic plays a key role in modularization� because it bundles

the code up into small� self�contained chunks� each with its speci�c task
de�ned by the logic�
Although most of the techniques presented are not new �and can be found�

for instance� in the classic texts of Gries and Reynolds�� we believe that many
aspects of our approach are of some novelty� In particular

Functional programming
 Functional programming is presented as a
programming language in its own right �and we include a description
of the main features of Miranda�� but we also use it as a reasoning
tool in imperative programming� This is useful because the language
of functional programming is very often much clearer and more concise
than that of imperative programming �the reason being that functional
programs contain less detail about how to solve a problem than do
imperative programs��

Procedures
 It is di�cult to give a semantics that covers procedures� and
many treatments �though not Reynolds�� ignore them� This is reinforced
by the standard list of ingredients of structured programming �sequence�
decision and iteration�� which are indeed all that is structurally necessary�
but in fact procedures are the single most e�ective structure in making
large programs tractable to human minds and this is because they are the
basic unit of interface between speci�cation and code � both inwards�
between the speci�cation and implementing code� and outwards� between
the speci�cation and calling code� The role of the logical speci�cation
in promoting modularity is crucial� and we have paid unusual attention
to showing not only how speci�cations may be satis�ed but also to how
they may be used�

Loop invariants
 We have tried hard to show loop invariants as an expression
of initial intuitions about the computation� rather than as either a post
hoc justi�cation or as something that appears by magic by playing with
the post�condition� Often they arise naturally out of diagrams� nearly
always they can function as statements of intent for what sections of
the code are to do� We have never shirked the duty of providing them�
Experience even with machine code shows that the destinations of jumps
are critical places at which comments are vital� and this covers the case
of loop invariants�

Real programming languages
 We have done our best to address real
programming problems by facing up to the complexities of real imperative

Preface xv

languages� saying what can be said rather than restricting ourselves to
arti�cial simplicities� Thus� while pointing out that reasoning is simpler
if features such as side�e�ects are avoided� we have tried to show how
the more complicated features might be attacked� at least informally�

The book is divided into two complementary parts� the �rst on Programming
and the second on Logic� Though they are both about logical reasoning� the
�rst half concerns the ideas about programs that the reasoning is intended
to capture� while the second half is more about the formal machinery�
The distinction is somewhat analogous to that often seen in books about
programming languages
 a �rst part is an introduction to programming using
the language� and a second part is a formal report on it�
To read our book from scratch� one would most likely read the two parts in

parallel� and this is in fact how we teach the material for our main computer
science course at Imperial� However� the division into two reasonably disjoint
parts means that people who already have some background in logic can see
the programming story told without interruption�
The approach to the logic section has been strongly in�uenced by our
experience in teaching the subject as part of a computer science course� We
put great stress right from the start on the use of the full predicate logic as
a means of expression� and our formal treatment of logical proof is based on
natural deduction because it is natural � its formal structure does re�ect
the way informal mathematical reasoning is carried out �in the �rst part� for
instance�� We have taken the opportunity to use the two parts to enrich each
other� so� for instance� some of the proofs about programs in the �rst part
are presented as illustrations of the box proof techniques of the second part�
and many of the logic examples in the second part are programs�

Part I Programming Part II Logic
� Introduction
� Functions and expressions �� An introduction to logic
� Speci�cations
� Functional programming in Miranda
� Recursion and induction
� Lists �� Natural deduction
� Types
	 Higher�order functions

�� Natural deduction for predicate logic
�	 Models

 Speci�cation for Modula�� programs
�� Loops
�� Binary chop
�� Quick sort
�� Warshall�s algorithm
�� Tail recursion

xvi Preface

The preceding contents list shows the order in which we cover the material
in the �rst year of our undergraduate computer science course� The gap in
Part I� between Chapters 	 and
� is where we teach Modula�� as a language�
Students who have already been taught an imperative programming language
would be able to carry straight on from Chapter 	 to Chapter
�
There are other courses that could be based on this book� Either part makes

a course without the other� and indeed in a di�erent class we successfully
teach the Part II material separately with Part I following� For the more
mathematically minded who �nd imperative program reasoning inelegant�
Chapters
 through �� could be omitted and this would then enable the
material to be taught in a single semester course�

Acknowledgements

We would like our �rst acknowledgement to be to David Turner and Research
Associates for the elegant Miranda language and the robust Miranda system�
Much of the written material has been handed out as course notes over the
years and we thank those students and academic sta� who attempted the
exercises and read� puzzled over and commented on one section or another�
We would also like to thank Paul Taylor for his box proof macros� Lee

McLoughlin for helping with the diagrams� Kevin Twidle for keeping our
production system healthy� Mark Ryan for helping to turn Word �les into
LATEX� Peter Cutler� Iain Stewart and Ian Moor for designing and testing
many of the programs� special thanks must go to Roger Bailey whose Hope
course turned into our Miranda lectures�
Lastly� we would like to credit those who have inspired us� Courses evolve

rather than emerge complete� Reasoned Programming could not have existed
in its current form without the ideas of Samson Abramsky and Dov Gabbay�
for which we are most grateful�

Krysia Broda�
Susan Eisenbach
Hessam Khoshnevisan�
Steve Vickers
Imperial College�
January �

�

Chapter �

Introduction

��� How do you know a program does what you want it to�

You write a computer program in order to get the computer to do something
for you� so it is not di�cult to understand that when you have written
a program you want to be reasonably con�dent that it does what you
intended� A common approach is simply to run it and see� If it does
something unexpected� then you can try to correct the errors� �It is common
to call these �bugs�� as though the program had blamelessly caught some
disabling infection� Let us instead be ruthlessly frank and call them �errors��
or �mistakes��� Unfortunately� as the computer scientist Edgser Dijkstra has
pointed out� testing can only establish the presence of errors� not the absence�
and it is common to regard programs as hopelessly error�prone� It would
be easy to say that the answer is simple
 Don�t write any errors� Get the
program right �rst time� Novice programmers quickly see the fatuity of this�
but then fall into the opposite trap of not taking care to keep errors out�

In practical programming there are various techniques designed to combat
errors� Some help you to write error�free programs in the �rst place� while
others aim to catch errors early when they are easier to correct� This book
explains one particular and fundamental idea
 the better you understand what
it is that the program is supposed to do� the easier it is to write it correctly�

��� Why bother�

Here is the warranty on a well�known and perfectly reputable operating
system

The Supplier makes no warranty or representation� either express or implied�

with respect to this software� its quality� performance� merchantability� or

�tness for a particular purpose� As a result� this software is sold �as is�

�

� Introduction

and you the purchaser are assuming the entire risk as to its quality and

performance�

Fortunately� the programmers engaged to write the software did not treat
this legal disclaimer as the de�nitive statement of what the program was
supposed to do� They worked hard and conscientiously to produce a
well�thought�out and useful product of which they could be proud� None
the less� the potential is for even the tiniest of software errors to produce
catastrophic failures� This worries the legal department� and� for the sake at
least of legal consequences� they do their best to dissociate the company from
uses to which the software is put in the real world�
There are other contexts where litigation is not even a theoretical factor�

For instance� if you work in a software house� your colleagues may need to use
your software� and they will want to be con�dent that it works� If something
goes wrong� blanket disclaimers are quite beside the point� The management
will want to know what went wrong and what you are doing about it�
More subtly� you are often your own customer when you write di�erent
parts of the program at di�erent times or reuse parts of other programs� This
is because� by the time you come to reuse the code� it is easy to forget what
it did�
All in all� therefore� we see that the quality you are trying to achieve in

your software� and the responsibility for avoiding errors� goes beyond what
can be de�ned by legal or contractual obligations�

��� What did you want your program to do�

Your �nished software will contain lots of code � instructions for the computer
written in some programming language or other� It is important to recognize
that the activity that this describes is essentially meaningless from the point
of view of the users because they do not need to know what is happening
inside the computer� This remains true even for users who are able to read
and understand the code� Users are interested in such questions as

� What is the program�s overall e�ect�
� Is it easy to understand what it does�
� Is it easy to use�
� Does it help you detect and correct your mistakes� or does it cover them
up and punish you for them�

� How fast is it�
� How much memory does it use�
� Does it contain any errors�

None of these is expressed directly by the code� Generally speaking� the
collection of computer instructions in itself tells you nothing about what the

Local versus global behaviour �

program achieves when run in the real world�

It follows that in progressing from your �rst vague intention to the completed
software you have done two distinct things
 �rst� you have turned the vague
ideas into something precise enough for the computer to execute� and second�
you have converted the users� needs and requirements into something quite
di�erent � instructions for the computer�

The sole purpose of this book is to show how to divide this progression into
two parts
 �rst� to turn the vagueness into a precise account of the users�
needs and wants� and then to turn that into computer instructions�

This �precise account of the users� needs and wants� is called a speci�cation�
and the crucial point to understand is that it is expressing something quite
di�erent from the code� that is� the users� interests instead of the computer�s�
If the speci�cation and code end up saying the same thing in di�erent ways
� and this can easily happen if you think too much from the computer�s
point of view when you specify � then doing both of them is largely a waste
of time�

��� Local versus global behaviour

One distinction between the code and the speci�cation is that whereas the
code describes individual execution steps � local behaviour � the speci�cation
is often about the overall� global behaviour� The following is an example
�though it does not use an orthodox programming language��

Walkies
 Walking According to Local Kommands In Easy Steps� The
following is an example Walkies program

GO � METRES� TURN LEFT �� DEGREES�

GO � METRES� TURN LEFT �� DEGREES�

GO � METRES� TURN LEFT �� DEGREES�

GO � METRES� TURN LEFT �� DEGREES

The local behaviour of this is that it does four walks with right angles
in between� a global property is that it ends up at the starting position�
The program does not explicitly describe this global property� we need some
geometry to deduce it� This is not trivial because� with the wrong geometry�
the global property can fail� Therefore� the geometric reasoning must be deep
enough to resolve this�

Consider this program

GO ����� km� TURN LEFT �� DEGREES�

GO ����� km� TURN LEFT �� DEGREES�

GO ����� km� TURN LEFT �� DEGREES�

GO ����� km� TURN LEFT �� DEGREES

� Introduction

North Pole

Paris

Libreville Nias

Figure ���

You would not end up where you started� if you started at the North Pole
and walked round the Earth �Figure �����

The metre was originally de�ned as one ten millionth part of the Earth�s
circumference from the North Pole to the Equator via Paris� so the Walkies

trip here goes from the North Pole to Libreville �via Paris�� then near to a
little island called Nias� then back to the North Pole� and then on to Libreville
again� You don�t get back to where you started� Thus the global properties
of a program can depend very much on hidden geometrical assumptions
 is
our world �at or round� They are not explicit in the program�

Walkies is not a typical programming language� and properties of programs
do not typically depend on geometry� although like Walkies� their behaviour
may depend on environmental factors� But it is nevertheless true that program
code usually describes just the individual execution steps and how they are
strung together� not their overall e�ect�

��� Reasoned programs

Once we have made both the code and the speci�cation precise� then it is a
valid and useful exercise to try and compare them as precisely as possible�
In later chapters we shall see speci�c mathematical techniques for making
this comparison� What they amount to is that we try to give mathematical
precision not only to the vague overall intention �obtaining a speci�cation��

Reasoned programming �

but also to all the comments in the program� They can be written logically�
and whether they �t the code can be analyzed precisely�
When code is supported by this kind of careful speci�cation and reasoning�

it is a much more stable product� When you have written it� you have greater
con�dence that it works� When you reuse it� you know exactly what it is
supposed to do� When you modify it� you have a clearer idea of how your
changes �t into its structure�
Here� then� is our overall goal

speci�cation � reasoning � code �� a Reasoned Program

��� Reasoned programming

We have presented the Reasoned Program as the desired software end product�
but there is also something important to say about the process of developing
it� in other words about Reasoned Programming�
It is possible to see the purpose of the speci�cation as being to say what

the code does� but that is the wrong way round� Really� the purpose of the
code is to achieve what the speci�cation sets out� This means that it is much
better to specify �rst and then to code� In everyday terms� you can perform
a task more e�ectively if you can understand �rst what it is that you are
trying to achieve�
In the words of Hamming�

�Typing is no substitute for thinking��

This means make your ideas precise before you type them in � work out
what you want before you tell the computer how to do it� In the thirty years
since Hamming formulated his ideas� our ideas of how to set about this have
advanced greatly� and this book is written to teach you� in practical terms�
how the modern ideas work�
It is always tempting to start straight o� on the code� You gain your

initial experience in very short programs and �nd that this method works� It
gets something into the computer� and you get feedback that is gratifyingly
quick� even if it often shows that mistakes are present� Many programmers
continue to work in this way for the whole of their careers� They �nd that
even if they accept the idea of aiming for Reasoned Programs� it all seems an
impossible dream �Yes� all right in theory� but � � � �� They write the code� and
then � perhaps just before a deadline � try to clarify the reasons�
This is a mistake� There are two essential aspects to the �nal product that
distinguish it from the initial vague intentions� namely precision and local
execution steps� and if you go for the code �rst� you are trying to obtain both
aspects at once� On the other hand� if you �rst think about the speci�cation�
then you are just looking for precision� After all� it is the speci�cation that

� Introduction

lies closer to the original vague intentions� not the code� So the �rst step
should always be to think carefully about your intentions and try to re�ne
them to a more precise speci�cation�
After that� the next step is to convert globality �speci�cation� into locality

�code�� and this is much easier after the initial thought� In fact� there are
speci�c mathematical techniques� which we shall discuss later� that make much
of this process automatic� At the same time� they tie the speci�cation and
code carefully together so you know as part of the coding process that the
link between them is made� Figure ��� illustrates the progression from vague
intention to precise code via precise speci�cation�

typingthinking

vague requirements
global properties
expressed in English
and gestures

precise execution
individual steps

code

how the algorithm does it

expressed in a programming language

precise requirements
global properties
what the algorithm does
comments or speci�cation
expressed in logic

Figure ���

��� Modules

This distinction that we have made between speci�cation and code�
corresponding to users and computer� also makes sense inside a program� It
is common to �nd that part of the program� with a well�de�ned task� can
be made fairly self�contained and it is then called � in various contexts �
a subprogram� or subroutine� or procedure or function� or� for larger� more
structured pieces of program� a module� The idea is that the overall program
is a composite thing� made up using components
 so it takes on the role of
user�
A module can be speci�ed� and this describes how its environment� the rest

of the program� can call on it and what that achieves� The speci�cation

Programming in the large �

describes all that the rest of the program needs to know about the module�
The implementation of the module� the code that it contains� its inner
workings� is hidden and can be ignored by the rest of the program�

Modularization is crucial when you want to write a large program because
it divides the overall coding problem into independent subproblems� Once you
have speci�ed a module� you can code up the inside while forgetting the
outside� and vice versa� The speci�cations of the modules also act as bulkheads�
like the partitions in the hold of a ship that stop water from a hole spreading
everywhere and sinking the ship� The speci�cations compartmentalize the
program so that if an error is discovered in one module you can easily check
whether or not correcting it has any consequences for the others� This helps
to avoid the �Hydra� problem� in which correcting one error introduces ten
new ones�

��	 Programming in the large

This book makes a signi�cant simplifying assumption� namely that speci�cations
can be got right �rst time� This is usually �though not always� realistic for
small programs� and so the techniques that we shall present are called those
of programming in the small� The underlying idea� of understanding the users�
point of view through a speci�cation� is still important in large�scale programs�
but the techniques cannot be applied in such a pure form �specify �rst� then
code�� To understand why� you must understand what could possibly be
wrong with a speci�cation�

The ultimate test � in fact the de�nition � of quality of software is that
it is �t for its purpose� To be sure� the speci�cation is supposed to capture
formally this idea of �tness� and if that has been done well then a correct
program� one for which the code satis�es the speci�cation� will indeed be a
quality one� But� conversely� speci�cations can have mistakes in them� and
this will manifest itself in unexpected and unwanted features in a formally
correct program� Hence correctness is only an approximation to quality�

Now there are many advantages to forgetting quality and working for
correctness� For instance� we have precise objectives �write the code to
satisfy the speci�cation� that are susceptible to mathematical analysis� and
we can modularize the program and work for correctness of small� easy parts�
forgetting the wider issues� The widget manufacturer who takes an order for
���� blue� size �� widgets will �nd life easier if he does not ask himself
whether they are really the right colour� let alone whether or not their end
use is to help train dolphins to run suicide missions smuggling cocaine�

However� the true proof of the program is� despite all we have said� its
behaviour in real life� and ultimately no programmer should forget that� The
speci�cation and reasoning are merely a means to an end� Never forget the

	 Introduction

possibility that the speci�cation is faulty� This will be obvious if correct code
plainly gives undesirable behaviour� but earlier warning signs are when the
coding is unexpectedly complicated or perhaps even impossible�
If the speci�cation is faulty� then it can be revised� which will involve

checking existing code against the revised speci�cations� Alternatively� the
speci�cation can be left as it is for the time being� with the intention of
revising it for future versions or in the light of future experience� This is often
quite reasonable� and provides some stability to the project� but it should be
chosen after consideration and not out of inertia� The universal experience is
that the later corrections are left� the more expensive it is to make them �A
Stitch in Time Saves Nine�� and large software projects have been destroyed
by the accumulation of uncorrected errors�
For programming in the large� many of the practical techniques that people

use can be seen as being there to help to correct speci�cational faults as
early as possible� while they are still cheap to �x� For instance� requirements
elicitation is about how to communicate as e�ectively as possible with the
users� to �nd out what they really do need and want� then a number of
design methodologies help to obtain a good speci�cation before coding starts�
and prototyping produces some quick� cheap code in order to �nd those faults
�such as di�culty of use in practice� that are best exposed by a working
version� All of these are important issues but they are ignored in the rest of
this book�

��
 Logical notation

English is not always precise and unambiguous � that is why computer
programming languages were invented� In general� the fewer things that a
language needs to talk about� the more precise it can be�
In our speci�cations� we are going to make use of logic to make precise one

particular aspect of what we want to say� namely how di�erent properties
connect together� In English there are connecting words such as �and�� �or��
�but�� �not�� �all�� �some�� and so on� and in logic these are systematized and
given individual symbols� The reason for the importance of these connectives
is that it is the logical connections between the given properties that allow us
to deduce new ones�
For instance� suppose an instruction manual tells you

�If anyone envelops the distal pinch�screw parascopically� then the
pangolin will unbundle��

Suppose you also know that the anterior proctor has just enveloped the distal
pinch�screw parascopically� You do not need to be an expert on pangolins to
realize that it is likely to unbundle� The reason is that you have spotted

Logical notation

the underlying logical structure of these facts� and it does not depend on the
nature of pinch�screws� pangolins or proctors�
This logical structure shows up best if we introduce some abbreviations

E�x� �where x stands for any person or thing� stands for �x
envelops the distal pinch�screw parascopically��
A stands for �the anterior proctor��
P stands for �the pangolin unbundles��

As a special case of this notation� if we substitute A for x then

E�A� stands for �the anterior proctor envelops the distal pinch�screw
parascopically��

These abbreviations are not in themselves logical notation� that comes in
when we connect these statements together� Logic writes �

� for �and�
� for �for all� �re�ecting �anyone��
� for �implies� �re�ecting �if � � � then � � � ��

Now our known facts appear as

�x� �E�x�� P � � E�A�
and just from this logical structure we can deduce P �
Much of logic is about making such deductions based on the logical structure

of statements� The general pattern is that we start from some statements A
called the premisses� and then deduce a conclusion B� The argument from A
to B is valid if in any situation where A is true� it follows inevitably that B
is true� too� Logic gives formal rules � that is to say� rules that depend just
on the form of the statements and not on their content or meaning � for
making valid deductions� and if these rules give us an argument from A to B
then we write A � B �A entails B��
For example�

If I have loads of money� then I buy lots of goods�
I have loads of money�
� I buy lots of goods�

is a valid argument There are situations where the premisses are false �for
instance� if� as it happens� I am a miser then the �rst premiss is false�� but
that does not a�ect the validity of the argument� So long as the premisses
are true� the conclusion ��I buy lots of goods�� will be� too� However�

If I have loads of money� then I buy lots of goods�
I go on a spending spree�

�� Introduction

� I have loads of money�

is not a valid argument� Even if the premisses are true� the conclusion need
not be since I might be making imprudent use of my credit card�
In this book we shall use logic to help us with� broadly speaking� two kinds

of deduction related to a given speci�cation of a program
 �rst� deducing
new facts about how the program will behave when we come to use it� and�
second� deducing that the program code� or implementation� really does meet
the speci�cation� Part II of this book is entirely devoted to logic itself�

���� The need for formality

English� and natural language in general� is tremendously rich and can express
not only straightforward assertions and commands but also aspects of emotion�
time� possibility and probability� meaning of life� and so on� But there is a
cost� Much of it relies on common understanding and experience� and on
the context� Look at the following three examples� and see how they contain
progressively more that is unspoken

�� �She sang like her sister��

�� �She sang like a nightingale��

�� �He sang like a canary��

��� is fairly literal� but ��� is not � the comparison is not of the songs
themselves but of their beauty� and the compliment works only because
everyone knows �even if only by repute� that nightingales sing beautifully� As
for ���� in a gangster �lm �He� might well be a criminal who� on arrest� told
the police all about his accomplices� But it is extremely inexplicit� and would
be hard to understand out of context�
Di�erent people lead di�erent lives� so these unspoken background
assumptions of experience and understanding are imprecise� and this leads to
an imprecision in English� To say anything precisely and unambiguously you
must drastically restrict the range of what can be said� to the point where
any background assumptions can also be made explicit� Then there is a direct
correspondence between the language and its meaning� and you can treat the
language �formally�� that is� as symbols to be manipulated �which� after all� is
what a computer has to do�� and be con�dent that such manipulations are
re�ected validly in the meaning�
An important example of a formal language that you must already know
is algebra� the formal language of numbers� Problems can often be solved
symbolically by algebraic manipulations without thinking about the numbers
behind the symbols� and you still obtain correct answers� An extension of
this is calculus� Again the symbolic manipulations � the various rules for

Can programs be proved correct� ��

di�erentiating and integrating � can be carried through without you having
to remember what the derivatives and integrals really mean�
In fact� this is only a particular application of the word �calculus�� which is

Latin for �little stone�� In ancient times� one method of calculating was by
using little stones roughly like an abacus� and the idea is that you can obtain
correct answers about unmanipulable things through surrogate manipulations
of the little stones� We now use formal symbols instead of little stones�
but the word �calculus� is still often used for such a formal language � for
instance� one part of logic is often called the �predicate calculus��
The other formal languages that you will see in this book are as follows

logic This is the language of logical connections between statements� This is
a very narrow aspect of the statements and so the logical notation will
usually need to be combined with other notations� but once we have the
logical symbols expressing the logical structure� we can describe what are
logically correct arguments� Another point is that the logical symbols
are more precisely de�ned than English words� For instance� there is
a logical connective ��� that� by and large� means �or�
 �A or B� has
the logical structure �A �B�� But sometimes the English �or� carries an
implicit restriction �but not both� �the so�called exclusive or�� and then
the logic must take care to express this� as �A �B� � ��A �B��

programming languages These are the languages of computer actions
�roughly � this is more true for the imperative language Modula�� than
for the functional language Miranda�� Once they are made formal then
one can work with them by symbolic manipulation and this is exactly
what computers do when they compile and interpret programs�

���� Can programs be proved correct�

We have already distinguished between quality and correctness� and explained
how �correctness�� conformance to the speci�cation� is only relative
 if the
speci�cation is wrong �that is� not what the user wanted� then so� too� will be
the code� however �correct� it is� But at least the speci�cation and code are
both formal� so there is the possibility of giving formal proofs of this relative
correctness � one might say that this is the objective of formal methods in
computer software�
It is worth pointing out that what you will see in this book are really only

�informal formal methods�� There are two main reasons for this�
The �rst is that to give a formal correctness proof you need a formal

semantics of your programming language� a mathematical account of what the
programs actually mean in relation to the speci�cations� We shall not attempt
to do this at all� but instead will rely on your informal understanding of
what the programming constructs mean�

�� Introduction

The second is that true formal reasoning has to include every last detail�
This might be �ne if it is a computer �via a software tool� that is checking
the reasoning� but for humans such reasoning is tedious to the point of
impracticability� and hides the overall shape of the argument � you cannot
see the wood for the trees� Even in pure mathematics� proofs are �rigorous�
� to a high standard that resolves doubts � but not formal� Our aim is to
introduce you to rigorous reasoning�
Now even rigorous reasoning runs the risk of containing errors� so if in
this book we cannot claim unshakable mathematical correctness you might
wonder what the point is� We do not seem to be working to a Reasoned
Program as an error�free structure� Nevertheless� the structure of the Reasoned
Program� with its speci�cation and reasoning included� is much more stable
than an Unreasoned Program� that is� code on its own� We have a clearer
understanding of its working� and this helps us both to avoid errors in the
�rst place and� when errors do slip through� to understand why we made
them and how to correct them�

���� Summary

� The code is directed towards the computer� giving it its instructions�
� The speci�cation is directed towards the users� describing what they will
get out of the program� It is concerned with quality ��tness for purpose��

� By reasoning that the code satis�es the speci�cation� you link them
together into a reasoned program�

� By putting the speci�cation �rst� as objectives to be achieved by the
code� you engage in reasoned programming� Coding is then concerned
with correctness �conformance with speci�cation��

� This separation also underlies modularization� The speci�cation of a
module or subroutine is its interface with the rest of the program� the
coding is its �hidden� internal workings�

� This book is about programming in the small� It makes the simplifying
assumption that speci�cations can be got right �rst time�

� In practice� speci�cations can be faulty � so that correctness does not
necessarily produce quality� Be on your guard against this�

� The earlier faults are corrected� the better and cheaper�
� There are numerous practices aimed at obtaining good speci�cations
early rather than late� for instance talking to the customer� thinking
hard about the design and prototyping� but this book is not concerned
with these�

� To match the formality of the programming language� we use formal
logical notation for speci�cations� It is also possible to use formal
semantics to link the two� but we will not do this here�

Part I

Programming

Chapter �

Functions and expressions

��� Functions

From the speci�cation point of view a function is a black box which converts
input to output� �Black box� means you cannot see � or are not interested in
� its internal workings� the implementing code� Mathematically speaking� the
input and output represent the argument to the function and the computed
result �Figure �����

�Give me input�

�I�ll give you output�

function

Figure ���

In Figure ��� the function add� simply produces a result which is one
more than its given argument� The number �� is called an argument or an
actual parameter and the process of supplying a function with a parameter
is called function application� We say that the function add� is applied to
��� Similarly� the function capital takes arguments which are countries and
returns the capital city corresponding to the given country�

��

�� Functions and expressions

capital

�� Denmark

�� Copenhagen

argument type
number

result type
number

argument type
Countries

result type
Cities

add�

Figure ���

From mathematics we are all familiar with functions which take more than
one argument� For example� functions � and � require two numbers as
arguments� Figure ��� gives some examples of applications of multi�argument
functions�

power power smallestsmaller

� 	 �

 � � � 	

� 	� �
 �

Figure ���

When we �rst de�ne a function we need to pay attention both to the
way it works as a rule for calculation �the code� and also to its overall
global� external behaviour �the speci�cation�� But� when a function comes to
be used� only its external behaviour is signi�cant and the local rule used in
calculations and evaluations becomes invisible �a black box�� For example�
whenever double is used the same external behaviour will result whether
double n is de�ned as ��n or as n�n�

��� Describing functions

We can describe functions in a number of ways� We can specify the function
value explicitly by giving one equation for each individual input element� or

Describing functions ��

double

	

��

Figure ���

we can draw a diagram � a mapping diagram showing for each input element
its corresponding result �Figure ����� However� often there will be many� even
in�nitely many� individual elements to consider and such methods will clearly
be inconvenient�

.

.

.

.

.

.

add� x � x��

a few
general equations

argument

argument�

�

�

�

�

�

an equation
for each possible
argument

showing individual mappings

natural
positive

numbers
numbers

add� � � �

add� � � �

Figure ���

An alternative method is to describe the function using a few general
equations �Figure ����� Here we can make use of formal parameters� which are
names that we give to represent any argument to which the function will be
applied� For example� the formal parameter x in the de�nition of add� stands
for any number� The right hand side of the rule �or equation� describes
the result computed in terms of the formal parameter� In the functional
language Miranda� add� is described in a notation which is very close to the
mathematical notation used above

add�

 num �� num

add� x � x��

�	 Functions and expressions

The �rst line declares the function by indicating the function�s argument
and result types� The argument type� which precedes the arrow� states the
expected type of the argument to which the function will be applied� The
result type� which follows the arrow� states the type of the value returned by
the function� A function is said to map a value from an argument type to
another value of a result type� The second line is an equation which de�nes
the function�
Now let us look at some more programs
 for example� consider the problems
of �nding the area and circumference of a circle given its radius� We need
the constant value �� which is built�in to the Miranda evaluator under the
name pi� but note that even if pi were not built�in we could de�ne our own
constant as shown for mypi

mypi

 num

mypi � ���
���

circumference� areaofcircle

 num �� num

areaofcircle radius � pi � radius � radius

circumference r � � � pi � r

�This also illustrates how a formal parameter is not restricted to a single
letter such as n�� Similarly� we can de�ne a function to convert a temperature
given in degrees Fahrenheit to degrees Celsius by

fahr�to�celsius

 num �� num

fahr�to�celsius temp � �temp � ��� � ��	

Multi�argument functions can be de�ned similarly� For example� see the
function below� which� given the base area and the height of a uniform object�
computes the volume of the object

volume

 num �� num �� num

volume hgt area � hgt � area

The declaration is read as follows
 volume is a function which takes two
numbers as arguments and returns a number as its result� The reason for
using �� to separate the two number arguments will become clear later when
we discuss typing in more detail� Each �� marks the type preceding it as an
argument type�

Joining functions together

More complex functions can be de�ned by functional composition� making the
result of one function application an argument of another function application�
This can be viewed pictorially as joining the output wire of one black box onto
an input wire of another black box �Figure ����� In this way several functions
can be combined� for example double �
 � �� combines the functions double
and �� This combination can be pictured by connecting up the wires

Describing functions �

double

�

	

 �

Figure ���

There is no restriction on the number of times this principle may be
employed as long as the result and argument types of the various pairs of
functions match�
If we use functional composition without explicit �that is� actual� arguments

then the combination can be regarded as a new function �a composition of
double and ��� which we will call doubleprod �Figure ����� This new function

4 6

4 6

double

�

	

	

doubleprod

glass box new black box
you can see how it works inside

Figure ���

has the property that� for all numbers x and y�

doubleprod

 num �� num �� num

doubleprod x y � double�x�y�

�� Functions and expressions

As another example consider the following function� which computes the volume
of a cylinder of height h and radius r �Figure ��	�� A cylinder is a particular
kind of �uniform object� whose volume we calculate by multiplying its height�
which is h� by its base area� which we calculate using areaofcircle� Hence�
assuming that volume and areaofcircle compute correctly �conform to their
speci�cations�� our function for the volume of a cylinder can be computed by

cylinderV

 num �� num �� num

cylinderV h r � volume h�areaofcircle r�

This is an example of top�down design� Ultimately� we want to implement

volume

h r

cylinderV h r

rh

cylinderV h r

areaofcircle

cylinderV

Figure ��	

the high�level functions� the ones we really want� by building them up from
the low�level� primitive functions� that are built�in to Miranda� But we can
do this step by step from the top down� for instance by de�ning cylinderV

using functions volume and areaofcircle that do not need to have been
implemented yet� but do need to have been speci�ed�
It can therefore be seen that black boxes �that is� functions� can be plugged

together to build even bigger black boxes� and so on� The external� black
box view of functions� which allows us to encapsulate the complicated internal
plugging and concentrate on the speci�cation� has an important impact on
the cohesion of large programs� To see an example of this� suppose we had
mistakenly de�ned

areaofcircle radius � pi�pi�radius

Of course� cylinderV will then give wrong answers� But we are none the less
convinced that the de�nition of cylinderV is correct� and that is because our
use of areaofcircle in it is based on the speci�cation of areaofcircle� not
on the erroneous de�nition� �volume asks for the base area� and areaofcircle

is supposed to compute this��

Some properties of functions ��

There may be lots of parts of a large program� all using areaofcircle

correctly� and all giving wrong answers� As soon as areaofcircle has been
corrected� all these problems will vanish�

On the other hand� someone might have been tempted to correct for the
error by de�ning

cylinderV h r � volume h ��areaofcircle r��r�pi�

This is a perfect recipe for writing code that is di�cult to understand and
debug
 as soon as areaofcircle is corrected� cylinderV goes wrong� The
rule is

When you use a function� rely on its speci�cation� not its de�nition�

��� Some properties of functions

Functions map each combination of elements of the argument types to at
most one element of the result type
 when there is a result at all� then it
is a well�de�ned� unique result� There may be argument combinations for
which the result is not de�ned� and then we call the function partial� An
example is bitNegate� which is unde�ned for all numbers other than � and �
�Figure ��
�

bitNegate

 num �� num

bitNegate x � �� if x��

� �� if x��

bitNegate

�

�

bitNegate

�

�

bitNegate

unde�ned

�

Figure ��

Similarly� division is a partial function and is said to be unde�ned for cases
where its second argument is zero� A function that is not partial� one for
which the result is always de�ned �at least for arguments of the right type��
is called total�

�� Functions and expressions

Just as an illustration of some di�erent possible behaviours of functions�
here are two more kinds

�� A function is onto if every value of the result type is a possible result
of the function�

�� A function is one�to�one if two di�erent combinations of arguments must
lead to two di�erent results�

For instance� double is one�to�one �if x 	� y then double x 	� double y� but
not onto �for example� � is not a possible result because the results are all
even�� On the other hand� volume is onto �for example� any number z is
a possible result because z � volume z �� but not one�to�one �for example�
volume � � � � � volume � � � di�erent argument combinations ����� and
����� lead to the same result��

��� Using a functional language evaluator

In order to construct a program in a functional language to solve a given
problem one must de�ne a function which solves the problem� If this
de�nition involves other functions� then those must also be de�ned� Thus a
functional program is just a collection of function de�nitions supplied by the
programmer� To run a program one simply presents the functional language
evaluator with an expression and it will do the rest� This expression can
contain references to functions de�ned in the program as well as to built�in
functions and constant values�
The functional language evaluator will have a number of built�in �or

primitive� functions� together with their de�nitions
 for example� the basic
arithmetic functions �� �� �� � etc� The computer will evaluate your expression
using your function de�nitions and those of its primitive functions and then
print the result� Therefore� the computer just acts as a giant calculator�
Expressions that do not involve user�de�ned functions can be evaluated

without using any program �just like a calculator�� The evaluator� however�
is more powerful than an ordinary calculator since you can introduce new
function de�nitions in addition to those already built�in� Expressions can
involve the name of these functions and are evaluated by using their de�nitions�
This view of a functional language evaluator is illustrated in Figure �����

��� Evaluation of expressions

When you present a functional evaluator with an expression� you can imagine
it reducing the expression through a sequence of equivalent expressions to
its �simplest equivalent form� �or normal form�� with no functions left to be

Evaluation of expressions ��

0

C = / *

7 8 9

4 5 6

1 2 3

0 .

f

g

-

+

=

primitive functions and values

can add your own
function de�nitions

Figure ���� One view of a functional language evaluator

applied� This is the answer� which is then displayed� You can mimic this by
�hand evaluation�� as in

double�� � ��

� double � by built�in rules for �
� � � � by the rule for double
� �� by built�in rules for �

�
 will be printed by the evaluator� �At each stage we have underlined the
part that gets reduced next�� Other reduction sequences are possible� though
of course they lead to the same answer in the end� Here is another one

double �� � ��
� �� � �� ��� � �� by the rule for double

� � ��� � �� by built�in rules for �

� � � � by built�in rules for �
� �� by built�in rules for �

Thus evaluation is a simple process of substitution and simpli�cation� using
both primitive rules and rules �that is� de�nitions� supplied by the programmer�
In order to simplify a function application� a new copy of the right�hand
side of the function de�nition is created with each occurrence of the formal
parameter replaced by a copy of the actual parameter� Function applications
of the resulting expression are then simpli�ed in the same manner until a
normal form is reached�
It should be noted that in the above discussion there has been no mention

of how the evaluation mechanism is implemented� Indeed� functional languages

�� Functions and expressions

o�er the considerable advantage that programmers need not pay much �if any�
attention to the underlying implementation�
Some expressions do not represent well�de�ned values in the normal
mathematical sense� for example any partial function applied to an argument
for which it is unde�ned �for example� ����� When confronted with such
expressions �that is� whose values are unde�ned�� the computer may give an
error message� or it may go into an in�nitely long sequence of reductions and
remain perpetually silent�

��� Notations for functions

So far we have seen functions in pre�x and in�x notations� In pre�x notation
the function symbol precedes its argument� as in double � or smaller x y�
In�x notation should also be familiar from school mathematics� where the
function �also called operator� symbol appears between its arguments �also
called operands�� as in ��� or x�y�
In mathematics� f�x� y� is written for the result of applying f to x and y�

In Miranda� we can omit the parentheses and comma� and in fact it would be
wrong to include them� Instead� we write f x y �with spaces� �Figure ������

f

f x y

x y

Figure ����

However� we cannot do without parentheses altogether� for we need them
to package f x y as a single unit �f x y� when it is used within a larger
expression� You can see this in

cylinderV h r � volume h�areaofcircle r�

Precedence

In expressions such as �����
�� where there are several in�x operators� it
is ambiguous whether the expression is meant to represent �������
� or
������
��� Such ambiguities are resolved by a set of simple precedence

Meaning of expressions ��

�priority� rules� For example� the above expression really means ������
��

because� by long�standing convention� multiplication has a higher precedence
relative to addition�
The purpose of precedence rules is to resolve possible ambiguity and to allow

us to use fewer parentheses in expressions� Such rules of precedence will also
be built�in to the evaluator to enable it to recognize the intended ordering�
A hand evaluation example illustrating this is shown in Figure ����� Where
necessary� the programmer can use extra parentheses to force a di�erent order
of grouping� For instance� �����
��� � ����� � ���

+

� has higher precedence than �

��

��� ���

���

��
��

��

����

Figure ���� �
 � � �
 � � � � �� � ��

��� Meaning of expressions

The meaning of an expression is the value which it represents� This value
cannot be changed by any part of the computation� Evaluating an expression
only alters its form� never its value� For example� in the following evaluation
sequence all expressions have the same value � the abstract integer value ��

doubleprod � � � double ����� � double �� � ��

Note that an expression �in whatever form� even in its normal form� is not a
value but� rather� a representation of it� There are many representations for

�� Functions and expressions

one and the same value� For example� the above expressions are just four of
in�nitely many possible representations for the abstract integer value ���
Expressions in a functional language may contain names which stand for

unknown quantities� but� as in mathematics� di�erent occurrences of the same
name refer to the same unknown quantity� for example x in double�x� � x

�
�

Such names are usually called variables�

��	 Summary

� A functional program consists of a collection of function de�nitions� To
run a program one presents the evaluator with an expression and it will
evaluate it� This expression can contain references to functions de�ned
in the program� as well as to built�in functions and constant values�

� Functions are de�ned in a notation which is very close to mathematical
notation�

� Functional composition �that is� passing the output of one function as an
argument to another function� is used to de�ne more complex functions
in terms of simpler ones�

� Evaluation of an expression is by reduction� meaning simpli�cation� The
expression is repeatedly simpli�ed until it has no more functions left to
be applied�

� The meaning of an expression is the value which it represents� This
value cannot be changed by any part of the computation� Evaluating an
expression only alters its form� never its value�

��
 Exercises

�� De�ne a function hypotenuse which� given the lengths of the two shorter
sides of a right�angled triangle� returns the length of the third side�
�There is a built�in function sqrt that calculates square roots��

�� Write a function addDigit of two arguments which will concatenate a
single�digit integer onto the right�hand end of an arbitrary�sized integer�
For instance� addDigit ���
 should give ���
� Ignore the possibility of
the number becoming too large �called integer over�ow��

�� De�ne a function celsius to fahr that converts celsius temperatures to
Fahrenheit� Show for any value of temp that the following hold

celsius to fahr�fahr to celsius temp� � temp

fahr to celsius�celsius to fahr temp� � temp

Chapter �

Speci�cations

A conscientious programmer wants the customer to be entirely satis�ed with
the program� so their aims are the same overall
 they both want to see a
satisfactory and useful product at the end� None the less� there are certain
tensions between the programmer�s wish for an easy task� and the customer�s
desire for a powerful and comprehensive ��All singing� all dancing�� program�
This may boil down to money� A more powerful program will cost more to
produce� the customer must balance his needs against his budget and the
programmer must be able to make plain the di�erence between the more and
the less powerful speci�cations�
In this vague sense� the speci�cation represents part of a contract between

programmer and customer� The full contract says �Programmer will implement
software to this speci�cation� and customer will pay such�and�such amount
of money�� However� there is also a sense in which the speci�cation itself
represents a contract�

��� Speci�cation as contract

Punter �the customer� and Hacker �the programmer� have done business
together before� and usually �nd they understand each other�

Act �
Punter� Can you write me a program to calculate the square
root of a real number�

Hacker� Can I assume it is non�negative�
Punter� Yes�
Hacker� OK� I can do that�
�Shake hands and exeunt�

They now have a gentlemen�s agreement that Hacker will write a square
root program
 this is an oral contract between Punter as software purchaser�

��

�	 Speci�cations

and Hacker as software producer� But there is also a more subtle contract
involved� between Punter as software user� and Hacker �as software�� This
says that if Punter uses the program� then� provided that the input is a
non�negative number� the output will be a square root of it� This is a contract
because it embodies some interlocking rights and obligations governing the
way in which the program is to be used�
First� the input must be non�negative� This is an obligation on Punter�

but a right for Hacker� who is entitled to expect� for the sake of his
implementation� that the input is non�negative� But� then� he is obliged to
calculate a square root� and Punter has the right to expect that this is
what the output will be�
A speci�cation such as this can be divided into the following two parts

� The pre�condition is the condition on the input that the user guarantees

for example� the input is a non�negative real number�

� The post�condition is the condition on the output that the programmer
guarantees
 for example� the output is the square root of the input�

There is a certain asymmetry here �which is due to the fact that the input
comes �rst�� The pre�condition can only refer to the input� whereas the
post�condition will probably refer to both the input and the output�
Note also the underlying tension
 the customer would like weak pre�conditions

�so the program works for very general input� and strong post�conditions �so
it computes many� or very precise� answers�� The programmer� on the other
hand� would like the reverse�
Therefore� there must be some kind of dialogue in order to agree on the

terms of the contract� Figure ��� shows these tensions with springs� The
programmer would have the pre� and post�conditions the same� then he doesn�t
have to do anything at all� The customer�s spring pulls the conditions apart�
The strength of the springs depends on various factors� For instance� if

the customer is prepared to pay a lot of money for some software� or if the
software is a procedure that is called very often� then it is worth putting a
lot of work into programming it � �the customer�s spring is powerful��

��� Formalizing speci�cations

Let us introduce a very speci�c format for writing such speci�cations as part
of a Miranda program� It has three parts� namely typing information and the
pre� and post�conditions�
The typing information gives the types of the input �argument� and output

�result�� and also the name of the program �function�� and there is a standard
Miranda notation for this� In many programming languages this is an essential
part of the program de�nition� required by the compiler� In Miranda� it is

Defensive speci�cations what happens if the input is bad� �

pre�condition

post�condition

Weaken

Strengthen

Customer�s spring

Customer�s spring

Programmer�s spring

Figure ���

optional because the compiler can deduce the types from the rest of the
de�nition� However� they may not be the intended types so type declarations
should always be included in all programs�
The pre� and post�conditions are written using English and logical notation�

and made into comments �that is� they follow the symbols ������ Note that
in Miranda any part of your program which starts with ��� together with all
the text to its right �on the same line�� is regarded as being a comment and
hence is ignored by the evaluator�

The square root function could be speci�ed by

sqrt

 num �� num

��pre
 x �� �

��post
 �sqrt x��� � x

sqrt x� Hacker must �ll this in

��� Defensive speci�cations � what happens if the input is bad�

This is a relatively convenient speci�cation for Hacker because he doesn�t
have to worry about the possibility of negative input� That worry has been
passed over to Punter� who must therefore be careful� If� by mistake� he
gives a negative input� then the contract is o� and there is no knowing what

�� Speci�cations

might happen� He might obtain a sensible answer� or a nonsense answer� or
an apparently sensible but actually erroneous answer� or an error message� or
an in�nite loop� or a system crash� or World War III� or anything� ��Garbage
in� garbage out�� the contract itself is �Non�garbage in� non�garbage out���
This balance of worry is usually sensible if the only way in which Punter
uses Hacker�s square root program is by calling it from a program of his
own� He needs to look at every place where it is called� and convince himself
that he would never use a negative input� Thus in exchange for some care at
the programming stage� the sqrt function can run e�ciently without checking
inputs all the time�
On the other hand� Punter may intend to use the program at an exposed

place �for instance� in a calculator� where any input at all may conceivably
be provided� In that case� Punter would prefer a �defensive speci�cation� for
a function that defends itself against bad arguments� When Hacker asks if
he can assume that the input is non�negative� Punter replies
 �No� If it is
negative� stop and print an error message��

defensivesqrt

 num �� num

��pre
 none

��post
 �x � � � error reported� ��

�� �x �� � � �defensivesqrt x��� � x�

�We would like to use the logical notation � and � for �and� and �or� but for
a program comment� where it is impossible to type logical symbols we use the
notation � and �� instead� This matches Miranda�s own notation�� The point
is that di�erent ideas about how to handle erroneous input must be re�ected
in di�erent speci�cations�

��� How to use speci�cations
 fourthroot

Suppose Punter wants to write a Miranda function to calculate fourth roots

fourthroot

 num �� num

��pre
 x �� �

��post
 �fourthroot x��
 � x

Essentially� he wants to apply Hacker�s sqrt twice� but he also notices a
nuisance � the speci�cation of sqrt doesn�t specify the positive square root�
So he splits the function de�nition into two cases

fourthroot x � sqrt y� if y���

� sqrt��y�� otherwise

where y � sqrt x

��Would help if sqrt gave positive square roots�

Proof that fourthroot satis�es its speci�cation ��

Punter now wishes to show that this de�nition of fourthroot satis�es its
speci�cation� It is important to understand that he does not need to know
anything at all about how Hacker calculates square roots� He just assumes
that sqrt satis�es its speci�cation� The speci�cation is all that Punter

knows� or is entitled to assume� about the sqrt function�
Note there is something important for Punter to do� He uses sqrt in

three places� and at each one he must check that the pre�condition holds

that the argument of sqrt is non�negative�

��� Proof that fourthroot satis�es its speci�cation

We want to prove �or explain why� fourthroot works correctly� that is�

�x
 num� �x � �� �fourthroot x�� � x�

We do this on the assumption that sqrt works correctly� that is�

�x
 num� �x � �� �sqrt x�� � x�

�Of course� it is possible that it doesn�t� but fourthroot should not have to
worry about that� It is the responsibility of sqrt to get its answer right��
We shall put the reasoning in a framework where the assumptions go at the
top� the conclusion �what is to be proved� goes at the bottom and the proof
goes in the middle� as in Figure ���� What we want to end up with is a

�x � num� �x � �� �sqrt x�� � x� assumption
���

proof
���

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ���

proof that� as you read down through it� steadily accumulates more and more
true consequences of the assumptions until it reaches the desired conclusion�
That is how the proof can be read� but we can see already that writing it
does not go straight down from top to bottom � we are going to have an
interplay between working forwards from the assumptions and backwards from
the desired conclusions�
The method is fully investigated in Chapter ��� In this example we give a

rather informal introduction to it�
Here is a typical backward step� To prove the conclusion� we must show

that if someone gives us a number � and we don�t care what number it is

�� Speci�cations

� as long as it is non�negative� fourthroot will calculate a fourth root of it�
Once we have the number it is �xed� so let us give it a di�erent name c to
indicate this� So we are now working in a hypothetical context where

�� we have been given our c
�� c is a number
�� c � �

and given all these assumptions we must prove �fourthroot c�� � c� Figure ���
shows a box drawn around the part of the proof where these temporary
assumptions are in force� For the �nal conclusion we have left c behind� so we

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � temporary assumptions
���

proof
���

�fourthroot c�� � c to prove

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ���

can come out of the box� What this purely logical� and automatic� analysis
has given us is a context �the box� where we can begin to come to grips
with the programming issues� Since c � �� we can use our original assumption
�that sqrt works� to deduce that sqrt c gives an answer y �with y� � c��
and either y � � or y � ��
We thus � again by automatic logic� but working forwards this time �

have two cases to work with� which again we put in boxes because each case
has a temporary assumption �y � � for one� y � � for the other�� In each
case� we must prove �fourthroot c�� � c� so this equation ends up by being
written down three times� This can be seen in Figure ���� The two cases may
then be argued by chains of equations as in the �nal box proof� Figure ����
Notice the following features of box proofs

�� Each box marks the scope� or region of validity� of some names or
assumptions� For instance� within the left�hand innermost box we are
working in a context where

� we have a number c
� c � �
� y � sqrt c � �

Proof that fourthroot satis�es its speci�cation ��

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � assumption

�sqrt c�� � c spec of sqrt

y� � c write y for sqrt c

y � � � y � �

y � �
��� case �

�fourthroot c�� � c to prove

y � �
��� case �

�fourthroot c�� � c to prove

�fourthroot c�� � c

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ��� Working forwards

F � fourthroot c

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � assumption

�sqrt c�� � c spec of sqrt

y� � c y for sqrt c

y � � � y � �

y � �

�F �� � ��F ���� arithmetic

� ��sqrt y���� def F

� y� spec sqrt

� c as required

y � �

�F �� � ��F ���� arithmetic

� ��sqrt ��y����� def F

� ��y�� spec sqrt

� y� arithmetic

� c as required

�fourthroot c�� � c

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ��� The �nal box proof for fourthroot

These are not permanent� for instance outside the boxes nothing is
known of c� and the right�hand innermost box does not know that y � ��

�� Speci�cations

�� When you read a box proof� you can read it straight down from the
top
 each new line is either a temporary hypothesis or is derived from
lines higher up� But when you construct a box proof you work both
forwards� from assumptions� and backwards� from your goal� Hence there
is a de�nite di�erence between proof and proving� �It is very similar to
that between the Reasoned Program and Reasoned Programming��

Box proofs can be translated into English as follows

Let c
 num with c � �� and let y � sqrt c� Since c � � �pre�condition of

sqrt�� we know y� � c�
There are two cases�

If y � �� then
�fourthroot c�� � �sqrt y�� � ��sqrt y����

� y� �because y � � and so satis�es the pre�condition of sqrt �
� c

If y � �� then
�fourthroot c�� � ��sqrt ��y�����
� ��y�� �because �y � ��
� y� � c

Either way� we obtain the required result� �

However� the virtue of box proofs for beginners is that certain steps are
automatic� and the box proofs give you a framework for making these steps�
They take you to a context where you have disentangled the logic and have
something to prove about concrete programs�

��� A little unpleasantness
 error tolerances

Act �
Hacker� I can�t calculate exact square roots� There has to be an
error tolerance�

Punter� But the programs I�ve just had rommed assume the
roots are exact� It�ll cost me ��m to have them changed�

Hacker� I�m sorry� you�ll just have to�
Punter� You shall hear from my solicitors�
�Exeunt scowling�

The story has a happy ending� Hacker�s legal department had prudently
included the following general disclaimer clause in his software

This software might do anything at all� but there again it might not�
Anything Hacker says about it is inoperative�

Punter stopped thinking in legal terms� and negotiated the following revised
speci�cation with Hacker

Other changes to the contract ��

sqrt

 num �� num

��pre
 x �� �

��post
 ��sqrt x����x� � tolerance

where tolerance was a number still to be negotiated�
This is a perfectly common occurrence� that speci�cations must be revised

in the light of attempts to implement them� It is a nuisance� but it happens�
and you must understand how to deal with it�
In this case� the post�condition has been weakened for Hacker�s bene�t�

and this makes extra work for Punter� He must look at every place where
he has called sqrt and check whether his reasoning still works with the
revised speci�cation� If it does still work� Punter is happy� If not� Punter
may yet be able to modify his program and his reasoning to cope� But in
this case� Punter realizes that he cannot compute exact fourth roots after
all� so he must go back apologetically to his customer and negotiate a revised
speci�cation for fourthroot�
The reasoning is the same if Hacker and Punter are collaborators� or

even the same person �a programmer calling his own procedures��

��� Other changes to the contract

The error tolerance was a weakened post�condition� Other possibilities are as
follows

� Strengthened pre�condition� Hacker might decide he needs to assume
more for his routine to work� Again� Punter must check every call to
ensure that the new pre�conditions are still set up properly�

� Weakened pre�condition or strengthened post�condition� Now the
speci�cation is better for Punter� so he has no checking to do� This
time it is Hacker who must check his routine to ensure that it still
satis�es the new conditions� He might �nd that it does� or that he can
modify it so that it does� or that he has to go to the people who wrote
the functions he calls and negotiate a revised speci�cation for them�

Either way� we see that when a speci�cation is changed� programs have to
be checked to make sure that they still �t the revised speci�cation� This
checking is boring� but routine
 because of the way the speci�cations have
given logical structure to the program� you know exactly which parts of the
program you need to examine� and exactly what you are checking for� If you
don�t bother� you are likely to run into the Hydra problem
 for every mistake
you correct� you make ten new ones�
There are also mixed changes to speci�cation� for instance if you strengthen

both pre� and post�conditions� This might happen if the customer wants
a strengthened post�condition but the programmer needs a strengthened

�� Speci�cations

pre�condition before he can deliver it� The customer may be happy with
that� Perhaps by chance his existing applications already set up the strong
pre�condition� On the other hand� he may �nd that the new pre�condition
requires too much work to be worth while� Thus the new speci�cation may
or may not be a good idea� The customer and programmer must negotiate
the best compromise�
Simultaneously weakened conditions are similar�

��	 A careless slip
 positive square roots

The story so far
 Punter and Hacker have agreed a speci�cation for
sqrt with error tolerances�

Act �� Scene �
Punter� The result of sqrt always seems to be non�negative� Is
that right�

Hacker� �looks at code� Yes�
Punter� Good� That�s useful to know�
�exeunt�

This is how� validly� coding may feed back into the speci�cation� If they
agree on a new� strengthened post�condition

j �sqrt x�� � x j� tolerance � �sqrt x� � �
then this is better for Punter� so he is happy� and Hacker is no worse
o� because his code does it anyway� Punter thinks they have agreed� but
unfortunately Hacker never wrote it into the comments for the sqrt function�

Act �� Scene �
�It is very late at night� Hacker sits in front of a computer

terminal��
Hacker� Eureka� I can make sqrt go ���! faster by making its
result negative�

�Erases old version of sqrt�

Act �� Scene �
Punter� My programs have suddenly stopped working�
Hacker� �looks at code� It�s not my fault� sqrt satis�es its
speci�cation�

�exeunt�

This kind of misunderstanding is just as common when you are your own
customer �that is� when you write your own procedure�� It is easy to assume
that you can understand a simple program just by looking at the code� but

Another example� min ��

this is dangerous� The code can only tell you what the computer does�
not what the result was meant to be� Avoid the problem with a strong
speci�cation discipline
 only assume what is speci�ed� Equivalently� everything
that is assumed must be in the speci�cation�

��
 Another example� min

The minimum function is easily enough de�ned as

min

 num �� num �� num

min x y � x� if x �� y

� y� otherwise

However� there is an unnatural asymmetry in the way the cases are divided
between x�y and x�y� when they could equally well have been x�y and x�y�
This case division is not part of what you need to know to be able to use
min� Perhaps a more natural speci�cation would be

min

 num �� num �� num

��pre
 none

��post
 ��min x y� � x �� �min x y� �y� �

�� ��min x y� �� x � �min x y� ��y�

Proposition ��� The de�nition of min satis�es the speci�cation�

Proof Suppose x and y are real numbers� There are two cases � either
x � y� or x � y�

case �
 x � y� then �min x y� � x� This immediately proves
��min x y� � x � �min x y� � y� and �min x y� � x� and
�min x y� � y because x � y�

case �
 x � y� then �min x y� � y� Immediately� ��min x y� � x
��min x y� � y� and �min x y� � y� and �min x y� � x because y � x��

We can now prove properties of min solely from the speci�cation�

Proposition ��� �min x y� is uniquely determined by the speci�cation�

Proof Let m� and m� be two possible values of �min x y� according to the
speci�cation �not the de�nition�� We wish to show that m� � m�� We know
that

�m� � x �m� � y� � �m� � x� � �m� � y� �
�m� � x �m� � y� � �m� � x� � �m� � y�

We �rst show that m� � m�� From �m� � x � m� � y�� there are two
cases� two possible values for m�� and� either way� m� � m�� By symmetry�
m� � m�� so m� � m�� �

�	 Speci�cations

Speci�cations do not have to specify uniquely� there may be several di�erent
possible answers� equally satisfactory� But uniqueness of speci�cation is a
useful property� as is illustrated by the next result�

Proposition ��� �Commutativity� �min x y� � �min y x��

Proof The speci�cation of �min x y� is symmetrical in x and y� so it is
also satis�ed by �min y x�� Hence� by uniqueness �the previous proposition��
�min y x� � �min x y�� �

���� Summary

� A speci�cation of a procedure can be expressed as typing information�
pre�condition and post�condition�

� You can write these down as part of a Miranda program using logical
notation�

� To show that a function de�nition satis�es the speci�cation you assume
that you are given arguments satisfying the pre�condition� and show that
the result satis�es the post�condition�

� When you use a function� you rely on its speci�cation� not its de�nition�
� Any change to a speci�cation requires a methodical examination of the
function de�nition� and all calls of the function� This may entail no
changes� or changes to the program only� or to other speci�cations� or
to both�

���� Exercises

�� Write pre� and post�conditions for the functions �both in the text and
the exercises� in Chapter �� Try to get to the heart of what each
function is meant to achieve�

�� Use pre� and post�conditions to write a speci�cation for calculating
square roots� Try to think of as many ideas as possible for what the
customer might want� Choosing one interpretation rather than another
may be a design decision� or it may call for clari�cation from the
customer�

�� Suppose you want a procedure to solve the quadratic equation
ax� � bx� c � �

solve

 num �� num �� num �� �num� num�

��pre
 �

��post
 x� and x� are the solutions of a�x���b�x�c � ��

where �x��x�� � �solve a b c�

Exercises �

Assume that you intend to use the formula

x �
�b

q
�b� � �ac�
�a

What are suitable pre� and post�conditions� Try to write them in logic�
�Note� the result type �num� num� is the type of pairs of numbers�
such as ���� ������

�� Using the uniqueness property of min prove the associative property�
that is�

�Associativity� �min x �min y z�� � �min�min x y� z�

�� Directly from the de�nition of min prove associativity�
�� Use pre� and post�conditions to write speci�cations for the standard
Miranda functions abs and entier� �Of course� these are already coded
unalterably� Your �speci�cation� expresses your understanding of what
the standard functions do��
abs takes a number and makes it non�negative by removing its sign
 for
instance� abs ���� � abs ��� � ����
entier takes a number x and returns an integer� the biggest that is no
bigger than x� For instance�

entier � � � entier ��
 � � entier �� � �� entier ���
 � ��

�� �a� Specify a function round

 num �� num that rounds its argument
to the nearest integer� Try to capture the idea that� of all the
integers� round x is as close as you can get to x�

�b� Show that the de�nition round� satis�es the speci�cation of round

round� x � e� if abs �e�x�� abs �e���x�

�� i�e� if e is closer to x than e��

� e��� otherwise

where e � entier x

�c� Show that this de�nition round� computes the same function as
round��

round� x � entier �x�����

�Hint� express the condition abs�e � x� � abs�e� � � x� without
using abs��

Chapter �

Functional programming in Miranda

In the preceding chapters� where we were illustrating rather general issues of
programming� we did not probe too deeply into the details of Miranda but
relied on its closeness to mathematical notation to make the meaning clear�
We now turn to a more careful description of Miranda itself�

��� Data types � bool� num and char

Every value in Miranda has a type� the simplest are num �which you have
already seen�� bool and char�

The data type num includes both whole numbers �or integers� and fractional
numbers �or reals� or �oating�point numbers�� A whole number is a number
whose fractional part is zero� Here are some data values of type num

�� ��	 � �	����� ����e��
��	e�� �����e�
 ���	��

Although there are in�nitely many numbers� computers have �nite capacity
and can only store a limited range� Similarly� within a �nite range� there are
in�nitely many fractional numbers� so not all of them can be stored exactly�
Although such practical limitations can be important when you are doing
numerical calculations� especially when you are trying to obtain a fractional
answer that is as accurate as possible� we shall largely ignore them here� The
theory of numerical analysis deals with these questions�

Booleans are the truth�values True and False and their Miranda type is
called bool� Truth�values are produced as a result of the application of the
comparison operators �for example� �� ��� �� ��� They can also be returned
by user�de�ned functions� for example the function even� Expressions of type
bool are really� rather� like logical formulas� and on this analogy functions
that return a bool as their result are often called predicates�

��

Built�in functions over basic types ��

If the evaluator is presented with an expression which is already in its
normal form� then it will simply echo back the same expression since it cannot
reduce the expression any further� For example�

Miranda False

False

char is the type of characters� the elements of the ASCII character set�
They include printable symbols such as letters ��a�� �A�� � � � �� digits ����
to ����� punctuation marks ����� � � � � and so on� as well as various layout
characters such as newline ��n�� Obviously� characters are most useful when
strung together into lists such as �Reasoned Programming� �note the double
quotes for strings� single quotes for individual characters�� so we shall defer
more detailed consideration until the chapter on lists �Chapter ���

��� Built�in functions over basic types

Values of the basic built�in types can be manipulated by a host of built�in
functions and operators� Most such built�in functions and operators are binary
�that is� operate on two arguments� and can be used in in�x form�

Arithmetic

These operations are on numbers� Each is used as a binary in�x operator�
The minus sign can also be used as a unary pre�x operator�

� addition
� subtraction
� multiplication
� division
� exponentiation
div integer division
mod integer remainder

All except � return exact integer results when arguments are integers� provided
that the integers are in the permitted range� Representation for �oating�point
numbers may not be exact� so operations on fractional numbers may not
produce the same results as ordinary arithmetic� For example� �x�y��y and x

may not be equal� div and mod can be speci�ed in tandem by

�� Functional programming in Miranda

div

 num �� num �� num

mod

 num �� num �� num

��pre
 int�x� � int�y� � y �� �

�� �where int�x� means x is a whole number and � means not�

��post
 x � �x div y� � y � �x mod y�

�� � y�� �� �� �� �x mod y� � y�

�� � y�� �� �y � �x mod y� �� ��

Arithmetic expressions can be entered directly into the evaluator� for example
after the computer has displayed the Miranda prompt

Miranda �
 div �

�

Miranda �
 mod �

Miranda ��

��

The relative precedence of these operators is as follows

� �

� � div mod � increasing precedence
�

Function application always binds more tightly than any other operator�
Parentheses are used when one is not sure of binding powers or when one
wishes to force a di�erent order of grouping� for example�

Miranda double � � 	 mod � � ����

��

Miranda double �� � 	� mod � � double �� mod � � �� mod �

�

Comparisons

� equals
�� not equals All have the same level of precedence�
� less than
� greater than
�� less than or equal Their precedence is lower
�� greater than or equal than that of the arithmetic operators�

Comparison operators are made up of relational operators � �� ��� �� ��� and
equality operators ��� ��� and their result is of type bool� The following are
some examples

Built�in functions over basic types ��

Miranda � � �

False

Miranda � �� ���

True

As the second example suggests� the precedence of comparison operators is
lower than that of the arithmetic operators� Note that comparison operators
cannot be combined so readily� for example� the expression �����
� would
give a type error since it would be interpreted as

�������
� � True�
�

When operating on numbers ��� may not return the correct result unless
the numbers are integers in the permitted range� This is because fractional
numbers should be compared up to a speci�c tolerance� For example�

Miranda sqrt����� � �

False

We can de�ne a function within as follows

within eps x y � abs�x�y� � eps

within can then be used instead of ��� when comparing fractional numbers to
a certain tolerance� For example� �within ����� a b� can be used to see if
a and b are closer than ����� apart�

Logical operators

Boolean values may be combined using the following logical operators

� conjunction �logical � �and�� in order of
�� disjunction �logical � �or�� � increasing precedence
� negation �logical � �not��

Their precedence is lower than that of comparisons� They can be de�ned in
Miranda itself �not that you will need to do this� as in Figure ���� De�ning
these primitives in Miranda not only gives their meaning but also illustrates
the use of pattern matching with Booleans� Exercise� we have used one
equation to de�ne and and two for or� Try writing and with two equations
and or with one�
It is always a good idea to use parentheses whenever � as is often the case
with logical connectives � there is the slightest doubt about the intended
meaning

Miranda
�� � ���� �� ����

False

�� Functional programming in Miranda

and

 bool �� bool �� bool

��pre
 none

��post
 and x y � x � y

or

 bool �� bool �� bool

��pre
 none

��post
 or x y � x �� y

not

 bool �� bool

��pre
 none

��post
 not x � �x

and x y � y� if x

� False� otherwise

or True x � True

or False x � x

not True � False

not False � True

Figure ���

��� User�de�ned functions

Identi�ers

Before introducing a new function the programmer must decide on an
appropriate name for it� Names� also called identi�ers� are subject to some
restrictions in all programming languages�

Throughout a program� identi�ers are used for variables� function names
and type names� In Miranda� identi�ers must start with a lower case letter�
The remaining characters in the identi�er can be letters� digits� � or �

�single quote�� However� not all such identi�ers are valid as there are a
number of special words �reserved words� which have a particular meaning to
the evaluator� for example where� if� otherwise� Clearly� the programmer
cannot use a reserved word for an identi�er as this would lead to ambiguities�
Furthermore� there are also a number of prede�ned names �for example� those
of built�in functions such as div� mod� which must be avoided�

Meaningful identi�ers for functions and variables will make a program easier
to read� Longer names are usually better than shorter names� although the
real criterion is clarity� For example� the identi�er record is probably a
better choice than r� But deciding whether it is better than� say� rec is
not as straightforward� In fact� in most cases modest abbreviations need not

User�de�ned functions ��

reduce the clarity of the program�

A good rule is that identi�ers should have long explanatory names if they
are used in many di�erent parts of the program� This is because it may
be di�cult to refer to the de�nition if it is a long way from the use� On
the other hand� identi�ers with purely local signi�cance can safely have short
names � such as x for a function argument� If the variable in question is
a general purpose one then nothing is gained by having a long name such
as theBiggestNumberNeeded� an identi�er such as n may be just as clear�
Finally� it is worth mentioning that it is best to avoid acronyms for identi�ers�
For example� tBNN is even worse than theBiggestNumberNeeded�

De�ning values

It is often useful to give a name to a value because the name can then be
used in other expressions� For example� we have already seen the de�nition of
mypi

mypi

 num

mypi � ���
���

As usual� the choice of meaningful names will make the program easier to
read� The following is a simple example of an expression which involves names
that have been previously de�ned using ���

hours�in�day � �

days � ���

hours�in�year � days � hours�in�day

If you are already familiar with imperative languages such as Pascal or Basic�
then it is important to understand that a de�nition like this is not like an
assignment to a variable� but� rather� like declaring a constant� The identi�er
days has the value ��� and this cannot be changed except by rewriting the
program� What is more� if you have con�icting de�nitions within a program�
then only the �rst will ever have any e�ect� At this point it may also appear
natural to be able to give names not only to values such as numbers or
truth�values but also to functions� for example

dd

 num �� num

dd � double

dd behaves identically to double in every respect� This indicates that functions
are not only �black boxes� that map values to other values� but are values in
themselves� Thus in functional languages functions are also �rst�class citizens
�just like numbers� Booleans� etc�� which can be passed to other functions
as parameters or returned as results of other functions� This is discussed in
much more detail in Chapter 	�

�� Functional programming in Miranda

Thus entering a function�s name without any parameters is the equivalent
of entering a value� However� the major di�erence between a function value
and other values is that two functions may not be tested for equality� This is
the case even if they both have precisely the same code or precisely the same
mappings for all possible input values� Thus the expression �dd � double�

will result in an error�

De�ning functions

In Miranda� new functions are introduced in three steps

�� Declare the function name and its type �its argument and result types�

square

 num �� num

�� Provide the appropriate pre� and post�conditions

��pre
 none

��post
 square n � n��

�� Describe the function using one or more equations

square n � n�n

Although type declarations are not mandatory for functions� it is good
programming practice to include them with de�nitions in all programs� Type
declarations act as a design aid since the programmer is forced to consider
the nature of the input and output of functions before de�ning them� They
also document the program and make it more readable since any programmer
can immediately see what types of objects are mapped by the function� Of
course� the second step is also optional in that the evaluator won�t even notice
if you miss it out� But we hope by now you are beginning to understand
why it is essential�
Consider quadratic equations of the form ax� � bx � c � �� where x is a

variable and a� b and c are constants� Now the solutions for such a quadratic
equation are given by

�b
pb� � �ac
�a

We can de�ne a function hasSolutions which given a� b and c returns True
or False indicating whether there will be any solution for x

hasSolutions

 num �� num �� num �� bool

��pre
 none

��post
 hasSolutions a b c iff a�x�x � b�x �c � � for some real x

hasSolutions a b c � ��a���� � �b�b��
�a�c�� ��

��a��� � ��b�������c�����

More constructions ��

This uses the fact that the roots of the quadratic equation are given by the
formula above�
Note�

� The speci�cation is quite di�erent from the de�nition� and it takes some
mathematical reasoning to relate the two�

� �a��� � b�b��
�a�c� �� ��a��� � ��b���� �� �c������ the right�hand
side of the de�nition� has type bool and its value is exactly the Boolean
result you want for the function application�

In the above de�nition a b c are called the formal parameters� We talk about
the left�hand or the right�hand side of an equation or rule� The right�hand
side describes how the result is constructed using the parameters�

Layout � the o�side rule

Miranda assumes that the entire right�hand side of an equation lies directly
below or to the right of the �rst symbol of the right�hand side� This enables
the evaluator to spot automatically when the right�hand side of a rule has
�nished� An advantage of this is that no special character or symbol such as
a semi�colon is required to indicate the end of de�nition � less typing for
the programmer� This is possible because as soon as the evaluator comes
across a symbol that violates the o�side rule it will take the violation to
mean that the right�hand side of the de�nition has been completed� On the
negative side� however� care must be taken by the programmer to use safe
layout� For long de�nitions leave a blank line before starting the right�hand
side and indent a small standard amount� For example�

functionWithALongName �

xxxx

or

functionWithALongName

� xxxx

Remember that the boundary is set by the �rst symbol of the right�hand side
and not by the preceding ��

��� More constructions

Case analysis

Often� we want to de�ne a function by case analysis� For example�

�	 Functional programming in Miranda

pdifference

 num �� num �� num

��pre
 none

��post
 pdifference x y � abs �x�y�

pdifference x y � x�y� if x��y

� y�x� if y�x

This de�nition is a single equation consisting of two expressions� each of which
is distinguished by a Boolean�valued expressions called a guard� The �rst
alternative says that the value of �pdifference x y� is x�y provided that the
expression x��y evaluates to True� pdifference is de�ned for all numbers
since the two guards exhaust all possibilities� In the above the order in
which the alternatives are written is not signi�cant because the two cases are
disjoint �that is� the guards are mutually exclusive�� they can�t both succeed�
However� if cases are not disjoint then the order in which the alternatives are
written is signi�cant�

Thus guards allow us to choose between two or more alternative values of
the same type and only one alternative will be selected and evaluated� If
there is a possibility of more than one guard evaluating to True� then the
alternative selected will be the �rst whose guard evaluates to True� Actually�
it is good programming practice to write order�independent code� so it is
better if guards are mutually exclusive� Also� writing order�independent code
aids in the portability of your program
 then your program is more like a
set of equations� For example� if your guards are mutually exclusive then
porting your Miranda program to a parallel machine in which guards may be
evaluated simultaneously will not require any alterations to your code�

An equivalent de�nition for pdifference is

pdifference x y � x�y� if x �� y

� y�x� otherwise

The reserved word otherwise can be regarded as a convenient abbreviation
for the condition which returns True when all previous guards return False�

Pattern matching on basic types

Pattern matching is one of the more powerful features of functional languages�
As we shall see in Chapter �� it is most powerful when used with composite
structures such as lists because it lets you delve into the structure� With the
basic types it can still be used� though it tends to appear much like case
analysis� The idea is that the formal parameters are not just variables� but
�patterns� to be matched against the actual parameter� For example�

More constructions �

bitNegate

 num �� num

��pre
 x � � �� x � �

��post
 �x � � � b � �� �� �x � � � b � ��

�� where b� bitNegate x

bitNegate � � �

bitNegate � � �

Thus pattern matching can be used to select amongst alternative de�ning
equations of a function based on the format of the actual parameter� This
facility has a number of advantages� including enhancing program readability
and providing an alternative to the use of guards� which are in�exible at times�
Furthermore� pattern matching often helps the programmer when considering
all possible inputs to a function� For example� it is clear from the above
equations that bitNegate is currently only de�ned for the values � and ��
The notions of disjointedness and exhaustiveness apply to patterns just as

for guards� similarly� for non�disjoint patterns� it is the �rst match that is
used� The otherwise guard corresponds to a �nal pattern that is simply a
variable �and so matches everything�� Note that pattern matching and guards
can be used together

sign

 num �� num

��pre
 none

��post
 �n�� � sign n��� ��

�� �n�� � sign n��� �� �n�� � sign n � ���

sign � � �

sign n � �� if n��

� ��� if n��

Special facilities for pattern matching on natural numbers

Patterns can be used to de�ne functions which operate on natural numbers
�that is� non�negative integers�� The operator � is special as it can be used
in patterns of the form p�k where p is a pattern and k is a positive integer
constant� A number x will match the pattern only if x is an integer and x �
k� For example� y�� matches any positive integer� and y gets bound to that
integer�minus�one� So�

pred

 num �� num

��pre
 nat�x�

��post
 �pred x � � � x � �� �� �x � � � pred x � x���

pred � � �

pred �n � �� � n

�nat�x� means that n is a natural number
 int�x� � x � ��� Notice that
patterns can contain variables� This de�nition describes a version of the
predecessor function� The pattern n�� can only be �matched� by a value if

�� Functional programming in Miranda

n matches a natural number forcing pred to be de�ned for natural numbers
only� Here the patterns are exhaustive and hence cover all natural numbers�
Furthermore� we know that the order of equations will not be important in
this example since the patterns are disjoint as no natural number can match
more than one pattern�

Pre�x and in�x functions

In Miranda� enclosing an in�x operator in parentheses converts it to an
ordinary pre�x function� which can be applied to its arguments like any other
function� This can be useful in the context of Chapter 	� where functions are
used as arguments of other functions

Miranda ��� 	 �

��

Miranda ��� 	 �

False

Conversely� user�de�ned binary functions can also be applied in an in�x form
by pre�xing their name with the special character

Miranda � smaller 	

	

One simple way of determining whether it is a good idea to have an
operator as an in�x one is to see if it is associative � �x f y� f z � x

 f�y f z� This is because x f y f z is then unambiguous�

Local de�nitions

In mathematical descriptions one often �nds expressions that are quali�ed by
a phrase of the form �where � � � �� The same device can also be used in
function de�nitions� For example� balance�i where i � interestRate�����
In fact� we have already used where in the de�nition of fourthroot in
Chapter �� The special reserved word where can be used to introduce local
de�nitions whose context �or scope� is the expression on the entire right�hand
side of the de�nition which contains it� For example�

f x y � x � a� if x � ��

� x � a� otherwise

where a � square �y���

In any one equation the where clause is written after the last alternative�

Summary ��

Its local de�nitions govern the whole of the right�hand side of that equation�
including the guards� but do not apply to any other equation�
Furthermore� following a where there can be any number of de�nitions�

These de�nitions are just like ordinary de�nitions and may therefore contain
nested wheres or be recursive de�nitions�
Note that the whole of the where clause must be indented� to show that it

is part of the right�hand side of the equation� The evaluator determines the
scopes of nested wheres by looking at their indentation levels� In the next
example it is clear that the de�nition of g is not local to the right�hand side
of the de�nition of f� but those of y and z are

f x � g y z

where y � �x��� �

z � �x��� � x

g x z � �x � �� � �z���

Let us consider some uses of local de�nitions� Firstly� as in fourthroot� they
can be used to avoid repeated evaluation� In an expression a subexpression
may appear several times� for example

z��smaller x y���smaller x y�

Here the subexpression �smaller x y� appears twice� and will be evaluated
twice� which is rather wasteful� By using a local de�nition we can give a
name to an expression and then use the name in the same way that we use
a formal parameter

z�w�w where w � smaller x y

If you like� you can view this use of local de�nitions as a mechanism for
extending the existing set of formal parameters�
Local de�nitions can also be used to decompose compound structures or

user�de�ned data types by providing names for components �as will be seen
later� in Chapter ���
It is good programming practice to avoid unnecessary nesting of de�nitions�

In particular� use local de�nitions only if logically necessary� Furthermore�
a third level of de�nition should be used only very occasionally� Failure to
follow these simple programming guidelines will result in de�nitions that are
di�cult to read� understand and reason about�

��� Summary

� Miranda has three primitive data types
 numbers� truth�values and
characters �num� bool and char respectively��

�� Functional programming in Miranda

� Miranda also provides many built�in operators and functions�
� A new function is de�ned in three stages� The function�s type is
declared� the function is speci�ed in a comment and then it is de�ned
using one or more equations�

� Although type declarations and speci�cations are not mandatory for
functions� it is good programming practice to include them with all
de�nitions�

� Miranda is layout�sensitive in that it assumes that the entire right�hand
side of an equation lies directly below or to the right of the �rst symbol
of the right�hand side �excluding the initial ��� This is the o�side rule�

� To aid in the portability of programs try� wherever possible� to write
order�independent code� This means writing mutually exclusive guards
or patterns�

� Functions �or other values� can also be de�ned locally to a de�nition�
Such local de�nitions can be used to avoid repeated evaluation or to
decompose compound structures� as will be seen in Chapter ��

��� Exercises

�� Write de�nitions for the functions speci�ed in the exercises at the end
of Chapter ��

�� De�ne istriple� which returns whether the sum of the squares of two
numbers is equal to the square of a third number� A Pythagorean triple
is a triple of whole numbers x� y and z that satisfy x� � y� � z�� The
Miranda function istriple should be declared as follows

istriple

 num �� num �� num �� bool

��pre
 none

��post
 �istriple a b c� ��� a�b�c are the lengths of the

�� sides of a right angle triangle

The function takes as arguments three numbers and returns true if they
form such a triple� Evaluate the function on the triples

�
 �

� �� ��

�� �
 ��

and check that the �rst two are Pythagorean triples and the third is
not� Do this exercise twice
 �rst assume that c is the hypotenuse and
then rewrite it so that any of the parameters could be the hypotenuse�

Chapter �

Recursion and induction

��� Recursion

Suppose we want to write a function sum n which gives us the sum of the
natural numbers up to n� that is�

Pn
i�� i

sum n � � � � � � � � � � � �� �n� �� � n
Inspecting the above expression we see that if we remove ��n� we obtain an
expression which is equivalent to sum�n � ��� at least if n � ��
This suggests that

sum n � sum �n� �� � n �����

We say that the equation exhibits a recurrence relationship� To complete
the de�nition we must de�ne a base case which speci�es where the recursion
process should end� For sum this is when the argument is �� Thus the
required de�nition is

sum

 num �� num

��pre
 nat�n�

��post
 sum n � sum�i�� to n� i

sum n � �� if n � �

� sum �n��� � n� if n � �

�sum�i�� to n� i� is intended to be a typewriter version of �
Pn

i�� i�� If we
just used the recurrence relation ������ forgetting the base case� then we would
obtain non�terminating computations as illustrated in Figure ���� Function
de�nitions� like that of sum� that call themselves are said to be recursive�
Obviously� the computation of sum involves repetition of an action�
Often when describing a function � such as sum � there are in�nitely

many cases to consider� In conventional imperative programming languages
this is solved by using a loop� but in functional languages there are no
explicit looping constructs� Instead� solutions to such problems are expressed

��

�� Recursion and induction

:
:

sum �

�sum �� � �

�sum �� � � � �

�sum �� � � � � � �

�sum ��� � � � � � � � �

a black hole

Figure ���

by de�ning a recursive function� Clearly� the recursive call must be in terms
of a simpler problem � otherwise the recursion will proceed forever�
The example given above illustrated the technique of writing recursive

functions� which can be summarised as follows

�� De�ne the base case�s��

�� De�ne the recursive case�s�

�a� reduce the problem to simpler cases of the same problem�

�b� write the code to solve the simpler cases�

�c� combine the results to give required answer�

��� Evaluation strategy of Miranda

We have seen that evaluation is a simple process of substitution and
simpli�cation� using primitive and user�de�ned function de�nitions� More
precisely� a function application is rewritten �reduced� in two steps� First the
actual parameters are substituted for the formal parameters in the de�ning
equation of the function
 this is called instantiation� Then the application is
replaced by the instantiated right�hand side expression �see Figure �����
During evaluation an expression may contain more than one redex � place
where reduction is possible� But in functional languages if an expression has
a well�de�ned value then the �nal result is independent of the reduction route
�this is known as the Church�Rosser property�� However� an evaluator selects

Euclid�s algorithm ��

square �

thus we get

square n � n"n

square � � �"�

Figure ���

the next reduction �from the set of possible ones� in a consistent way� This
is called the evaluator�s reduction strategy� We will not discuss reduction
strategies here except to mention that Miranda�s reduction strategy is called
lazy evaluation� Lazy evaluation works as follows

Reduce a particular part only if its result is needed�

Therefore� because of lazy evaluation you can write function de�nitions such
as

f n � �� if n � �

� n � y� otherwise

where y � f�n���

Although the scope of the local de�nition of y is the entire right�hand side of
the equation for f� we know that by lazy evaluation y will only be evaluated
if it is needed �that is� if and only if the �rst guard fails��

��� Euclid�s algorithm

Consider the problem of �nding the greatest common divisor� gcd� of two
natural numbers

gcd

 num �� num �� num

��pre
 nat�x� � nat�y�

��post
 nat�z� � z�x � z�y �ie z is a common divisor�

�� ��A�n
nat�n�x � n�y �� n�z�

�� �ie any other common divisor divides it�

�� where z � �gcd x y�

We have introduced some notation in the pre� and post�conditions

� �A� just means �� that is� �for all�� written in standard keyboard
characters� � would be �E�� Chapter �� contains more detailed

�� Recursion and induction

descriptions of logical symbols�

� ��� means �divides�� or �is a factor of�� �Note that it is not the same
symbol as the division sign �� ���

zjx� �y
 nat� �x � z � y�

� When we write �y
 nat�� we are using the predicate nat as though it were
a Miranda type� though it is not� You can think of �nat�y�� and �y
 nat�
as meaning exactly the same� namely that y is a natural number� But
the type�style notation is particularly useful with quanti�ers

�y
 nat� P means �y� �nat�y� � P �
��there is a natural number y for which P holds��

�y
 nat� P means �y� �nat�y�� P �
��for all natural numbers y� P holds��

Be sure to understand these� and in particular why it is that � goes naturally
with �� and � with �� They are patterns that arise very frequently when
you are translating from English into logic �see Chapter ����

There is a small unexpected feature� You might expect the post�condition
to say that any other common divisor is less than z� rather than dividing it

in other words that z is indeed the greatest common divisor� There is just a
single case where this makes a di�erence� namely when x and y are both ��
All numbers divide �� so amongst the common divisors of x and y there is
no greatest one� The speci�cation as given has the e�ect of specifying

gcd � � � �

Proposition ��� For any two natural numbers x and y� there is at most one
z satisfying the speci�cation for �gcd x y��

Proof Let z� and z� be two values satisfying the speci�cation for �gcd x y��
we must show that they are equal� All common divisors of x and y divide z��
so� in particular� z� does� Similarly� z� divides z�� Hence for some positive
natural numbers p and q� we have z� � z�� p� z� � z�� q� so z� � z�� p� q
It follows that either z� � �� in which case also z� � �� or p� q � �� in which
case p � q � �� In either case� z� � z�� �

Note that we have not actually proved that there is any value z satisfying
the speci�cation� only that there cannot be more than one� But we shall soon
have an implementation showing how to �nd a suitable z� so then we shall
know that there is exactly one possible result�

Euclid�s algorithm relies on the following fact�

Proposition ��� Let x and y be natural numbers� y 	� �� Then the common
divisors of x and y are the same as those of y and �x mod y��

Recursion variants ��

Proof For natural numbers x and y there are two fundamental properties of
integer division� which in fact are enough to specify it uniquely
 if y 	� �
�pre�condition�� then �post�condition�

x � y � �x div y� � �x mod y�

� � �x mod y� � y

Suppose n is a common divisor of y and �x mod y�� That is� there is a p
such that y � n� p and a q such that �x mod y� � n� q� Then

x � y � �x div y� � �x mod y� � n� �p � �x div y� � q�

so n also divides x� Hence every common divisor of y and �x mod y� is also a
common divisor of x and y� The converse is also true� by a similar proof� �
It follows that� provided y 	� �� �gcd x y� must equal �gcd y �x mod y���

�Exercise� show this�� On the other hand� �gcd x �� must be x� This is
because x j x and x j �� and any common divisor of x and � obviously divides
x� so x satis�es the speci�cation for �gcd x ��� We can therefore write the
following function de�nition

gcd x y � x� if y��

� gcd y �x mod y�� otherwise

Question� does this de�nition satisfy the speci�cation�
Let us follow through the techniques that we discussed in Chapter �� Let

x and y be natural numbers� and let z � �gcd x y�� We must show that
z has the properties given by the post�condition� and there are two cases
corresponding to the two clauses in the de�nition

y � �
 z � x We have already noted that this satis�es the speci�cation�
y 	� �
 z � �gcd y �x mod y�� What we have seen shows that provided that z

satis�es the speci�cation for �gcd y �x mod y��� then it also satis�es the
speci�cation for �gcd x y�� as required�

�

But how do we know that the recursive call gives the right answer� How do
we know that it gives any answer at all� �Conceivably� the recursion might
never bottom out�� Apparently� we are having to assume that gcd satis�es its
speci�cation in order to prove that it satis�es its speci�cation�

��� Recursion variants

The answer is that we are allowed to assume it� But there is a catch� This
apparently miraculous circular reasoning must be justi�ed� and the key is to
notice that the recursive call uses simpler arguments
 the pair of arguments
y with x mod y is �simpler� than the pair x with y� in the sense that the
second argument is smaller
 x mod y � y�

�	 Recursion and induction

As we go down the recursion� the second argument� always a natural
number� becomes smaller and smaller� but never negative� This cannot go on
for ever� so the recursion must eventually terminate� This at least proves
termination� but it also justi�es the circular reasoning� For suppose that
gcd does not always work correctly� What might be the smallest bad y for
which gcd x y may go wrong �for some x�� Not � � gcd x � always works
correctly� Suppose Y is the smallest bad y� and gcd X Y goes wrong� Then
Y � �� so

gcd X Y � gcd Y �X mod Y �

But X mod Y is good �since X mod Y � Y �� so the recursive call works
correctly� so �we have already reasoned� gcd X Y does also � a contradiction�
We call the value y in gcd x y a recursion variant for our de�nition of

gcd� It is a rough measure of the depth of recursion needed� and always
decreases in the recursive calls�
Let us now state this as a reasoning principle

In proving that a recursive function satis�es its speci�cation� you
are allowed to assume that the recursive calls work correctly �
provided that you can de�ne a recursion variant for the function�

A recursion variant for a function must obey the following rules

� It is calculated from the arguments of the function�
� It is a natural number �at least when the pre�conditions of the function
hold�� For instance� in gcd the recursion variant is y�

� It is calculated �trivially� from the function�s arguments �x and y��

� It always decreases in the recursive calls� For the recursive call
gcd y �x mod y�� the recursion variant x mod y is less than y� the
variant for gcd x y�

Though these rules may look complicated when stated in the abstract like
this� the underlying intuitions are very basic� Although we did not mention
this explicitly when deriving gcd� the driving force behind recursive de�nitions
is usually to reduce the computation to simpler cases� If you can quantify
this notion of simplicity� �nd an approximate numerical measure for it� then
that is probably the basic idea for your recursion invariant�

Another example � multiplication without multiplying

Some processor chips can add and subtract� but do not have hardware
instructions to multiply or divide� These operations have to be programmed�
Here� in Miranda� is one method for doing this� It uses multiplication and
integer division by �� but these are easy in binary arithmetic�

Recursion variants �

A similar method can be used for exponentiation � computing xn by using
xn div � �Exercise ��

mult

 num �� num �� num

��pre
 nat�n�

��post
 mult x n � x�n

��recursion variant � n

mult x n � �� if n��

� y� if n�� � n mod ���

� y�x� otherwise

where y����mult x�n div ���

The recursion variant is n� The recursive call� used to calculate y� has
variant n div �� It is used when y is used� that is� the second and third
alternatives� and in both of these we have n � � and so n div � � n � the
variant has decreased�

Proposition ��� mult satis�es its speci�cation

Proof There are three cases� corresponding to the three alternatives in the
de�nition

n � �
 mult x n � � � x� n�

n � �� n even
 mult x n� � � �mult x�n����
� � � x� �n���
� x� n

n � �� n odd
 mult x n� � � �mult x��n� ������ � x
� � � x� ��n� ����� � x
� x� �n� �� � x � x� n

�

More general properties of functions

The reasoning principle stated above concerned a particular property of a
function� namely whether it satis�ed its speci�cation� But actually� the
argument applied to any property of the function that you are interested
in proving
 as long as you have a recursion variant� then you can reason
circularly by assuming that the property holds for recursive calls�

For example� consider the sum function of Section ���� The recursion variant
in sum n is easy � it is just n itself� Having found a recursion variant�
we can now prove the properties of sum� such as the following well�known
equation

Proposition ��� �n� �sum n � �
�n�n� ���

�� Recursion and induction

Proof In the non�recursive case� n � �� this is obvious
 both sides of the
equation evaluate to �� In the recursive case we have

sum n� sum�n� �� � n
� �

�
�n� ����n� �� � �� � n because we assume the equation holds

for the recursive call
� �

�
n�n� �� by a little algebra�

�

��� Mathematical induction

The reasoning principle given in the preceding section was really a packaged
form of mathematical induction� There are two basic forms of induction and
they are equivalent to each other �see Exercise ��
 simple induction and
course of values induction� Both should be familiar from school mathematics�
but let us review them here� Both are used for proving properties of the
natural numbers� that is� non�negative whole numbers� and both have the same
underlying idea� You give a general method that shows how you can prove a
property for the natural numbers one by one� starting at � and working up�

Simple induction

The ingredients of a simple induction proof are as follows

� a predicate P or property on the natural numbers for which you wish
to prove �n
 nat� P �n� �P holds for all natural numbers n��

� the base case
 a proof of P ����

� the induction step
 a proof of �n
 nat� �P �n� � P �n � ���� in other
words a general method that shows for all natural numbers n how� if
you had a proof of P �n� �the induction hypothesis�� you could prove
P �n� ���

Given these� you can indeed deduce �n
 nat� P �n�� This is the Principle
of Mathematical Induction� The separate parts can be put in the box
proof format� as can be seen in Figure ���� If you were using ordinary
�forall�arrow�introduction�� as in Chapter ��� you would produce a box proof
such as that given in Figure ���� You could then consider two cases� M � �
and M � N � � for some N � and so you end up more or less as in induction�
proving P ��� and P �N � ��� However� in induction� you have a free gift� the
induction hypothesis P �N�� as an extra assumption� Without it� the proof
would be di�cult or even impossible�

Mathematical induction ��

���

P ��� base case

N � nat P �N�
��� induction step

P �N 	 ��

�n � nat� P �n� simple induction

Figure ��� Box proof for simple induction

M � nat
���

P �M�

�n � nat� P �n� �I

Figure ���

To show how this works� suppose� for instance� you want to prove P ��

����
The ingredients of the induction show that you can �rst prove P ���� from
this you can obtain a proof of P ���� from this a proof of P ���� and so on up
to P ��

���� Of course� you never need to go through all these steps� It is
su�cient to know that it can be done� and then you know that P does hold
for �

���

Another way of justifying the induction principle is by contradiction
 if
�n
 nat� P �n� is false� then there is a smallest n for which P �n� is false�
What is n� Certainly not �� for you have proved the base case� So taking
N � n� �� which is still a natural number� we have P �N� because n was the
smallest counter�example� But now the induction step shows how to prove
P �N � ��� that is� P �n�� a contradiction� The following is a simple example�

Proposition ��� For all n�

nX
i��

i� �
n

�
�n� ����n � ��

Proof Let P �n� be the above equation� considered as a property of n� We
prove �n
 nat� P �n� by simple induction�

base case
 n � � and both sides of the equation are ��

�� Recursion and induction

induction step
 Suppose that P holds for N � then in the equation for N ���

LHS �
PN��

i�� i�

�
PN

i�� i
� � �N � ���

� N

�
�N � ����N � �� � �N � ��� by the induct� hyp�

� N��
�
�N � ����N � ��

� RHS

�

Course of values induction

Think of how P ��

��� was to be proved under simple induction
 you work
up to P ��

���� and then use the induction step� But in working up to
P ��

���� you actually proved P for all natural numbers less than �

��� and
it might be helpful in the induction step to use this additional information�
This idea leads to a revised� course of values induction step �with n playing
the role of what before was n� ��

a general proof that shows how� if you already know that P holds
for all m � n� you can show that P also holds for n� In logical
notation�

�n
 nat� ��m
 nat� �m � n� P �m��� P �n��

Curiously enough� this also replaces the base case� When you put n � �� the
induction step says if you know P �m� for all m � �� then you can deduce
P ���� but there are no m � � �remember that we are dealing with natural
numbers�� so of course you know P �m� for all m � �� When proving the
induction step� the e�ect is that for n � � there is no special assumption that
can be used and P ��� has to be proved just as before�
The Principle of Course of Values Induction says that if you prove the
course of values induction step� then you can deduce �n
 nat� P �n�� In box
proof form� a course of values induction proof has the form seen in Figure ����
The following is an example�

Proposition ��� Every positive natural number is a product of primes�
�Recall that n is prime i� it cannot be written as p � q unless either
p � �� q � n� or the other way round��

Proof Let P �n� be the property �n is a product of primes� for positive
natural numbers n�
Let n be a positive natural number� and suppose �course of values induction

hypothesis� that every m � n is a product of primes� We show that n is� too�

Double induction Euclid�s algorithm without division ��

N � nat

�m � nat� �m � N � P �m�� induction hypothesis
���

P �N�

�n � nat� P �n� course of values induction

Figure ���

If n is itself prime� then we are done� �This also deals with the special
case n � � for which there are no positive natural numbers � n�� If n is not
prime� then we can write n � p� q for some natural numbers p and q� neither
of them equal to �� Then p and q are both less than n� so by induction each
is a product of primes� Hence n is� too� �

We have actually cheated here in order to illustrate the technique in an
uncomplicated way� The proof does not illustrate course of values induction on
the natural numbers� but a similar principle on the positive natural numbers�
The correct proof proves the property P �n� de�ned by

P �n�
def
� �n � �� n is a product of primes�

Then there are two cases� If n � �� then P �n� is trivially true
��false � anything� is always true�� Otherwise� n � �� when we use the proof
as given� When we reach n � p � q� p and q must both be positive� so that
from P �p� and P �q� we deduce that p and q are both products of primes� �
This example shows a common feature of course of values induction� It

proves P for n by reducing to simpler cases �p and q� both smaller than n��
which we assume have already been done�

��� Double induction � Euclid�s algorithm without division

Consider the problem of �nding the greatest common divisor again but this
time replace the division in Euclid�s algorithm by repeated subtraction

gcd x y � gcd y x� if x�y

� x� if y��

� gcd �x�y� y� otherwise

y is no longer a recursion variant� because in the third clause y does not
decrease
 x does instead� It is still possible to concoct a recursion variant in
this case� namely�

r�x� y� � �� �x� y�� if x � y

�� Recursion and induction

� �� �x� y� � �� if x � y

However� this is somewhat arti�cial� The reasoning is that our notion of
simplicity is not based simply on a numerical measure� but on the idea of
lexicographic order

�x�� y�� is simpler than �x� y� i�
y� � y or
y� � y and x� � x

You could say that y is almost a recursion variant� certainly it never increases
in recursive calls �unlike x�� But in the case where y remains unchanged as a
variant� it must be helped by x decreasing�

There is a quite general principle of well�founded induction �see Appendix A�
that uses this idea� but� rather than going into the generalities� here we shall
show how to use a double induction�

Proposition ��� This de�nition of gcd satis�es the speci�cation�

Proof We use course of values induction to prove �y
 nat� P �y�� where
P �y�

def
� �x
 nat� ��gcd x y� terminates and satis�es its post�condition�

Therefore let us take a natural number Y � and assume that P �y� holds for
all y � Y � Having �xed our Y � we now use course of values induction again
to prove P �Y �� that is� �x
 nat� Q�x�� where
Q�x�

def
� �gcd x Y � terminates and satis�es the post�condition�

Therefore� let us now take a natural number X� and assume that Q�x�
holds for all x � X� We prove Q�X�� There are three cases� as follows� for
the three alternatives in the de�nition of gcd

X � Y
 gcd X Y � gcd Y X� By the induction hypothesis for y� P �X�
holds� so �gcd Y X� terminates and satis�es its post�condition� But the
result z in the post�condition for �gcd Y X� is also good for �gcd X Y ��
so that is OK�

X � Y and Y � �
 �gcd X Y � terminates immediately with value X� and we
have argued before that X is the greatest common divisor for X and ��

X � Y and Y � �
 �gcd X Y � � �gcd �X � Y � Y �

X � Y is a natural number less than X �because Y � ��� so by the
induction hypothesis on x we know Q�X � Y �� Hence �gcd �X � Y � Y �
terminates giving the greatest common divisor for �X � Y � and Y � and
this is also the greatest common divisor for X and Y since X and Y
have the same common divisors as do �X � Y � and Y �

By induction on x� we now know �x
 nat� Q�x�� that is� P �Y �� Hence by
induction on y we have �y
 nat� P �y�� as required� �

Summary ��

��� Summary

� A recursive function is a function which calls itself� Functions that
require the consideration of a very large number of cases �possibly
in�nitely many� are typically de�ned as recursive functions�

� Generally� a recursive function de�nition has a base case which speci�es
where the recursion process should end�

� When you write a recursive de�nition� also de�ne a recursion variant for
it�

� The existence of a recursion variant proves termination and allows you
to reason inductively about the function�

� The circular reasoning is justi�ed by mathematical induction�
� Simple induction in box proof form�

���

P ��� base case

N
 nat P �N� induction hypothesis
���

P �N � �� induction step

�n
 nat� P �n� simple induction

� Course�of�values induction
N
 nat �m
 nat� �m � N � P �m�� induction hypothesis

���

P �N� induction step

�n
 nat� P �n� course of values induction

� You usually hide the induction by using the �circular� reasoning principle
for recursive de�nitions �once you obtain the recursion variant��

� Sometimes you need to make the induction explicit� for example� in
double induction�

� Miranda�s reduction strategy is called lazy evaluation� In lazy evaluation
the evaluator evaluates an expression only if its result is needed�

��	 Exercises

�� The factorial of a non�negative integer n is denoted as n� and de�ned as

factorial n
def
� ��n� ��� �n� ��� �n� �� � � �� �� �

�� is de�ned to be �� Write a function factorial to de�ne the factorial
of a non�negative integer� Ignore the possibility of integer over�ow�

�� Recursion and induction

�� Write a function remainder which de�nes the remainder after integer
division using only subtraction� Ignore the possibility of division by zero�

�� Write a function divide which de�nes integer division using only addition
and subtraction� Ignore division by zero�

�� Here are some exercises with divisibility
 show for all natural numbers
x� y and z that

�a� � j y �b� x j y � x j z � y � z � x j �y � z�
�c� x j � �d� x j y � y j z� x j z
�e� x j x �f� x j y � x j z � x j �y � z�
�g� � j y � y � � �h� x j y � y j x� x � y

�� �a� Use the method of �multiplication without multiplying� to compute
exponentiation� power x n� xn� making use of the facts that

xn � xn div � � xn div � if n is even

and

xn � xn div � � xn div � � x if n is odd

�b� Write a Miranda function� multiplications� that computes the
number of multiplications performed by power�x� n� given the value
of n� How would this compare with the corresponding count of
multiplications for a more simple�minded recursive calculation of xn�
using xn�� � xn
 x�

�� �Tricky� Specify and de�ne a function middle to �nd the middle one of
three numbers� Prove that the de�nition satis�es its speci�cation�

�� Prove that the principles of simple induction and course of values
induction are equivalent� In other words� though course of values
induction looks stronger �can prove more things�� it is not�
First� show that any simple induction proof can easily be converted into
a course of values induction proof�
Second� show that if you have a course of values induction proof of
�n
 nat� P �n� then its ingredients can be used to make a simple
induction proof of �n
 nat� ��m
 nat� �m � n� P �m���� and that this
implies �n
 nat� P �n��

	� Newton�s method for calculating a square root
p
x works by producing

a sequence y�� y�� � � � of better and better approximations to the answer�
where

yn�� �
�

�
�yn �

x

yn
�

The starting approximation y� can be very crude � we shall use x� ��
We shall deem yn accurate enough when j y�n � x j� epsilon� epsilon
being some small number de�ned elsewhere in the program �for instance�
epsilon � ������ Here is a Miranda de�nition

Exercises ��

newtonsqrt

num �� num

��pre
 x �� � � epsilon � �

��post
 abs�r�r � x� � epsilon � r �� �

�� where r � newtonsqrt x

newtonsqrt x � ns� x �x���

ns�

num �� num �� num

��pre
 x �� � � epsilon � �

�� � a �� � � a�a �� x � �a � � �� x � ��

��post
 abs�r�r � a� � epsilon � r �� �

�� where r � ns� x a

ns� x a � a� if a�a � x � epsilon

� ns� x ��a � x�a����� otherwise

�The last three pre�conditions of ns� need some thought� a � � looks
reasonable enough� a � � � x � � avoids the risk of dividing by zero�
and a� � x is not strictly necessary but� as we shall see� it makes it
easier to �nd a recursion variant��

�a� Show that newtonsqrt and ns� satisfy their speci�cation� assuming
that the recursive call in ns� works correctly� This is easy� and the
proof is �nished once we have found a recursion variant� that is the
di�cult part�

�b� If x � �� a� � x and b � �
��a �

x

a
� �for instance� if a � yn and

b � yn���� show that

� � b� � x �
�

�
��� x

a�
��a� � x� � �

�
�a� � x�

�c� The basis for a recursion variant is a� � x� As this gets smaller�
the approximation gets better and we are making progress towards
the answer� However� as it stands it cannot be a recursion variant
because it is not a natural number� �Unlike the case with natural
numbers� a positive real number can decrease strictly in�nitely many
times� by smaller and smaller amounts�� Use �b� to show that a
suitable variant is

max��� � � entier�log�
a� � x

epsilon
��

�This gives a number that � by �b� � decreases by at least �
each time� entier turns it into an integer� and dividing a� � x by
epsilon ensures that this integer is a natural number except for the
last time round� which is coped with by max��� � � � � ����

Chapter �

Lists

��� Introduction

The various data types encountered so far� such as num and bool� are capable
of holding only one data value at a time� However� it is often necessary to
represent a number of related items of data in some way and then be able
to have a single name which refers to these related items� What is required
is an aggregate type� which is a data type that allows more than one item
of data to be referenced by a single name� Aggregate types are also called
data structures since they represent a collection of data in a structured and
orderly manner�
In this chapter we introduce the list aggregate type� together with the
various prede�ned operators and functions in Miranda that manipulate lists�
We shall also see how to use lists of characters to represent strings�

��� The list aggregate type

Lists are used to list values �the elements of the list� of the same type� and
they can be written in Miranda using square brackets and commas� The
following are examples of lists of numbers� Booleans� other lists� and functions
� notice how we also use square brackets for describing the list types� �In
mathematics square brackets are also used for bracketing expressions� but the
two uses are distinguishable by context��

!�����" is of type !num"

!False�False�True" � !bool"

!!���"�!"�!�"" � !!num""

!�������" � !num �� num �� num"

The third example is a valid list since the elements of the list have the

�	

The list aggregate type �

same type� they are all lists of numbers� The empty list !"� which has no
elements� is rather special because it could be of type !�"� where the symbol
� represents any type� �In fact� if you enter !"

 in Miranda� which asks for
the type of !"� the system will respond !�"�� Similarly� the fourth example
illustrates a valid list since all its elements have the same type� namely
functions that map two numbers to a number�
A list !x" with just one element is known as a singleton list� Two lists

are equal if and only if they have the same values with the same number of
occurrences in the same order� Otherwise they are di�erent� so the lists

!���" !���" !�����" !�����" !�����"

are all di�erent even though they have the same elements � and ��

Concatenation

The most important operator for lists is �� �called concatenate or append��
which joins together two lists of the same type to form a single composite
list� For example�

!�����"��!���" � !���������"

We shall see shortly that there is another method for building up lists� called
cons� none the less �� is usually conceptually more natural� and it is often
useful in speci�cations� We can formalize the condition that a value x is an
element of a list xs as

�us� vs� �xs � us��!x"��vs�

Note that� like � and �� �� is associative
 the equation

xs���ys��zs� � �xs��ys���zs

always holds� and so you might as well write xs��ys��zs� In fact� there is no
need for brackets for any number of lists appended together� Concatenating
any list xs with the empty list !" returns the given list� This is called the
unit law and !" is the unit �just like � for � or � for �� with respect to ��

xs��!" � !"��xs � xs

List deconstruction

The function hd �pronounced head� selects the �rst element of a list� and
tl �pronounced tail� selects the remaining portion

hd !�����" � �

tl !�����" � !���"

�� Lists

Notice the type di�erence � the result of hd is an element� that of tl is
another list� It is an error to apply either of these functions to an empty
list� and so appropriate tests must be carried out �using guards or pattern
matching� to avoid such errors�

Indexing and �nding lengths of lists

A list can be indexed by a natural number n in order to �nd the value
appearing at a given position using the # in�x operator

!��������" # � � ��

!�����������" # � � ��

Note that the �rst element of the list has index �
 xs#� � hd xs� Thus� one
would use the index n � � for the nth element of a list�
The pre�x operator $ returns the length of a list �that is� the number of

elements that it contains�

$!" � �

$!x" � �

$!�����������" � �

$�xs��ys� � �$xs� � �$ys�

Cons

The cons �for construct� operator
 is an inverse of hd and tl� It takes a
value and a list �of matching types� and puts the value in front to form a
new list� for example�

�
!����
" � !������
" � �
�
�

!"

x
xs � !x"��xs

hd �x
xs� � x

tl �x
xs� � xs

xs � �hd xs�
�tl xs�� if xs �� !"

Some convenient notations for lists

The special form !a��b"� where a and b are numbers� denotes the list of
numbers !a�a���a��� � � �b" in increasing order from a to b inclusive� This
will be !" if a � b�

The list aggregate type ��

Lists of characters �also called strings� can alternatively be denoted by using
double quotation marks� For example� �hello��

Miranda �cow� �� �boy�

cowboy

An important feature of strings is how they are printed�

Miranda �cowboy�

cowboy

Miranda !�c���o���w���b���o���y�"

cowboy

Miranda �this line has �none newline�

This line has

one newline
The double quotation marks do not appear in the output and special characters
are printed as the character they represent� This printing convention gives
programmer control over the layout of results�

Cons as constructor

From the human point of view� there is often nothing to indicate that one end
of a list should be given any preference over the other� However� functional
programming interpreters store the elements in a manner such that those
elements from one end are much more accessible than those from the other�
Imagine a list as having its elements all parcelled up together� but in a
nested way� If you unwrap the parcel you �nd just one element� the head�
and another parcel containing the tail� �The empty list is special� of course��
The further down the sequence a value is� the more di�cult it is to get out�
because you have to unwrap more parcels�
From this point of view� the most accessible element in a list is the �rst�

that is� the leftmost in the !� � �" notation�
Storing a list !x��x��x��� � ��xn" in this way corresponds notationally to

writing it� using cons� as x�
x�
x�
� � �
xn
!"� and the way the function cons
is applied in the computer� for example to evaluate x
xs� does not perform
any real calculations� but� rather� just puts x and xs together wrapped up
in a wrapper that is clearly marked �
�� �The empty list is just a wrapper�
marked �empty��� A function implemented in this way is called a �constructor�
function� and there are some more examples in Chapter �� Obviously� a
crucial aspect is that you can unwrap to regain the original arguments� so it
is important that
 is �one�to�one� � di�erent arguments give di�erent results
� or� more formally�

�x� y� xs� ys� �x
xs � y
 ys� x � y � xs � ys�

�� is not one�to�one and so could never be implemented as a constructor
function� but snoc� de�ned by

�� Lists

snoc !" � !"

snoc xs x � xs��!x"

is one�to�one and could have been implemented as a constructor function for
lists instead of
� but it is not�

Special facilities for pattern matching on lists

Because every list can be expressed in terms of !" and
 in exactly one
way� we can pattern match on lists using !" and
� For example� any of the
following will match a two�element list�

a
b
!" a
!b" !a�b"

Figure ��� shows the function isempty which uses pattern matching to
determine if a given list is empty or not� Of course� an easier de�nition is

patterns

isempty !"

isempty �x
xs�

� True

� False

the �rst component

or head

the rest of

the list or tail

Figure ���

just isempty x � x � !"� Similarly� we can formally de�ne hd and tl �not
that one would need to� by

hd �x
xs� � x

tl �x
xs� � xs

Notice how pattern matching does not just express implicit tests on the
actual arguments �Are they empty or non�empty� Is the wrapper marked
empty or cons�� as we saw in Section ���� it also provides the right�hand side
of the equation with names for the unwrapped contents of the arguments�

��� Recursive functions over lists

Because of the way in which lists are stored� recursion �and also induction�
on lists is usually based on two cases
 the empty list !"� and lists of the

Recursive functions over lists ��

form �x
xs�� As an example� consider the function which �nds the length of a
list �that is� the operator $�

length

 !num" �� num

��pre
 none

��post
 length xs � $xs

length !" � �

length �x
xs� � � � �length xs�

which can be evaluated as follows

length !��������"
� ���length !�����"� by the second equation

� ������length !��"�� �

� ���������length !"��� �

� ������������� by the �rst equation
� � by built�in rules for �

Of course� we should ask what the recursion variant of length xs is� it is
just $xs � in the recursive call� the length of the argument has gone down
by �� In fact� it is almost always the case for recursively de�ned list functions
that the recursion variant is the length of some list�
That is pretty silly in this example� Either we are assuming that the length

function $ already exists� in which case there is no point in rede�ning it as
length� or we are not� in which case we cannot use it for a recursion variant�
However� there is an important lesson to be drawn regarding in�nite lists�

In�nite lists

Some lists in Miranda can be in�nite� such as the following examples

zeros � �
zeros �� � !���������"

nandup n � n
�nandup �n���� �� � !n�n���n���� � �"
cards � nandup � �� � !��������� � �"

Some calculations using these will be potentially in�nite� and you will need
to press control�C when you have had enough� For instance� evaluating zeros

or cards will start to produce an in�nite quantity of output� and evaluating
$zeros or $cards will enter an in�nite loop�

However� the lazy evaluation of Miranda means that it will not go into
in�nite computations unnecessarily� For instance� hd �tl cards� gives � as its
result and stops�
Now the problem is that we thought we had proved that length xs always

terminates� because it has a recursion variant $xs� length zeros does not

�� Lists

terminate� and this is because the variant $zeros is unde�ned �or in�nite�
which is just as bad�� The moral is

Our reasoning principles using recursion variants only work for
�nite lists�

This is a shame because in�nite lists can be useful and well�behaved� in
fact research into �nding the most convenient ways of reasoning about in�nite
lists is ongoing� However� we shall only deal with �nite lists and shall make
the implicit assumption � usually amounting to an implicit pre�condition �
that our lists are �nite� Then we can use their lengths as recursion variants�
and the �circular reasoning� technique for recursion works exactly as before�

Another example

The following is a less trivial example� It tests whether a given number
occurs as an element of a given list of numbers� Note how this condition can
be expressed precisely using �� in the speci�cation� If x is an element of xs�
then xs can be split up as us��!x"��vs� where us and vs are the sublists of
xs coming before and after some occurrence of x

isin

 num �� !num" �� bool

��pre
 none

��post
 isin x xs ��� �E�us�vs
!num"� xs � us��!x"��vs

��recursion variant � $xs

isin x !" � False

isin x �y
ys� � True� if x � y

� isin x ys� otherwise

The recursion variant in isin x xs is $xs� and we can reason that isin x xs
works correctly as follows�

Proposition ��� isin x meets its speci�cation� If xs � !"� then we cannot
possibly have xs � us��!x"��vs� for that would have length at least �� Hence
the result False is correct�
If xs has the form �y
ys� then note that� from the de�nition� isin

x �y
ys� � �x � y� � isin x ys� Hence we must prove

�x � y� � isin x ys� �us� vs� ��y
ys� � us��!x"��vs�

assuming that the recursive call works correctly� For the � direction� we have
the following two cases

�� If x � y then �y
ys� � !"��!x"��ys�

�� If isin x ys then by induction ys � U��!x"��V for some U and V and
so y
ys � �y
U���!x"��V�

Trapping errors ��

For the � direction� we have �y
ys� � U��!x"��V for some U and V �not
necessarily the same as before�� If U � !" then y � x� while if U 	� !" then
ys � �tl U���!x"��V and so isin x ys by induction� �

Although this may look a little too much like hard work� something of
value has been achieved� The post�condition is very much a global property of
the function � a property of what has been calculated rather than how the
calculation was done� It is tempting to think of the function de�nition itself
as a formal description of what the intuition �x is an element of the list xs�
means� but actually the speci�cation comes closer to the intuitive idea� You
can see this if you think how you might prove such intuitively obvious facts
as �if x is in xs then it is also in xs��ys and ys��xs for any ys� � this is
immediate from the speci�cation� but less straightforward from the de�nition�
Let us note one point that will be dealt with properly in Chapter �� but is

useful already� You could replace num in isin by char or bool or !num" or
any other type at all to give other versions of isin� but the actual de�nition
would not su�er any changes whatsoever
 it is �polymorphic� �many formed��
and it is useful to give its type �polymorphically� as � �� !�" �� bool� leaving
� to be replaced by whatever type you actually want� Indeed� Miranda itself
understands these polymorphic types�

��� Trapping errors

The evaluator will generate a run�time error message for cases where no
matching equation has been found for a particular function application�
However� it is always a good idea not to rely on this� Either convince yourself
that your program cannot cause a run�time error� or � for a defensive
speci�cation � traps errors at the program level� In this way it is possible
to generate more meaningful error messages and to bring the execution to a
graceful halt� Such program generated information may then be more useful
for debugging purposes� The prede�ned function

error

 !char" �� �

can be used for this purpose� �The � means that the result of error �
actually not a result at all because the program has aborted � can be
considered formally to be of any type
 it will not cause type checking errors��
As examples� the following are defensive speci�cations for hd and divide�
Again� the �s represent any type

hd

 !�" �� �

��pre
 none

��post
 �E�ys
!�"� xs � !hd xs"��ys

�� �� xs � !" � error message generated

hd �x
ys� � x

hd !" � error �hd of !"�

�� Lists

divide

 num �� num �� num

��pre
 none

��post
 y �� � � x � �divide x y��y

�� �� y � � � error message generated

divide x � � error �Sorry# divide by ��

divide x y � x�y

It is good programming practice to ensure that a given function performs
just one activity� So it is better if a defensive function performs the validations
�the checks� and error responses itself� but calls on a separate non�defensive
function to perform the actual calculations�

��� An example � insertion sort

Here we will consider a slightly larger problem and use a top�down design
technique to arrive at a solution� We shall look at the problem of sorting
data items into ascending order� There are many algorithms for doing this�
and one of simplest methods � though not a very e�cient one � is the
insertion sort� which sorts a list by �rst sorting the tail and then inserting
the head in the correct place� We shall look at a more e�cient algorithm�
�quick sort�� in Chapter ���

Sortedness

Let us start by specifying when a list is sorted �in ascending order� � if
xs � !x�� x�� x�� � � � � xn" then we write Sorted	xs
 to mean that informally

x� � x� � x� � � � � � xn
This can be formalized quite straightforwardly using the subscripting
operator # but another way� using ��� is as follows

Sorted	xs

def
� �us� vs
 !
 "� �a� b

� xs � us��!a� b"��vs� a � b

In other words� whenever we have two adjacent elements a and b in xs �with
a �rst�� then a � b�
Note that we used a polymorphic type � we wrote � for the type of

the elements� !�" for that of the lists� Of course� it only makes sense to
call a list sorted if we know what � means for its elements� It is obvious
how to do this when their type is num� but Miranda understands � for
many other types� For instance� values of type char have a natural ordering
�by ascii code�� and this is extended to strings �values of type !char"� by
lexicographic ordering and to values of other list types by the same method�
The sorting algorithm works �polymorphically� � it does not depend on the

An example insertion sort ��

type� We shall therefore express its type using �� but remember �as implicit
pre�conditions� that � must represent a type for which � is understood�
Let us prove some useful properties about sortedness�

Proposition ���

�� The empty list !" and singleton !x" are sorted�

�� !x� y" is sorted i� x � y�

�� If xs is sorted� then so is any sublist ys �that is� such that we can write
xs � xs���ys��xs� for some lists xs� and xs���

�� Suppose xs��ys and ys��zs are both sorted� and ys is non�empty� Then
xs��ys��zs is sorted�

Proof

�� This is obvious� because the decomposition xs � us���a� b���vs can only
be done if $xs � ��

�� This is obvious� too�

�� If ys � us��!a� b"��vs� then xs � �xs���us���!a� b"���vs��xs��� and so
a � b because xs is sorted�

�� Suppose xs��ys��zs � us��!a� b"��vs� It is clear that a and b are either
both in xs ��ys or both in ys ��zs� and so a � b�

�

The third case� set out in full using box notation �Chapters �� and ����
can be seen in Figure ����

xs is sorted

�a� b� us� vs� �xs � us���a� b���vs� a � b�

xs � xs���ys��xs�
def of sublist
assumption

�I A�B�US�VS

ys � US���A�B���VS

xs � xs���US���A�B���VS��xs� def sublist

A � B assoc of �� and ��E

ys � US���A�B���VS� A � B �I

�a� b� us� vs� �ys � us���a� b���vs�� a � b �I

ys is sorted def

Figure ���

�	 Lists

When we sort a list� we obviously want the result to be sorted� and this will
be speci�ed in the post�condition� The other property that we need is that
the result has the same elements as the argument� but possibly rearranged �
the result is a permutation of the argument�
Let us write Perm	xs�ys
 for �ys is a permutation of xs�� We shall not
de�ne this explicitly in formal terms� but use the following facts

� Perm�xs�xs�
� Perm�xs�ys� � Perm�ys�xs�
� Perm�xs�ys� � Perm�ys�zs�� Perm�xs�zs�
� Perm�us��vs��ws��xs��ys� us��xs��ws��vs��ys�� that is� vs and xs are
swapped

In fact� any permutation can be produced by a sequence of swaps of adjacent
elements� We are now ready to specify the function sort

sort

 !�" �� !�"

��pre
 none �but� implicitly� there is an ordering over ��

��post
 Sorted�ys� � Perm�xs�ys�

�� where ys � sort xs

Recall that the method of insertion sort was to sort x
xs by �rst sorting xs

and then inserting x in the correct place� We therefore de�ne

sort !" � !"

sort �x
xs� � insert x �sort xs�

The following is an example of how we intend sort to evaluate

sort !�� ��
� �"
� insert � �sort !��
� �"�
� insert � �insert � �sort !
� �"��
� insert � �insert � �insert
 �sort !�"���
� insert � �insert � �insert
 �insert � �sort !"����
� insert � �insert � �insert
 �insert � !"���
� insert � �insert � �insert
 !�"��
� insert � �insert � !��
"�
� insert � !�� ��
"
� !�� �� ��
"

Specifying insert

insert will be de�ned later � this is �top�down programming�� However� we
must specify insert immediately�

An example insertion sort �

We want to say three things about insert a xs� First� it contains the
elements of xs� in the same order� with a inserted somewhere in the middle�
Imagine that xs is prised apart as xs � xs���xs�� and then a is inserted in
the gap to give the result xs���!a"��xs�� Next� we want to say that an a is
inserted in the correct place in the middle � in other words� the result is
sorted� Finally� when we use insert in sort� its second argument is always
sorted and we expect this fact to make it easier to implement insert� This
gives us a pre�condition

insert

 � �� !�" �� !�"

��pre
 Sorted�xs�

��post
 Sorted�ys� �

�� �E�x�s�x�s
!�"� �xs � x�s��x�s � ys � x�s��!a"��x�s�

�� where ys � �insert a xs�

sort is correctly implemented

That is to say� sort will work correctly provided that insert satis�es its
speci�cation� Of course� when we do get round to implementing insert it
may have any number of errors in it and they will lead sort astray also�
but that is not the point� We can regard sort now as correct and �nished
because our reasoning about it uses the speci�cation of insert� not the
implementation� The only thing that could thwart us is if we discover that
the speci�cation of insert as it stands cannot be implemented�

Let us now prove that sort is correct� First� and crucially� we have a
recursion variant $xs for sort xs� As usual� this proves termination� at least
when xs is �nite �we could not expect that sorting an in�nite list would
terminate�� and allows us to assume that the recursive calls all work correctly�
The two alternatives in the de�nition cover all possible cases� so we must just
check that they give correct answers�

Proposition ��� sort meets its speci�cation�

Proof First we must check that !" is sorted and a permutation of !"� This
is obvious�

Next we must check sort x
xs� Let ys � insert x �sort xs�� We
can assume that sort xs is sorted and a permutation of xs� we deduce in
particular that the pre�condition of insert is satis�ed� The post�condition of
insert tells us that ys is sorted� as required� and it remains to show that ys
is a permutation of x
xs� By the post�condition of insert� there are lists ys�
and ys� such that

sort xs � ys���ys�
ys � ys���!x"��ys�

	� Lists

Hence ys is a permutation of x
ys���ys� � x
�sort xs�� which is a
permutation of x
xs because the recursive call worked correctly� �

Implementing insert

The idea in insert a xs is that we must move past all the elements of xs
that are smaller than a �they will all come together at the start of xs� and
put a in front of the rest� Hence there are two cases for insert a �x
xs�

the head is either a or x� according to which is bigger� and if a is bigger then
it must be inserted into xs

��insert was specified above

insert a !" � !a"

insert a �x
xs� � a
x
xs� if a �� x

� x
�insert a xs�� otherwise

for example�

insert � !��
��" � �
�insert � !
��"� � �
�

!�" � !����
��"

insert is correctly implemented

The recursion variant for insert a xs is $xs� The three alternatives in the
de�nition cover all possible cases� so we must just check that each one gives
a satisfactory answer�

Proposition ��� insert meets its speci�cation�

Proof For insert a !"
 we must check that !a" is sorted �this is obvious��
and that we can �nd lists xs� and xs� such that !" � xs���xs� and !a"
� xs���!a"��xs�� This is easy � take xs� � xs� �!"�
For insert a �x
xs� when x
xs is sorted and a � x� the result a
x
xs

is sorted by Proposition ��� � for !a"��!x"and !x"��xs are both sorted� To
�nd xs� and xs� such that x
xs � xs���xs� and a
x
xs � xs���!a"��xs�� we
take xs� �!"and xs� � x
xs�
The �nal case is for insert a�x
xs� when x
xs is sorted �so xs is sorted and

the pre�condition for insert is satis�ed� and a � x� let ys � insert a xs� By
induction� ys is sorted and there are lists xs� and xs� such that xs � xs���xs�
and ys � xs���!a"��xs�� It follows immediately that x
xs � �x
xs����xs��
and the result� x
ys� is �x
xs����!a"��xs��
Proposition ��� tells us that x
ys is sorted� For either xs� � !"� in

which case x
ys � !x"��!a"��xs� with both !x"��!a" and !a"��xs� �that is�
ys� sorted� or xs� 	� !"� in which case x
ys � !x"��xs����a
xs�� with both
!x"��xs� �a sublist of x
xs� and xs����a
xs�� �that is� ys� sorted� �

Another example sorted merge 	�

This completes the development of sort and insert�

��� Another example � sorted merge

In the preceding example� insertion sort� we introduced the predicates Sorted
and Perm� These are very useful in their own right� and because �at least
for Perm� a direct formalization into logic is di�cult� we used an axiomatic
approach starting from useful properties� The example in this section uses a
similar method with another useful predicate� Merge�

Merge�xs� ys� zs� means that the list zs is made up of xs and ys merged
together� That is to say� the elements of xs and the elements of ys have been
kept in the same order but interleaved to give zs� For instance�

Merge��abcd�� ������ ��ab�c�d��
�Merge��abcd�� ������ ��ba�c�d�� a and b used in wrong order
�Merge��abcd�� ������� �a�ab�c�d�� a used twice�
 not used
Merge��abcd�� ������ �ab��cd���
Merge���abd�� ��c��� ��ab�c�d��

We shall use the following properties

�� Merge�xs� ys� !"� i� xs � ys � !"

�� Merge�xs� ys� !z"� i� �xs � !z"� ys � !"� � �xs � !" � ys � !z"�

�� Merge�xs� ys� zs���zs�� i� �xs�� xs�� ys�� ys��
�xs � xs���xs� � ys � ys���ys� �Merge�xs�� ys�� zs�� �Merge�xs�� ys�� zs���

Note that the right�to�left parts can be written more simply� as

�� Merge�!"� !"� !"�

�� Merge�!z"� !"� !z"�
Merge�!"� !z"� !z"�

�� Merge�xs�� ys�� zs�� �Merge�xs�� ys�� zs���
Merge�xs���xs�� ys���ys�� zs���zs��

If the left�to�right direction of ��� seems di�cult to understand� think of xs�
and ys� as the parts of xs and ys that go into zs�� and xs� and ys� as the
rest�

Let us now look at sorted merge� The idea is that if you have two sorted
lists� then it is quite easy to merge them into a sorted result� Imagine
merging two �les by reading from the inputs and writing to the output� At
each stage� the item to write is the smaller of the two front input items� The
following is a Miranda version

	� Lists

smerge

 !�" �� !�" �� !�"

��pre
 Sorted�xs� � Sorted�ys�

��post
 Sorted�zs� � Merge�xs�ys�zs�

�� where zs � smerge xs ys

��recursion variant � $xs � $ys

smerge !" ys � ys

smerge �x
xs� !" � x
xs

smerge �x
xs� �y
ys� � x
�smerge xs �y
ys��� if x �� y

� y
�smerge �x
xs� ys�� otherwise

It is easy enough to see that this works correctly in the �rst two cases� The
fourth is just like the third� so we shall concentrate on that� We must show
the following�

Suppose x
xs and y
ys are both sorted� and that x � y� Let
ws � �smerge xs �y
ys��� The pre�conditions for this are satis�ed �xs and y
ys
are both sorted�� so we know that ws is sorted and that Merge�xs� y
ys� ws��
We must show that Merge�x
xs� y
ys� x
ws� �this is almost immediate�� and
that x
ws is sorted� The intuitive reason why x
ws is sorted is easy enough
to see� ws is sorted� and x is less than all the elements of ws � these are
either from xs and are � x because x
xs is sorted� or they are from y
ys
and are bigger than x because y is the smallest and x � y� We could quite
reasonably be satis�ed with this argument� but let us also show it slightly
more formally by going back to the de�nition of sortedness�

Suppose x
ws � us��!a�b"��vs� If us � !" � then x � a and ws � b
vs�
Two possibilities arise because Merge�xs� y
ys� b
vs�� namely that b is either
hd xs or y� If b � hd xs� then x
xs� which is sorted� is !"��!x�b"�� �tl xs�
and so x � b giving a � b� If b � y� then x � b by assumption giving
a � b� If us is non�empty� then ws � �tl us���!a�b"��vs� and so a � b
because ws is sorted�

The formal version� written in box notation� appears in Figure ���

��� List induction

The reasoning techniques using recursion variants are usually all we need
for proving that functions satisfy their speci�cations� but for more general
properties they may break down� This is particularly the case when we want
to compare the results of di�erent calls of the same function� The following
is an example with a function to reverse a list�

reverse

The reverse function is de�ned as follows

List induction 	�

� x � y

� Merge�xs� y�ys� ws�

� ws is sorted x�xs is sorted assumptions

�I US�VS�A�B �

� x�ws�US���A�B���VS

� US � �� �US �� ��

� case � of �E

� US � ��

� x � A

�	 ws � B�VS

�� B � hd xs � B � y def Merge

�� B � hd xs

�� x�xs � �����x�B���tl xs

�� x � B �x�xs sorted�

�� A � B eqsub

B � y

x � y assumed

A � B eqsub

�� A � B �E����

�� case � of �E

�� US �� ��

�� ws � tl US���A�B���VS

�	 A � B �ws sorted�

�� A � B �E�
�

�� x�ws � US���A�B���VS� A � B �I

�� x�ws is sorted �I

Figure ���

reverse

 !�" �� !�"

��pre
 none

��post
 reverse xs is the reverse of xs

��recursion variant for reverse xs is $xs

reverse !" � !"

reverse �x
xs� � �reverse xs���!x"

It is not clear how this function ought to be speci�ed� But bearing in

	� Lists

mind that the speci�cation is supposed to say how we can make use of the
function� and bearing also in mind our idea that �� is more useful than cons
in speci�cations because it does not prefer one end of the list to the other�
let us try to elaborate the speci�cation by giving some useful properties of
the function

� �reverse !"� � !"

� �reverse !x"� � !x"
� �reverse �xs��ys�� � �reverse ys����reverse xs�

These are enough to force the given de�nition� for we must have

reverse �x
xs� � reverse �!x"��xs�
� �reverse xs����reverse !x"�
� �reverse xs���!x"

There still remains the question of whether the de�nition does indeed satisfy
these stronger properties� The �rst two are straightforward from the de�nition�
but the third is trickier� It is certainly not obvious whether the recursion
variant method gives a proof�

The principle of list induction

What we shall use is a new principle� the Principle of List Induction� It
is the exact analogue of simple mathematical induction� but applied to lists
instead of natural numbers�
Recall that each natural number is either � or N � � for some N � and so
simple induction requires us to prove a property P in the base case� P ����
and also in the other cases� P �N � ��� But that was not all� In the other
cases the principle gave us a valuable free gift� the induction hypothesis� by
allowing us to assume P �N�� Proving P �N � �� from P �N� was the induction
step� Using boxes� an induction proof is shown in Figure ��� List induction is

���

P ���

N � nat P �N� hypothesis
���

P �N 	 ��

�n � nat� P �n� simple induction

Figure ���

similar� but uses the fact that every list is either !" or x
xs for some x and
xs� It says

List induction 	�

Let P �xs� be a property of lists xs� To prove �xs
 !
 "� P �xs�� it is enough
to prove

base case
 P �!"��
induction step
 P �x
xs� on the assumption of the induction hypothesis� P �xs��

The box proof version of list induction appears in Figure ����

���

P ����

x � �� xs � � � � P �xs� hypothesis
���

P �x�xs�

�ys � � � �� P �ys� list induction

Figure ���

Remember� All lists here are assumed to be �nite� The induction principle
will not tell you anything about in�nite lists�
The principle can be justi�ed in the same way as the principle of simple

mathematical induction � if P does not hold for all lists xs� then what is
a shortest possible list for which it fails� Surely not !"� if we have proved
the base case� and if it is x
xs then xs is shorter� so P �xs� holds� and the
induction step tells us that P also holds for x
xs � a contradiction�
Alternatively� it can be justi�ed using simple induction � see Exercise ���

However� more important than the justi�cation is knowing how to use the
principle�

Application to reverse

Proposition ��� Let xs and ys be lists� Then
�reverse �xs��ys�� � �reverse ys����reverse xs�

Proof We use list induction on xs to prove �xs
 !
 "� P �xs�� where
P �xs�

def
� �ys
 !
 "� �reverse �xs��ys�� � �reverse ys����reverse xs�

base case
 xs� !"

LHS � �reverse �!"��ys�� � �reverse ys�
� �reverse ys���!" unit law
� �reverse ys����reverse !"� � RHS

induction step
 Assume P �xs�� then in the equation for P �x
xs�

LHS � reverse �x
xs��ys�

	� Lists

� �reverse �xs��ys����!x" de�nition
� ��reverse ys����reverse xs����!x" induction
� �reverse ys����reverse �x
xs�� de�nition
� RHS

�

Note how although we have two lists to deal with� xs and ys� in this example
we only need to use induction on one of them
 xs� If you try to prove the
result by induction on ys� you will �nd that the proof just does not come out�
To illustrate the advantage of using our stronger properties �Proposition ����
instead of just the de�nition� let us prove the intuitively obvious property
that if you reverse a list twice you get the original one back� If you try to
prove this directly from the de�nition� you will �nd that it is not so easy�

Proposition ��� Let xs be a list� Then �reverse �reverse xs�� � xs

Proof We use list induction on xs�

base case
 xs � !" reverse �reverse !"� � �reverse !"� � !"

induction step
 When the list is not empty�

�reverse �reverse�x
xs���
� �reverse ��reverse xs� ��!x"��
� �reverse !x"����reverse �reverse xs��
� !x"��xs by induction
� x
xs

�

��	 Summary

� A list is a sequence of values� its elements� all of the same type� Lists
are widely used in functional languages and are provided as a built�in
type in Miranda in order to provide some convenient syntax for their
use� for example� !" �the empty list�� !�������"�

� If xs is a list whose elements are of type �� then xs is of type !�"�
� The append operator �� on lists puts two lists together� For example�
!������
"��!������	" � !������
�������	"� It satis�es the laws

xs��!" � !"��xs � xs unit laws
xs���ys��zs� � �xs��ys���zs associativity

As a consequence of associativity� if you append together several lists�
you do not need any parentheses to show in which order the appends
are done�

� As long as a list xs is not empty� then its �rst element is called its
head� hd xs� and its other elements form its tail� tl xs �another list�� If

Exercises 	�

x is a value �of the right type� and xs a list� then x
xs � !x"��xs is a
new list� �cons of x and xs�� whose head is x and whose tail is xs�

� Some other operators on lists are $ �length� and # �for indexing��
� Every list can be expressed in terms of !" and
 in exactly one way�
Thus pattern matching can be performed on lists using !" and
� This
makes
 particularly useful in implementations� though �� is usually
more useful in speci�cations�

� The special form !a��b" denotes the list of numbers in increasing order
from a to b inclusive�

� A list of characters �also called a string� can alternatively be denoted
by using double quotation marks�

� For a recursively de�ned list function� the recursion variant is usually
the length of some list�

� The principle of list induction says that to prove �xs
 !
 "� P �xs�� it
su�ces to prove

base case
 P �!"�

induction step
 �x

� �xs
 �
�� �P �xs�� P �x
 xs��

This only works for �nite lists�

��
 Exercises

�� How would the evaluator respond to the expressions !�"
!" and !"
!"�
�� How would you use $ and � to �nd the last element of a list�
�� Explain whether or not the expression !	��	�" is well�formed and if not
why not�

�� Describe the di�erence between �k� and �k��
�� De�ne a function singleton which given any list returns a Boolean
indicating if the list has just one element or not� Write a function
has�items to test if a list has exactly two items or not� Do not use
guards or the built�in operator $�

�� Consider the following speci�cation of the indexing function #

��pre
 � �� n � $xs

��post
 �E�us�vs
!�"� �$us � n � xs � us��!x"��vs�

�� where x � xs#n

�This is not quite right � the built�in # has a defensive speci�cation��
Write a recursive de�nition of this function� and prove that it satis�es
the speci�cation�
A straightforward way of writing speci�cations for list functions is often
to use the indexing function and discuss the elements of the list� For
instance� you could specify �� by

		 Lists

��pre
 none

��post
 $zs � $xs�$ys

�� � �A�n
nat� ��� �� n � $xs �� zs#n � xs#n�

�� � �$xs �� n � $xs�$ys �� zs#n � ys#�n�$xs���

�� where zs � xs��ys

Although this is straightforward� it has one disadvantage
 when we
appended the lists� we had to re�index their elements and it is not so
terribly obvious that we did the calculations correctly�
For this reason� the speci�cations in this book avoid the �indexing�
approach for lists wherever possible� and this exercise shows that even
indexing can be speci�ed using �� and $�

�� Write a de�nition of the function count

count

 � �� !�" �� num

��pre
 none

��post
 �count x ys� � number of occurrences of x in ys

For example �using strings�� count �o� �quick brown fox� � ��
The speci�cation is only informal� but try to show informally that your
de�nition satis�es it�

	� Consider the function locate of type � �� !�" �� num� locate x
ys being the subscript in ys of the �rst occurrence of the element x� or
$ys if x does not occur in ys� �In other words� it is the length of the
largest initial sublist of ys that does not contain an x�� For instance�

locate �w� �the quick brown� � ��

Specify locate with pre� and post�conditions� write a Miranda de�nition
for it� and prove that it satis�es its speci�cation�
If a character c is in a string s� then you should have

s#�locate c s� � c

Check this for some values of s and c�

� Use box notation to write the proof of Proposition ����
��� Specify and write the following functions for strings�

�a� Use count to write a function table which produces a list of the
the numbers of times each of the letters in the lowercase alphabet
and space appear in a string

table�a bad dog� � ��� �� �� �� �� �� �� �� �� �� � � � � �� ��

You may �nd it useful to de�ne a constant containing the characters
that you are counting

alphabetsp � �abcdefghijklmnopqrstuvwxyz �

Exercises 	

In writing this function you may �nd it helpful to de�ne an
auxiliary function which takes as an additional argument as� With
the auxiliary function you can then step through the letters of the
alphabet counting the number of times each letter appears in the
string passed as an argument to table�

�b� Write a simple enciphering function� cipher that uses locate� # and
alphabetsp to convert a character to a number� add a number to
it� and convert it back to a character by indexing into alphabetsp�
The type of cipher is then num �� !char" �� !char"� It should
carry out this function on every character separately in the string
it is given� to produce the encrypted string as its output�

cipher � �quick brown fox� � �swkembdtqypbhqz�
cipher ���� �swkembdtqypbhqz� � �quick brown fox�

Use the function table on a string and the same string in enciphered
form� What is the the relation between the two tables�

If you have a table generated from a large sample of typical English
text how might you use this information to decipher an enciphered
string� Can you think of a better enciphering method�

��� Consider the following Miranda de�nition

scrub

 � �� !�" �� !�"

scrub x !" � !"

scrub x�y
ys� � scrub x ys� if x�y

� y
�scrub x ys�� otherwise

�a� Write informal pre� and post�conditions for scrub�

�b� Use list induction on ys to prove that for all x and ys�

scrub x�scrub x ys� � scrub x ys

�c� Prove that for all x� ys and zs�

scrub x �ys��zs� � �scrub x ys����scrub x zs�

Now consider the following more formal speci�cation for scrub

��pre
 none

��post
 �isin�x�s�

�� �� �E�xs
!�" ��A�y
� �isin�y�xs� �� y�x�

�� �� Merge�xs�s�ys��

�� where s�scrub x ys

� Lists

�d� Show that the de�nition of scrub satis�es this�

�e� Show by induction on s that the speci�cation speci�es the result
uniquely� �In fact� it speci�es both ys and xs uniquely��

�f� Use �e� to show �b� and �c� without induction�

��� Use the ideas of the preceding exercise to specify count more formally
and prove that your de�nition satis�es the new speci�cation�

��� Suppose f

 !�" �� num satis�es the following property

�xs� ys
 !
 "� f �xs��ys� � �f xs� � �f ys�

Prove that

�xs
 !
 "� f �reverse xs� � f xs

��� Rewrite the proof for Proposition ��� using box notation�
��� Use induction on ws to show that if xs is sorted and can be written as

us��!a"��ws��!b"��vs then a � b� �The de�nition of sortedness is the
special case when ws � !"��

��� In Proposition ��� it is proven that if xs��ys and ys��zs are both sorted�
and ys is non�empty� then xs��ys��zs is sorted� Rewrite this proof in
box notation�

��� Suppose that you believe simple induction on natural numbers� but not
list induction� Use the box notation to show how� if you have the
ingredients of a proof by list induction of �xs
 !
 "� P �xs�� you can
adapt them to create a proof by simple induction of �n
 nat� Q�n�
where

Q�n�
def
� �xs
 !
 "� �$xs � n� P �xs��

Show that �assuming� as usual� that all lists are �nite� �xs
 !
 "� P �xs�
and �n
 nat� Q�n� are equivalent�

�	� Give speci�cations �pre�conditions and post�conditions� in logic for the
following programs�

�a� ascending

 !num" �� bool� returns true if the list is ascending�
false otherwise�

�b� primes

 num �� !num"� primes n returns a list of the primes
up to n�

�c� unique

 !num" �� bool� returns true if the list has no duplicates�
false otherwise�

Chapter �

Types

��� Tuples

Recall three properties of lists of type !�" �for some type ��

�� They can be as long as you like�
�� All their elements must be of the same type� ��
�� They can be written using square brackets� !���������"�

There is another way of treating sequences that relaxes ��� �you can include
elements of di�erent types� at the cost of restricting ��� �the length becomes
a �xed part of the type�� They are written using parentheses and are called
tuples�
The simplest are the
�tuples �length ��� or pairs� For instance� ������

����� and ����� are three pairs of numbers� Their type is �num� num�� and
their elements are called components� A triple ���tuple� of numbers� such as
�������� has a di�erent type� namely �num� num� num��
Note that each of the types �num��num� num��� ��num� num�� num� and

�num� num� num� is distinct� The �rst is a pair whose second component is
also a pair� the second is a pair whose �rst component is a pair� and the third
is a triple� There is no concept of a one�tuple� so the use of parentheses for
grouping does not con�ict with their use in tuple formation� One advantage
of the use of tuples is that if� for example� one accidentally writes a pair
instead of a triple� then the strong typing discipline can pinpoint the error�
We can de�ne functions over tuples by using pattern matching� For example�
selector functions on pairs can be de�ned by

fst

 ��� ��� �� �

snd

 ��� ��� �� ��

fst �x�y� � x

snd �x�y� � y

�

� Types

Both fst and snd are polymorphic functions� they select the �rst and
second components of any pair of values� Neither function works on any other
tuple�type� Selector functions for other kinds of tuples have to be de�ned
separately for each case�
The following is a function which takes and returns a tuple �the quotient

and remainder of one number by another�

quotrem

 �num� num� �� �num� num�

quotrem �x�y� � �x div y� x mod y�

quotrem is de�ned to be a function of just one argument �a pair of numbers�
and its de�nition is read as
 quotrem takes a pair and returns a pair�
Thus using tuples we can construct multiple arguments or results which are
packaged up in the form of a single value� You can also mix the types of
components� for instance the pair ���� !True"� has type �num� !bool"��
The following is an example using lists� zip takes two lists � which should
be of the same length � and �zips� them together� making a single list of
pairs� For instance�

zip !�����" !��
��" � !���������
�������"

�It does not matter if � and �� are two di�erent types��

zip

 !�" �� !��" �� !������"

��pre
 $xs � $ys �for zip xs ys�

��post
 difficult to make logical specification much

�� different from definition� but see Exercise �

��recursion variant � $xs

zip !" !" � !" ��� different types for !" here

zip �x
xs� �y
ys� � �x�y�
�zip xs ys�

�Note that the pre�condition ensures that there is no need to consider cases
where one argument is empty and the other is not��

To unzip a list� you want in e�ect two results � the two unzipped parts�
So the actual �single� result can be these two paired together� for example�

unzip !���������
�������" � �!�����"�!��
��"�

unzip

 !������" �� �!�"�!��"�

��pre
 none

��post
 zip xs ys � ps

�� where �xs� ys� � unzip ps

��recursion variant � $ps�

unzip !" � �!"�!"�

unzip �x�y�
ps � �x
xs�y
ys�

where �xs�ys� � unzip ps

More on pattern matching
�

This illustrates in two places how pattern matching can be used to give names
to the components of a pair
 �rst in �x�y�
ps� to name the components
of the head pair in the argument� and second in the where part for the
components of the result of the recursive call�

��� More on pattern matching

Patterns in general are built from variables and constants� using constructors�
For example�
x � �x�
�y�

are a variable� a constant and a triple built from two variables and a constant
using the ���� constructor for triples� The components of a structured pattern
can themselves be arbitrary patterns� thus allowing nested structures of any
depth� The constructors which can be used in patterns include those of tuple
formation �� � ��� � ��� list formation !� � ��� � �"� and those of user�de�ned types
�which we will see later in this chapter�� In addition we have also seen the
special facilities for pattern matching on lists and natural numbers� Patterns
are very useful in the left�hand side of function de�nitions for two reasons

�� They provide the right�hand side with names for subcomponents of the
arguments�

�� They can serve as guards�

Pattern matching can also be combined with the use of guards

last �x
xs� � x� if xs � !"

� last xs� otherwise

last !" � error �last of empty�

Patterns in the above de�nition are disjoint� In Miranda� patterns may
also contain repeated variables� In such cases identical variables implicitly
express the condition that their corresponding matched expressions must also
be identical� For example�

equal

 � �� � �� bool

equal a a � True

equal a b � False

Such patterns match a value only when the parts of the value corresponding
to the occurrences of the same repeated variable are equal�
Finally� patterns can be used in conjunction with local de�nitions � where

parts� as in unzip to decompose compound structures or user�de�ned data
types� In the following example if the value of the right�hand side matches
the structure of the given pattern� the variables in the pattern are bound to
the corresponding components of the value� This is useful since it enables the
programmer to decompose structures and name its components

� Types

� � �where

!��
�x�y" � !��
�	��"

�a�b�c�a� � fred

�quot�rem� � quotrem ��
���

For the second de�nition to make sense the type of fred must be a ��tuple�
If the match fails anywhere� all the variables on the left will be unde�ned and
an error message will result if you try to access those values in any way�

��� Currying

Now that you have seen pairs� it might occur to you that there are di�erent
ways of supplying the arguments to a multi�argument function� One is the
way that you have seen repeatedly already� as in

cylinderV

 num �� num �� num

cylinderV h r � volume h �areaofcircle r�

Another is to pair up the arguments� into a single tuple argument� as in

cylinderV�

 �num� num� �� num

cylinderV� �h�r� � volume h �areaofcircle r�

You might think that the di�erence is trivial� but for Miranda they are quite
di�erent functions� with di�erent types and di�erent notation �the second must
have its parentheses and comma��
To understand the di�erence properly� you must realize that the �rst type�

num �� num �� num� is actually shorthand for num �� �num �� num�� cylinderV
is really a function of one argument �h�� and the result of applying it�
cylinderV h� is another function� of type num �� num� cylinderV h r is
another shorthand� this time for �cylinderV h� r� that is� the result of
applying the function cylinderV h to an argument r�
This simple device for enabling multi�argument functions to be de�ned

without the use of tuples is called currying �named in honour of the
mathematician Haskell Curry�� Therefore� multi�argument functions such as
cylinderV are said to be curried functions� cylinderV is the curried version
of cylinderV��

Partial application

One advantage of currying is that it allows a simpler syntax by reducing the
number of parentheses �and commas� needed when de�ning multi�argument
functions� But the most important advantage of currying is that a curried
function does not have to be applied to all of its arguments at once� Curried

Currying
�

functions can be partially applied yielding a function which requires fewer
arguments�
For example� the expression �cylinderV �� is a perfectly well�formed

expression which is a partial application of the function cylinderV� This
expression is an anonymous function �that is� a function without a name�
which maps a number to another number� Once this expression is applied to
some argument� say r� then a number is returned which is the volume of a
cylinder of height � and base radius of r�
Partial application is extremely convenient since it enables the creation of

new functions which are specializations of existing functions� For example� if
we now require a function� volume cylinder���� which computes the volume
of a cylinder of height ��� when given the radius of the base� this function
can be de�ned in the usual way

volume�cylinder���

 num �� num

volume�cylinder��� radius � cylinderV ��� radius

However� the same function can be written more concisely as
volume�cylinder��� � cylinderV ���

or indeed we may not even de�ne it as a separate function but just use the
expression �cylinderV ���� in its place whenever needed�
Even more importantly� a partial application can also be used as an actual

parameter to another function� This will become clear when we discuss
higher�order functions in Chapter 	�

Order of association

For currying to work properly we require function application to �associate to
the left�
 for example� smaller x y means �smaller x� y not smaller �x y��
Also� in order to reduce the number of parentheses required in type
declarations the function type operator �� associates to the right� Thus num

�� num �� num means num �� �num �� num� and not �num �� num� �� num�
You should by now be well used to omitting these parentheses� but as always�
you should put them in any cases where you are in doubt�

Partial application of prede�ned operators

Any curried function can be partially applied� be it a user�de�ned function
or a prede�ned operator or function� Similarly� primitive in�x operators can
also be partially applied� We have seen how parenthesized operators can be
used just like ordinary pre�x functions in expressions� This notational device
is extended in Miranda to partial application by allowing an argument to be
also enclosed along with the operator �see Figure ����� For example�

� Types

���� is the �reciprocal� function
���� � �halving� �
���� � �cubing� �
���� � �successor� �
�#�� � �head� �

? * 2? * 2? * 2 ? * 2

�

��

��

�

Figure ���

These forms can be regarded as the analogue of currying for in�x operators�
They are a minor syntactic convenience� since all the above functions can be
explicitly de�ned� Note that there is one exception which applies to the use of
the minus operator� ��x� is always interpreted by the evaluator as being an
application of unary minus operator� Should the programmer want a function
which subtracts x from numbers then a function must be de�ned explicitly�
More examples of such partial applications are given in Chapter 	� where

simple higher�order functions are discussed�

��� Types

As we have seen from Chapter �� expressions and their subexpressions all
have types associated with them�

function of type
 num �� �num �� num�

expression of type
 num

operand of type
 num operand of type
 num

� �

Figure ���

There are basic or primitive types �num� bool and char� whose values are
built�into the evaluator� There are also compound types whose values are

Types
�

constructed from those of other types� For example�

� tuples of types�
� function types �that is� from one given type to another��
� lists of a given type�

Each type has associated with it certain operations which are not meaningful
for other types� For example� one cannot sensibly add a number to a list or
concatenate two functions�

Strong typing

Functional languages are strongly typed� that is� every well�formed expression
can be assigned a type that can be deduced from its subexpressions alone�
Thus any expression which cannot be assigned a sensible type �that is� is not
well�formed� has no value and is regarded as illegal and is rejected by Miranda
before evaluation� Strong typing does not require the explicit type declaration
of functions� The types can be inferred automatically by the evaluator�
There are two stages of analysis when a program is submitted for evaluation

�rst the syntax analysis picks up �grammatical� errors such as !������"�

and if there are no syntax errors then the type analysis checks that the
expressions have sensible types� picking up errors such as � �� True� Before
evaluation� the program or expression must pass both stages� A large number
of programming errors are due to functions being applied to arguments of
the wrong type� Thus one advantage of strong typing is that type errors
can be trapped by the type checker prior to program execution� Strong
typing also helps in the design of clear and well�structured programs� There
are also advantages with respect to the e�ciency of the implementation of
the language� For example� because all expressions are strongly typed� the
operator � knows at run�time that both its arguments are numeric it need
not perform any run�time checks�

Type polymorphism

As we have already seen with a number of list functions� some functions have
very general argument or result types� For example�

id x � x
The function id maps every member of the source type to itself� Its type is
therefore � �� � for some suitable type �� But � suits every type since the
de�nition does not require any particular properties from the elements of ��
Such general types are said to be generic or polymorphic �many�formed� types

	 Types

and can be represented by type variables� In Miranda there is an alphabet of
type variables� written �� ��� ���� etc�� each of which stands for an arbitrary
type� Therefore� id can be declared as follows

id

 � �� �
Like other kinds of variables� a type variable can be instantiated to di�erent
types in di�erent circumstances� The expression �id 	� is well�formed and has
type num because num can be substituted for � in the type of id� Similarly�
�id double� is well�formed and has type num �� num� Similarly� �id id� is
well�formed and has type � �� � because the type �� �� �� can be substituted
for �� Thus� again like other kinds of variables� type�variables are instantiated
consistently throughout a single function application� The following are some
more examples

sillysix

 � �� num

sillysix x � �

second

 � �� �� �� ��

second x y � y

Notice that in a type expression all occurrences of the same type variable
�for example� ��� refer to the same unknown type at every occurrence�

Example � comparison operators

The comparison operators �� �� ��� and so on� are all polymorphic
 the two
values being compared must be of the same type� but it does not matter
what that type is� Each operator has type � �� � �� bool�
Having said that� not all choices of � are equally sensible� id

 � �� � is
polymorphic because it genuinely does not care what type its argument is �
the algorithm is always the same� The comparisons� on the other hand� have
to use di�erent algorithms for di�erent types �such polymorphism is often
called ad hoc�� The following are the ad hoc methods used�

� On num� the comparisons are numeric in the standard way�
� On bool� False � True�
� On char� the comparisons are determined by the ASCII codes for
characters� For instance� �a� � �p� because �a� comes before �p� in the
ASCII table�

� On list types !�"� comparisons use the lexicographic� or �alphabetical�
ordering� It does not work only with lists of type !char"� For instance�
with lists of numbers the same idea tells you that

!�" � !�� �" � !�� �" � !�" � !�� �"

� On tuple types� comparisons are similar� For instance� for pairs�
�a� b� � �c� d� i� �a � c� � ��a � c� � �b � d��

Types

� On function types� no comparisons are possible� �Consider� for example�
the problems of computing f � g� that is� �x� f x � g x��

Example � the empty list

As we have seen before� the empty list !" has type !�"� Being used in a
particular expression may force !" to have more re�ned �speci�c� type� For
instance� in !!"�!�""� !" must have type !num" to match that of !�"�

Type synonyms

Although it is a good idea to declare the type of all functions that we de�ne�
it is sometimes inconvenient� or at least uninformative� to spell out the types
in terms of basic types� For such cases type synonyms can be used to give
more meaningful names� For example�

name �� !char"

parents �� �name� name�

age �� num

weight �� num

date �� �num� !char"� num�

A type synonym declaration does not introduce a new type� it simply attaches
a name to a type expression� You can then use the synonym in place of the
type expression wherever you want to� The special symbol �� is used in the
declaration of type synonyms� this avoids confusion with a value de�nition�
Type synonyms can make type declaration of functions shorter and can help
in understanding what the function does� For example�

databaseLookup

 name �� database �� parents

Type synonyms can not be recursive� Every synonym must be expressible in
terms of existing types� In fact should the program contain type errors the
type error messages will be expressed in terms of the names of the existing
types and not the type synonyms�

Type synonyms can also be generic in that they can be parameterized by
type variables� For example� consider the following type synonym declaration

binop � �� � �� � �� �

Thus binop num can be used as shorthand for num �� num �� num� for example�

smaller� cylinderV

 binop num

��� Types

��� Enumerated types

We can de�ne some simple types by explicit enumeration of their values �that
is� explicitly naming every value�� For example�

day

� Mon � Tue � Wed � Thu � Fri � Sat � Sun

direction

� North � South � East � West

switch

� On � Off

bool

� False � True ��predefined

Note that the names of these values all begin with upper case letters� This is
a rule of Miranda� Values of enumerated type are ordered by the position in
which they appear in the enumeration� for instance

Mon � Tue � � � �

These are easily used with pattern matching� For instance� suppose a point
on the plane is given by two Cartesian coordinates

point �� �num� num�

A function to move a point in some direction can be de�ned by

move

 direction �� num �� point �� point

move North d �x�y� � �x�y�d�

move South d �x�y� � �x�y�d�

move East d �x�y� � �x�d�y�

move West d �x�y� � �x�d�y�

It is possible to code these values as numbers� and indeed in some
programming languages that is the only option� However� this is prone to
error� as the coding is completely arti�cial � there is no natural way of
associating numerical values with �for example� days of the week� so you are
at risk of forgetting whether day � was supposed to be Sunday or Monday� A
single lapse will introduce errors into your program� With enumerated types
you do not have to remember such coding details� and� also� the strong typing
guards against meaningless errors such as trying to add together two days of
the week�

��� User�de�ned constructors

Recall the idea of constructors � �packaging together several values in a
distinctive wrapper�� The main examples that you have seen so far have been
cons and tupling� but there are ways of de�ning your own�

User�de�ned constructors ���

You have just seen the simplest examples� Each value �for example� Mon�
Tue� Wed� etc�� in an enumerated type is a trivial� �nullary� constructor that
is nothing but the distinctive wrapper � no values packaged inside� �You
may remember that the empty list could be considered like this�� It is also
easy to de�ne non�trivial constructors�

For example� we can de�ne a new datatype distance to express the fact
that distances may be measured by di�erent units� The subsequent de�nition
of addDistances is designed to eliminate the possibility of a programmer
attempting to mix operations on distances of di�erent kinds� Note again that
constructor names in Miranda must start with upper case letters

distance

� Mile num � Km num � NautMile num

addDistances

 distance �� distance �� distance

addDistances �Mile x� �Mile y� � Mile �x�y�

addDistances �Km x� �Km y� � Km �x�y�

addDistances �NautMile x� �NautMile y� � NautMile �x�y�

addDistances x y � error �different units of measurement#�

In this way it is guaranteed that adding distances of di�erent measurement
units �or attempting to multiply� divide or subtract two distances� is not
performed accidentally� This is because the prede�ned arithmetic operators
will not operate on any datatype other than num� Therefore� programmers
are forced to think carefully about their intentions and are helped to avoid
mistakes by the type checker� This style of programming is clearly much
better than simply using nums to represent all three kinds of distance� The
constructor functions �Mile� Km and NautMile� are essential in the datatype
de�nitions� for otherwise there will be no way of� say� determining whether �
has type num or distance�

Notice that the type bool need not be considered as primitive� It can be
de�ned by two nullary constructors True and False �both of type bool��
Similarly� one may argue that type char can also be de�ned using nullary
constructors Ascii�� � �Ascii���� But characters� like numbers and lists� are
more of a special case as they require a di�erent� non�standard naming and
printing convention�

Another example is that of union types� Suppose� for instance� you have
mixed data� some numeric and some textual� You can use constructors to say
what sort each item of data is� by

data

� Numeric num � Text !char"

The following is an example with ��argument constructors� representing a
complex number by either Cartesian or polar coordinates

��� Types

complex

� Cart num num � Polar num num

multiply

 complex �� complex �� complex

multiply �Cart u v� �Cart x y� � Cart �u�x � v�y� �u�y � v�x�

multiply �Polar r theta� �Polar s psi� � Polar �r�s� �theta�psi�

�� and two more cases for mixed coordinates

Finally� it is also possible to have polymorphic constructors� A standard
example is pairing� Of course� this is already built into Miranda with its own
special notation ������ but just to illustrate the technique we can de�ne it in
a do�it�yourself way

diypair � ��

� Pair � ��

For instance� Pair �� !True" �our do�it�yourself version of ����!True"�� has
type diypair num !bool"� A new type can have one or more constructors�
Each constructor may have zero or more �elds�arguments of any type at
all �including the type of the object returned by the constructor�� The
constructor itself also has a type� usually a function type� So Pair has type
� �� �� �� �diypair � ����
The number of �elds taken by a constructor is called its arity� hence a
constructor of arity zero is called a nullary constructor� Constructors �like
other values� can appear in lists� tuples and de�nitions� Just as with ordinary
functions� constructor names must also be unique� Unlike ordinary functions�
constructor names must begin with a capital letter� Constructors are notionally
�applied� just like ordinary functions� However� two key properties distinguish
constructors from other functions

�� They have no rules �that is� de�nitions� and their application cannot be
further reduced�

�� Unlike ordinary functions they can appear as patterns on the left�hand
side of de�nitions�

It is always possible to de�ne �selector� functions for picking the components
of such data types� but in practice� like fst and snd for pairs� this is not
necessary� Pattern matching can be used instead�

��� Recursively de�ned types

The greatest power comes from the ability to use recursion in a type de�nition�
To illustrate the principle let us de�ne do�it�yourself lists� These really are
lists implemented in the same way as Miranda itself uses� but without the
notational convenience of
 and the square brackets� Instead� there are explicit
constructors Emptylist and Cons� and for our do�it�yourself version of !�" we
write
diylist �

� Emptylist � Cons � �diylist ��

The �recursive call� here �of diylist �� is really no more of a problem than

Recursively de�ned types ���

it would be in a function de�nition� as you should understand from your
experience with lists�
The following is another do�it�yourself type� this time without polymorphism�

It is for natural numbers

diynat

� Zero � Suc diynat

The idea is that every natural number is either �and in a unique way� Zero or
�the successor of� �one plus� another natural number� and can be represented
uniquely as Zero with some number of Sucs applied to it� For instance� � is
represented as

Suc �Suc �Suc �Suc �Suc Zero����
It is no accident that the two examples given here are exactly the types for
which you have seen induction principles
 the induction is closely bound up
with the recursion in the de�nition� and generalizes to other datatypes� We
will explore this more carefully after looking at a datatype that does not just
replicate standard Miranda�

Trees

two more trees here

a data item here

nothing�

Figure ���

By �tree� here� we mean some branching framework within which data can be
stored� In its greatest generality� each node �branching point� can hold some
data and have branches hanging o� it �computer trees grow down��� and each
branch will lead down to another node� Also� branches do not rejoin lower
down � you never get a node that is at the bottom of two di�erent branches�
To refer to the tree as a whole you just refer to its top node� because all the
rest can be accessed by following the branches down�
We are going to look at a particularly simple kind in which there are only

two kinds of nodes

� a �tree� node has an item of data and two branches�
� a �leaf� node has no data and no branches�

These will correspond to two constructors
 the �rst� Node� packages together
data and two trees and the second� Emptytree� packages together nothing

��� Types

tree �

� Emptytree � Node �tree �� � �tree ��

where � is the type of the data items�

�

Node Emptytree � �Node Emptytree
 Emptytree�

Figure ���

As an example �see Figure ����� let us look at ordered trees� Orderedness
is de�ned as follows� First� Emptytree is ordered� Second� Node t� x t� is
ordered i�

� t� and t� are both ordered�

� the node values in t� are all � x �let us say �x is an upper bound for
t����

� the node values in t� are all � x ��x is a lower bound for t����

Ordered trees are very useful as storage structures� storing data items �of type
�� as the �x� components of Nodes� This is because to check whether y is
stored in Node t� x t�� you do not have to search the whole tree� If y � x
then you have already found it� if y � x you only need to check t�� and if
y � x you check t��

Hence lookup is very quick� but there is a price
 when you insert a new
value� you must ensure that the updated tree is still ordered� The following is
a function to do this� Notice that we have fallen far short of a formal logical
account� there is a lot of English� But we have at least given a reasoned
account of what we are trying to do and how we are doing it� so it can be
considered fairly rigorous

Recursively de�ned types ���

insertT

 � �� �tree �� �� �tree ��

��pre
 t is ordered

��post
 insertT n t is ordered� and its node

�� values are those of t together with n�

insertT n Emptytree � Node Emptytree n Emptytree

insertT n �Node t� x t��

� Node �insertT n t�� x t�� if n �� x

� Node t� x �insertT n t��� otherwise

Proposition ��� The de�nition of insertT satis�es its speci�cation�

Proof If t is ordered� we must show that insertT n t then terminates giving
a result that satis�es the post�condition� We shall use the usual �circular
reasoning� technique� but note that it remains to be justi�ed because we have
not given a recursion variant� We shall discuss this afterwards�
If t � Emptytree �which is ordered�� then insertT n Emptytree terminates
immediately� giving result Node Emptytree n Emptytree� This is ordered� and
its node values are those of Emptytree �none� together with n� as required�
Now suppose that t � Node t� x t�� and assume that the recursive calls

work correctly� Since t is ordered� so� too� are t� and t�� so the pre�conditions
for the recursive calls hold� There are two cases� as follows

Case � � n � x
 insertT n t terminates� giving result r �say�
� Node �insertT n t�� x t�� From the recursive post�condition�
insertT n t� is ordered� and its node values are those of t� together
with n� Hence the node values of r are those of t�� n� x and those of t�

that is� those of t together with n� as required�
Also� r is ordered� for the following reasons� insertT n t� and t� are
both ordered� and x is a lower bound for t� because t is ordered�
x is also an upper bound for insertT n t� because the node values
are those of t� �for which x is an upper bound because t is ordered�
together with n �and x � n because we are looking at that case��

Case � � n � x� is similar� �

As promised� we must justify the circular reasoning� and the obvious way is
to �nd a recursion variant� We will show how to do this� but let us stress
right away that the technique that we are actually going to recommend is
slightly di�erent� and that the calculation of a recursion variant is just to give
you a feel for how it works�
The recursion variant technique is really a partial substitute for induction�
It is not always applicable� but when it is applicable it is very convenient and
smooth and the idea is to make it as streamlined as possible� What we shall
see in a while is that you should try to think of the tree itself as a kind of
recursion variant� �decreasing� in the recursive calls from Node t� x t� to either

��� Types

t� or t�� and that it is really unnecessary to convert it to a natural number
for the standard sort of recursion variant that you have already seen� But to
make this idea clearer we shall �rst go through the unstreamlined reasoning�

We shall de�ne a function treesize of type tree � �� num� with no
pre�conditions� satisfying the properties

treesize t� � treesize �Node t� x t��
treesize t� � treesize �Node t� x t��

Then treesize t is a recursion variant for insertT n t�

treesize

�tree �� �� num

treesize Emptytree � �

treesize �Node t� x t��

� �treesize t�� � � � �treesize t��

But how do we know that treesize t always terminates� Well� it does
not� You can de�ne in�nite trees just as easily as in�nite lists �for example�
t � Node t � t�� and for them treesize does not terminate� So we have only
actually shown that insertT n t works for �nite trees t� those for which
treesize t gives a result� Strictly speaking� we should state the �niteness as
a pre�condition for insertT� but just as for lists we will leave it implicit�

Now it is important not to see treesize as a clever trick cooked up
specially for insertT� It works equally well for any function of trees whose
recursive calls are on the left or right subtrees of the main argument� and
this is by far the most common pattern�

What is more� the numerical value of treesize t is not in itself very
important � there are many other functions satisfying the speci�cation of
treesize� all serving just as well� What you should see in the speci�cation is
the idea of the tree itself �decreasing� to a subtree� and hence serving as a
recursion variant

t�� � �Node t� x t� and
t�� � �Node t�x t�

This kind of ��� is explored more mathematically in Appendix A� which in
particular looks at what properties of ��� are needed� but for the present it
is enough to remember that it gives a more general kind of recursion variant�
If you are unsure about this you could always use treesize� but we prefer
you to use the structural induction that is described in the following section�

��	 Structural induction

The real purpose of this section is to show how to introduce new induction
principles for recursively de�ned datatypes �such as tree ��� although we are
going to start o� with non�recursive types that do not lead to induction� The
key idea is to see a direct link between the type de�nition and the box proof

Structural induction ���

structure of induction �and also� though we are not going to discuss it so
much in this section� function de�nitions��

Type de�nition Induction proofs Function de�nitions
constructors boxes cases
arguments of constructor new constants in box variables matched in pattern
recursion induction hypotheses recursion

This should become clearer with the examples� We start o� with a couple of
non�inductive ones�

� The �rst example illustrates the �rst line only of the above table
 it has
four constructors �without arguments� and four corresponding boxes�

direction

� North � South � East � West

���

P �North�

���

P �South�

���

P �East�

���

P �West�

�d
 direction�P �d�

This is really nothing more than ��introduction �see Chapter ��� and
��elimination �Chapter ��� based on an axiom

�d
 direction��d � North � d � South� d � East � d � West�

The boxes given above are a streamlined version setting out what is
needed to complete the proof �exercise � show how this works��

� The second example moves on to the second line of the table� bringing
in constructors with arguments

distance

� Mile num � Km num � NautMile num

x
 num
���

P �Mile x�

x
 num
���

P �Km x�

x
 num
���

P �NautMile x�

�d
 distance� P �d�

Again �exercise� this is no more than you would obtain from logic� using
��introduction� �� and ��elimination Chapters �� and ��� and an axiom

�d
 distance� ���x
 num� d � Mile x�
���x
 num� d � Km x� � ��x
 num� d � NautMile x��

� Natural numbers �and simple induction�

��	 Types

diynat

� Zero � Suc diynat

���

P �Zero�

N
 diynat P �N�
���

P �Suc N�

�n
 diynat�P �n�
This is exactly the simple induction you know already� but translated
into the notation for the do�it�yourself natural numbers�
Now because there is recursion in the de�nition of diynat� we have the
inductive hypothesis P �N�� and that takes this example beyond mere
logic� You could not justify the induction hypothesis solely from an
axiom such as

�n
 diynat� �n � Zero � �m
 diynat� n � Suc m�

so the induction hypothesis is a free gift� �It is not completely free� The
cost is the restriction to �nite natural numbers� even though Miranda
can cope with some in�nite ones��

� Lists

diylist �

� Emptylist � Cons � �diylist ��

���

P �Emptylist�

X

XS
 diylist
 P �XS�

���

P �Cons X XS�

�xs
 diylist
 �P �xs�
Again� this is just a familiar �list� induction translated into the
do�it�yourself notation�
Notice how because cons has two arguments� there are two new constants
X and XS in the proof box� But only its second argument is recursively
of type diylist "� so there is only one induction hypothesis� P �XS��

� Finally� we come to tree induction

tree �

� Emptytree � Node �tree �� � �tree ��

���

P �Emptytree�

t�
 tree
 P �t��

x

t�
 tree
 P �t��

���

P �Node t� x t��

�t
 tree
 �P �t�

Structural induction ��

This is an entirely new induction principle� It says that to prove
�t
 tree
 �P �t��� it su�ces to prove

� a base case� P �Emptytree��
� an induction step� P �Node t� x t��� assuming that P �t�� and P �t�� both
hold �two induction hypotheses��

�All this is subject to the usual proviso� that it only works for �nite trees �
in Miranda� in�nite trees are just as easy to de�ne as in�nite lists��
Is this induction principle really valid� As it happens� it is� and it is
justi�ed in Exercise ��� But it is not so important to understand the
justi�cation as the pattern of turning a datatype de�nition into an induction
principle�
The following is an application� �The speci�cations are not given formally�

but you can give informal proofs that the de�nitions satisfy the informal
speci�cations��

flatten

 �tree �� �� !�"

��pre
 none

��post
 the elements of flatten t are exactly the node values of t

flatten Emptytree � !"

flatten �Node t� x t�� � �flatten t�� �� �x
�flatten t���

revtree

 �tree �� �� �tree ��

��pre
 none

��post
 revtree t is t �seen in a mirror�

�� �with left and right reversed�

revtree Emptytree � Emptytree

revtree �Node t� x t�� � Node �revtree t�� x �revtree t��

We can use tree induction to prove that

�t
 tree
 � flatten �revtree t� � reverse�flatten t�

base case
 Emptytree

flatten �revtree Emptytree� �flatten Emptytree

� !"

� reverse !"

� reverse �flatten Emptytree�

induction step
 Node t� x t�
flatten �revtree �Node t� x t���
� flatten �Node �revtree t�� x �revtree t���
� �flatten �revtree t������x
 �flatten �revtree t����
� �reverse�flatten t�����!x"���reverse�flatten t��� induction

��� Types

� reverse��flatten t����!x"���flatten t���
� reverse�flatten �Node t� x t���

The pattern works for any datatype newtype that is de�ned using
constructors� The key points to remember are

� There is a box for each constructor�
� Within a box� there is a new constant introduced for each argument of
the corresponding constructor�

� There is an induction hypothesis for each argument whose type is
newtype used recursively�

� The property proved inductively is proved only for �nite values of
newtype�

� Base cases are those boxes with no induction hypotheses� induction steps
are those with at least one induction hypothesis�

� The method can be extended to mutually recursive types� each de�ned
using the others� Then you need separate properties for the di�erent
types and you prove them all together� using induction hypotheses where
there is any kind of recursion�

We will describe the general principles� though to be honest you may see
these more clearly from the examples already given�
Each alternative in a type de�nition corresponds to a box in the proof� so
let us concentrate on one alternative

thing

� ��� � A s� ��� sn � ���

A is a constructor� it has n arguments� and they are of types s�� � � � � sn� Some
of these types may be thing again� using recursion� They will give induction
hypotheses

x�
 s�
���

xn
 sn

P �xi�

P �xj�
���

P �A x� � � �xn�
�x
 thing� P �x�

Summary ���

Recursion variants

Whenever a type newtype is de�ned using constructors� there is a natural
format for recursively de�ned functions on newtype� using pattern matching

for each constructor you have a separate case with a pattern to extract the
arguments of the constructor� and the arguments of type newtype will be used
as arguments for the recursive calls of the function�

As long as you keep to this format� and also as long as you restrict yourself
to �nite elements of newtype� the �circular reasoning� will be valid and you
will not need to de�ne a recursion variant�

What is happening in e�ect is that the argument of type newtype is itself
being used as a recursion variant� �decreasing� to one of its components�
This can be justi�ed by de�ning a numerical recursion variant of type
newtype �� num that counts the number of constructors used for values of
newtype� It can also be justi�ed using the structural induction just described�

��
 Summary

� One way of combining types to form new ones is to form a tuple�type
�for example� a pair� or a triple or a quadruple�� Tuple�values are formed
by using the constructor ��� � ����

� Using tuples� functions can return more than one result by packaging
their results into a single tuple�

� A pattern serves two purposes� Firstly it speci�es the form that arguments
must take before the rule can be applied� secondly it decomposes the
arguments and names their components�

� Multi�argument functions �also called curried functions� are functions
which take more than one argument �as opposed to those functions
which operate on a single argument such as a tuple��

� An advantage of currying is that a curried function does not have to
be applied to all of its arguments at once� Curried functions can be
partially applied� yielding a function which is of fewer arguments�

� Every expression has a type associated with it and each type has
associated with it a set of operations which are meaningful for that type�

� Functional languages are strongly�typed� that is� every well�formed
expression can be assigned a type that can be deduced from its
subexpressions alone� Any expression which cannot be assigned a sensible
type �that is� is not well�typed� has no value and is rejected before
evaluation�

� Generic or polymorphic �many�formed� types are represented using type
variables �� ��� ��� etc�� each of which stands for an arbitrary type�

��� Types

Within a given type expression� all occurrences of the same type variable
refer to the same unknown type�

� You can de�ne a type by listing the alternative forms of its values
�separated by ��� Each alternative form is a constructor �whose name
begins with a capital letter� applied to some number of arguments� It
represents �the arguments packaged together in a wrapper that is clearly
marked with the constructor�s name��

� This method subsumes the ideas of enumerated types� union types and
recursively de�ned types �such as trees��

� The type de�nition determines both a natural format for recursive
de�nitions of functions taking arguments from the type� and an induction
principle for proving properties of values of the type�

� If you restrict yourself to using the �natural format of recursive de�nitions�
then you can use �circular reasoning� just as though you had a recursion
variant�

� Miranda allows in�nite values of the new types� The methods here apply
only to the �nite values�

���� Exercises

�� What are the types of �� ��� �� ��� $� #� ��� �� hd and tl�

�� Prove by induction on xs� that zip satis�es

�xs�� xs�
 !
 "��ys�� ys�
 !

"��$xs� � $ys� � $xs� � $ys� �
zip �xs���xs�� �ys���ys�� � �zip xs� ys�����zip xs� ys���

�� Prove by induction on xs that unzip satis�es its speci�cation� namely
that

�xs
 !
 "��ys
 !

"��$xs � $ys� unzip�zip xs ys� � �xs� ys��

�� �a� Explain why the expression zip �unzip ps� is not well�typed� Can
you make it well�typed by rede�ning zip�

�b� Prove by induction on ps that

�ps
 !�
�

�"��xs
 !
 "�ys
 !

"�
�unzip ps � �xs� ys�� zip xs ys � ps�

�Note� box proofs will help you� but you will need to use a little
extra thought to deal with the pattern matching��

�� Let P be a property of elements of type �� and consider a function
separate P speci�ed as follows� �How it is de�ned will depend on P ��

Exercises ���

separate�P

 !�" �� �!�"� !�"�

��pre
 none

��post
 �A�x
� ��isin�x�Ps� �� P�x��

�� � �isin�x�notPs� �� not P�x���

�� � Merge�Ps�notPs�zs�

�� where �Ps�notPs� � separate�P zs

separate P is supposed to �demerge� the elements of zs into those
satisfying P and those not�
Prove that this speci�cation speci�es the result uniquely�

�� �a� Recall the function scrub of Exercise ��� Chapter �� Show that
scrub satis�es the following speci�cation

scrub

 � �� !�" �� !�"

��pre
 none

��post
 �E�xs
!�" �xs� scrub x ys� � separate�P ys

�� where �given x� P�u� is the property u � x�

�b� Specify count in a similar way�

�c� Use the uniqueness property of the speci�cation of separate P to
prove some of the properties of scrub and count given in the
exercises in Chapter ��

�� Suppose that the names of the employees of a Department of Computing
are stored as a list of pairs� for example

!��Broda���Krysia�����Eisenbach���Susan���

��Khoshnevisan���Hessam�����Vickers���Steve��"

Declare and de�ne a function display which� given the current sta� list�
will return a string in the following format

K� Broda

S� Eisenbach

H� Khoshnevisan

S� Vickers

Assume that everyone has exactly one forename�
	� De�ne and declare the type of a function that� given any triple whose
�rst component is a pair� returns the second component of that pair�

� Give an example of an expression �that is� just one expression� that
contains two occurrences of the empty list� the �rst occurrence having
type !num" and the second type !char"�

��� Discuss whether the expression smaller �quotrem ������ is well�formed
or not� If not explain why�

��� Given the data type tree num write a function tmax which �nds the
maximum element stored in a non�empty tree� �Hint� you may use a

��� Types

function largest which returns the largest of three numbers��

��� De�ne a data type tree��� in which a value is either Empty or is a
node which holds an item and has left and right subtrees� or is a node
which holds two items and has a left� middle and a right subtree� All
subtrees are of type tree��� and all items stored in the tree have the
same type�

��� For the sake of this question� take an expression in the variable x to be
either

� a number� for example �
� a variable �any character��
� or the sum� di�erence or product of two expressions�

Below is the de�nition of a type expression in Miranda using data
constructors� It is recursive in that an expression can contain other
expressions

expr

� Number num � Variable char �

Sum expr expr �

Difference expr expr �

Product expr expr
The rules for partial di�erentiation of simple expressions with respect to
x are

n

x
� � � where n is a number

x

x
� �

y

x
� � � if y is di�erent from x

�E��E��

x

�
E�

x
�
E�

x
� where E�� E� are any exprs

�E��E��

x

�
E�

x
�
E�

x

�E��E��

x

�
E�

x
�E� � E� �
E�

x

De�ne a function differentiate of type char �� expr �� expr that
will perform these di�erentiation rules� differentiate x e representing

e

x
� For example�

differentiate x �Sum e� e�� �

Sum �differentiate x e�� �differentiate x e��

differentiate x �Number n� � Number �

��� Show that any application of your function differentiate will terminate�

Exercises ���

How might you write a simplify function to reduce such expressions to
a simpler form� For example� simplifying a multiplication by � would
result in replacing �� x and x� � by ��

��� Give speci�cations �pre�conditions and post�conditions� in logic for the
following programs�

�a� last

 !�" �� � � returns the last element of a list�

�b� front

 num �� !�" �� !�" � front n xs returns the list of the
�rst n elements of xs if n � $xs� otherwise it returns xs�

�c� make unique

 !�" �� !�"� make unique xs removes the duplicates
in xs� The elements need not be in the same order as in xs�

��� De�ne a function

sub

 expr �� char �� expr �� expr

��pre
 none

��post
 sub e� v e� � e� with e� substituted for every

�� occurrence of var v

and use structural induction on e� to prove

�e�� e�� e	
 expr �v
 char �sub e	 v �sub e� v e��
� sub�sub e	 v e�� v e��

��� This exercise requires you to implement a series of Miranda functions
which manage dictionarys stored as ordered binary trees� We de�ne

word �� !char"

dictionary

� Empty � Node dictionary word dictionary

Show that dictionary is equivalent to tree word� Write the following
functions

�a� create new dictionary� which creates an empty dictionary�

�b� add word� which adds a word to a dictionary�

�c� lookup� which returns whether a word is in the dictionary�

�d� count words� which returns the number of words in a dictionary�

�e� delete word� which deletes a word from a dictionary�

�f� find word� which returns the nth word in a dictionary� or returns
an empty word if there is no nth word�

�g� list dictionary� which produces a list of all the words in a
dictionary� one to a line� �Use a function such as flatten��

�	� Write coding and decoding functions for translating between diynat and
ordinary natural numbers

numtonat

 num �� diynat

nattonum

 diynat �� num

��� Types

Prove that

�x
 num�nattonum�numtonat x� � x

and

�n
 diynat�numtonat�nattonum n� � n�

Also� write equivalents for diynat of the ordinary arithmetic operations
and prove that they satisfy their speci�cations� for example�

add

 diynat �� diynat �� diynat

��pre
 none

��post
 �nattonum �add m n����nattonum m�� �nattonum n�

add Zero n�n �� represents ��n�n

add �Suc m�n� Suc �add m n� �� represents �m����n��m�n���

�
� Do something similar for diylist ��
��� De�ne a Miranda program to test whether a tree is ordered�
��� Specify and de�ne a Miranda function to count how many times a given
value occurs in a given ordered tree� Prove �informally but rigourously�
that the de�nition satis�es the speci�cation�

��� Use recursion to de�ne some in�nite trees�
��� Use insertT to de�ne a function build to the following speci�cation

build

 !�" �� �tree ��

��pre
 none

��post
 build xs is ordered� and its node values are exactly

�� the elements of xs�

��� Show �you can use the method of �trees as recursion variants�� that if t
is an ordered tree then flatten t is an ordered list�
Hence show that the following de�nition satis�es the speci�cation for
sort �Chapter ��

treesort

 !�" �� !�"

treesort xs � flatten �build xs�

��� Suppose P �t� is a property of trees� and consider the following sentences

Q
def
� �t
 �tree
��P �t�

R
def
� �n
 nat��t
 �tree
���treesize t � n� P �t��

Remember� as always� that we are talking only about �nite trees�

�a� Use a box proof to show that Q� R�

�b� Suppose you have a proof by tree induction of Q� Show how
you can use its ingredients to create a proof by course of values
induction of R� �Use the speci�cation of treesize��

Chapter �

Higher�order functions

You have already seen examples of functions delivering functions as results�
namely the curried functions� These were easy to understand as functions with
more than one argument� Much more subtle are functions that take other
functions as arguments � some examples from mathematics are di�erentiation
and integration� These are called higher�order functions� The argument and
result types of functions are not restricted to being values�
Di�erentiation takes one function� f � say� of type num �� num� and returns

another� usually written f �� So there is a higher�order function diff of type
�num �� num� �� num �� num such that

diff f x � f ��x� � derivative of f at x

	�� Higher�order programming

Consider the de�nitions in Figure 	��� Although they de�ne di�erent functions�
their pattern of recursion is the same� In all de�nitions a function f is applied
to every element of a list� where f is f x � x�x� f x � factorial x and
f x � x mod � � � respectively�
It is possible to express such common patterns of recursion by a few

higher�order functions� We begin by de�ning a higher�order function
corresponding to the above three de�nitions and then discuss other patterns�

	�� The higher�order function map

If f is a function of type � �� ��� then the idea is to de�ne a function
map f of type !�" �� !��" that works by applying f one by one to all the
elements of a list� This can be speci�ed in an obvious way using indices�
Since the �rst argument of map is a function f� map itself is a higher�order

���

��	 Higher�order functions

squares

 !num" �� !num"

��pre
 none

��post
 $ys � $xs

�� � �A� i
nat��� �� i� $xs��ys#i � �xs#i����

�� where ys � squares xs

squares !" � !"

squares �x
xs� � �x � x�
 �squares xs�

factlist

 !num" �� !num"

��pre
 none

��post
 $ys � $xs

�� � �A� i
nat� �� �� i � $xs �� ys#i

�� � factorial�xs#i��

�� where ys � factlist xs

factlist !" � !"

factlist �x
xs� � �factorial x�
 �factlist xs�

iseven

 !num" �� !bool"

��pre
 none

��post
 $ys � $xs

�� � �A� i
nat� �� �� i � $xs ��

�� ys#i � �xs#i mod � � �� �

�� where ys � iseven xs

iseven !" � !"

iseven �x
xs� � �x mod � � ��
 �iseven xs�

Figure 	�� Pattern of recursion

function�

In fact� the pattern of recursion expressed by map is so common in
list�manipulating programs that map is prede�ned in many evaluators or is
included in a library� for example as in Miranda�

map

 �� �� ��� �� !�" �� !��"

��pre
 none

��post
 $ys � $xs

�� � �A� i
nat� �� �� i � $xs �� ys#i � f�xs#i��

�� where ys � map f xs

map f!" � !"

map f�x
xs� � �f x�
�map f xs�

The higher�order function map ��

The de�nitions of Figure 	�� can now be more concisely de�ned in terms of
map

squares � map ����

factlist � map factorial

iseven � map f

where f x � �x mod � � ��

For example�

squares!�����" � map����!�����" � !����
"

Note that partial application is especially convenient when used in conjunction
with higher�order functions� as can be seen from the new de�nition for
squares�

Example

Integration �we mean de�nite integration� takes a function f and two limits�
a and b� and returns a number� One way of calculating the de�nite integral is
by cutting the domain of integration into equal�sized slices� and guessing the
average height of the function in each slice� For example� if the function is to
be integrated from � to � in �� slices� the slices are
 � to ���� ��� to �� and
so on up to ��� to �� The guessed height for each slice is simply the value
of the function in the centre of each slice� such as f������ for the last slice
in the example above� This assumes that the slices are rectangular�shaped�
rather than whatever curved shape the function actually has�
The guessed area of a slice is then the width ���� each� in the example�

times the guessed average height� The �nal answer is the sum of the areas
of all the slices� The type of a function integrate which calculates the area
under a curve could be declared as follows

function �� num �� num

integrate

 function �� num �� num �� num �� num

��args are �function� �start� �finish� �no� of slices�

��pre
 nat�n� � n��

��post
 �integrate f start finish n� is an estimate of the

�� integral of f from start to finish

This function is higher�order because it takes a function as one of its
arguments� The following is a de�nition of integrate

integrate f start finish n

� sum �map area !���n"�

where

width � �finish � start� � n

area i � width � f�start � width � �i������

��� Higher�order functions

	�� The higher�order function fold

Consider the following function again

sum

 !num" �� num

��pre
 none

��post
 sum xs � xs#� � ��� � xs#�$xs���

In other words� sum xs adds together the elements of xs

sum !" � �

sum �x
xs� � x � �sum xs�

You can imagine an exactly similar function for �nding the product of the
elements� replacing � by �� You also have to replace the base case result �
by � � otherwise you obtain the wrong answer for singleton lists� and so by
the recursion for longer lists�
These are so similar that you could imagine both speci�cation and de�nition
being constructed automatically once you have supplied the operator �� or �

or other possibilities� and the base case result �� or ��� Higher�order functions
allow you to do just that� We shall write fold f e for the function that �folds
together� the elements of a list using the operator f and base case result e�
The in�x notation is very convenient� so in what follows we shall often use
the Miranda convention that if f is a ��argument function then f is the same
function treated notationally as an in�x operator� For example� x gcd y is
the same as gcd x y�
Let us �rst look at the type of fold� It has three arguments� namely the
function f� e for the base case and the list xs� We do not care what list
type xs has� It is !�" for some type �� and then f must have matching types
� �� � �� � and e must have the type �� �For sum� � was num��

fold

 �� �� � �� �� �� � �� !�" �� �

For the post�condition� we require

��post
 fold f e xs � xs#� f ��� f xs#�$xs���

This is a little imprecise� It does not make it at all clear what should happen
when xs is empty� and the �� � �� is slightly fuzzy� We will look at these issues
more closely later� For the moment� what is more important is that certain
pre�conditions are implied�
First� we wrote xs#� f ��� f xs#�$xs��� without any parentheses to
show the evaluation order of the di�erent fs� We could have chosen an
evaluation order and put parentheses in� for instance

�����xs#� f xs#����� f xs#�$xs����
or

�xs#� f ��� �xs#�$xs��� f xs#�$xs��������
But rather than make such a choice� let us keep to the simple case where� as
with � and �� parentheses are unnecessary�

Applications ���

A particular case of this is when operating on three elements
 we require

�x� y� z� x f �y f z� � �x f y� f z

In fact� this particular case �the �associativity� law� is enough to show also
that parentheses are unnecessary in longer expressions � we mentioned this
with �� in Chapter ��
Here� then� is one pre�condition
 f must be associative�
The other pre�condition concerns the interaction between f and e� The

key properties �they will appear at various points of the reasoning� of � and
� in relation to � and � are that they are �identities�
 x� � � x� x
 � � x�
We shall assume a general identity law for e

�x� x f e � x � e f x

Finally� let us try to improve the post�condition by removing the dots�
We shall use the same trick as we did with reverse� namely to give strong
and useful properties �not� strictly speaking� a post�condition� of the way
fold f e works� trying to relate it to ��

fold

 �� �� � �� �� �� � �� !�" �� �

��pre
 �A� x�y�z
�� x f �y f z�

�� � �x f y� f z � f is associative�

�� � �A� x
�� x f e � x � e f x �e is an identity for f�

��post
 fold f e !" � e

�� � �A� x
�� fold f e !x" � x

�� � �A� xs�ys
!�"� fold f e �xs��ys�

�� � �fold f e xs� f �fold f e ys�

Let us note straight away that the speci�cation speci�es fold uniquely� In
other words� if f� and f� both satisfy the speci�cation� f is associative� e is
an identity for f and xs is a ��nite�� list� then

f� f e xs � f� f e xs

This is easily proved by induction on xs� the induction step coming from

f� f e �x
 xs� � �f� f e !x"� f �f� f e xs� � x f �f� f e xs�

	�� Applications

We shall implement fold later� For the moment� let us look at some
applications� sum can be de�ned as fold ��� �� �Notice how a built�in
in�x operator can be passed as an argument to a higher�order function by
placing it in parentheses�� Once you have checked that � is associative �that
is� x��y�z� � �x�y��z� and � is an identity �x�� � x � ��x�� then you know
immediately that sum �xs��ys� � �sum xs���sum ys�� You do not need to
prove it by induction� the induction will be done once and for all when we
implement fold and show that the speci�cation is satis�ed�

��� Higher�order functions

The analogous function product can be de�ned as fold ��� �� Note that
subtraction and division are not associative� and it is less obvious what one
would mean by �the elements of a list folded together by subtraction�� The
function concat is de�ned as fold ���� !"� It takes a list of lists and
appends �or concatenates� them all together�

By combining fold and map� quite a wide range of functions can be de�ned�
For instance� count of Exercise � in Chapter � can be de�ned by

count x xs � fold ��� � �map f xs�

where f y � �� if y � x

� �� otherwise

Then we can prove the properties of count without using induction� For
instance�

count x �xs��ys� � fold ��� � �map f �xs��ys��
� fold ��� � �map f xs����map f ys�
� fold ��� � �map f xs��fold ��� � �map f ys�
� �count x xs���count x ys�

	�� Implementing fold � foldr

There are two common implementations of fold� They have di�erent names�
foldr and foldl� and this is because they can also be used when f and
e do not satisfy the pre�conditions of fold� but they give di�erent answers
� actually� they correspond to di�erent bracketings� �In fact� they even have
more general types than fold� as you can see if you ask the Miranda system
what it thinks their types are�� foldr and foldl are rather di�erent� We
shall show foldr here � it uses the same idea as sum � and leave the
discussion of foldl to Exercise �� foldr f e xs calculates

�xs�� f � � � f �xs��#xs� �� f e� � � ��

foldr f e !" � e

foldr f e �x
xs� � x f �foldr f e xs�

Proposition 	�� foldr satis�es its speci�cation� We �x an associative
operator f with an identity e� and prove the three equations of the
post�condition� The �rst is immediate and the second is easy� For the third
we use induction on xs to prove �xs
 !
 "� P �xs�� where

P �xs�
def
�
�ys
 !
 "foldr f e �xs��ys� � �foldr f e xs� f �foldr f e ys�

Summary ���

base case
 P �!"�

LHS � foldr f e �!"��ys�
� foldr f e ys
� e f�foldr f e ys� �identity law�
� �foldr f e !"� f �foldr f e ys� � RHS

induction step
 assume P �xs� and prove P �x
xs�

LHS � foldr f e �x
xs��ys� � x f �foldr f e �xs��ys��
� x f �foldr f e xs� f �foldr f e ys�
� �foldr f e �x
xs�� f �foldr f e ys� � RHS

�

Although the reasoning is more complicated� foldr can also be used in
more general cases �for example� non�associative�� note also that the de�nition
of foldr has a more liberal type than fold

foldr

 ��� �� � �� �� �� � �� !��" �� �

length x � foldr fun � x where fun a acc � � � acc

Notice that built�in in�x operators can be passed as arguments to higher�order
functions by placing them in parentheses� Recall the function for building an
ordered tree from a list

build

 !�" �� �tree ��

build !" � Emptytree

build �x
xs� � insertT x �build xs�

A more concise and preferred de�nition uses fold

build x � foldr insertT Emptytree x

The evaluation sequence for an application of the new de�nition of build

illustrates the reduction sequence

build!����
"

� foldr insertT Emptytree ! �� ��
 "

� insertT � �insertT � �insertT
 Emptytree� �

� Node �Node Emptytree � Emptytree�
 �Node Emptytree � Emptytree�

	�� Summary

� Most list�processing functions can be described using higher�order
functions such as map and fold �which capture the two most common
patterns of recursion over lists�� The same approach can also be applied
to other patterns of recursion and for user�de�ned types�

� A small suite of higher�order functions to iterate over each data type
can be used to avoid writing many explicit recursive functions on that

��� Higher�order functions

type� Then an appropriately parameterized higher�order function is used
to de�ne the required function�

� The technique can be compared with polymorphism where structures
�including functions� of course� of similar shape are described by a single
polymorphic de�nition� Higher�order functions are used to describe other
recursive functions with the same overall structure�

� The functional programming �style� is to use higher�order functions since
they lead to concise and abstract programs�

� It is usually easier to understand programs that avoid excessive use of
explicit recursion and to use library and higher�order functions whenever
possible�

� Induction proofs can be done once and for all on the higher�order
functions�

	�� Exercises

�� Prove that integrate terminates� assuming that the supplied function
terminates�

�� De�ne a function sigma� which� given a function� say f� and two integers
corresponding to the lower and the upper limits of a range of integers�
say n and m� will capture the common mathematical notation of

mX
x�n

fx

�� In the imperative programming language C there is a library function
called ctoi which converts a string to an integer� For example� ctoi
����� gives ���� Declare and de�ne ctoi in Miranda� Ensure that your
de�nition is not recursive�

�� Give type declarations and de�nitions of functions curry and uncurry�
for example� uncurry f �x�y� � f x y�

�� This question is about writing a function to sort lists using what is
called a merging algorithm

�a� Recall smerge� which� given two sorted lists� merged them into a
single sorted list� Show that smerge is associative and !" is an
identity for it�

�b� Write a function mergesort which sorts a list by converting it to a
list of singletons and then applying fold smerge !"�

�� The other implementation of fold is foldl� which calculates

�� � � �e f xs#�� f � � � f xs#�$xs� ���

foldl f a !" � a

foldl f a �x
xs� � foldl f �a f x� xs

Exercises ���

Note that we have replaced e by a� This is because the parameter
is passed through the recursive calls of foldl� so even if it starts
o� as an identity for f it will not remain as f�s identity� In
general� still assuming that f is associative and e is an identity for
it� foldl f a xs � a f �foldl f e xs�� This can be proved easily
by induction on xs� but since we would still need another induction to
prove the equations of the speci�cation� it is possible to combine both
induction proofs�

�a� Use induction on xs to prove that

�a

� �xs� ys
 !
 "� foldl f a �xs��ys�
� foldl f �a f �foldl f e xs�� ys

�Hint� In the induction step you use the induction hypothesis twice�
with di�erent values substituted for a and ys� The unexpected one
has ys � !"� To avoid confusion� introduce new constants for your
��introductions��

�b� Deduce from �a� that

�a

� �xs
 !
 "� foldl f a xs � a f �foldl f e xs�

�c� Deduce from �a� and �b� that

�xs� ys
 !
 "� foldl f e �xs��ys�
� �foldl f e xs� f �foldl f e ys�

and hence that foldl implements the speci�cation for fold�

�d� Deduce that

foldr f e xs � foldl f e xs

provided that f is associative� e is an identity for it �and xs is
�nite��

�e� Give examples to show that foldr and foldl can compute di�erent
results is f is not associative or e is not an identity for it�

�� Consider the following speci�cation

filter

 ����bool���!�"��!�"

��filter p xs is the list xs except that the

��elements x for which p x is False have all been removed�

��pre
 none

��post
 �A�x
�� �Isin�x�ys� �� p x�

�� � �E�ws
!�"� �Merge�ys�ws�xs�

�� � �A�x
�� �Isin�x�ws� �� ��p x���

�� where ys � filter p xs

�� �ws contains the elements that were filtered out�

��� Higher�order functions

�a� Prove by induction on xs that this speci�cation speci�es filter

uniquely�

�b� Show that filter is implemented by

filter p xs � fold ���� !" �map f xs�

where f x� !x"� if p x

� !"� otherwise

	� For each of the functions given below

�a� Write down equations to show their values in the cases when

ys � !"

ys � us��vs
ys � !y"

�b� Show �by list induction� that there is at most one function that
satis�es your answers to �a��

�c� Write a similar equation for the case when ys � y
zs� and show
how it is implied by the equations given in �a��

�d� Use �c� to write down a recursive Miranda de�nition of the function�

�e� Prove by induction that your de�nition satis�es the properties in
�a��

�f� Use map and fold to write a non�recursive de�nition of the function�

�g� Use standard properties of map and fold to show that your
de�nition in �f� satis�es the properties given in �a��

Here are the functions

� length
 !�" �� num� length ys is the length of ys�

� prod
 !num" �� num� prod ys is the product of the elements of
ys� �Note� consider carefully what prod !" should be��

� count
 � �� !�" �� num� count x ys is the number of occurrences
of x in ys�

� split
 �� �� bool� �� !�" �� �!�"� !�"�� If split p ys��ys��ys���
then merge�ys�� ys�� ys�� and for every y� if y is an element of ys�
then �p y�� while if y is an element of ys� then � �p y��

� all
 �� �� bool� �� !�" �� bool� �all p ys� i� for every element
y of ys we have 	p y
�

� some
 �� �� bool� �� !�" �� bool� �some p ys� i� for some
element y of ys we have 	p y
�

� sum
 !�" �� num� sum ys is the sum of the elements of ys�

Exercises ���

� Consider fold ��� True

 !bool" �� bool� �� is associative� and
True is its identity�� Remember that in Miranda it is possible to have
in�nite lists� for instance trues where

trues � True
trues

�all its element are True��

Show that if bs is an in�nite list of type �bool�� then

foldr �$� True �False
bs� � False but
foldl �$� True �False
bs� goes into an in�nite loop�

��� �a� De�ne the polymorphic function reverse using foldr�

�b� De�ne the polymorphic function reverse using foldl�

�c� Which is more e�cient and why�
��� De�ne the higher�order function map without explicit recursion by using
the higher�order function foldr �with a non�associative argument��

��� In a version of the game Mastermind� one player thinks of a four�digit
number� while the other player repeatedly tries to guess it� After each
guess� player � scores the guess by stating the number of bulls and cows�
A bull is a correct digit in the correct place and a cow is a correct digit
in an incorrect place� No digit is scored more than once� For example�
if the secret code is ����� then

���� scores ��
���� scores ��
���� scores ��

Construct a function score which takes a code and a guess and returns
the number of bulls and cows� �Your function score should be written
using higher�order functions��
You may �nd it helpful to use the �� construct� �� is a list subtraction
operator� The value of xs��ys is the list which results when� for each
element y in ys� the �rst occurrence of y is removed from xs� For
example�

!�����������"��!���" � !�������"

�angle����l� ���l� � angel

�� �xyz� is short for !�x���y���z�"

��� �Advanced� This is an exercise in using both polymorphism and
higher�order functions� The question investigates predicates on Miranda
types
 a predicate on type � is understood as a function from � to
bool

pred � �� �� �� bool�

��	 Higher�order functions

Suppose f

 bool �� bool �� bool� Then f can be extended to a
function on predicates by applying it pointwise

ptwise

 �bool��bool��bool����pred �����pred �����pred ��

ptwise f p q x � f�p x��q x�

�Experiment
 de�ne this in Miranda� and try ptwise

� Miranda
realizes that this de�nition can be used much more widely than just
when f

 bool �� bool �� bool� Also� why does the type of ptwise
seem to give it three arguments� whereas the de�nition gives it four��
If p� q

 pred �� let us write

p� q i� �x

��p x� � True� �q x� � True�

�a� Translate the following speci�cations into English� and write Miranda
de�nitions for functions to implement them

all

 �pred �� �� �pred !�"�

��pre
 none

��post
 �all p t��True ���

�� �A�x� ��E�n� In�At�x�t�n����p x��True�

some

 �pred �� �� �pred !�"�

��pre
 none

��post
 �some p t��True ���

�� �E�x� ��E�n� In�At�x�t�n� � �p x��True�

�b� Prove that for all p� q
 pred
�
all�ptwise ���� p q�� ptwise ���� �all p� �some q�
ptwise ��� �all p� �some q� � some �ptwise �$� p q�

Describe in English what these results mean�

Chapter �

Speci�cation for Modula�� programs

We now move on to imperative programming� using the Modula�� language�
�This material also applies to Pascal and Ada programs�� We will not describe
the features of Modula�� here because there are already many books about it�

�� Writing speci�cations for Modula�� procedures

The general idea is the same as for Miranda
 a speci�cation has some typing
information� a pre�condition and a post�condition� These can be conveniently
placed at the header of the procedure as follows

PROCEDURE CardMin�x�y
 CARDINAL�
CARDINAL�

��pre
 none

�post
 �result � x �� result � y� � �result ��x � result ��y�

��

BEGIN

IF x��y THEN RETURN x ELSE RETURN y END

END CardMin�

The principles here are exactly the same as in Miranda� with three minor
points of di�erence� First� the typing information� that is�

PROCEDURE CardMin�x�y
 CARDINAL�
CARDINAL�

is compulsory in Modula��� Second� comments look di�erent
 they are between
�� and ��� instead of being after ��� Third� we are using the word result

in post�conditions to mean the value returned by the procedure� This means
that it would be inadvisable to have a variable called result because of the
confusion that would arise�

result has a special meaning in post�conditions of functions

it means the value returned�

��

��� Speci�cation for Modula�
 programs

Variables changing

What is not apparent from this example is that there is a big di�erence
between Miranda and Modula��
 Modula�� has variables that change their
values� Therefore� our reasoning must be able to cope with symbols that take
di�erent values at di�erent times� In general� because a variable may change
its value many times during the computation� there may be lots of di�erent
times at which we may wish to put our �nger on the value and talk about it�
There is a general technique for doing this� But in a procedure speci�cation�
there are really only two values to talk about� before �on entry to� and after
�on return from� the procedure� and we use a special�purpose notation to
distinguish these�
A pre�condition must only talk about the values before the procedure is
executed� so when a variable is used in a pre�condition it means the value
before� A post�condition will usually want to compare the values before and
after� and this is where the special notation comes in� A variable with a
zero �for example� x� or x �� means the value before� an unadorned variable
�for example� x or x� means the value after� We shall be consistent in using
unadorned variables to denote the value now �in the pre�condition� �now� is
the time of entry� in the post�condition it is the time of return�� and in using
various adornments such as the zero to show the value at some other time�

The following are two examples

PROCEDURE Swap �VAR x�y
 INTEGER��

��pre
 none

�post
 x�y�� � y�x��

��

PROCEDURE Sqrt �VAR x
 REAL��

�� Replaces x by an approximation to its square root�

� epsilon is a global variable�

� pre
 x��� � epsilon��

� post
 x��� � � x���x���� epsilon � epsilon � epsilon��

��

Some variables are not expected to change

To specify that a variable does not change� you say so in the post�condition

for example� epsilon � epsilon � says that epsilon does not change �value
on return � value on entry�� But this could get out of hand� so let us adopt
the following two conventions�
First� if a global variable is not mentioned at all in the speci�cation� then

we assume an implicit speci�cation that it should not change�

Mid�conditions ���

Second� if a parameter is called by value� then� again� we assume an implicit
speci�cation that it should not change� �That is why in CardMin we did not
bother to write x � or y ��� �If you think about it� this assumption will seem
pointless� Apparently� all the changes made to the parameter are local to the
procedure and the caller can never notice them��

�� Mid�conditions

When we implement the speci�cations� there is a very simple technique
for reasoning� It generalizes the idea of pre� and post�conditions by using
logical assertions that are supposed to hold at points in the middle of the
computation� not just at the beginning or end� We call them mid�conditions�
They are written as comments in the middle of the code�
The following is an implementation of Swap� with a complete set of

mid�conditions

PROCEDURE Swap �VAR x�y
 INTEGER��

�� pre
 none

�post
 x�y�� � y�x��

��

VAR z
 INTEGER�

BEGIN ��x�x�� � y�y����

z
�x� ��z�x�� � y�y����

x
�y� ��z�x�� � x�y����

y
�z� ��y�x�� � x�y����

END Swap�

You would not normally put in so many mid�conditions� There are just
certain key positions where they are important � you have already seen two�
namely entry and return �corresponding to pre� and post�conditions�� With
most simple straight�line sections of code such as this it is easy to omit the
intermediate mid�conditions and �ll them in mentally� But we can use the
example to illustrate the reasoning involved�
Each mid�condition is supposed to hold whenever program control passes

through that point � at least� provided that the procedure was called
correctly� with the pre�condition holding� �Note that unadorned variables still
denote the value �now�� that is� at the time when control passes through that
point� zeroed variables denote the value on entry�� Does this work here�
The �rst mid�condition� x � x� � y � y�� holds by de�nition
 we have only

just entered the procedure� so the value of x has to be its value on entry�
which is x� by de�nition�
Now look at the next mid�condition� z � x� � y � y�� To have arrived here�

we must have started at the point where we had x � x� � y � y�� and then
done the assignment z
� x� It is not di�cult to see that this is bound to

��� Speci�cation for Modula�
 programs

set up the mid�condition we are looking at �though there are formal systems
in which this can be proved � in e�ect they de�ne the meaning of the
assignment statement��

The next mid�condition is similar� and �nally we reach the �nal mid�
condition� which is the post�condition� By this stage we know that by the
time the program returns it must have set up the post�condition�

Note the �stepping stone� nature of the reasoning� To justify a mid�condition
we do not look at all the computation that has gone before� but� rather� at
the preceding program statement and the mid�condition just before that�

Conditionals

Here is an example with an IF statement�

PROCEDURE IntMax �x�y
 INTEGER�
INTEGER�

��pre
 none

�post
 �result � x�� �� result � y��� �

� �result ��x�� � result ��y���

��

BEGIN

IF x��y

THEN ��x��y�� RETURN x �� result � x�� � result ��y����

ELSE ��x�y�� RETURN y �� result � y�� � result �x����

END

END IntMax�

There are two branches of the code� the THEN and ELSE parts� and in each
we can write a mid�condition based on the condition �IF x � y�� For instance�
when we enter the THEN part� that can only be because the condition has
evaluated as TRUE
 so we know at that point that x � y� �This is relying on
the fact that there are no side�e�ects when the condition x � y is evaluated��
After RETURN x� we know that the result is x and also� because we knew
x � y� that result � y� The other branch� the ELSE part� is similar� On
entering it� we know that the condition evaluated as FALSE� so x � y�

Finally� we must show that the post�condition is set up� There are two
return points� each with a di�erent mid�condition� But it is a matter of logic
�and properties of �� to show that

result� x � result� y
� �result � x � result � y� � result � x � result � y

result� y � result� x
� �result � x � result � y� � result � x � result � y

Calling procedures ���

�� Calling procedures

When you specify a procedure� the zero convention is very convenient� and
throughout that procedure you use the zeroed variables for the values on
entry� But when you call the procedure� you must be careful about the zeroes
in its speci�cation
 because you now have two contexts� the called procedure
and the calling context� in which zero has di�erent meanings�
The following is an example of a rather simple sorting algorithm� The �rst

procedure� Order�� sorts two variables� and the second� Order�� uses Order�

to sort three variables�

PROCEDURE Order� �VAR x�y
 INTEGER��

��pre
 none

�post
 ��x�x�� � y�y��� �� �x�y�� � y�x���� � x��y

��

BEGIN ��x�x�� � y�y����

IF x�y

THEN ��x���y���� Swap�x�y�� ��x�y�� � y�x�� � x�y��

�� ELSE x����y���� ��x�x�� � y�y�� � x��y��

END ��either way� x��y��

END Order��

Before giving the de�nition of Order�� let us outline the idea� We are ordering
x� y and z� If we can arrange for z to be the greatest� that is� x � z � y � z�
then the rest is easy
 just order x and y� So this condition becomes a key
objective in our computation strategy� dividing the task into two� It appears
as the second mid�condition� You can probably believe that this objective is
achievable using Order��y�z� and Order��x�z�� and we shall show this more
carefully�
On this analysis� the �rst two mid�conditions are slightly di�erent in

character� The second is a computational objective� used to specify the task
of the �rst part of the code� As a condition it does not express everything
known at that point� but� rather� just something achievable that gives us
what we need to be able to �nish o� the problem� The �rst mid�condition�
on the other hand� is more to help us reason that our code� once written�
really does work

PROCEDURE Order� �VAR x�y�z
 INTEGER��

��pre
 none

�post
 x�y�z are a permutation of x���y���z�� � x��y��z

��

BEGIN

Order��y�z�� ��y��z��

Order��x�z�� ��y��z � x��z��

Order��x�y� ��x��y��z��

END Order��

��� Speci�cation for Modula�
 programs

How do we know that Order� works� �Are you actually convinced at this
stage�� Let us dispose straight away of the speci�cation that x� y and z are a
permutation of x�� y� and z� �that is� the same values� possibly rearranged��
Although it is actually quite di�cult to express this in pure logic� it is quite
clear that each call of Order� just permutes the variables� so that is all the
three consecutive calls can do� The real problem is knowing that the order is
correct in the end�

The �rst call certainly sets up the �rst mid�condition� y � z� but how
do we know that the second call does not spoil this� We must look at
the speci�cation of Order�� which says �after we have substituted the actual
parameter z for the formal parameter y�

��x � x� � z � z�� � �x � z� � z � x��� � x � z

The zero here denotes the value on entry to the �second� call of Order�� but
we are reasoning about Order�� trying to prove it correct
 so for us the zero
could also denote the value on entry to Order�� To avoid the con�ict� you
have to invent some new names
 say x�� y� and z� for the values of x� y and
z between the �rst two Order�s
 At that point we have� by the mid�condition�
y� � z�� and this is eternally true � because y� and z� are unchanging values
not computer variables�

Now what Order� sees as x� and z� are � in our Order� context � x� and
z�� Hence on return from the second Order�� we can use its post�condition to
write

��x � x� � z � z�� � �x � z� � z � x��� � x � z � y � y�

So far� although we have said a lot by way of explanation� all that has
happened has been some notational manipulation and with practice you should
be able to do it automatically� What comes next is real logic� Figure
��
contains a box proof that shows y � z � x � z�

More compactly� we want to show at this point that y � z� that is� y� � z�
Since y� � z�� it is su�cient to show that z� � z �that is� Order��x� z� cannot
decrease the value of z� you would expect this intuitively� but we can also
prove it�� There are two cases� If �x � x� � z � z��� that is� Order� did not
do a swap� then z� � z� In the other case� we have �x � z� � z � x� � x � z��
so z� � x � z�

We have now proved that the second mid�condition� y � z � x � z� is set up
correctly� For the third mid�condition� the fact that z is greater than both x
and y is una�ected whatever Order��x� y� does� while it also ensures x � y�
Hence� �nally� x � y � z�

You may invent new logical constants as names for intermediate
computed values� This is like Miranda �where � � � � notation�

Recursion ���

� y� � z�

� �x � x� � z � z�� � �x � z� � z � x��

� x � z

� y � y�

� y � z� eqsub in �

� x � x� � z � z�

� z � z� �E
� y � z eqsub in �

�

x � z� � z � x�

x � z� �E
z� � z eqsub in �

y � z trans �
�	 y � z �E���
�� y � z � x � z �I��� ���

Figure
�� y � z � x � z

�� Recursion

To deal with recursion� you use recursion variants �or induction� just as
in Miranda� Recursively de�ned functions in Miranda translate readily into
recursively de�ned function procedures in Modula� and the reasoning is the
same in both cases� Actually� it is often more convenient to reason with the
Miranda de�nitions� because the notation is much more economical� Consider�
for instance� the Euclidean algorithm implemented recursively in Modula��

PROCEDURE gcd�x�y
 CARDINAL�
CARDINAL�

��pre
 none

�post
 result � x � result � y �

� �A�z
Cardinal� �z � x � z � y�� z � result�

�recursion variant � y

��

BEGIN

IF y�� THEN RETURN x ELSE RETURN gcd�y�x MOD y� END

END gcd�

Proposition
�� The de�nition of gcd satis�es the speci�cation�

Proof Both speci�cation and de�nition are direct translations of those for
the Miranda function gcd given in Chapter �� �Note that the Miranda
pre�condition nat�x� � nat�y� has been translated into typing information in
Modula��� Unlike Miranda� Modula�� has special types CARDINAL and INTEGER�
with CARDINALs corresponding to nat�� We have already proved that the
Miranda de�nition satis�ed the Miranda speci�cation� �

��� Speci�cation for Modula�
 programs

It is somewhat di�cult at this stage to give sensible examples of recursion
that genuinely use the new imperative features� The following is a rather
arti�cial example

PROCEDURE gcd��VAR x�y
 CARDINAL��

��Replaces x by the gcd of x and y�

�pre
 none

�post
 x � x�� � x � y�� � �A�z
Cardinal� �z � x��� z � y���� z � x�

�recursion variant�y

��

VAR z
 CARDINAL�

BEGIN

IF y $ � THEN

z
�x MOD y�

x
�y�

y
�z� ��x�y�� � y�x�� MOD y����

gcd��x� y�

END

END gcd��

Proposition
�� The de�nition of gcd� satis�es the speci�cation�

Proof If y � � then x � gcd�x� �� and so nothing has to be done� If y 	� ��
then by the usual reasoning with recursion variants we can assume that the
recursive call gcd��x� y� replaces x by the gcd of y� and x� MOD y�� which� by
the same argument as given in Chapter �� is the gcd of x and y� �

�� Examples

The following procedure swaps the values of two variables without using any
extra variables as storage space� Mid�conditions show very clearly how the
sequence of assignments works

PROCEDURE Swap �VAR x�y
 INTEGER��

�� pre
 none

�post
 x�y�� � y�x��

��

BEGIN ��x�x�� � y�y����

x
�x�y� ��x�x���y�� � y�y����

y
�x�y� ��x�x���y�� � y�x����

x
�y�x ��x�y�� � y�x����

END Swap�

Examples ���

Walkies Square

Imagine a Walkies package with position coordinates X and Y � and
procedures Up and Right for updating these

VAR X�Y
 INTEGER�

PROCEDURE Up�n
 INTEGER��

��pre
 none

�post
 X�X�� � Y�Y���n

��

PROCEDURE Right�n
 INTEGER��

��pre
 none

�post
 X�X���n � Y�Y��

��

We can use mid�conditions to show that the following procedure returns with
X and Y unchanged

PROCEDURE Square�n
 INTEGER��

��pre
 none

�post
 ��� � X�X�� � Y�Y��

��

BEGIN ��X�X�� � Y�Y����

Right�n�� ��X�X���n � Y�Y����

Up�n�� ��X�X���n � Y�Y���n��

Right��n�� ��X�X�� � Y�Y���n��

Up��n� ��X�X�� � Y�Y����

END Square�

It is reasonably clear that these mid�conditions are correct� But to justify
this more formally you need to use the speci�cations of Right and Up� For
instance� consider the call �Right��n��� In the speci�cation for Right� X� and
Y� mean the values of X and Y on entry to Right� and not� as we should
like to use them in the mid�conditions� on entry to Square� But we do know
�from the preceding mid�condition� that on entry to this call of Right X and
Y have the values X� � n and Y�� n�where X� and Y� are values on entry to
Square�� so we can substitute these into the post�condition for Right� Also�
Right is called with actual parameter �n� so we must substitute this for the
formal parameter n in the post�condition� All in all� in X � X� � n $ Y � Y�
substitute

� �n for n�
� X� � n for X��
� Y� � n for Y��

giving X � X� $ Y � Y� � n� This is the next mid�condition�

��	 Speci�cation for Modula�
 programs

�� Calling procedures in general

A typical step of reasoning round a procedure call looks as follows

� � �mid��x� y� z� � � �� P �a� b� c� � � �� mid
�x� y� z� � � ��

Here x� y� z� � � � represent the relevant variables� and a� b� c� � � � � expressions
involving the variables� are the actual parameters in the call of P � We assume
for simplicity that evaluating these actual parameters does not call functions
that cause any side�e�ects� We have reasoned that mid� holds just before
entry to P �imagine freezing the computer and inspecting the variables
 they
should satisfy the logical condition mid�� and we now want to reason that
mid
 will hold on return�� We must do this by using the speci�cation of P �
however� that is written using the formal parameters of P � and the �rst step
is to replace these by the actual parameters a� b� c� � � � to obtain the properties
of x� y� z� � � �

pre
 preP�x�y�z���� �

post
 postP�x�x���y�y���z�z������ �

�But the zeros in postP show values of x� y� and z on entry to P� and we
shall have to allow for this�� Next we must show that mid� entails preP� in
other words that mid� is su�cient to ensure that P works correctly� This is
pure logic�

Next� we must work out what exactly we know on return from P � at
the same time coping with possible notational clashes due to x�� and so
on� having di�erent meanings in di�erent places� Suppose x�� y�� z�� � � �are
convenient names for the values of x� y� z� � � � before the call of P � Then the
post�condition tells us that on return we have postP�x� x�� y� y�� z� z�� � � ��� But
we also know� because x�� and so on� are just names of values� that we have
mid��x�� y�� z�� � � ��� Hence� on return from P we know the following �and no
more�

postP�x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ��

Our �nal task is to prove that this entails mid
�x� y� z� � � ��� Again� this is
pure logic�

To summarize� after manipulating the speci�cation of P a little� we have
two tasks in pure logic
 prove �

mid��x� y� z� � � ��� preP�x� y� z� � � ��
postP�x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ��� mid
�x� y� z� � � ��

Thus the step between mid� and mid� �via P � really has the two logical
steps� above� and a computational step �P � in the middle� The speci�cation
of P gets us from preP �x� y� z� � � �� to

postP �x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ���

Keeping the reasoning simple ��

�� Keeping the reasoning simple

When all the features of imperative programming are taken together� some of
them can be quite complicated to reason about� There is a general useful
principle

Keep the programming simple to keep the reasoning simple�

We have already seen some examples

� It is simpler if you do not assign to �call by value� parameters� even
though Modula�� allows you to �hence our default assumption that they
do not change their values��

� It is simpler if functions� and hence expressions containing them� do
not have side�e�ects� We assumed this when we were discussing IF

statements � it is tricky if the condition has side�e�ects for the actual
parameters�

When we say that these features make the reasoning more di�cult� this
applies even to the most super�cial of reasoning� The e�ects they have are
easy to overlook when you glance over the program� A classic source of error
is careless use of global variables� because they tend to be updated in a
hidden way� as a side�e�ect of a procedure�

�	 Summary

� For Modula�� the essential ideas of pre� and post�conditions �also
recursion variants� are the same as for Miranda� result in a post�condition
means the result of the procedure�

� Variables change their values� so a logical condition must always carry
an idea of �now�� a particular moment in the computation� For pre�
and post�conditions� �now� is� respectively� entry to and return from a
procedure�

� An unadorned variable always denotes its value �now��
� A zero on a variable indicates its value �originally�� that is� on entry
to the procedure it appears in�

� Introduce new constant symbols �for example� variables adorned with �s�
as necessary to indicate values at other times�

� There are implicit post�conditions
 variables not mentioned� and local
variables� are not changed�

� Mid�conditions can be used as computational objectives ��post�conditions
for parts of a procedure body�� and to help reason correctness�

� In an IF statement� the test gives pre�conditions for the THEN and ELSE

parts�

��� Speci�cation for Modula�
 programs

� When reasoning about procedure calls� there are three parts

�� notational manipulation to see what the pre� and post�conditions
say in the calling context�

�� logical deduction to prove the pre�condition�

�� logical deduction to prove the next mid�condition �what you wanted
to achieve by the procedure call��

�
 Exercises

�� You have already seen the following problems for solution in Miranda

� round
 round a real number to the nearest integer�

� solve
 solve the quadratic equation ax� � bx� c � ��

� middle
 �nd the middle one of three numbers�

� newtonsqrt
 calculate a square root by Newton�s method�

Translate the Miranda solutions �speci�cations and de�nitions� directly
into Modula���

�� The following standard procedures are de�ned in Niklaus Wirth�s
Programming in Modula�

 ABS� CAP� CHR� FLOAT� ODD� TRUNC� DEC� INC�
Try to translate the explanations in the report into formal� logical
speci�cations�

�� Implement the middle function �see Exercise �� in Modula�� using the
SWAP procedure instead of recursion� Show that it works correctly�

�� Specify and de�ne Modula�� procedures Order
 and Order� analogous
to Order�� and using the same method� a straight�line sequence of calls
of Order�� Prove that they work correctly� Can you show that you use
the minimum number of calls of Order�� Is there a general argument
that shows that this method works for ordering any given number of
variables�

Chapter �	

Loops

An important di�erence between functional and imperative programming is
the loop constructs �WHILE� UNTIL and FOR�� They are essentially imperative
�that is what DO means�� and to perform analogous computations in Miranda
you must use recursion� The techniques you need to reason about WHILE loops
are really just a use of mid�conditions� but the mid�conditions involved are so
important that they are given a special name of their own � they are loop
invariants� Even in relatively unreasoned programming� experience shows that
there is a particularly crucial point at the top of the loop where it is useful
to put comments� and the method of loop invariants is a logical formalization
of this idea�

���� The co�ee tin game

This game illustrates reasoning with loop invariants� It uses a tin full of two
kinds of co�ee bean� Blue Mountain and Green Valley �Figure ������

Rules�

WHILE at least two beans in tin DO
Take out any two beans�
IF they are the same colour
THEN
throw them both away�
put a Blue Mountain bean back in �"you may need spare blue beans"�

ELSE
throw away the blue one�
put the green one back

END
END�

���

��� Loops

Very best blend

Blue mountain

and

Green valley

Figure ���� Co�ee beans

Question� if you knew the original numbers of blue and green
beans� can you tell the colour of the �nal bean�

The contents of the tin at any given moment are described by the numbers
of blue and green beans� Let us write the state as mB � nG for m blue
beans� n green�

A transition �move� is determined by the colours of the two beans taken
out
 BB� BG or GG �Figure ������

More generally� we have

BB
 mB � nG � �m� ��B� nG
BG
 mB � nG � �m� ��B� nG
GG
 mB � nG � �m� ��B � �n� ��G

The important thing to notice is the way the number of green beans can
change� If it changes at all� it is decreased by �� and this means that the
parity of the number of greens � whether it is odd or even � does not
change� The parity is invariant�

Suppose� then� there is originally an odd number of green beans� Then�
however the game progresses �and there are lots of di�erent possibilities��
there will always be an odd number of greens� This holds true right up to
the end� when there is only one bean left� So what colour is that� It must
be green� Similarly� if there is originally an even number of green beans� then
the �nal bean must be blue� So we have answered our question�

The co�ee tin game ���

BG

GG

�B � �G

BB

�B � �G �B � �G �B � �G

Figure ���� Transition

Notice how the invariant� the parity� does not in itself tell us much about
the numbers of beans� It is only when we reach the end that the parity
combines with that fact to give very precise information about the numbers�

Another small point� How do we know that we ever reach a state with
only one bean� This is obvious� because the total number of beans always
decreases by one at each move� This total number is called a variant because
it varies and it works very like recursion variants�

Co�ee tin game with comments

Here is a version with �mid�conditions� written as comments� We talked before
about an invariant quantity� the green parity �odd or even�� However� what
appears here is an invariant assertion� a logical formula� namely that the
current parity is the same as the original one� Our reasoning said that if this
assertion was true before the move� then it will be true afterwards as well�
hence if it was true at the beginning of the game �which it was� by de�nition�
then it will be true at the end as well�

This conversion of invariant quantity into invariant assertion might look
cumbersome in this case� but it gives a very general way of formulating
invariants� Henceforth� an invariant will always be a logical assertion�

The variant� on the other hand �the total number of beans� which we used
to prove that the game would end�� is always a number

��� Loops

��pre
 green parity p is p�� � no� of beans � �

�post
 � p�� � Even � one blue left�

� �� � p�� � Odd � one green left�

�loop invariant
 green parity p�� � no� of beans � �

�loop variant � total number of beans

��

WHILE at least two beans in tin DO

�� number of greens � n� say ��

Take out any two beans�

CASE two colours OF

BB
 replace by B �� greens � n��

� GG
 replace by B �� greens � n����

� BG�GB
 replace by G �� greens � n��

END

�� green parity � p�� again� variant decreased ��

END�

�� green parity is still p�� � just one bean left ��

���� Mid�conditions in loops

Now think of a real WHILE loop� WHILE test DO body END� and imagine putting
mid�conditions in� There is one point in the program execution that is crucial�
namely �each time round� immediately before the loop test is evaluated� What
makes it special is that there are two ways of reaching this point � when
control comes to the loop from higher up in the code� and when it loops back
from the end of the body � so it ties di�erent execution paths together�

A mid�condition here is called the loop invariant� You should write it
explicitly in a comment before the loop

��loop invariant
 ��� ��

WHILE test DO

body
END

Because there are two ways of reaching the invariant�s point� two things need
to be proved to show that the invariant behaves

�� that it holds the �rst time the loop is reached� in other words that the
invariant is established initially�

�� that if it holds at the start of an iteration� and if the loop test succeeds
�so that we continue looping and we know that invariant � test�� then
the execution of the body will ensure that the invariant still holds next
time round� in other words that the body reestablishes the invariant�

Termination ���

Because the loop invariant point can be reached by two routes� it is � apart
from the overall speci�cation � far and away the most important place for
mid�conditions� We suggest you take every opportunity to practise the method
in your programming�

For the Co�ee Tin� the invariant �green parity � p� and beans � �� is
established trivially � by de�nition of p�� It is the reestablishment that is
important� showing that whatever move is made �and whatever happens while
the move is being made�� the green parity is restored to p� and beans remain
� ��

At the end� the payo� is that we still know that the invariant holds� but
we also know that the loop test fails �that is why we have �nished looping��
If the invariant is a good one� this combination will allow us to deduce the
post�condition �maybe with some �nal computation�� At the end of the Co�ee
Tin game� we have both that the green parity is still p� and that there is
only one bean left� This combination is strong enough to tell us exactly what
colour the bean is�

���� Termination

If we �nish looping� then we know the combination �invariant ��loop test�
holds� But not all loops do terminate� Some loop for ever� and we want to
rule out this possibility� The Co�ee Tin Game must terminate� because each
move decreases by one the total number of beans left� but this can never go
negative� Therefore after �nitely many moves� the game must stop�

In general� to reason with WHILE loops we use not only the invariant� a
logical condition as above� but also a loop variant� This works the same way
as does a recursion variant� It is a natural number related to the computer
variables such that the loop body must strictly decrease it� but it can never
go negative� Then only �nitely many iterations are possible� so the WHILE

loop must eventually terminate�

For the Co�ee Tin� the variant is the total number of beans left�

���� An example

Apparently� the method of invariants and variants as presented so far is a
reasoning tool� given a WHILE loop� you might be able to �nd a loop invariant
to prove that it works� But actually� the invariant can appear much earlier
than that� even before you have written any code� as a clari�cation of how
you think the implementation will work� Let us explore this in a simple
problem to sum the elements of an array of reals

��� Loops

PROCEDURE AddUp�A
 ARRAY OF REAL�
REAL�

��pre
 none

�post
 result � Sum �i�� to HIGH�A��A!i"

��

that is�

result �
HIGH�A�X
i��

A�i��

There is an obvious technique for doing this� we read through the elements of
A with a variable subscript n and add them one by one into an accumulator
S�
Now imagine freezing the computation at the point when we have read
exactly n elements and added them all into S� Diagrammatically� the state of
the computer can be seen in Figure ����

...A

n

S � sum of them

� � n � �

n elements read

HIGH�A�subscripts

Figure ����

This diagram includes quite a lot� Importantly� it says exactly what values
we intend to have in our variables n and S� An enormous number of
programming errors are caused by imprecise ideas of what values variables
are supposed to have� For instance� is A�n� the last element read� or the
next one to be read� Our diagram tells us� It also shows us that n varies
from � �no elements read� at start� to HIGH�A� � � �all the elements read� at
�nish�� Most important of all� there is an easy link from the diagram to the
post�condition� If we can ever get n to be HIGH�A� � �� then S must be the
answer we want and all we need to do is RETURN S�
What the diagram is expressing is a computational objective � we intend

to write the program so that after each iteration of the loop we have achieved
a state as pictured by the diagram� At the same time� we want to push
n up to HIGH�A� � �� We do not have to draw this diagram in a program
comment� we can translate it into logic

� � n � HIGH�A� � � � S �
n��X
i��

A�i�

This is the loop invariant� It also guides our programming

� Initially �no elements read� we want n � � and S � � �
P��

i��A�i�� the
empty sum��

An example ���

� If n � HIGH�A� � �� then S is the result we want and we can just return
it�

� If n � HIGH�A� then we want to read A�n�� add it to S� and increment
n�

Thus the very act of formulating the invariant has subdivided our original
problem into three smaller ones
 initialization� �nalization� and reestablishing
the invariant� This is a very important aspect of the method�

And the variant� A natural number that decreases each time is the number
of elements left to be read
 this is HIGH�A� � �� n�

In e�ect we have now proved that the algorithm works� but we have not
written the program yet� For the sake of our idiot computer� we must
implement the algorithm in Modula��

PROCEDURE AddUp �A
 ARRAY OF REAL�
REAL�

��pre
 none

�post
 result � Sum �i�� to HIGH�A��A!i"

��

VAR n
 CARDINAL�

S
 REAL�

BEGIN

S
�����

n
�����

�� Loop invariant

����n�� HIGH�A��� � S� Sum�i�� to n��� A!i"

�Variant � HIGH�A����n

��

WHILE n�� HIGH�A� DO

S
�S�A!n"�

n
�n��

END�

RETURN S

END AddUp�

This is exactly the quantity of comments you should use in practice
 the
speci�cation and the invariant and variant� Once you have actually written
down the invariant� it is relatively easy � for you or for anyone else who
needs to look at your code � to check the minor details� For instance�

� Is the invariant established initially� Yes� easy�
� Is the post�condition set up at the end� Yes� When the loop has
terminated� we know both that � � n �HIGH�A� � � �from the invariant�
and that n � HIGH�A� �because the loop test failed�� Hence n must be

��	 Loops

exactly HIGH�A� � �� Then the other part of the invariant tells us that
S is the required result� and all we have to do is return it�

� When A�n� is read� is n within range as an array subscript� Yes� We
know at that point that the loop test succeeded� so n � HIGH�A�
 it is
in range�

� Does the loop body reestablish the invariant� Yes� this is fairly easy to
see�

� Does the loop body decrease the variant� Yes� n is increased �by ��� so
HIGH�A� � � � n is decreased�

� Can the loop variant go negative� No� When the loop body is entered�
we know n � HIGH�A�� so the variant is at least �� After that iteration�
it has decreased by exactly �� so it is still at least ��

These are all speci�c questions that can be asked about the correctness of the
program� and for all of them the answer depends on the loop invariant� No
other possible mid�condition in this program plays such a crucial role�

���� Loop invariants as a programming technique

The whole technique comes into operation as soon as you decide to use a
loop structure� First� ask what the computer is supposed to look like at
intermediate stages� Do not think about the dynamics of this �a common
trap for beginners is to try to make a loop invariant by forcing the loop
body into a logical notation�� you must imagine freezing the computation at
a crucial point and giving a static description of the internal state� There is
already a vague picture at the back of your mind� and that is what you must
bring out� Diagrams are absolutely invaluable here�

Also remember that you must understand at that exact point in the
computation what the value of each computer variable signi�es� If you do not
know what values they are supposed to be storing� you will never be able to
use those values correctly�

A critical test of the diagram is that under certain conditions �for example�
n � HIGH�A� � � in the AddUp example� you must be able to use the
information carried by the diagram to arrive at the post�condition� The loop
test should be the negation of these conditions �because you continue looping
WHILE the conditions fail�� At this point it is often easy to see a loop variant
� the loop test is often equivalent to variant � ��

Next� formalize the picture in logic to obtain a loop invariant� Perhaps your
picture is incomplete� you will realize this later because you will �nd you do
not quite understand how the program is supposed to be working� Then you
�ll in more details in the picture and re�ne the invariant� You now have an
incomplete implementation

FOR loops ��

PROCEDURE ����

��pre
 ���

�post
 ���

��

VAR ��� �

BEGIN

Initialize� �� Remains to be written ��

��loop invariant
 ���

�variant �

��

WHILE loop test DO

Loop Body �� Remains to be written ��

END�

Finalize �� Remains to be written ��

END ��� �

There are three pieces of code that remain to be written
 the initialization�
the loop body and the �nalization� �You probably saw fairly clearly how
the �nalization would work when you formulated the invariant�� Hence the
original programming problem has been divided into three� Moreover� because
you have formulated the invariant and variant� each of these three pieces has
a precise job to do� a �subcontract� of the contract �speci�cation� for the
overall procedure� These subcontracts can be speci�ed with �local� pre� and
post�conditions�

Piece of code Local pre�condition Local post�condition
Initialize Overall pre�condition Invariant
Loop body Invariant � Loop test Invariant �variant � variant�
Finalize Invariant ��Loop test Overall post�condition

�We assume as usual that there are no side�e�ects when you evaluate the
Loop test�� If you can implement Initialize� Loop body and Finalize to satisfy
these local speci�cations� then you know they will automatically �t together
in the WHILE loop to implement the overall speci�cation correctly�

���� FOR loops

FOR loops are obviously very similar to WHILE loops� and you may well be
used to seeing our WHILE loop examples coded as FOR loops �for instance this
is quite easy for AddUp�� In fact every FOR loop can be translated into a
WHILE loop �see Exercise ��� and it follows that one way to reason with FOR

loops is to give loop invariants and variants for the corresponding WHILE loops�
However� we are not going to recommend this here� One reason is that�

for the purposes of reasoning� the control variable� for example� the i in FOR

��� Loops

i
� � � � � is often still needed after the last iteration� whereas its value in
the computer has evaporated by then and is no longer accessible from the
program� This has the e�ect that the FOR loops �t uncomfortably with the
loop invariant reasoning� and in this book you will see FOR loops used less
often than you might expect�
Nevertheless� there are some applications where FOR loops are particularly

natural� namely when the di�erent iterations of the body are more or less
independent of each other and could even be done in parallel� You might
think of the WHILE loop as being good for temporal iteration ��this then this
then this� etc��� and the FOR loop as more spatial� less ordered ��do all these���
Here is a typical example

CONST Size � ����

TYPE Matrix � ARRAY !���Size"�!���Size" OF INTEGER�

PROCEDURE ZeroMatrix �VAR A
 Matrix��

��pre
 none

�post
 �A�i�j
CARDINAL� ����i��Size � ���j��Size �� A!i�j"���

��

VAR i�j
 CARDINAL�

BEGIN

FOR i
� � TO Size DO

FOR j
� � TO Size DO

A!i�j"
� �

END

END

END ZeroMatrix�

�Note� The logical variables i and j in the post�condition� bound by the ��
are formally quite di�erent from the computer variables i and j� However�
the structure of the post�condition � Size� checks of zeroness � is so similar
to that of the code � Size� assignments to � � that it seems fussy to insist
on di�erent symbols��
It is possible to translate the FOR loops into WHILE loops and give an
invariant for each� If you try this� you will see how clumsy it is� It is much
simpler to argue as follows� To show that the post�condition holds at the end�
let I and J be natural numbers between � and Size� we must show that at
the end A�I� J � � �� This is so� because

�� there was an iteration of the FOR loops �namely with i � I and j � J�
in which A�I� J � became �� and

�� once that was done� none of the other iterations would ever undo it�

The pattern is quite general� You reason that everything necessary was done�
and then �because the iterations are independent� never undone� Note that
no special argument is needed to show termination� FOR loops are bound to
terminate unless you have a BY part of �� for example�

Summary ���

FOR i
� � TO � BY � DO ��� END
As a general rule of thumb� if the iterations are �xed in number and

independent of each other� then try to �nd a simple argument such as the one
above and use a FOR loop� Otherwise� use a loop invariant and WHILE loop�

���� Summary

� The method of loop invariants is the method of mid�conditions applied
to WHILE loops�

� The invariant is a mid�condition that should always be true immediately
before the loop test is evaluated�

� Do not confuse the loop invariant with the loop test� They are both
logical conditions� but

�� the loop invariant is a mid�condition� used in reasoning� not
evaluated by the computer� and intended to be true right through
to the end�

�� the loop test is a Boolean expression� evaluated by the computer�
and is bound to be false after the last iteration�

� The invariant arises �rst �in your reasoned programming� as a
computational objective� often after drawing a diagram� when the
reasoned program is completed� the invariant is used to give a correctness
proof�

� The invariant is used to divide the overall problem into three

initialization� loop body� and �nalization�

� The loop variant� a number� is like a recursion variant and is used to
prove termination�

� FOR loops are best reserved for simpler problems in which the iterations
are independent of each other�

���	 Exercises

�� The problem is to implement the following speci�cation

PROCEDURE Negs�A
 ARRAY OF INTEGER�
CARDINAL�

��pre
 none

�post
 no� of subscripts for which A!i"��

��

The idea is to inspect the elements starting at A��� and working up to
HIGH�A�

�a� Draw a diagram to illustrate the array when n elements have
been inspected � make it clear what are the subscripts of the

��� Loops

last element to have been inspected and the next element to be
inspected�

�b� What values will n take as the program proceeds�

�c� Write down the implementation �Modula�� code�� including the loop
invariant and variant as comments in the usual way� The invariant
should in e�ect translate the diagram of �a� into mathematical form�

�d� Use the invariant and the failure of the loop test to show that the
post�condition is set up�

�e� Show that whenever an array element is accessed� the subscript is
within bounds�

Note� �c� contains the ingredients that you should write down in
your practical programming�

�� Develop reasoned Modula�� programs along the lines of Exercise � to
solve the following problems about arrays

�a� Find the minimum element in an array of integers�

�b� Find whether an array of integers is in ascending order�

�c� Find the length of an array of CHARs� on the understanding that
if it contains the character NUL �assumed prede�ned as a constant��
then that and any characters after it are not to be counted� �In
other words� NUL is understood as a terminator��

�d� Find the median of an array of reals� that is� the array value closest
to the middle in the sense that as many array elements are smaller
than it as are greater than it� Is the problem any easier if the
array is known to be sorted�

�� Develop the procedure Search

PROCEDURE Search�A
 ARRAY OF INTEGER� x
INTEGER�
CARDINAL�

��pre
 Sorted�A�

�post
 result �� HIGH�A���

��A�i
CARDINAL

��i� result ��A!i"�x�

��result ��i�� HIGH�A���A!i"��x����

Use a �linear� search� inspecting the elements of A one by one starting
at A����

Explain how the post�condition is deduced at the end �this is where
sortedness is needed��

�� Implement the procedure IsIn� using a call of Search �Exercise ��

Exercises ���

PROCEDURE IsIn�x
 INTEGER� A
ARRAY OF INTEGER�
BOOLEAN�

��pre
 Sorted�A�

�post
 result ����E�i
Cardinal �i�� HIGH�A� � A!i"� x�

��

Using the pre� and post�conditions of Search �not the code�� prove that
your implementation of IsIn works correctly� What this means is that
in every place where a result is returned� you must show that it is the
correct result�

�� Give FOR loop implementations of the following

�a� IsIn

�b� Copy

PROCEDURE Copy�A
 ARRAY OF INTEGER�

VAR B
 ARRAY OF INTEGER��

�� Copies A to B

�pre
 HIGH�A� � HIGH�B�

�post
 B�A

��

�� Show how a FOR loop

FOR i
� a TO b BY c DO

S

END
can be translated into a WHILE loop� There are some tricky points

�a� If c is negative the translation is di�erent�

�b� The intention is that b and c should be evaluated only once� at
the beginning� Hence you must be careful if they are expressions
containing variables �actually� Modula�� forbids this for c��

�� Consider the following problem

PROCEDURE Copy �n�Astart�Bstart
 CARDINAL� A
ARRAY OF INTEGER�

VAR B
 ARRAY OF INTEGER��

��copies n elements from A� starting at A!Astart"�to B�

�starting at B!Bstart"�

��

�a� Give a FOR loop implementation of this� including pre� and
post�conditions� Give your reasoning to show that it works�

�b� If the array A is large� you might be tempted to call A as a VAR

parameter� since then a local copy of it would not be made for
use by the Copy procedure� If you did that� what might go wrong
in the case where A and B are the same array� Can you give a
sensible speci�cation that allows for this possibility�

Chapter ��

Binary chop

How do you look up a word� �binary�� say� in a dictionary� What you do not
do is to look through all the words in order� starting at page �� until you
�nd the word you want� If the dictionary had ���� pages� you might have to
check all of them before you found your word �if it was �zymurgy��� Instead�
you open the dictionary about half way through� at �meridian�� and you see
that �binary� must be in one of the pages in your left hand� You divide those
about half way through� at �drongo�� and again you see that �binary� must
come before that� Each time� you halve the number of pages in which your
word might be

Stage
 � � � � � � � � 	
 �� ��
Pages left
���� �	� �
� ��� �� �� �
 �� � � � �

Hence� you have only to check eleven pages before you �nd your word� This
method is called the �binary chop algorithm�� and it relies crucially on the
fact that the entries in the dictionary are in alphabetical order� It is a very
important algorithm in computing contexts� and� what is more� it is a good
example of an algorithm that is very easy to get wrong if you try to write
the code without any preliminary thought�

There is another important lesson in this algorithm� namely that the natural
order of writing a procedure is not necessarily from top to bottom� �This is
similar to the way you write a natural deduction proof�� You know already
that the loop invariant should generally be worked out before the code� here
the most important piece of code to be �xed is the �nalization part�

���� A telephone directory

To explore di�erent possible ways in which the algorithm might be used�
imagine a telephone directory stored on a computer as an array of records�

���

Speci�cation ���

each record comprising a name� an address and a telephone number� The
records are stored in alphabetical order of names� but for di�erent records
under the same name it is perhaps not worth ordering them any more
precisely�

To look up a record� you supply a name and apply the binary chop
algorithm� Although it is possible to use the algorithm simply to tell you
whether the name is present in the directory� clearly in this case you need to
know where it is so that you can then read the telephone number� Also� it is
necessary to remember that there may be more than one record under the
same name� It is most convenient if the algorithm tells you the subscript of
the �rst one� so that you can then inspect the addresses one by one�

Now suppose that there is no record under the name you supplied� You
might think that it is su�cient for the algorithm to tell you that� but consider
the problem of updating the array� Any new record must be inserted in
exactly the right place �after prising open a gap by shifting a lot of records up
one place�� and the binary chop algorithm can tell you where that right place
is� �Note the payo�s here
 lookup is very cheap� but update is expensive��

Thus the algorithm apparently has many di�erent situations to consider� It
is an indication of the power of the algorithm that the cases are actually
handled in a very uniform way�

���� Speci�cation

Purely for the sake of example� let us take A to be an array of integers�
its elements appearing in ascending order
 if i � j� then A�i� � A�j�� �The
method works not just for integers� but for any kind of data with an
understood ordering � for instance� the telephone records described above�
ordered alphabetically by name�� If x is an integer� the problem is to
search for x in A� We can divide A into two blocks� one on the left
where the elements are � x� and one on the right where they are � x�
The answer is to be the subscript of the �rst element on the right

� x � x

� result HIGH�A�

A

subscripts

We can translate this into logic� First� all elements with subscripts between �
and result�� inclusive are � x

�i
 nat �i � result� A�i� � x� ������

��� Binary chop

Second� all elements with subscripts between result and HIGH�A� inclusive are
� x

�i
 nat �result � i � HIGH�A�� A�i� � x� ������

Third� we should say what range the result will lie in� The extremes are
when all the elements of the array are � x� when the result should be �� and
when all the elements are � x� when the result should be HIGH�A� � � �notice
how in this case A�result� is unde�ned�

� � result � HIGH�A� � � ������

These three conditions will form the post�condition�
If x is present at all in the array� then we must have A�result� � x�

�We shall prove that this holds a little later�� If x is absent� then either
A�result�� x or result � HIGH�A� � ��

���� The algorithm

The algorithm uses two natural number variables Left and Right� which
represent your two hands holding the dictionary
 what you know at each
stage is that the answer must be between Left and Right� At each iteration�
you �nd the midpoint between Left and Right �call it Middle�� and use that
as a new Left or Right� Now this intuition is relatively simple� but it is tricky
to say exactly what it means� Some points to be resolved are as follows

� Should the answer be strictly between Left and Right� or not� Or strict
at one end but not at the other� �Four possibilities here�� This is very
important� If your ideas are not consistent throughout the program�
then errors will arise�

� It is tempting to say something like A�Left� � x and A�Right� � x� but
might we ever want Left or Right to be HIGH�A� � �� that is� not a valid
subscript for A�

The key is to notice that result is used twice in the post�condition� once to
show where the elements � x are� and once to show where those � x are�
Left and Right can divide these two tasks between them
 elements before Left
are known to be � x� and elements at or after Right are known to be � x�
In between� we do not know

� x � x

� Left HIGH�A�

A

subscripts
 Right

�

The algorithm ���

�Middle does not appear � it is used only for calculating within the loop
body��

We are trying to eliminate the ��� region� that is� to make Left and
Right equal� Then we have essentially the same diagram as before� and
Left �� Right� is the required result�

Initially� on the other hand� everything is ��� and so we want Left� � and
Right � HIGH�A� � ��

Actually� this idea� that when Left�Right we stop and return Left as result�
is a fundamental design decision that strongly in�uences the rest
 our initial
decision is how to �nalize� � though that should not come as a surprise by
now� So the �rst program fragments we can write down are

��loop invariant
 ��� �formalizes picture�

�variant � Right�Left ��

WHILE Left � Right DO

END�

RETURN Left

END Search�

There are di�erent ideas� for instance �when Right � Left�� return Right��
which we could have chosen but we did not and� as it turns out� the method
we have chosen is simpler�

Next� let us formulate the invariant� We have a picture already� but we
also know that we are choosing ��s or ��s precisely to make the Left and
Right parts of the invariant match parts ���� and ���� of the post�condition�
Therefore� it has to be

Left � Right � HIGH�A� � �
��i
 nat� ��i � Left� A!i" � x� � �Right � i � HIGH�A�� A!i" � x��

Let us also take the opportunity to say that the variant is Right� Left�

We have already dealt with the �nalization� what next� The initialization
is easy � we want Left � � and Right � HIGH�A� � �� All that remains is the
loop body�

The idea is to �nd Middle between Left and Right and update either Left
or Right depending on the value of A!Middle"� How should we do that� Let
us be very careful to use the information precisely�

If A!Middle" � x� then Middle is in the �� x� area of the array� so Left�
which is to be in the ��� area� can safely be set to Middle � �� On the
other hand� if !Middle" � x� then we must set Right to Middle �why not
Middle � ���� We have not said exactly what Middle is� but we have made a
start on the loop body

��	 Binary chop

Middle
� ��

IF A!Middle" � x THEN

Left
� Middle��

ELSE

Right
� Middle

END
It remains to assign a value to Middle� and it is important to see what
precisely are the requirements here � all we know so far is that Middle should
be �about� half way between Left and Right� or at least somewhere between
them� Consider how the invariant Left � Right is reestablished� The new Left
may be Middle � �� so we want Middle � � � Right� that is� Middle � Right�
In the other case� the new Right is Middle� so we want Left � Middle� We
can use a mid�condition to express these requirements as a computational
objective

Middle
� �� �� Left �� Middle � Right ��

It is not di�cult to see that if we can achieve this� then the rest of the loop
body will reestablish the invariant and decrease the variant as well� We shall
see soon that we can assign �Left� Right� DIV �� the rounded�down average
of Left and Right� to Middle� That is probably what you expected anyway�
but more care is needed here than you might think� In Exercise � you will
see a use of essentially the same algorithm in a di�erent context where it is
more natural to require Left � Middle � Right� and there it is necessary to
use ��Left�Right� DIV �� � � � the problem comes when Right � Left� �� so
that Middle � Left�

���� The program

The program appears in Figure ���� Notice the order in which the parts
appear

�� The procedure heading� with speci�cation and the fragments BEGIN and
END Search��

�� The framework for the loop
 WHILE Left � Right DO and END� RETURN

Left� also the slots for the invariant and variant �we have �lled in the
variant�� and the VAR declarations�

�� The invariant� carefully formulated to match �� and the post�condition�
�� The initialization�
�� Pieces of the loop body
 an incompleted assignment statement Middle

� ��� and all of the IF statement�
�� The comment �� Left �� Middle � Right ���
�� The assigned value �Left�Right� DIV ��

At each stage� the choices to be made depended in a natural way on preceding
choices� so the development had a certain logical inevitability�

Some detailed checks ��

PROCEDURE Search� A
 ARRAY OF INTEGER� x
 INTEGER�
 CARDINAL�

��pre
 Sorted�A��

� i�e� �A�i�j
nat� � i��j�� HIGH�A� �� A!i"��A!j" �

�post
 result �� HIGH�A��� � �A�i
nat�

� � � i�result �� A!i"�x � � � result��i��HIGH�A� �� A!i"��x � �

��

VAR Left�Right�Middle
 CARDINAL�

BEGIN

Left
� ��

Right
� HIGH�A����

��Loop invariant
 Left �� Right �� HIGH�A��� � �A�i
nat�

� � � i� Left �� A!i"�x � � � Right��i�� HIGH�A� �� A!i"��x � �

�variant � Right�Left

��

WHILE Left � Right DO

Middle
� �Left�Right� DIV �� �� Left �� Middle � Right ��

IF A!Middle"�x

THEN Left
� Middle��

ELSE Right
� Middle

END

END�

RETURN Left

END Search�

Figure ����

As an experiment� try to write the program code straight down from the
top without thinking of invariants� You will probably �nd �everyone else does�
that it is not easy to get it right�

���� Some detailed checks

We have already covered most of the important aspects of the invariant
 that
it is established correctly initially� that it is reestablished on each iteration�
and that at the end it can be used to deduce the post�condition� The
following are some small remaining questions�

At the end of each iteration� do we still have Left � Right� After the
assignment to Middle� do we indeed have Left � Middle � Right� Because we
are still looping� we know that Left � Right� that is� Left � Right� �� Hence�

Middle � �Left� Right� DIV � � ��� Left� DIV � � Left
Middle � �Left� Right� DIV � � ��� Right� �� DIV � � Right� � � Right

��� Binary chop

Note� the equality �� � Right � �� DIV � � Right � � is correct according
to the de�nition of Modula��� given that Right � � �which we know because
Right � Left�
 the fractional answer �Right� ���� is truncated to Right� �� But
it is possible to imagine an integer division that might round the fractional
answer Right� ��� up to Right� Therefore� if you translate this algorithm to
languages other than Modula��� you should check that their integer divisions
behave as expected� Dijkstra and Feijen ��A Method of Programming�� give
a treatment that does not depend on the rounding method� However� their
program only checks whether x is present in A and some elegance is lost
when the method is extended to return the position � extra checking is
needed to make up for the doubts about the integer division� In truth� the
point of integer arithmetic is that it should be exact� and an inadequately
speci�ed integer division is a blunt instrument�

When A is subscripted� is the subscript within bounds� The only place is in
�IF A!Middle" � � � �� Can we guarantee that Middle � HIGH�A�� Yes� because
�as above� Middle � Right� and� by the invariant� Right � HIGH�A� � ��

Does the variant de�nitely decrease each time round� If Right is replaced
by Middle� then it has de�nitely decreased� if Left is replaced by Middle � ��
then it has de�nitely increased� Either way� the variant has decreased�

���� Checking for the presence of an element

Suppose we only want to check whether x is present in A� If we calculate

r
� Search�A�x��

how can we use A�x and r to perform our check� Just to be sure� let us
write down what we know about r solely from the post�condition for Search

r � HIGH�A� � �
��i
 nat� ��i � r� A!i" � x� � �r � i � HIGH�A�� A!i" � x�� �
�

If A!r" � x� then x must be present� while a quick look at one of the
diagrams above makes it fairly clear that if A!r" � x then x is absent� But
wait� Is A!r" de�ned� Not necessarily� r might be equal to HIGH�A� � �� in
this case� x is absent because all the elements are � x�

Check that array subscripts are in bounds when you write the
program� not when you run it�

The following is the program

Summary ���

PROCEDURE IsIn�x
 INTEGER� A
 ARRAY OF INTEGER�
BOOLEAN�

��pre
 �A�i�j
nat� �i��j�� HIGH�A���A!i" ��A!j"�

�post
 result ����E�i
nat� �i�� HIGH�A� � A!i"� x�

��

VAR r
 CARDINAL�

BEGIN

r
� Search�A�x��

RETURN r�� HIGH�A� AND A!r" � x

END IsIn�

The code above relies on Modula���s short circuit evaluation� That is�
A!r" � x will not be evaluated if r � HIGH�A�� In other languages� such
as Pascal� Boolean expressions are evaluated completely even if the result is
known after the �rst subexpression has been evaluated� The code after the
RETURN would then need to be written as the following

IF r �� HIGH�A�

THEN RETURN A!r" � x

ELSE RETURN FALSE

END
Let us show as rigourously as possible that the code for IsIn satis�es its
speci�cation
 that if the returned Boolean value is TRUE then x is indeed
present in A �that is� �i
 nat� �i � HIGH�A� � A!i" � x��� and that if FALSE
is returned then x is absent �that is� ��i
 nat��i � HIGH�A� � A!i" � x���

!�rst case
"r � HIGH�A�� so FALSE is returned� We know that r is a natural
number and that r � HIGH�A� � �� so r � HIGH�A� � �� Then from
�
���i
 nat��i � HIGH�A�� A!i" � x�� in other words all the elements of
A are � x � so x must be absent� Note that the invalid array access
A!r" is not attempted here because of the way in which Modula��
evaluates AND�

!second case
"r � HIGH�A�� A!r" � x� so TRUE is returned� Certainly x is
present� with subscript r�

!third case
"r � HIGH�A�� A!r" 	� x� so FALSE is returned� Because
r � HIGH�A�� �
� tells us that A!r" � x� so we must have A!r" � x�
Now consider any subscript i � HIGH�A�� If i � r� then �
� tells us
that A!i" � x� while if i � r� then �using orderedness� A!i" � A!r" � x�
Either way� A!i" 	� x� so ��i
 nat� �i � HIGH�A� �A!i" � x��

���� Summary

� Binary chop is an important and e�cient search algorithm if the elements
are arranged in order� You should know it�

� The algorithm has many uses� but to use it e�ectively it is important to
understand exactly what the result represents �that is� to have a clear

��� Binary chop

speci�cation��
� There is a particular train of reasoning that leads to the algorithm
easily� otherwise it is easy to get into a mess�

���	 Exercises

�� What happens if you replace the assignment Left
� Middle�� in
Search by Left
� Middle� �Hint� the invariant is still reestablished��
A common belief is that the problem can be corrected by stopping early�
looping WHILE Left�� � Right� Follow through this idea and see how it
gives more complicated code�

�� The following is another version of intsqrt by the binary search
algorithm

intsqrt

num��num

��pre
 x �� �

��post
 n � entier �sqrt x�

�� i�e� nat�n� � n�� �� x � �n����� � x

�� where n � intsqrt x

intsqrt x � f x � �entier x�

where f x l r � l� if l � r

� �� if m�m �� x

� �� otherwise

where m � �

��m satisfies some conditions

Specify f precisely and in full� and complete the de�nition� �Beware� m
is not �l � r�div �� as you will see if you follow the method properly��

�� Show that the speci�cation of Search speci�es the result uniquely� In
other words� if there are two natural numbers r and r� that are both
valid results� then r � r��
Use this to deduce the following� Suppose that in A there is exactly one
index� i� for which A�i� � x� Then i � Search�A�x��

�� There are other ways of giving the post�condition for Search� Here is
one that translates the informal speci�cation much more directly

post�
 �result �� HIGH�A� � A!result"��x

� �A�i
nat� �i��HIGH�A� � A!i"��x��i��result��

���result�HIGH�A���

� �A�i
nat� �i��HIGH�A���A!i"�x��

Use natural deduction �together with standard properties of arithmetic�
to prove that

pre � �post� post��

Exercises ���

where pre and post are the pre� and post�conditions for Search as
originally speci�ed� and post� is as given above�
Can you think of any other equivalent post�conditions�

�� This question examines how you might use Search to update an ordered
array�
First� a function Search� is intended to work in the same way as
Search� but with a �soft HIGH� called High� to allow for variable length
lists of integers within a �xed length array� �We actually use a soft
version of HIGH�A� � �� This allows us to specify an empty list by
setting High� � ���

PROCEDURE Search��A
 ARRAY OF INTEGER�

High�
 CARDINAL� x
 INTEGER�
CARDINAL�

��pre
 High��� HIGH�A��� � Sorted�A!� to High���"�

�post
 result �� High� � �A�i
nat�

� ��i� result ��A!i"�x�

� � �result ��i� High���A!i"��x��

��

�It is obvious how to implement this
 just initialize Right to High�

instead of HIGH�A� � � in the implementation for Search� Note that this
works even in the case where High� � ���
Implement the following procedures� giving invariants and variants for all
loops� The notation A!i to j" is introduced in Section �����

PROCEDURE OpenUp�VAR A
 ARRAY OF INTEGER� VAR High�
 CARDINAL�

NewGap
 CARDINAL��

��pre
 NewGap �� High��� HIGH�A�

�post
 �E�x
Integer�

� A!� to High���" �

� A��!� to NewGap��"��!x"��A��!NewGap to High�����"

��

PROCEDURE Insert�VAR A
 ARRAY OF INTEGER� VAR High�
 CARDINAL�

x
INTEGER��

��pre
 High��� HIGH�A� � Sorted�A!� to High���"�

� post
 Sorted�A!� to High���"�

� � �E�s�t
!Integer"

� �A��!� to High�����"�s��t

� �A!� to High���"�s��!x"��t�

��

�Hint� implement Insert using Search� and OpenUp��
�� Redo the proof that IsIn satis�es its speci�cation using box proofs�

Chapter ��

Quick sort

���� Quick sort

Donald Knuth� in his book Sorting and Searching� gives an estimate of over
�� per cent for the proportion of computer running time that is spent on
sorting� Whether this estimate is still accurate� we do not know� but his
conclusion is still valid
 whether �i� there are many important applications
of sorting� or �ii� many people sort when they should not� or �iii� ine�cient
sorting algorithms are in common use� or something of all three� sorting is
worthy of serious study as a practical matter�
As a general principle� if a program is used a lot then it is worth making it

run quickly� In this chapter we present quick sort� an e�cient sorting algorithm
due to Tony Hoare� It is a good example of a combination of di�erent kinds
of argument� It is recursive� and the framework of the algorithm is very
conveniently discussed as a Miranda function working on lists� However� when
it is transferred to Modula�� working on arrays� a signi�cant improvement
becomes possible using the �Dutch national �ag� algorithm� and this can be
discussed using loop invariants in fact it is a rather good example of a
loop invariant that is a logical translation of a diagram�

���� Quick sort � functional version

The problem is� given a list� to sort it into order� We start o� in Miranda�
Since in Miranda datatypes have natural orderings� we do not need to say
what our lists are lists of

sort

 !�"��!�"

��pre
 none

��post
 Sorted�sort xs� � Perm�sort xs�xs�

���

Quick sort functional version ���

Idea
 partition

It is so much easier to sort short lists than long ones that it helps to do a
preliminary crude sort� a partition with respect to some key k �Figure ������

elements � k go here elements � k go here

Figure ����

partition

 ���!�"���!�"�!�"�

��pre
 none

��post
 Perm�xs�ys��zs�

�� all elements of ys are ��k

�� all elements of zs are �k

�� where �ys�zs� � �partition k xs�

Note that the speci�cation does not uniquely determine the function� If
�ys� zs� is a possible result� so is �ys��zs�� where ys�� zs� are any permutations
of ys and zs� It is simple to implement partition in Miranda� but we do
not need to � it is the speci�cation that is important� and in the end we
will implement it by a totally imperative method� A pure functional quick
sort is not terribly quick and uses lots of space�

Implementing quick sort

The idea is to do a partition �rst and then sort the two parts separately�
they can be sorted using the same method� recursively� The head of the list
can be the key

qsort

 !�"��!�"

��pre
 none

��post
 Sorted�qsort �xs�� � Perm��qsort �xs���xs�

��recursion variant � $xs

qsort !" � !"

qsort �x
xs� � �qsort ys���!x"���qsort zs�

where �ys�zs� � partition x xs

This is the essence of the recursion in the quick sort algorithm� To prove

��� Quick sort

that it works� note �rst that $xs really is a recursion variant� The recursion
is unusual in that the recursive calls work not on xs� but on ys and zs�
However� we know that these are strictly shorter than x
xs� For instance�
$ys � �$ys �� $zs� � $xs � $x
xs so we do have a recursion variant�

Proposition ���� qsort terminates and satis�es its speci�cation�

Proof qsort !" clearly works correctly�
Now consider qsort x
xs� The result� �qsort ys� �� !x"�� �qsort zs�� is
sorted� because

� �qsort ys� is sorted �the recursive calls can be assumed to be
satisfactory��

� �qsort ys� is a permutation of ys� and by the speci�cation of
Partition every element of ys is � x� so every element of �qsort ys� is
� x�

� similarly� �qsort zs� is sorted and all its elements are � x�

Also� it is a permutation of ys��!x"��zs� hence of x
	ys��zs
� and hence �by
speci�cation of partition� of x
xs� �

���� Arrays as lists

Miranda is a much simpler notation than Modula�� and it is often helpful to
be able to reason �rst in terms of Miranda and then transfer the reasoning
to Modula��� The most important properties of an array are its elements�
together with their order
 in other words� abstractly� the list or sequence of
elements� For example� suppose we have

A
 ARRAY !La��Ha" OF REAL�

B
 ARRAY !Lb��Hb" OF REAL�

Then

A represents the list �A�La�� A�La� ��� � � � � A�Ha��
B represents the list �B�Lb�� B�Lb� ��� � � � � B�Hb��
A��B represents the list �A�La�� � � � � A�Ha�� B�Lb�� � � � � B�Hb��

�Note how we can sensibly talk about the append A��B� even though in Modula�
� it is quite di�cult to construct it�� Also� hd�A� � A!La"� hd�B� � B!Lb"�
For computing purposes� we must also know how the elements are

subscripted
 hence the need for the bounds in the declarations� But the
numerical values of the subscripts may be quite irrelevant to our original
problem� and are just a computational necessity forced on us by the way
Modula�� accesses arrays� Then it is better to try to reason without them as
much as possible � in fact� speci�cations that put too great a reliance on
subscripts are said to su�er from �indexitis��

Quick sort in Modula�
 ���

That said� we can of course put a subscript structure onto a list and thus
treat it as an array� The conventional way in both Modula�� �for open array
parameters� and Miranda �for the # operation� is to say that the �rst element
has subscript �� Thus a Miranda list

t � !t#�� t#�� � � � � t#�$t� ��"
can be understood as an array with bounds !����$ t� ��"� �But of course you
cannot assign to the elements in Miranda��
Let us also introduce some notation � not part of Modula�� � for sublists�

Suppose A has been declared as A
 ARRAY �m��n�OF � � �� We write A!i to j"
to mean� essentially� the list

!!A!i"� A!i� �"� � � � � A!j""

This is provided that m � i � j � n� It is also useful to de�ne A!i to j" to
be empty if j � i� Recursively�

A!i to j" � !"� if j�i

� A!i"
A!i�� to j"� otherwise

Some properties of this notation are

� As lists� A � A�m to n��
� A�i to j� is de�ned i� �i � j� � �m � i � j � n�� Use induction on j � i�
� If A�i to j� is de�ned and non�empty� then its length is j � i� ��
� If m � i � j � k � n then A�i to k� � A�i to j � ����A�j to k�
� A!i to j"��A!j � � to k"�

� A!i to i" � !A!i""�
� A!� to HIGH�A�" � A�

���� Quick sort in Modula��

A Miranda version would waste space by creating lots of new lists all the
time� In Modula��� with arrays �of integers� say�� we can instead try for
an in�place sort� rearranging the elements within the original array� The
recursive calls of qsort will now work on regions within the original array� so
the procedure must have extra parameters to specify the region� Let us say
that QuickSort�A� Start� Rest� is to sort A�Start to Rest���� �The �� lets
us specify empty regions by taking Start�Rest� even if Start � ���

PROCEDURE QuickSort �VAR A
 ARRAY OF INTEGER� Start�Rest
 CARDINAL��

��pre
 ��� Start �� Rest �� HIGH�A���

�post
 Perm�A� A���

� � A!� to Start��" � A��!� to Start��"

� � A!Rest to HIGH�A�" � A��!Rest to HIGH�A�"

� � Sorted�A!Start to Rest��"�

��

��	 Quick sort

Partition will also work in�place

PROCEDURE Partition �VAR A
 ARRAY OF INTEGER�

Start� Rest
 CARDINAL�

K
 INTEGER�
 CARDINAL�

��pre
 ��� Start �� Rest �� HIGH�A���

�post
 Start �� result �� Rest

� � Perm�A� A���

� � A!� to Start��" � A��!� to Start��"

� � A!Rest to HIGH�A�" � A��!Rest to HIGH�A�"

� � �A!Start to result��"� A!result to Rest��"�

� satisfies the Miranda specification for

� �partition K A��!Start to Rest��"�

��

Let us leave the implementation of Partition until after the Dutch national
�ag problem� but note that we do not need Partition to compute the same
function as partition �which� in any event� we have not de�ned yet�� only
to satisfy its speci�cation�
The functional qsort can now be translated into Modula��� using a call of

Partition

PROCEDURE QuickSort �� specified above ���

�� recursion variant � Rest�Start ��

VAR n
 CARDINAL�

x
 INTEGER�

BEGIN

IF Start � Rest

�� region is nonempty�

��qsort A��!Start to Rest��"� �

� �qsort ys���!A��!Start""���qsort zs�

� where �ys�zs� �

� partition A��!Start" A��!Start�� to Rest��"�from Miranda

��

THEN

n
�Partition�A� Start��� Rest� A!Start"��

Swap�A!Start"� A!n��"��

���A!Start to n��"� A!n to Rest��"�

�is a valid result for

��partition A��!Start" A��!Start�� to Rest��"�

��

QuickSort�A� Start� n����

QuickSort�A� n� Rest�

��ELSE Start � Rest� region is empty� ��

END

END QuickSort�

Dutch national �ag ��

This really is just a translation of the Miranda qsort� though you might not
think it at �rst glance� �That is why we suggest that it is a good idea to see
the algorithm clearly in Miranda �rst��

Think of the call qsort	x
xs
� In the Modula�� context� x is A�!Start"�
and xs is A�!Start�� to Rest��"� After n
� Partition����� we
have a satisfactory result for Partition x xs� namely �A!Start�� to n��"�
A!n to Rest��"� �� �ys��zs��� say�� However� this is not quite yet the 	ys�zs

that is used for the recursive call of qsort� the reason being that we want
x in the middle instead of at the left�hand end where it is at the moment�
What we do next is to swap A!Start" with A!n��"� so that instead of having
the equivalent of !x"�� ys� �� zs� we have ys�� !x"�� zs where ys is a
permutation of ys� � its last element has been moved to the head � and
zs is just zs� renamed� 	ys�zs
 is still a satisfactory result for Partition x xs�
so if we apply the sorting algorithm recursively in place to ys and to zs we
obtain �qsort ys� �� !x" �� �qsort zs�� as required�

���� Dutch national �ag

This algorithm� due to the Dutch computer scientist Dijkstra� solves the
sorting problem in the very simple case where there are only three possible
values of the elements to be sorted�

The Dutch national �ag is a tricolour� red �at the top�� white and blue
�Figure ������ For the problem imagine that �a computer representation of�

Figure ����

the �ag gets scrambled �Figure ������ the stripes being cut up horizontally
and rearranged
 It is desired to correct this in one pass� that is� inspecting
each stripelet once only� We are not told whether the three stripes are cut
into the same number of stripelets� The only permitted way of rearranging
stripelets is by swapping them� two at a time

��� Quick sort

Figure ����

TYPE Colour � �red� white� blue��

PROCEDURE Restore �VAR A
 ARRAY OF Colour��

��pre
 none

�post
 Perm�A� A��� � Sorted�A�

��

The idea is to track through the stripelets and put each one in �the right
area�� Part way through� let us have the stripelets arranged as in Figure �����
We shall need to keep pointers to the boundaries between the four areas�

de�nitely

de�nitely

de�nitely

still jumbled

Figure ����

At each iteration� we inspect the �rst� that is� the top� grey �uninspected�
stripelet� If it is white� then it is already in the right place and we can move
on� If it is red� then we swap it with the �rst white and move on� If it is
blue� then we swap it with the last grey before the blues but do not move on
because we have now fetched another grey to inspect� Finally� when there are
no greys left� then the stripelets are in the right order�
If we invent names for the pointers� then we can improve the diagram
�Figure ������ We have adopted a convention here
 there are three boundaries
to be marked �red%white� white%grey and grey%blue�� and the corresponding
variable is always the index of the element just after the boundary� If two
adjacent markers are equal� it shows that that region is empty� In particular�
when GreyStart�BlueStart then there are no greys left and the �ag is in
order�
This diagram is essentially the loop invariant� At the appropriate points
in the computation� we can imagine freezing the computer� inspecting the

Dutch national �ag ���

WhiteStart
�

high�A���

BlueStart

GreyStart

Figure ����

variables and the array� and asking whether the stripelets from� for instance
WhiteStart to GreyStart��� are indeed all white� as the diagram suggests� In
other words� the diagram suggests a statement about the computer�s state�
and our next task is to translate this into logic as the invariant� You will see
this in the implementation�
The variant� which is a measure of the amount of work left to be done� is
the size of the jumbled �grey� area
 BlueStart�GreyStart� Progress is made
by reducing it

PROCEDURE Restore�VAR A
 ARRAY OF Colour��

VAR WhiteStart�GreyStart�BlueStart
 CARDINAL�

BEGIN

WhiteStart
� �� GreyStart
� ��

BlueStart
� HIGH�A����

�� loop invariant

� Perm�A�A���

� � WhiteStart �� GreyStart �� BlueStart �� HIGH�A���

� � �A�i
nat� ��� �� i � WhiteStart �� A!i" � red�

� � �WhiteStart �� i � GreyStart �� A!i" � white�

� � �BlueStart �� i �� HIGH�A� �� A!i" � blue��

� variant � BlueStart�GreyStart

��

WHILE GreyStart � BlueStart DO

CASE A!GreyStart" OF

red
 Swap�A!WhiteStart"�A!GreyStart"��

WhiteStart
� WhiteStart���

GreyStart
� GreyStart��

�white
 GreyStart
� GreyStart��

�blue
 Swap�A!GreyStart"�A!BlueStart��"��

BlueStart
� BlueStart��

END

END

END Restore�

��� Quick sort

Sample reasoning

Let us us look at just two examples of how to verify parts of the procedure�
First� why is Perm 	A� A�
 always true� This is because all we ever do to the
array is swap pairs of its elements� and a sequence of swaps is a permutation�

Next� why does the red part of the CASE statement reestablish the invariant�
Let us write WS� GS� BS and A� for the values of WhiteStart� GreyStart�
BlueStart and A when the label red is reached�
We know that � � WS � GS � BS � HIGH�A� � �� so after the update�
when WhiteStart �WS � �� GreyStart � GS� � and BlueStart � BS� we have
� � WhiteStart � GreyStart � BlueStart � HIGH�A� � �� as required� To check
that the colours are correct after the update� let i be a natural number�
If � � i � WhiteStart� then � � i � WS� We must show that A!i" is red�

If i �WS� this follows from the speci�cation of Swap

� A!WS" � A�!GS" � red by the CASE switch�

� If i �WS� which is � GS� then i is neither WS nor GS� Hence A!i" was
una�ected by the Swap� so A!i" � A�!i" � red by the loop invariant�

Next� suppose WhiteStart � i � GreyStart� that is� WS � � � i � GS� Note in
this case that A�!WS" � white by the loop invariant� for WS �WS� � � GS�
�The point is that the situation where WS � GS� and so A�!WS" is grey�
is impossible given the i that we are considering�� Hence for i � GS� the
speci�cation of Swap tells us that A!GS" � A�!WS" � white�
If i � GS� then i is neither WS nor GS� Hence from the speci�cation of

Swap� A!i" is unchanged� and by the loop invariant it was white� For the
third case� take BlueStart � i � HIGH�A�� Again� A!i" is unchanged� and by
the loop invariant it was blue�

���� Partitions by the Dutch national �ag algorithm

Suppose� given a key integer K� you think of all integers as being coloured

integers � K are red
K is white
integers � K are blue
Then the Dutch national �ag algorithm� applied to an integer array� can do a
crude sort� The white region is likely to be small or non�existent� so it is
reasonable to merge it with the red region to make pink� The two regions
correspond to those that Partition discovers
 one for � K� one for � K�

We can therefore implement Partition by simplifying the Dutch national
�ag algorithm to cope with the �ag of the Royal College of Midwives �pink
and blue stripes�� QuickSort will then look as in Figure ����� with recursive
calls to sort the pink and blue regions� To implement Partition by adapting

Partitions by the Dutch national �ag algorithm ���

�white�

K grey

crude sort
�midwives� �ag�

K pink blue

�white� BlueStart

Kpink blue

BlueStart�white�

Figure ����

the Partition from the Dutch national �ag� we must

�� Simplify Restore to do the Midwives� sort �drop the �red� case and
WhiteStart� we can also turn the CASE statement to an IF statement��

�� Return the �nal BlueStart as a result in order to show the boundary of
the partition�

�� Convert the colours to arithmetic inequalities �� or � the key K��
�� Allow for partitioning regions� rather than the whole array�

There should be no need to reason that the implementation is correct because
we have done all the reasoning for Restore� But the loop invariant allows us
to check� in case of doubt

PROCEDURE Partition�VAR A
 ARRAY OF INTEGER� Start� Rest
 CARDINAL�

K
 INTEGER�
 CARDINAL�

��specification as before ��

VAR GreyStart� BlueStart
 CARDINAL�

x
 INTEGER�

BEGIN

GreyStart
� Start� �� no pinks ��

BlueStart
� Rest� �� no blues ��

�� loop invariant

� Perm�A� A ��

� � Start �� GreyStart �� BlueStart �� Rest

� � �A�i
nat�

� ��Start ��i� GreyStart �� A!i"��K�

��� Quick sort

� ��BlueStart ��i� Rest �� A!i"�K��

� variant � BlueStart�GreyStart

��

WHILE GreyStart � BlueStart DO

IF A!GreyStart"��K��pink��

THEN GreyStart
� GreyStart��

ELSE

x
�A!GreyStart"�

A!GreyStart"
� A!BlueStart��"�

A!BlueStart��"
� x�

BlueStart
� BlueStart��

END

END�

RETURN BlueStart

END Partition�

���� Summary

� Functional de�nitions can be useful reasoning tools even if the �nal
implementation is to be imperative�

� Sometimes a diagram is the real loop invariant�
� The method of introducing logical constants to name the values of
computer variables is often �as in Restore� indispensable when you show
that the loop body reestablishes the invariant�

���	 Exercises

�� For the Dutch national �ag algorithm show the following

�a� the invariant is established by the initialization�

�b� the invariant is reestablished by each iteration �that is� do the blue
and white cases corresponding to the red case above��

�c� when looping stops� the post�condition has been set up�

�d� the variant strictly decreases on each iteration� but never goes
negative�

�e� for every array access or Swap� the subscripts are within bounds
�that is� � HIGH�A���

�� Consider the following idea for the Dutch national �ag problem� The

Exercises ���

white stripelets are to be put at the other end of the grey area

� Red jGrey jWhite jBlue �
� � �
GreyStart WhiteStart BlueStart

�a� Show that this is unsatisfactory for two reasons

� on average� more swaps are done than are necessary�
� this method can give wrong answers�

�b� Two other sequences of two swaps are possible� is either of them
correct�

�� Can the Dutch national �ag method be generalized to work with more
than three colours�

�� Implement partition in Miranda�
�� Modify the Miranda partition and qsort so that the order relation
used does not have to be �� but is supplied as a parameter lte� a
�comparison function� which takes two elements as arguments and gives
a Boolean result

partition�

������� bool���� ��!�"���!�"�!�"�

qsort�

������� bool���!�"��!�"

�The comparison function can be thought of as a two�place predicate� or
as a relation�� Give implementations for these� ensuring that qsort and
partition are �qsort� ���� and �partition� ����� To obtain a
downward ordered list� you would use �qsort������

Chapter ��

Warshall�s algorithm

Warshall�s algorithm is an example of an algorithm that is di�cult to
understand at all without some kind of reasoning based on a loop invariant�
The problem is to �nd the transitive closure of a relation� We shall �rst look
at an algorithm that is relatively clear� and then go on to one �Warshall�s
algorithm� that is clever� and more e�cient� but more di�cult to understand�

���� Transitive closure

Warshall�s algorithm computes transitive closures� a notion that comes from
the theory of relations� To keep the discussion here simple� we shall explain
this in terms of graphs� such as the one in Figure ����� A graph has a

a

b

c d

Figure ����

number of nodes �a� b� c and d here�� and some edges �the arrows�� In the sort
of graph that we shall be using� for any pair �x� y� of nodes� there will be at
most one edge from x to y �but possibly also one from y to x�� Let us write
�x� y� if there is an edge from x to y� In our example�

a� c� b� c and c� d
but not a� b� a� a� c� b� nor a� d�

We shall interest ourselves in the problem of �nding composite paths through
the graph� made by joining edges up� head to tail� like elephants on parade�

���

Transitive closure ���

Let us write �x�� y� if there is a path from x to y� so here we have

a�� c� b�� c� c�� d� a�� d and b�� d
but not a�� b� a�� a or c�� b�

Formally� x�� y i� we can �nd a sequence z�� � � � � zn with

x� z� � � � �� zn � y

�� is the transitive closure of ��
The length of the path is the number of edges� which is n here� We write

x�r y if there is a path of length r from x to y� Then

� x�� y i� �n
nat� �� � n � x�n y�

� x� y i� x�� y

The following are some applications of �nding the transitive closure

� Suppose the nodes and edges represent airports and direct air �ights�
The paths are composite trips that can be made by plane alone�

� Suppose that nodes represent procedures in some program� and an edge
from a to b means that a calls b� Then a path from a to b means
that a calls b� though possibly indirectly �via some other procedures�� A
path from a to itself shows that a is potentially recursive� It may be
useful for a compiler to be able to discover this because non�recursive
procedures can be optimized to store return addresses� parameters and
local variables in �xed locations instead of on a stack�

Computer representation

The graph can also be thought of as a matrix� or array� and this is the
basis of the computer representation� If you give each node a number� then
the whereabouts of the edges can be described by a square array of Boolean
values

Edge�a� b� �

�
true if there is an edge from a to b� that is� a� b
false otherwise

This array� or matrix� is called the adjacency matrix of the graph� The
transitive closure can be described the same way

Path�a� b� �

�
true if there is a path from a to b� that is� a�� b
false otherwise

Let us give some suitable declarations� and also specify the transitive closure
procedure

��	 Warshall�s algorithm

CONST Size � ������number of nodes��

TYPE

Node � ���Size�

AdjMatrix � ARRAY Node�Node OF BOOLEAN�

PROCEDURE TransClos�Edge
 AdjMatrix� VAR Path
 AdjMatrix��

��pre
 none

�post
 Path represents transitive closure of Edge

��

You might decide to have Edge a VAR parameter� to avoid any possible
copying� Then you would need a pre�condition to say that Edge and Path

are di�erent arrays� and an extra post�condition to say that Edge � Edge��

���� First algorithm

We shall look at three algorithms� and all of them will use the same basic
idea� Some paths are more complicated than others� the simplest ones are
the single edges� and they can be put together to make more complicated
ones� The loop invariant will always say �the true entries in Path all
represent paths� and all paths up to a certain degree of complication have
been registered as trues in Path�� More formally�

�a� b
 Node� ��Path�a� b�� �a�� b��
���a�� b� by a path of degree of complication � N � Path�a� b���

The invariant will always be established initially by copying Edge to Path
�thus registering the simplest paths�� and each algorithm terminates when the
degree of complication is su�cient to cover all possible paths� One di�erence
between the algorithms lies in the measure of complication�

For the �rst two algorithms� we equate complication of a path with its
length�

Suppose Path has registered all the paths of length � n� and we now want
to �nd all paths of length � n��
 the new ones that we must �nd are those
of length exactly n� �� But such a path from a to b splits up as a path of
length n �from a to cn� say�� which is already registered in Path� and then
an edge from cn to b� Hence we shall be able to recognize it by the fact
that Path�a� cn� � Edge�cn� b� � true� Our method is to look at all possible
combinations for a� b and c� and assign true to Path�a� b� if either it was
true already or we have Path�a� c� � Edge�c� b� � true�

Paths can be of arbitrary length� so we must �nd a way of stopping�
Actually� we can stop when we have registered all paths of length � Size� for
longer ones do not tell us anything new� To see this� suppose we have a path

First algorithm ��

from a to b of length n � Size

c� � c� � � � �� cn�� � cn where c� � a and cn � b

Consider c�� � � � � cn� There are at least Size� � of these symbols� but there
are only Size possible nodes� Therefore� one node appears twice � ci � cj
where i � j� But this path can now be collapsed to a shorter path from a to
b

a� c� � � � �� ci � cj � � � �� cn � b

�See Exercise � for a more rigorous induction proof��

Detailed reasoning

initialization
 This follows because a�� b i� Edge�a� b��

�nalization
 This follows because at the end N � Size� and a�� b i� a�r b
for some r � Size� as reasoned above�

reestablishing the invariant
 Let us split the invariant I� into two parts

I�� �def �a� b
 Node� �Path�a� b�� �a�� b��

I�� �def �a� b
 Node� ��r
 nat� �a�r b� � � � r � N � Path�a� b��

The �rst thing to notice is that nothing ever spoils the truth of I���
In particular� suppose it holds just before the assignment in the FOR

loop� The only possible change is if Path�i� j� becomes true because
we already have Path�i� k� and Edge�k� j�� but then from I�� we know
�i �� k� and �k � j�� so �i �� j�� as required� and I�� still holds
afterwards� Hence I�� holds right through the program�

Turning to I��� this involves N so we must take care to allow for the
increment N
� N � �� Let us write N� for the old value of N � after
the increment� N � N� � �� Before the FOR loops� I� told us that
if a �r b with r � N� then Path�a� b� and this much is never spoiled
because Path�a� b� never changes from true to false� Now suppose
afterwards that a�N��� b� so there is a path of length N� � � from a
to b� The last step of this path goes from c �say� to b� so we know
a �N� c and Edge�c� b�� by the previous invariant we know Path�a� c��
Now consider the FOR loop iteration when i � a� j � b and k � c

because Path�a� c� � Edge�c� b� � true� this sets Path�a� b� to true and
it stays true for ever� as required�

This is a good example of the reasoning style for FOR loops that was suggested
in Section ����

�	� Warshall�s algorithm

Implementation

PROCEDURE TransClos�Edge
 AdjMatrix� VAR Path
 AdjMatrix��

��pre
 none

�post
 Path represents transitive closure of Edge

�notation
 write � a�� b iff Edge!a�b" � true

� �there is an edge from a to b�

� a�� �b iff a is related to b by the transitive closure

� of Edge �there is a path from a to b��

� a�� �n b iff there is a path from a to b of length n

��

VAR N
 CARDINAL�

i�j�k
 Node�

BEGIN

CopyAdjMatrix�Edge�Path��

N
���

��loop invariant � call it I�

�N�� Size

� � �A�a�b
Node�

� ��Path!a�b"�� �a�� �b��

� � �A�r
nat� ��a�� �r b� � ���r��N �� Path!a�b"��

� variant � Size�N

��

WHILE N � Size DO

FOR i
�� TO Size DO

FOR j
�� TO Size DO

FOR k
�� TO Size DO

Path!i�j"
� Path!i�j" OR �Path!i�k" AND Edge!k�j"�

��NB Path!a�b" never changes from true to false ��

END

END

END�

N
�N��

END

END TransClos�

PROCEDURE CopyAdjMatrix�From
 AdjMatrix� VAR To
 AdjMatrix��

��pre
 none

�post
 From � To

��

BEGIN

��exercise��

END CopyAdjMatrix�

Warshall�s algorithm �	�

E�ciency

There are four nested loops� controlled by N� i� j and k� Each is executed
roughly Size times�

�Size� � times for N � Size each for i� j� k� Total � Size��Size	�� Hence�
the total number of iterations is of the order of Size�� �For large graphs the
Size	 term is insigni�cant compared with Size���

This measures the complexity of the algorithm� Size measures how big the
problem is
 so the execution time increases roughly as the fourth power of
the size of the problem� Thus big problems �lots of nodes� will really take
quite a long time� Can we improve on this�

The �rst improvement is obvious but good� Suppose all paths of length N
or less are recorded in Path� Then any path of length �
N or less can be
decomposed into two parts� each of length N or less
 if a�r b with r � �
N �
then we can write r � s � t with s� t � N � and a�s c�t b for some node c�
Therefore� we have already registered Path�a� c� � Path�c� b� � true�

By this means� we can double N at each stage �that is� replace the
assignment N
� N � � by N
� �
N� by using the innermost statement

Path!i�j"
� Path!i�j" OR �Path!i�k" AND Path!k�j"�

The outermost �N� loop is now executed approximately log�Size times� so the
total number of iterations is of the order of log�Size� Size	� This is good�
log�Size increases much more slowly than Size� Can we do better still�

���� Warshall�s algorithm

The path relation that we are building up is transitive�

�a� b� c
 Node� ��a�� c� � �c�� b�� �a�� b��

�This is proved by joining paths together�� One way of understanding
Warshall�s algorithm is through the idea that part way through the calculation�
Path will not be completely transitive but will be �partially� transitive in that
only certain values of c� not too big� will work in the above formula

�a� b� c
 Node� �Path�a� c� � Path�c� b��c � N � Path�a� b��

Now suppose we have achieved this partial transitivity� and we have a path

a� c� � c� � � � �� cn � b

The partial transitivity tells us that provided the nodes c�� � � � � cn �let us
call these the transit nodes of the path� as distinct from the endpoints a and
b� are all � N � then we have Path�a� b��

�	� Warshall�s algorithm

This leads to a new idea of how complicated a path is

A simple path is one whose transit nodes �no matter how many� are all
small � they have numerically small codes�

A complicated path is one whose transit nodes �no matter how few� include
big ones�

The simplest paths from a to b have no transit nodes at all
 they are just
edges a� b�

The next simplest are the paths that use node � as a transit node� These
are of the form a� �� b�

Next� with node � also as a transit node� we have the possible forms

a� �� b� a� �� �� b� a� �� �� b

We quantify this numerically by de�ning the transit maximum of a path to be
the maximum numerical code of its transit nodes �or � if there are none�� Let
us write a�N b if there is a path from a to b with transit maximum � N �
Suppose we have already determined where there are paths of transit

maximum � N � in other words we have computed the relation �N � Any path
from a to b of transit maximum N � � must use node N � � in transit� and
by much the same argument as before we do not need to consider such paths
that use node N � � more than once in transit ��nd the �rst and last transit
occurrences of N � � and cut out all the path in between them�� Then we
have

a� � � �� �N � ��� � � �� b

where the two sections of this have transit maximum at most N and so have
already been found� To reiterate� once we know about all the paths of transit
maximum � N � then all the paths of transit maximum N � � from a to b
can be recognized by the pattern a�N �N ����N b� the two sections of this
being paths that we already know about�

Detailed reasoning

initialization
 This follows because a�� b i� a� b�

�nalization
 Because a�Size b i� a�� b�

reestablishing the invariant
 Let N� be the value of N before the increment�
and let J be the following� which follows from the invariant I�

�a� b
 Node� �Path�a� b�� �a�� b�� � ��a�N�
b� Path�a� b���

No iteration of the FOR loops ever spoils the truth of J so it is still true
after the FOR loops� However� the invariant will say something stronger
than J because of the increment of N � and we must check this�

Warshall�s algorithm �	�

Suppose a�N b� so there is a path from a to b with transit maximum
� N �which is now N� � ��� If all its transit nodes are actually � N��
then a�N�

b and so by J we know Path�a� b�� The only remaining case
is when some transit node is equal to N � Then by splitting up the
path we see that a �N�

N �N�
b� so by J we know that Path�a�N �

and Path�N� b�� The FOR loop iteration when i � a and j � b makes
Path�a� b� equal to true and it remains so for ever�

Implementation

PROCEDURE TransClos�Edge
 AdjMatrix� VAR Path
 AdjMatrix��

��pre
 none

�post
 Path represents transitive closure of Edge

�notation
 a�� n b means there is some path

� a�� c��� c��� ��� �� cr �� b�r����

� where c�� ��� � cr are all ��n�i�e� its transit maximum is ��n�

� Hence a�� �b iff a�� Size b�

��

VAR N
 CARDINAL�

i�j
 Node�

BEGIN

CopyAdjMatrix�Path�Edge��

N
���

��loop invariant I�

� N�� Size

� � �A�a�b
Node�

� ��Path!a�b"�� �a�� �b��

� � ��a�� N b��� Path!a�b"��

�variant � Size�N

��

WHILE N � Size DO

N
�N���

FOR i
�� TO Size DO

FOR j
�� TO Size DO

Path!i�j"
� Path!i�j" OR �Path!i�N" AND Path!N�j"�

END

END

END

END TransClos�

�	� Warshall�s algorithm

E�ciency

There are now three nested loops �for N� i and j�� each one being executed
Size times� so the total number of iterations is of the order of Size	� This is
the best of our three algorithms�

We could optimize this further� For instance� we could replace the FOR

loops by

FOR i
�� TO Size DO

IF Path!i�N"

THEN

FOR j
�� TO N DO

Path!i�j"
� Path!i�j" OR Path!N�j"

END

END

END

�Question� can you prove that this has the same result as the preceding
version�� However� this is local �ne tuning� The step from the original version
to Warshall�s was a fundamental change of algorithm� with a new Invariant�

���� Summary

� We have given three algorithms to compute transitive closures� each one
fundamentally more e�cient than the previous one�

� The most e�cient is Warshall�s algorithm� It would be di�cult to see
clearly why it works without the use of loop invariants�

� The reasoning about FOR loops was essentially di�erent from the loop
invariant technique used for WHILE loops�

���� Exercises

�� Given a graph with Size nodes� show that for any nodes a and b� if
a �� b then a �r b for some r � Size� Hint� use course of values
induction on n to show �n
 nat� P �n�� where

P �n� � �a�n b�� �r
 nat� �r � Size � �a�r b���

�� Use Warshall�s algorithm �in place� to implement the following procedure
�without using any array other than Graph�

Exercises �	�

PROCEDURE TransClos�VAR Graph
 AdjMatrix��

��pre
 none

�post
 Graph represents transitive closure of Graph��

��

�� Modify the detailed reasoning of the �rst algorithm to justify the second�
�� Warshall�s algorithm can be modi�ed to compute shortest paths between
nodes in a graph� Here is the speci�cation

TYPE Matrix � ARRAY Node� Node OF CARDINAL�

PROCEDURE ShortPaths�Edge
 AdjMatrix� VAR SP
 Matrix��

��pre
 none

�post
 �A�i�j
Node� �A�r
nat�

� �� �� SP!i�j" �� Size��

� � �SP!i�j" � r � r �� Size �� �i �� �r j��

� � ��i �� �r j� � r �� � �� SP!i�j" �� r��

��

The idea is that if there is any path at all from i to j then there is
one of length Size or less� and SP �i� j� is to be the shortest such length�
If there is no path� then SP �i� j� is to be Size � ��
Show how to modify the invariant and code of Warshall�s algorithm to
solve this new problem� You will probably need to use the relation �r

N �
de�ned by �i �r

N j� i� there is a path of length r from i to j� with
transit nodes all � N �

Chapter ��

Tail recursion

It is often convenient to do a lot of reasoning in Miranda because the language
has a more elegant notation that is more directly related to mathematical
ideas� For instance� the properties of list functions such as append and
reverse came out fairly simply in Miranda� However� in practice� you will
often want to use an imperative language for its greater e�ciency and so it
would be nice somehow to reuse that reasoning in the context of Modula���
We saw an example in Chapter ��� While on the subject of e�ciency� it is
worth mentioning that e�ciency is usually less important than clarity� This is
because any unclear piece of program can hide a fatal error� while it is only
in frequently used parts that ine�ciencies make a signi�cant di�erence�

The feature that we now address is the transfer from the recursive de�nitions
of Miranda to the iterative �looping� de�nitions of Modula��� Of course� one
can also give recursive de�nitions in Modula��� but it is generally less e�cient
to do so�

There is a general method by which a particular special kind of de�nition in
Miranda� the so�called tail recursive de�nition� can be converted automatically
into a WHILE loop implementation in Modula��� and even though not all
recursive de�nitions are tail recursive� there is still a chance of �nding
equivalent tail recursive de�nitions � ones that de�ne the same function�

���� Tail recursion

A de�nition of a function f is tail recursive i� the results of any recursive calls
of f are used immediately as the result of f � without any further calculation�
Therefore in a tail recursive de�nition� the recursion is used simply to call the
same function but with di�erent arguments�

The reason for this name is that the recursion occurs right at the end� the
tail� of the calculation� and there is no more to do afterwards� For instance�

�	�

Tail recursion �	�

the following de�nition of isin �to test whether a list t contains an element
x� is tail recursive� The result of the recursive call� �isin x ys�� is used
directly as the result of what was being de�ned �isin x �y
ys���

isin x !"� False

isin x�y
ys�� True� if y�x

� isin x xs� otherwise

The following example� on the other hand� is not a tail recursive de�nition�
The result of the recursive call �append xs ys� is used in a further calculation

it has x cons�ed on the front�

append !" ys � ys

append �x
xs� ys � x
�append xs ys�

Figure ���� contains some function de�nitions� Which are tail recursive�
Answers� the de�nitions of rev�� gcd� f� and listcomp are tail recursive�
What is �f� a n� for general a� not necessarily ��

reverse !" � !"

reverse �x
xs� � �reverse xs���!x"

��reverse xs � rev� !" xs

rev� as !" � as

rev� as �x
xs� � rev� �x
as� xs

gcd x y � x� if y��

� gcd y�x mod y�� otherwise

fact n � �� if n��

� n��fact �n����� otherwise

��fact n�f� � n

f� a n � a� if n��

� f� �a�n� �n���� otherwise

order

� Before � Same � After

listcomp ! " ! " � Same

listcomp ! " �y
t� � Before

listcomp �x
s� ! " � After

listcomp �x
s� �y
t� � Before� if x � y

� After� if x � y

� listcomp s t� otherwise

Figure ���� Assorted Miranda de�nitions

�		 Tail recursion

Tail recursion and WHILE loops

Think of the tail recursion as meaning �do the same computation again�
but with new arguments�� In Modula��� you could keep variables for the
arguments� and then tail recursion means �update the variables� and repeat��
This is just looping�
To express this more precisely� we use the method of loop invariants

The loop invariant says
 the answer you originally wanted is the
same as if you calculated it starting with the variables you have
got now�

For instance� for isin the loop invariant would be

isin x ys� �isin calculated with original ys�
� isin x ys �isin calculated with current ys�

���� Example
 gcd

It is easy to imagine Euclid�s algorithm set out in a table� For instance� to
calculate the gcd of �� and ��� you could write

x y
�� ��
�� ��
�� �
� �
� � answer is �

At each stage� you replace x and y by y and x mod y� because the method
says that �gcd x y� � �gcd y �x mod y�� if y 	� �� The crucial property is
that in each line� �gcd x y� � �gcd x� y��� where x� and y� are the original
values of x and y ��� and �� here�� This is our loop invariant� Note also
that the loop variant y is the same as the recursion variant for gcd x y�

PROCEDURE GCD�x�y
 CARDINAL�
CARDINAL�

��pre
 none

�post
 result � �gcd x�� y��� where gcd is as defined in Miranda�

��

VAR z
 CARDINAL �

BEGIN

�� loop invariant
 �gcd x y���gcd x�� y���

� variant � y

��

WHILE y$� DO z
� x MOD y � x
� y � y
� z END �

RETURN x

END GCD �

General scheme �	

Justi�cation

initialization
 initially by de�nition x � x� and y � y�� so the invariant holds
without any initialization being necessary�

loop test and �nalization
 we stop looping when y � �� for then the �rst
clause in the Miranda de�nition tells us that �gcd x y� � x� and by the
loop invariant this is the answer we want� So we just return it�

reestablishing the invariant
 when y 	� �� then
�gcd x y� � �gcd y �x mod y���

Hence by replacing x and y by y and x mod y �which is what the
sequence of assignments does�� we leave �gcd x y� unchanged and hence
reestablish the invariant� Also� we have decreased the variant� y� �Note�
�x mod y� has a pre�condition� namely that y 	� �� This holds in this
part of the program��
To be slightly more formal� let x� and y� be the values of x and y at the
start of the iteration� The invariant tells us that gcd x� y� � gcd x� y��
It is easy to see that after the loop body we have x � y�� y � x� mod y�
�Exercise� prove this with mid�conditions�� Thus we have reestablished
the invariant for

gcd x y � gcd y� �x� mod y�� � gcd x� y� � gcd x� y��

Recall that in general we resolved not to assign to variables that were called
by value� This was to make the reasoning easier� However� with this method
it is particularly convenient and natural to break this resolution � after all�
the informal justi�cation was that we change the arguments of the function�
Therefore� we put in an explicit disclaimer to say that the call�by�value
parameters might change� In this example� of course� the only e�ects of this
are local to the procedure � the change cannot be detected in the outside
world�

���� General scheme

In general� a tail recursive de�nition in Miranda looks as follows

f x � a�� if c�

� a�� if c�

� ��� �� more non�recursive cases

� an� if cn

� f x�� if d�

� f x�� if d�

� ��� �� more recursive cases

�
� Tail recursion

a�� a�� � � � � an are expressions giving the answers in the non�recursive cases�
x�� x�� � � � are the new parameters used in the tail recursive cases�
a�� a�� � � � � an� x�� x�� � � �� as well as the guards c�� c�� � � � � cn� d�� d�� � � �� are all
calculated simply� without recursion� There is no di�culty in making this
work when f has more than one parameter�

Translation using WHILE loop

PROCEDURE f�x
 ��� �
 ����

�� NB Value parameter x may be changed

�pre
 any pre�conditions needed for f

�post
 result � �f x��� where f is as defined above in Miranda

��

BEGIN

�� loop invariant
 �f x� � �f x���

� variant
 recursion variant for Miranda f

��

WHILE NOT c� AND NOT c� AND ��� NOT cn DO

IF d� THEN x
�x�

ELSIF d� THEN x
�x�

ELSIF ���

END

END�

IF c� THEN RETURN a�

ELSIF c� THEN RETURN a�

ELSIF ���

END

END f�

Exercise� how does gcd �t this pattern� Note that the invariant and the
variant come automatically�

���� Example
 factorial

The following is the obvious recursive de�nition of the factorial function� but
it is not tail recursive

fact

 num �� num

��pre
 nat�n�

��post
 fact n � n#

fact n � �� if n��

� n��fact �n����� otherwise

Example� factorial �
�

After the recursive call �fact�n����� there is still a residual computation
�n
 � � ��� However� these can be �accumulated� into a single variable

f� a n � a� if n��

� f��a�n��n���� otherwise

and then �fact n� � �f� � n� �but we shall have to prove this�� a is the
accumulator parameter in f�� f� is tail recursive� so you can convert it into
a WHILE loop� But in fact� we do not need to implement f� separately in
Modula��� we can put its WHILE loop into the implementation for fact� with
an extra local variable for the accumulator parameter

PROCEDURE fact�n
 CARDINAL�
CARDINAL�

�� NB may change n

�pre
 none

�post
 result � �fact n���

� where fact is as defined in Miranda

��

VAR a
 CARDINAL�

BEGIN

a
� ��

��loop invariant
 �fact n��� � �f� a n� where f� as defined in Miranda

�variant � n

��

WHILE n$� DO a
� a�n� n
� n�� END�

RETURN a

END fact�

Justi�cation

initialization
 this relies on the property� promised but not yet proved� that
�fact n� � �f� � n��

loop test and �nalization
 when n � �� we know that �f� a n� is just a�
but this is the answer we require� so we can just return a as the result�

reestablishing the invariant
 when n 	� � then �f� a n� � �f� �a
n��n�����
so we reestablish the invariant by replacing a and n by a
 n and n� ��

It still remains to be shown that fact n � f� � n� The method to use is
induction� but some care is needed� Suppose we try to use simple induction
on n to prove �n
 nat� P �n�� where

P �n� � fact n � f� � n

�
� Tail recursion

For the induction step we assume P �n�� and prove P �n � ��

fact �n� �� � �n� ��� �fact n� � �n� ��� �f� � n�
� f� � �n � �� � f� �n� �� n

How can we bridge the gap and prove �n � �� � �f� � n� � f� �n� �� n�
The answer is that we cannot� The inductive hypothesis only tells us about
the behaviour of f� when its accumulator parameter is �� We actually have to
prove something more general and this involves understanding what �f� a n�
calculates for the general a
 it is a � n�� so we want to prove it equal to
a� �fact n��
Proposition ����
 �n
 nat� fact n � f� � n

Proof We �rst prove by induction on n that �n
 nat� P �n� where
P �n� � �a
 nat� a
 �fact n� � f� a n

base case
 f� a � � a � a
 � � a
 �fact ��
induction step
 Assume P �n�� and prove P �n � ��� Let a be a natural

number� Then

f� a �n� �� � f��a
 �n� ���n
� a
 �n� ��
 �fact n� by induction
� a
 �fact �n� ���

Hence �
 �fact n� � fact n � f� � n�

�

For functions with accumulating parameters� you may need to �rst understand
how the accumulator works� and then formulate a stronger statement to prove�

���� Summary

� A recursive function is said to be tail recursive if in each recursive clause
of the de�nition the entire right�hand side of its equation consists of a
call to the function itself� A tail recursive function is similar to a loop�

� A general technique for transforming recursive Miranda de�nitions into
WHILE loop Modula�� de�nitions is as follows

�� Find an obvious solution in Miranda�

�� Find a �perhaps less obvious� tail recursive solution in Miranda�

�� Prove that they both give the same answers�

�� Translate the tail recursive version into Modula�� with WHILE loops�

�� Write down the loop invariant in terms of the Miranda function�

�� The loop variant is the recursion variant�

Exercises �
�

���� Exercises

�� Write Modula�� code for the tail recursive Miranda functions in
Section ����� Prove that reverse xs�rev� xs as claimed�

�� One way of viewing integer division x div y is that the result is how
many times you can subtract y from x �and the remainder x mod y is
what is left�� The following is an implementation of that idea

divmod

num��num���num�num�

��pre
 nat�m� � nat�n� � n �� �

��post
 divmod m n � �m div n� m mod n�

��i�e� nat�q� � nat�r� � r � n

�� � m � q�n � r

�� where �q�r� � divmod m n

divmod � f �

where f a m n � �a�m�� if m � n

� f �a��� �m�n� n� otherwise

How does this work� �Hint� using n as recursion variant for f a m n�
show that if a� m and n are natural numbers with n � �� then f a m n
satis�es the post�condition for divmod �m � a�n� n��

Use the fact that f is tail recursive to implement the method iteratively
in Modula���

�� De�ne a recursive function add in Miranda for the addition of two
diynat �as de�ned in Chapter �� natural numbers� Rewrite your function
in tail recursive style�

�� The Fibonacci sequence is

�� �� �� �� �� �� 	� ��� ��� ��� ��� � � �
Each number is the sum of the preceding two� and this can be de�ned
in Miranda by

fib

 num �� num

��pre
 nat�n�

��post
 fib n is the nth Fibonacci number

�� �starting with �zeroth���� �first����

fib n��� if n��

� �� if n��

� �fib �n������fib �n����� otherwise

This is terribly ine�cient� Try fib ��� Why does it take so long�

A more e�cient method is to calculate the pair �fib n� fib �n� ���

�
� Tail recursion

twofib

 num �� �num�num�

��pre
 nat�n�

��post
 twofib n � �fib n� fib�n����

twofib n������� if n��

��y�x�y�� otherwise

where �x�y� � twofib �n���

fib� n�x

where �x�y� � twofib n

Prove �by induction on n� that

�n
 nat� twofib n � �fib n fib �n� ���

�� Let us de�ne the generalized Fibonacci numbers �gfib x y n� by

gfib

 num �� num �� num �� num

��pre
nat�n�

��post
 g fib x y n is the nth generalized Fibonacci number

�� �starting with �zeroth��x� �first��y�

gfib x y n�x� if n��

�y� if n��

��gfib x y�n������gfib x y�n����� otherwise

They are generated by the same recurrence relation �the �otherwise�
alternative� as the ordinary Fibonaccis� but starting o� with x and y
instead of � and ��

�a� Prove by induction on n that

�n
 nat� fib n � gfib � � n

�b� Now the sequence �gfib y �x � y�� �as n varies� is the same as
the sequence �gfib x y� except that the �rst term x is omitted

�gfib x y �n� ��� � �gfib y �x� y� n�� Prove this by induction on
n�

Let us therefore de�ne

gfib� x y n � x� if n��

� gfib� y�x�y��n���� otherwise

�c� Prove by induction on n that

�n
 nat� �x� y
 num� gfib� x y n � gfib x y n

Part II

Logic

Chapter ��

An introduction to logic

���� Logic

In this part of Reasoned Programming we investigate mathematical logic� which
provides the formal underpinnings for reasoning about programming and is
all about formalizing and justifying arguments� It uses the same rules of
deduction which we all use in drawing conclusions from premisses� that is� in
reasoning from assumptions to a conclusion� The rules used in this book are
deductive � if the premisses are believed to be true� then the conclusions
are bound to be true� acceptance of the premisses forces acceptance of the
conclusion�
A program�s speci�cation can be used as the premiss for a logical argument

and various properties of the program may be deduced from it� These are
the conclusions about the program that we are forced to accept given that
the speci�cation is true�

A

 num �� num

�� pre
 none

��post
 returns �x�����

For example� in the program above� it can be deduced from the speci�cation
of A that� for whatever argument �input� x that A is applied to� it delivers a
result � �� We cannot deduce� however� that it will always deliver a result
� x� unless the pre�condition is strengthened� for example to x � ��
Examples of applications of correct� or valid� reasoning are �I wrote both

program A and program B so I wrote program A�� �if the machine is working
I run my programs� the machine is working so I run my programs�� �if my
programs are running the machine is working� the machine is not working so
my programs are not running�� etc�
It is not di�cult to spot examples of the use of invalid reasoning� political

debates are usually a good source� Some examples are �if wages increase

�
�

�
	 An introduction to logic

too fast then in�ation will get worse� in�ation does get worse so wages are
increasing too fast�� �some people manage to support their elderly relatives� so
all people can��
In this Chapter we introduce the language in which such deductions can be
expressed�

���� The propositional language

An example

In order to see clearly the logical structure of an English sentence we translate
it into a special logical notation which is unambiguous� This is what we mean
by �translating into logic�� For example� consider the sentence

If Humphrey is over �� and either he has previously been sentenced
to imprisonment or non�imprisonment is not appropriate then a
custodial sentence is possible�

We can translate this into logical notation in stages� by teasing out the logical
structure layer by layer� First� we may write

If Humphrey is over �� � �he has previously been sentenced
to imprisonment � non�imprisonment is not appropriate� then a
custodial sentence is possible�

Next�

�Humphrey is over �� � �he has previously been sentenced to
imprisonment � non�imprisonment is not appropriate� � � a
custodial sentence is possible�

Then� �
over
��Humphrey��
�already�sentenced�Humphrey � � non�imprisonment�is�not�appropriate�

�

� possible�custodial�sentence�Humphrey�

and� �nally��
over
��Humphrey��
�already�sentenced�Humphrey � � �non�imprisonment�is�appropriate�

�

� possible�custodial�sentence�Humphrey��

In this example we have introduced the connectives � �or or disjunction��
� �and or conjunction�� � �implies or if � � � then�� and � �not�� We also
used parentheses to disambiguate sentences� Without parentheses we cannot
tell whether A �B � C is really A � �B � C� or �A �B�� C�

The propositional language �

Eventually� the analysis reaches statements� or propositions� such as
�Humphrey is over ���� where we do not wish to analyze the logical structure
any further� These are called atoms �atomic means indivisible�� that is� not
made up using connectives� The connectives then connect atoms to make
sentences� We have also introduced a structure for the atoms� Propositions
usually have a subject �a thing� and then describe a property about that
thing� For example� �Humphrey� is a thing and �over ��� is a property�
or predicate� about it� Atoms are usually written as predicate�thing�� We
distinguish between terms� which are things� and predicates� which are the
properties�
As another example� consider �Jane likes logic and �she likes� programming��

The logical meaning is two sentences connected by �and�� In each one� Jane
is the subject� so the translation is

likes�Jane� logic� � likes�Jane� programming�

Notice how Jane appears twice in the logical structure� although only once
in English� The English �and� is more �exible because it can conjoin noun
phrases �logic and programming� as well as sentences �Jane likes logic and
Jane likes programming��
The use of parentheses to express priority can sometimes be avoided by a
convention analogous to that used in algebraic expressions

� binds less closely than � or � and � binds the closest of all�
Thus P � Q� R is shorthand for �P �Q� � R� not for P � �Q � R� and

�A � B is not the same as ��A � B�� Also� �as in English� we do not need
parentheses for P � Q � R � � � � or P � Q � R � � � �� but we do need them if
the � and � are mixed� as in �P �Q� �R�
The language of atoms and connectives is called propositional logic�

Atoms

An atom� or a proposition� is just a statement or a fact expressing that
a property holds for some individual or that a relationship holds between
several individuals� for example �Steve travels to work by train�� Sometimes�
the atoms are represented by single symbols such as Steve�goes�by�train� More
usually� the syntactic form is more complex� For instance� �Steve goes by
train� might be expressed as goesbytrain�Steve� or as travels�Steve� train��
The predicate symbol travels� � � requires two arguments in order to become

an atom� Steve�goes�by�train �or SGT for short� is called a proposition symbol�
or a predicate symbol that needs no arguments� The predicate symbol
goesbytrain needs one argument to become an atom� The two arguments
of travels used here are Steve and train and the argument of goesbytrain
is Steve� Adjectives are translated into predicate symbols and nouns into

��� An introduction to logic

arguments� which is why� for example �programming is fun� is translated into
fun�programming� rather than into programming�fun��

You may come across the word arity� which is the number of arguments
a predicate symbol has� Predicate symbols with no arguments are called
propositional� predicate symbols of arity one express properties of individuals
and predicate symbols of arity two or more express relations between
individuals�

In English� predicates often involve several words which are distributed
around the nouns� or in front of or behind the nouns� but when translating�
a convention is used that puts the predicate symbol �rst followed by the
arguments in parentheses and separated by commas� In case the predicate
has just two arguments it is sometimes written between the arguments in
in�x form� Whenever a predicate symbol is introduced a description of the
property or relation it represents should be given� For example� travels�x� y�
is read as �x travels by y��

The arguments of predicate symbols are called terms� Terms can be simple
constants� names for particular individuals� but you can also build up more
complex ones using a structured or functional term which is a function symbol
with one or more arguments� For example� whereas an empty list may
be denoted by the constant � �� a non�empty list is usually denoted by a
functional term of the form �head
tail�� where head is the �rst element and
tail is the list consisting of the rest of the elements� Thus the list �cat�dog�
is represented by the term �cat
 �dog
 � ���� Here
 is an in�x function
symbol�

An example of the use of a pre�x function symbol is s���� Just as predicates
may have arities of any value � �� so can function symbols and each argument
of a functional term can also be a functional term� So functional terms can
be nested� as in mum�mum�Krysia�� or ��
��� ��� ���

���� Meanings of the connectives

In English� words such as �or� may have several slightly di�erent meanings�
but the logical connectives �� �� etc�� have a �xed unambiguous meaning�

A �B means A and B are both true�
A �B means at least one of A and B is true�
A� B means if A then B � or A implies B� or B if A�
�A means not A �or it is not the case that A is true��
A� B means A implies B and B implies A �or either both

A and B are true or both A and B are not true��

Figure ���� Meanings of the connectives

Meanings of the connectives ���

The meanings can be described using a truth table� shown in Figure ����� It
is possible for each atom to be either true �tt� or false �ff� so for two atoms
there are exactly four possibilities
 ftt� ttg� ftt� ffg� fff� ttg� fff� ffg� Each row
of the truth table gives the meaning of each connective in one situation�

A B A �B A �B A� B A� B

tt tt tt tt tt tt
tt ff ff tt ff ff
ff tt ff tt tt ff
ff ff ff ff tt tt

Figure ���� A truth table

From this truth table it can be seen that A �B is only true when both A
and B are true�

Determining whether a sentence is true or not in some situation is analogous
to calculating the value of an arithmetic expression� To �nd the value of the
expression �� �x
 y� when x and y have the values � and �� respectively� you
calculate � � ��
 �� � ��� Similarly� to �nd the value of A � �B � C� when A�
B and C are ff � tt and ff � respectively� you calculate ff � �tt � ff� � ff �

So� in order to decide if a complex sentence is true you need to look at its
atoms� decide if they are true� and then use the unambiguous meanings of
the connectives to decide whether the sentence is true� For example� consider
again the sentence

If Humphrey is over �� and either he has previously been sentenced
to imprisonment or non�imprisonment is not appropriate then a
custodial sentence is possible�

which was written in logic as

�
over���Humphrey��
�already�sentenced�Humphrey� � 	non�imprisonment�is�appropriate�

�

� possible�custodial�sentence�Humphrey��

Suppose that Humphrey is over ��� that he has not been sentenced to
imprisonment before and that non�imprisonment is appropriate� then the
condition of the implication is false � although the �rst conjunct is true the
second is not as each of the disjuncts is false� In this case� then� the whole
sentence is true� for an implication is true if its condition is false� You can
use this method for any other situation�

��� An introduction to logic

Some comments on the meanings of connectives

The truth tables give the connectives a meaning that is quite precise� more
precise in fact than that of their natural language counterparts� so care is
sometimes needed in translation�

The meaning of � is just like the meaning of �and� but notice that any
involvement of time is lost� Thus A and �then� B is simply A � B and�
for example� both �Krysia fell ill and had an operation� and �Krysia had
an operation and fell ill� are translated the same way� �A but B� is also
translated as A � B� even though in general it implies that B is not usually
the case� as in �Krysia fell ill but carried on working�� To properly express
these sentences you need to use the quanti�er language of Section �����

A � B means �A or B or both�� The stronger� �A or B but not both��
can be captured by the sentence �A � B� � ��A �B�� The stronger meaning
is called exclusive or� For example� consider �donations to the cause will be
accepted in cash or by cheque� and �you can have either co�ee or tea after
dinner�� �Which of these is using the stronger� exclusive or��

Consider the meaning of

diets�Jack� � lose�weight�Jack�

that is�

�If Jack diets then he will lose weight��

The only circumstance under which one can de�nitely say the statement is
false is when

Jack diets but stays fat�

In other circumstances� for example

Jack carries on eating� but gets thin
Jack carries on eating� and stays fat

there is no reason to doubt the original statement as the condition of that
statement is not true in these situations�

Natural language also uses other connectives� such as �only if� and �unless��
which can be translated using the connectives given already�

A unless B is usually translated as �A if �B� �that is� �B � A�� in which
B occurs rather like an escape clause� A unless B can also can be translated
as B �A� All of the sentences �Jack will not slim unless he diets�� �either Jack
diets or he will not slim� and �Jack will not slim if he does not diet� can be
translated in the same way as diets�Jack� �� slims�Jack��

The quanti�er language ���

�A only if B� is usually translated as A� B� as in �you can enter only if
you have clean shoes�� which would be �if you enter then you �must� have
clean shoes�� The temptation to translate A only if B as B � A instead of
A� B is very strong� To see the problem� consider

I shall go only if I am invited �A only if B�

Logically� it is A� B � if you start from knowledge about A then you can
go on to deduce B �or that B must have happened�� Temporally it is the
other way around � B �the invitation� comes �rst and results in A� But A
is not inevitable �I might fall ill and be unable to go� so there is no logical
B � A�
The sentence A� B� is often de�ned as A� B �B � A� which is A only

if B and A if B� or A if and only if B� which is often shortened to A i� B�

���� The quanti�er language

The logic language covered so far is not su�ciently expressive to fully analyze
sentences such as �all students enjoy themselves� or �Jack will always be fat�
� we need the use of generalizations�
Consider the sentence �the cat is striped�� or� in logical notation� striped�cat��

Before you can understand this sentence or consider whether it is true or not
cat needs to be de�ned so that you know exactly which cat is meant�
Now compare this with �something is striped�� �Something� here is rather

di�erent from �cat�� To test the truth of this sentence you do not need to
know beforehand exactly what �something� is� you just need to know the range
of acceptable possibilities and then you go through them one by one to �nd
at least one that is striped� If you succeed then �something is striped� is true�
In line with this distinction� we do not write striped�something� in logic�

but� instead� write �x� striped�x�� This is read literally as �for some x� x is
striped�� but we are sure that you can see this is equivalent to �something is
striped��
The meaning of this sentence is

there is some value� which when substituted for x in striped�x��
yields a true statement�

This is even more clear if you consider �the cat is striped and hungry��
striped�cat� � hungry�cat�� since the meaning of cat is �xed beforehand both
occurrences of �the cat� refer to the same thing� On the other hand� in
�something is striped and something is hungry�� �x� striped�x� � �y� hungry�y��
the two somethings could be di�erent�
It is also possible to say �something is both striped and hungry�� as in

�x� �striped�x� � hungry�x��� This time there is only one something referred to
and� whatever it is� it is hungry as well as striped�

��� An introduction to logic

Now� unlike cat� which was a constant� x has the potential to vary and is
called a variable� The x in �x announces that x is a variable and applies
to all of the following formula that follows the ���� For non�atomic formulas
parentheses �square or round� are needed to show the scope of the x� For
example� �x� �P �x��Q�x��� The occurrence of � is said to bind the occurrences
of x in that formula�
� is called a quanti�er �and �x is called a quanti�cation�� Another quanti�er

is �� the universal quanti�er� which can be read as �for all� or �every�� For
example� in �Fred likes everyone�� we do not write likes�Fred� everyone�� but
�x� likes�Fred� x�� To see if this sentence is true you need to check that Fred
likes all values in a speci�ed range� The meaning of this sentence is

for all values substituted for x� likes�Fred� x� is a true statement�

Something that is rather important is that when you have two occurrences
of the same variable bound by the same quanti�cation they must denote the
same value� For instance� the xs in �x� �striped�x� � hungry�x�� must denote
the same value� to make the sentence true you must �nd a value for x that is
both striped and hungry� On the other hand� in �x� striped�x���x� hungry�x�
the two xs are bound by di�erent quanti�cations and you just need to �nd
something that is striped and something that is hungry � the same or
di�erent� it does not matter � for the sentence to be true�
�x� �likes�x�Fred� � likes�x�Mary�� is true if every value tried for x

makes either likes�x�Fred� or likes�x�Mary� true� Compare this with
�x� likes�x�Fred� � �x� likes�x�Mary�� which is true if either �x� likes�x�Fred�
is true� or �x� likes�x�Mary� is true� In the second case the two xs are
bound by di�erent quanti�cations and again are really two di�erent variables�
In the sentence �someone likes everyone�� which is �x� �y� likes�x� y� the

two variables of the nested quanti�ers are di�erent� It would be asking for
trouble if they were the same and so we shall forbid it�
Quanti�ers which are of the same sort can be placed in any order� For

example�

�x� �y� �mother�x� y�� parent�x� y��

is no di�erent from

�y� �x� �mother�x� y�� parent�x� y���

They both mean that� for any x and y� if x is a mother of y then x is a
parent of y� Similarly� �x� �y� � � � means the same as �y� �x� � � ��
For quanti�ers of di�erent sorts the order is important� For instance�

�x� �y� mother�y� x�
does not mean the same as

�y� �x� mother�y� x�
The �rst says that everyone has a mother� literally� for all x there is some

y such that y is the mother of x and you know this is true when x and y
vary over people� The second says that there is one single person who is the

Translation from English ���

mother of everyone� literally� there is some y such that for all x� y is the
mother of x� This is a much stronger statement which you know is not true
when x and y can vary over people�

���� Translation from English

You have already seen how to translate from English to logic in the
propositional case� teasing out the logical structure connective by connective�
The same principles apply when you have quanti�ers and variables� but there
are also some speci�c new issues to consider�

There are several useful rules of thumb which aid the process of translation�

Pronouns

Pronouns� words such as �he�� �it� or �nothing�� do not in themselves refer to
any speci�c thing but gain their meaning from their context� You have already
seen how the words �something� and �everyone� are translated using quanti�ers
and �nothing� is similar � �nothing is striped� becomes ��x� striped�x��
Words such as �she� or �it� are used speci�cally as a reference to someone or

something that has already been mentioned� so they inevitably correspond to
two or more references to the same value� When you come across a pronoun
such as this you must work out exactly what it does refer to� If that is a
constant then you replace it by the constant
 so �Chris adores Pat who adores
her� becomes adores�Chris� Pat� � adores�Pat� Chris��

That is easy� but when the pronoun refers to a variable you must �rst set
up a quanti�cation and ensure that it applies to them both�

For instance� consider �something is spotted and it is hungry�� An erroneous
approach is to translate the two phrases �something is spotted� and �it is
hungry� separately� This is wrong because the �something� and �it� are linked
across the connective �and� and you must set up a variable to deal with this
linkage

�x� �x is spotted and x is hungry�

and then deal with the �and�

�x� �spotted�x� � hungry�x��

The rule of thumb is

If pronouns are linked across a connective� deal with the pronouns
before the connective�

��� An introduction to logic

Quali�ers and types

Often� a phrase that is to be translated using a universal quanti�er is about a
certain type of thing rather than about all things and so you want to qualify
the quanti�er� In the case of a universal quanti�er this is done using an
implication� For instance� �all rational people abhor violence�� or �a rational
person abhors violence�� �rst becomes

��rational�x� �x abhors violence�
where �rational� is called a quali�er� This translates to

�x� �rational�x�� abhors�violence�x��

If the quanti�cation is existential then a conjunction is used to link the
main part with the qualifying part� For example if you want to make it
certain that Mary likes people in �Mary likes someone who likes logic�� you
could �rst write

��person who likes logic�y� likes�Mary� y�

and then

�y� �person�y� � likes�y� logic� � likes�Mary� y��

Notice the way �who� links the conjuncts together�

Another rule of thumb is therefore

Get the structure of the sentence correct before dealing with the
quali�ers�

Quali�ers can always be translated using � or � as appropriate� However�
their use is quite convenient and so we will introduce a notation for them and
write �x
 typename� �� � �� or �x
 typename� �� � �� and call the quanti�ers typed
quanti�ers�

The notation is most often used for standard quali�ers� sometimes referred
to as �types�� and sentences using it can always be rewritten with the type
property made explicit� Standard quali�ers include persons� numbers �integers�
reals� etc�� strings� times� lists� enumerated sets� etc�

For example�

�x
 time� �y
 time� �x � y � after�x� y��

would be shorthand for

�x�y� �time�x� � time �y�� �x � y � after�x� y���

Standard types are used extensively in writing program speci�cations� and
they correspond to the various data structures such as list� num� etc�� used in
programs�

Earlier� we indicated that a sentence �x� P �x� is true i� every sentence P �t�
that can be obtained from P �x� by substituting a value t for every occurrence
of x in P �x� is true�

Translation from English ���

For example� �all programs that work terminate�� which in logic is

�x� �program�x�� �works�x�� terminates�x���

is true if each sentence obtained by substituting a value for x is true� It is
true if all sentences of the kind

program�quicksort�� �works�quicksort�� terminates�quicksort��
program�quacksort�� �works�quacksort�� terminates�quacksort��
program�Hessam�� �works�Hessam�� terminates�Hessam��

etc�� are true� If the value t substituted is a program� so that program�t� is
true� the resulting sentence

program�t�� �works�t�� terminates�t��

is true if works�t� � terminates�t� is true� If the value t makes program�t�
false �that is� is not a program� then the resulting sentence is also true� In
practice� we evaluate the truth of a sentence in a situation in which the values
to be substituted for x are �xed beforehand� For example� they could be fall
programs written by meg� fprogramsg or even fnames of living personsg�
When quali�ed quanti�ers are used they are suggestive of the range of

values that should be substituted in order to test the truth of a sentence�
The sentence �All programs that work terminate� would become

�x
 program� �works�x�� terminates�x���

and it is suggestive that the only values we should consider for x are those
that name programs� As our analysis above showed� these are exactly the
values that are useful in showing that the sentence is true�
Similarly� if instead the sentence had been �Some programs that terminate

work�� which in logic is

�x� �program�x� � works�x� � terminates�x��
then it would be true as long as at least one of the sentences obtained by
substituting terms t for x were true� There is no point in trying values of t
for which program�t� is false for they cannot make the sentence true� This is
suggested by the typed quanti�er version

�x
 program� �works�x� � terminates�x���
Even so� a di�culty may arise� Consider the statement

�Every integer is smaller than some natural number��

which in logic is

�x
 integer� �u
 nat� �x � u��

This time there are an in�nite number of sentences to consider� one for each
integer� How can you check them all� Of course� you cannot check them all
individually and �nish the task� Instead� you would consider di�erent cases�
For example� you may consider two cases here� x � � and x � �� Then� all
negative integers are considered at once� as are all natural numbers� For the
�rst case the sentence is true by taking u � �� for � is a natural number and

��	 An introduction to logic

it is greater than any negative integer� in the second case x� � is a natural
number and will do for u� Sometimes� therefore� we have to use a proof to
justify the truth of a sentence� we look at proof in the next two chapters�

Some paradoxes

Generally� the need for a universal quanti�er is indicated by the presence
of such words as all� every� any� anyone� everything� etc�� and the words
�someone�� �something� indicate an existential quanti�er� but it can happen
that �someone� corresponds to �� This phenomenon is most likely in connection
with ��
To see how this might happen� consider �if someone is tall then the door

frame will be knocked�� which translates to

��x� tall�x��� door�knocked�

�Someone� has become � here� just as you would expect� But note that there
is an equivalent translation using �� The original sentence could be rephrased
as �for anyone� if they are tall then the doorframe will be knocked�� which
becomes

�x� �tall�x�� knocked�doorframe��

Hence� in this example� �someone� can possibly become ��
Now consider �if someone is tall then he will bump his head�� This time the
pronoun is linked to �someone� across the implication and you have to deal
with the quanti�cation �rst� The only translation is

�x� �tall�x�� bumphead�x��

so that �someone� has to become ��

���� Introducing equivalence

Often� English sentences can be translated into more than one equivalent
formula in logic� For example� �if Steve is a vegetarian then he does not eat
chicken� might be translated directly as vegetarian�Steve�� �eat�Steve� chicken�
but it could also be paraphrased as �Steve is not both a vegetarian and
a chicken�eater�� which translates to ��vegetarian�Steve� � eat�Steve� chicken���
The two logic sentences are equivalent and any conclusion that follows from
using one form also follows from using the other� You will come across many
useful equivalences and a selection is presented in Appendix B� We write
A � B if A and B are equivalent� Two sentences are said to be equivalent ���
i� they are both true in exactly the same situations� An important property
of equivalent sentences is that they may safely be substituted for each other
in any longer sentence without a�ecting the meaning of that sentence�

Some useful predicate equivalences ��

For example� if A � S � T and B � T � S then A is equivalent to B� If
E�A� is the sentence S � T � U ��A� U� then we can substitute B for A
giving the sentence E�B��� B � U�� or T � S � U � We have E�A� � E�B��
S and T can themselves be any sentence� for example� if S � P � Q and
T � R � �P then �P �Q� � �R � �P � � �R � �P � � �P �Q��
In general� then� if A � B then E�A� � E�B�� where A� B� E are any
sentences with no variable occurrences� E�A� denotes that A occurs in E and
E�B� denotes the result of substituting B for A in none or more of those
occurrences� This is so because if A evaluates to tt in a situation then so will
B as they are equivalent� and the E�A� and E�B� have the same value� In
particular� E�A� could be just the sentence A� so E�B� is the sentence B and
B can be used in place of A�
Equivalences are frequently used� as it may be that one form of a sentence

is more convenient than another in some derivation� More discussion can be
found in Section �	��� where we consider relaxing the condition on A and B�
Equivalences can be used in �algebraic reasoning�� For example�

�P �Q� �R
� ����P �Q� �R�� since ��X � X
� ����P �Q� � �R�� since ��X � Y � � �X � �Y
� ���P � �Q � �R�

that is� �P �Q� �R � ���P � �Q � �R��
As another example� the two sentence forms A � �S � T � and �A � S� � T

are equivalent� that is� � is an associative operator and hence the
parentheses can be omitted� The operator � behaves similarly� Using
this fact you can show easily that any number of sentences all disjoined
by �� or all conjoined by �� can be freely parenthesized� for example�
Q �R � S � T � Q � �R � S � T � � �Q � R� � �S � T � � �Q �R � S� � T �
If a sentence has a form which makes it always true it is called a tautology�
for example A � �A is a tautology� A sentence that is always false is called
a contradiction� or falsehood� for example A � �A� Both tautologies and
contradictions will play an important role in the reasoning steps that we shall
be introducing�

���� Some useful predicate equivalences

In this section we look brie�y at some useful equivalences using quanti�ed
sentences�
The equivalences in Appendix B are schemes in which the constituents

represent sentence forms� For example� F �x� indicates a constituent sentence
in which x occurs� whereas S �without an x� indicates a constituent
sentence in which x does not occur� An instance of a scheme such as

��� An introduction to logic

�x� �S � F �x�� � S � �x� F �x� is obtained by replacing all occurrences of S
and F �x� by appropriate sentences� for example S could be �y� G�y� and
F �x� could be P �x� a��Q�x� b�� where a and b are constants� The variables x
and y are like formal parameters and can be renamed� So ��u� F �u� a� is an
instance of the scheme ��x� F �x� and rewrites to �u� �F �u� a��
Note� �x� �y� F �x� y� is not equivalent to �y� �x� F �x� y�� In order to

help you to remember this one� �nd an interpretation for F that distinguishes
clearly� for you� between the two sentences� For example� you could interpret
F as �father�� so that the �rst sentence translates into �there is some x that is
the father of everyone� and the second into �for each person y there is some
x that is the father of y��
An instance of the important equivalence �x� F �x�� B � �x� �F �x�� B�

is used in the following

�c� mother�Pam� c�� parent�Pam�
� �c� �mother�Pam� c�� parent�Pam��

The occurrence of �x� F �x� is �c� mother�Pam� c�� in which the bound variable
x is renamed to c� and of B is parent�Pam�� Notice that c does not occur in
parent�Pam��
It is also true that equivalent forms of sentences involving variables and

quanti�ers can be substituted for one another in any context as in the
following example� After reading Section �	�� you will be able to prove this�
In the following example the equivalences used and the scheme occurrences

are not given� It is left as an exercise to list the equivalences at each step�

No student works all the time � All students fail to work some of
the time�

��s� �student�s� � �t� �time�period�t�� works�at�s� t���
� �s� ��student�s� � ��t� �time�period�t�� works�at�s� t���
� �s� ��student�s� � �t� �time�period�t� � �works�at�s� t���
� �s� �student�s�� �t� �time�period�t� � �works�at�s� t���

The equivalences also hold if the quanti�ers are typed� The above example
then becomes

��s
 student� �t
 time�period� �works�at�s� t�� �
�s
 student� �t
 time�period� ��works�at�s� t��

and the transformation is simpler�

���	 Summary

� Logic uses connectives to express the logical structure of natural language�
� The syntax and meanings of propositional logic follow the principles of
algebra�

Exercises ���

� Atoms consist of predicates which have arguments called terms� Terms
can be constants� or function symbols and their arguments�

� For reference� the meanings can be summarized using a truth table� For
two propositions there are four di�erent classes of situation
 ftt� ttg�
ftt� ffg� fff� ttg� fff� ffg� Each row of the truth table gives one situation�

A �A
tt ff
ff tt

A B A �B A �B A� B A� B

tt tt tt tt tt tt
tt ff ff tt ff ff
ff tt ff tt tt ff
ff ff ff ff tt tt

For example� from this truth table it can be seen that A � B is true
unless both A and B are false�

� To facilitate translation from English into logic� typed quanti�ers are
introduced�

� The informal meaning of a sentence involving a quanti�er is
�x� P �x� is true i� every sentence P �t� obtained by substituting t for

x� where t is taken from a suitable range of values� is true�
�x� P �x� is false if some P �t� is false�

�x� P �x� is true i� some sentence P �t� obtained by substituting t for x�
where t is taken from a suitable range of values� is true�
�x� P �x� is false if no sentence P �t� is true�

� Equivalent sentences can be substituted for one another�

���
 Exercises

�� Suggest some predicate and function symbols to express the following
propositions
 Mary enjoys sailing� Bill enjoys hiking� Mabel is John�s
daughter� Ann is a student and Ann is Mabel�s daughter

�� Translate the following sentences into logic� First get the sentence
structure correct �where the �� �� etc�� go� and then structure the
atoms� for example Frank likes grapes could become likes�Frank� grapes��

�a� If there is a drought� standpipes will be needed�

�b� The house will be �nished only if the outstanding bill is paid or if
the proprietor works on it himself�

�c� James will work hard and pass� or he belongs to the drama society�

�d� Frank bought grapes and either apples or pears�

�e� Janet likes cricket� but she likes baseball too�

�f� All out unless it snows�

��� An introduction to logic

�� Translate the following into logic as faithfully as possible

�a� All red things are in the box�

�b� Only red things are in the box�

�c� No animal is both a cat and a dog�

�d� Anyone who admires himself admires someone�

�e� Every prize was won by a chimpanzee�

�f� One particular chimpanzee won all the prizes�

�g� Jack cannot run faster than anyone in the team�

�h� Jack cannot run faster than everyone in the team�

�i� A lecturer is content if she belongs to no committees�

�j� All �rst year students have a programming tutor�

�k� No student has the same mathematics tutor and programming tutor�

�l� A number is a common multiple of two numbers if each divides it�

�m� Mary had a little lamb� its �eece was white as snow� And
everywhere that Mary went her lamb was sure to go�

�� �a� Let A be tt� B be tt� C be ff � Which of the following sentences
are true and which are false�

i� ��A� B�� �B�
ii� ���A� ��B � C�� �B�
iii� ����A � �C� � �B�� A�� ��B � �C��

�b� If A is ff � B is ff and C is tt� which of the sentences in part �a�
are true and which are false�

�c� If A is ff � B is tt and C is tt� which of the sentences in part �a�
are true and which are false�

�� We mentioned� but did not prove� that associativity allows you to omit
parentheses if all the connectives are � or �� Explain how associativity
is used to show the equivalence of ��Q�R��S��T and Q� �R� �S�T ���

�� Show that the following are equivalent forms by considering all di�erent
situations and showing that the pairs of sentences have the same truth
value in all of them� For example� for the equivalence P � ff � ff there
are two situations to consider � P � tt and P � ff � When P � ff �
P � ff � ff � ff � ff � and when P � tt� P � ff � tt � ff � ff � In both
cases the sentence is ff � For the example P �Q � ��P � �Q� there are
four situations to consider which can be tabulated as

P Q P �Q P � �Q ��P � �Q�
tt tt tt ff tt
tt ff ff tt ff
ff tt ff tt ff
ff ff ff tt ff

Exercises ���

You can see that the two sentences have the same value in all four
situations and so are equivalent�

�a� P �Q � �P � Q�� Q

�b� P �Q � ��P � �Q�
�c� P � Q � Q� P �that is� � is commutative�

�d� P � �Q� R� � �P � Q�� R �that is� � is associative�

�e� P � Q � �P � �Q
�f� ��P � Q� � �P � Q

�g� P � �Q� R� � P � Q� R

�h� P � �Q � R� � �P � Q� � �P � R�

�� Show that R � S i� R� S is a tautology� �Hint� consider the possible
classes of situations for R� S��

	� Discuss how you would decide the truth or falsity of the sentences
below in the given situations� Also decide which are true in the given
situations and which are false �if feasible�� The situation indicates the
possible values that can be substituted for the bound variables�

�a� All living creatures� animal or not

i� �x� �animal�x�� �y� �animal�y�� �eats�x� y�� eats�y� x����
ii� �u� �animal�u�� �v� �animal�v�� eats�v� u���

iii� �y� �x� �animal�x�� animal�y�� �eats�x� y�� eats�y� x���

iv� ��v� �animal�v�� �u� �animal�u�� ��eats�u� v����
�b� There are three creatures Cat� Bird and Worm� Cat eats all three�
Worm is eaten by all three and Bird only eats Worm� Use the
sentences �i� through �iv� of part �a� of this question�

�c� The universe of positive integers

i� �x� �x is the product of two odd integers�
ii� �x� �x is the product of two odd integers�
iii� �x� �y� �y � x�

iv� �x� �y� �x� y � x�

� By using the appropriate equivalences and translation of �x
 T� P �x�
into �x� �is�T�x�� P �x�� and �x
 T� P �x� into �x� �is�T�x�� P �x��� show
that �x
 T� �P �x�� S� � ��x
 T� P �x��� S�

��� Show that the following pairs of sentences are equivalent by using
equivalences� State the equivalences you use at each step

�a� �x� ���y� �woman�y�� �dislikes�x� y��� dislikes�Jane� x��
and �x� ��y� �woman�y� � dislikes�x� y��� dislikes�Jane� x��

�b� ��x� �Martian�x� � �dislikes�x�Mary� � age�more�than����x��
and �x� �Martian�x� � age�more�than����x�� dislikes�x�Mary��

Chapter ��

Natural deduction

���� Arguments

Now that you can express properties of your programs in logic we consider
how to reason with them to form correct proofs� Initially� we will look at
reasoning with sentences that do not include any quanti�ers�
The method we use is called natural deduction and it formalizes the
approach to reasoning embodied in the �argument form�

�This is so� that is so� so something else is so and hence something
else� and hence we have shown what we wanted to show��

An argument leads from some statements� called the premisses� to a �nal
statement� called the conclusion� It is valid if whenever circumstances make
the premisses true then they make the conclusion true as well� The only way
in which the conclusion of a valid argument can be rejected is by rejecting
the premisses �a useful way out��
We justify a potential argument by putting it together from small reasoning

steps that are all known to be valid� We write A � B �pronounced �A proves
B�� to indicate that B can be derived from A using some correct rules of
reasoning� So� if we can �nd a derivation� then A � B is true�
Schematically

P� � P�� fP�� P�g � P	 � � � fP�� P�� � � � � Pn��g � Pn�

The steps are supposed to be so simple that there is no doubting the validity
of each one�
The following is a valid argument

�� If Hessam�s program is less than �� lines long then it is correct�
�� Hessam�s program is not correct�
�� Therefore Hessam�s program is more than �� lines long�

The �rst two lines are the premisses and the last the conclusion� A
derivation of the conclusion in this case is the following
 suppose Hessam�s

���

The natural deduction rules ���

program is less than �� lines long� then it is correct� But this contradicts the
second premiss so we conclude that Hessam�s program is more than �� lines
long� These reasoning steps mean that �� � � ��
Sometimes� we may be tempted to use invalid reasoning steps� in which the
conclusion does not always have to be the case even if the premisses are true�
Any justi�cation involving such steps will not be correct�
The following is an invalid argument

If I am wealthy then I give away lots of money�
I give away lots of money�
Therefore I am wealthy�

The reasoning is not valid because from the premisses you cannot derive the
conclusion� the premisses could be true and yet I could be poor and generous�
If A � B then the sentence A� B is a tautology because whenever A is
true B must be true also� The various tautologies such as A � B � A each
give rise to simple and valid arguments� This one yields the valid argument
A �B � A�

An informal example
The natural deduction rules to be introduced in this chapter are quite formal�
This is a good thing for it enables a structure to be imposed on a proof
so that you can be con�dent it is valid� When you are quite sure of the
structure imposed by the rules it is possible to present proofs in a more
relaxed style using English� Typical of such an English proof is the following
proof of the valid argument

If Chris is at home then he is working�
If Ann is at work then she is working�
Ann is at work or Chris is at home�
Therefore someone is working�

A justi�cation of this argument might follow the steps
 to show someone is
working� �nd a person who is working � there are two cases to consider
 if
Ann is at work� she is working and if Chris is at home� he is working� Either
way� someone is working�

���� The natural deduction rules

About the rules

There are two kinds of rule� The �rst kind tells us how to reason using
a sentence with a given connective� that is� how to exploit a premiss� For

��� Natural deduction

example� from A � B we can deduce each of A and B� The second kind
tells us how to deduce a sentence with a given connective� that is� how to
prove a conclusion� For example� to deduce A � B we must prove both A
and B� The �rst kind are called elimination rules and the second are called
introduction rules� They are labelled �E �pronounced and elimination�� �E �
�I �pronounced and introduction�� �I� etc�
If a formula is derived using the rules� the notation

� hformulai
will be used� When initial data is needed to prove a formula the notation is

hassumptionsi � hformulai�
S � C is called a sequent and can be read as

A proof exists of goal sentence C from data sentences S�

The initial data sentences S are placed at the top of the proof and the
conclusion C is placed at the bottom� The actual proof goes in the middle�
Frequently� a proof will consist of subproofs� which will be written inside
boxes�

As you read a proof from top to bottom� you see more and more
consequences of the earlier sentences� However� that is not the way in which
a proof is constructed in the �rst place� As you will see� when proving
something we can work both forwards from the data and backwards from the
conclusion so that the middle part is not usually �lled in straight from data
to conclusion� When a proof is written �in English� it is written to re�ect this
�construction order� of the proof�

Each of the rules will be presented in the following style

one or more antecedents

a conclusion �rule name�

�Antecedent� just means �something that has gone before��

Often� it is just an earlier sentence� though sometimes it is a bigger chunk
of proof� The rules can either be read downwards � from the antecedents
the conclusion can be derived� or upwards � to derive the conclusion� you
must derive the antecedents� We will frequently omit the line between the
antecedents and the conclusion�

��introduction ��I� and ��elimination ��E� rules

The two rules of this section� �I and �E � correspond closely to everyday
deduction�

The natural deduction rules ���

The �rst rule is �I

From each of P�� � � � � Pn as data or derived sentences� conclude
P� � � � � � Pn or� to give a proof of P� � � � � � Pn� derive proofs for
P�� � � � � Pn

The proof is structured using boxes

���

P�

���

Pn
P� � � � �� Pn ��I�

The boxes are introduced to contain the proofs of P�� � � � � Pn prior to
deriving P� � � � �� Pn� The vertical dots indicate the proof that is to be �lled
in� There is one box to contain the proof for each of P� to Pn� The use of
the �I rule is automatic � there is a standard plan which you always use
when proving P� � � � � � Pn�
When a proof is presented� it is usually read from the top to the bottom�

but when you are actually proving something� you may work backwards from
the conclusion� So� in a proof� you will probably read an application of �I
downwards� but when you have to prove P � Q� you ask �how do I do it���
and the answer is by proving P and Q separately� We can say that you work
backwards from the conclusion� deriving a new conclusion to achieve�
The second rule is �E

from data or derived sentences P� � � � � � Pn conclude any of
P�� � � � � Pn� or

P� � � � � � Pn

Pi ��E�
for each of Pi� i � �� � � � � n�

This time the rule is used exclusively in a forward direction� deriving new
data�
Figure ���� contains the �rst steps in a proof of A � B � B � A� If we

need to refer to lines in proofs then each row in the proof will be labelled
for reference� In the diagram� the given sentence A �B is initial data and is
placed at the start of the deduction� and the conclusion� or goal� is B � A�
which appears at the end� Our task is to �ll in the middle�
There are now two ways to proceed � either forwards from the data or
backwards from the goal� In general� a natural deduction derivation involves
working in both directions� Here� as soon as you see the � in the conclusion�

��	 Natural deduction

� A �B

�
���

� B � A

Figure ����

� A �B

�
���

� B

���

A

� B � A �I

Figure ����

think �automatic step� �I and prepare for it by making the preparation as in
Figure ����� Working backwards from the conclusion is generally applicable
when introduction rules are to be used� This example will require the use of
the �I rule� The boxes are introduced to contain the subproofs of A and
B� It needs a tiny bit of ingenuity to notice that each of the subgoals can
now be derived by �E from the initial data A �B by working forwards� The
completed proof appears in Figure ����� Lesson � the �I step is automatic

� A �B

� B �E��� A �E���

� B � A �I

Figure ���� A � B � B �A

� to prove A � B you must prove A and B separately� But to use �E
requires ingenuity � which conjunct should you choose�

An alternative proof construction for A�B � B �A is shown in Figure �����
It works forwards only � �rst derive each of A and B from A �B and then
derive B � A�
You can see that these two rules are valid� from the de�nition of true

sentences of the form P �Q given in Chapter ��� For if P �Q is true then
so must each of P and Q be ��E�� and vice versa ��I��

The natural deduction rules ��

� A �B

� A �E���

� B �E���

� B � A �I

Figure ���� Another proof of A � B � B �A

��elimination ��E� and ��introduction ��I� rules

The ��elimination rule is frequently used in everyday deduction and is often
called a case analysis � a disjunction P� � P� �say� represents two possible
cases and in order to conclude C� C should be proven from both cases� so
that it is provable whichever case actually pertains� It can be generalized to
n � � arguments and is

�E If C can be derived from each of the separate cases P�� � � � � Pn�
then from P� � � � � � Pn� derive goal C�

P� � � � �� Pn

P�
���

C

� � �
Pn
���

C

C ��E�

There is one box for each of Pi� i � �� n�

Each box that is part of the preparation for the �E step represents a subproof
for one of the cases� and contains as an additional assumption the disjunct
Pi that represents its case� The assumptions Pi are only available inside the
box and their use corresponds to the English phrase �suppose that Pi� � � ��
Once the proof leaves the box we forget our supposition� Hence the box says
something signi�cant
 Pi is true in here�
The �I rule is

�I From any one of P�� � � � � Pn derive P� � � � � � Pn

Pi

P� � � � � � Pn ��I�
for each of Pi� i � �� � � � � n�

The ��introduction rule is usually used in a backward direction � in order to
show P �Q one of P or Q must be shown� In the forward direction the rule

��� Natural deduction

is rather weak � if P is known then it does not seem very useful to derive
the weaker P � Q �unless such a deduction is needed to obtain a particular
desired sentence� as in the next example�� This rule� too� can be generalized
to n � � arguments�
This time� the �E rule is automatic� whereas the �I rule is the one that
requires ingenuity � when proving P� � � � � � Pn which disjunct should we
choose to prove�
In the next example� a proof of A� �B �C� � �A�B�� �A�C�� we illustrate

how a proof might be found� The �rst step is to place the initial assumption
at the top and the conclusion at the bottom as in Figure ����� Now� where

A � �B � C�
���

�A � B� � �A � C�

Figure ����

do we go from here� There are no automatic steps � �E � and �I need
ingenuity� Can we obtain the conclusion by �I� Does either of the sentences
A �B or A � C follow from the premiss� A little insight says no� so try �E
on A � �B �C� � it is not so di�cult and the result is given in Figure �����
Now an automatic step is available � exploit B � C by �E �case analysis��

A � �B � C�

A �E

B � C �E
���

�A � B� � �A � C�

Figure ����

The preparation is given in Figure ����� Look at the left�hand box� There
are no automatic steps� but look� we can prove A � B by using B and then
use �I to show �A � B� � �A � C�� Similarly in the right�hand box� proving
A�C� The complete proof is given in Figure ���	� It is often the case that a
disjunctive conclusion can be derived by exploiting a disjunction in the data�
Sometimes� an inspired guess can yield a result� as inside the boxes of the
example�

The natural deduction rules ���

A � �B � C�

A �E

B � C �E

B

���

�A � B� � �A � C�

C

���

�A � B� � �A � C�

�A � B� � �A � C� �E

Figure ����

� A � �B � C�

� A �E���

� B � C �E���

� B

� A �B �I���
�

� �A � B� � �A � C� �I���

C

A � C �I���
�

�A �B� � �A � C� �I���

� �A � B� � �A � C� �E���

Figure ���	 A � �B � C� � �A �B� � �A � C�

As an example of how a box proof is translated into English� we will give
the same proof in its more usual form�

Proposition ���� A � �B � C� � �A � B� � �A � C�
Proof Since A � �B � C�� then A and B � C� Consider B � C
 suppose B�
then to show �A � B� � �A � C� we have to show either A �B or A �B� In
this case we can show A � B� On the other hand� suppose C� In that case
we can show A � C and hence �A � B� � �A � C�� So in both cases we can
show �A �B� � �A � C�� �

From now on you will have to work through the examples in order to see
how they are derived� as only the �nal stage will usually be given�
It is easy to see that the �I rule is valid� for X � Y is true as long as

either X or Y is� If X � Y is true then we know only that either X is true
or Y is true� but we cannot be sure which one is true� For the �E case�
therefore� we must be able to show C from both so as to be sure that C
must be true�

��� Natural deduction

It is tempting to try to ignore the �E rule because it looks complicated�
But you must learn it by heart� It is automatic � as soon as you see � in a
premiss you should consider preparing for �E � Writing the conclusion in n��
places seems odd at �rst� but this is what you must do� Each occurrence has
a di�erent justi�cation� it is �E outside the boxes and other reasons inside�
There is a special case of �E in which the number of disjuncts is zero� A

disjunction of n sentences says �at least one of the disjuncts is true�� but if
n � � that is impossible� To represent an impossible sentence� a contradiction�
we use the symbol �� which is pronounced bottom and is always false� If you
look at �E when n � � you see that there are no cases to analyze and all
you are left with is

�
C ��E�

��elimination ��E� and ��introduction ��I� rules

The �rst rule is

�E �pronounced arrow elimination�

from P and P � Q derive Q�

P P � Q

Q ��E�

It can be used both forwards from data and backwards from the conclusion�
To work backwards� suppose the conclusion is Q� then any data of the form
P � Q can be used to derive Q if P can be derived� So P becomes a new
conclusion� In neither direction is the rule completely automatic � some
ingenuity is needed� The �E rule is commonly used in everyday arguments
and is also referred to as Modus Ponens�
The second rule is

�I from a proof of Q using the additional assumption P � derive
P � Q�

P

���

Q

P � Q ��I�

The �I rule appears at �rst sight to be less familiar� In common with
other introduction rules �I requires preparation � in this case� to derive

The natural deduction rules ���

P � Q� a box is drawn to contain the assumption P and the subgoal Q
has to be derived in this box� The English form of P � Q� �if P then Q��
indicates the proof technique exactly
 if P holds then Q should follow� so
assume P and show that Q does follow� Note that the box shows exactly
where the temporary assumption is available� �I is an automatic rule and is
always used by working backwards from the conclusion�

The next example is to prove A � B � C � A � �B � C�� The �rst
steps in this example are automatic� First� a preparation is made to prove
A� �B � C�� and then a second preparation is made to prove B � C� both
by �I� These result in Figure ���
� There are then two possibilities �

A �B � C

A

B

���

C

B � C �I

A� �B � C� �I

Figure ���

you can either use A and B to give A � B and hence C� or you can use
A �B � C to reduce the goal C to the goal A �B�
The �nal proof is given in Figure ������ How might this proof appear in

� A �B � C

� A

� B

� A �B �I��� ��

� C �E���
�

� B � C �I

� A� �B � C� �I

Figure ����� A � B � C � A� �B � C�

��� Natural deduction

English�

Proposition ���� A �B � C � A� �B � C�

Proof To show A � �B � C�� assume A and show B � C� To do this�
assume B and show C� Now� to show C� show A � B� But we can show
A �B since we have assumed both A and B� �

The next three examples illustrate the use of the �E and �I rules� They
also use the useful X rule � if you want to prove A� and A is in the data�
then you can just �check� A�

A

A �X�

Show � A� A

There is only one real step in this example� and no initial data �Figure �������

� A

� A X���

� A� A �I

Figure ����� � A� A

Show A � B � A

� A

� B

� A X���

� B � A �I

Figure ����� A � B � A

Notice that the assumption B is not used inside the box �Figure �������

Show P �Q � �P � Q�� Q

In Figure ����� the preparation for �I is made before that for �E � If
the preparation for using P � Q were made before the preparation for the
conclusion� then the latter preparation would have to be made twice within
each of the boxes enforced by the preparation for �E �

The natural deduction rules ���

� P �Q

� P � Q

� P

� Q �E��� ��

Q

Q X���

� Q �E

� �P � Q�� Q �I

Figure ����� P �Q � �P � Q�� Q

The validity of �E is easy to see� for the truth of P � Q and P force Q
to be true by the de�nition of �� For the �I rule� remember that P � Q
is true if P is false� or if P and Q are both true� So� in case P is true we
have to show Q as well�

Rules for negation

There are three rules for negation� two of which are special cases of earlier rules�
whereas the third is new and does not conform to the introduction�elimination
pattern� The rules are

�I If the assumption of P leads to a contradiction �written as �� then
conclude �P

�E From P and �P derive �
�� From ��P derive P
with formats

P

���

�

	P �	I�

P 	P

� �	E�

		P

P �		�

The �I rule is very commonly used and is another example of an automatic
rule

to show �P show that the assumption of P leads to a contradiction�
The �E rule can be used in a straightforward way in a forward direction� in
which case it simply �recognizes� that a contradiction is present amongst the

��� Natural deduction

derived sentences� It is also often used in a backward direction� in which case
some ingenuity is needed� Suppose a sentence �P is already derived� and � is
required� for example to use �I� then the �E rule requires P to be derived
in order to obtain �� Thus P becomes the new conclusion�
�A can be equivalently written as A� �� and then the �I and �E rules

become special cases of the �I and �E rules�
In the next example all three negation rules are used�

Show � A � �A

� 	�A � 	A�

� A

� A � 	A �I���

� � 	E��� ��

� 	A 	I

� A � 	A �I���

� � 	E���
�

� 		�A � 	A� 	I

� A � 	A 		���

Figure ����� � A � �A

In Figure ����� the crucial step is to realize that A � �A will follow from
���A��A�� Some ingenuity is again needed at lines � and � in deciding that
to prove A � �A it is appropriate to show �A�
The �� rule is obviously valid� For �E � notice that a proof of P and

of �P gives P � �P � which is always false� For �I� we have to show that
P must be false � well� it must be if P leads to a contradiction� �� for
otherwise � would have to be true� which it cannot be�

Using boxes to structure proofs

Boxes are used in the natural deduction rules to structure a proof� initially�
any data that is given is placed at the top of the proof and the conclusion
is placed at the bottom� As a proof progresses� the gap in between is
gradually �lled up� sometimes working downwards from the top as in �E �
�E or �E � and sometimes working upwards from the bottom as in �I� �I
or ��� Many of the steps are automatic� for example� �I� and only require

The natural deduction rules ���

some preparation� in the form of some more boxes perhaps� Non�automatic
steps� for example� �I� cause more problems as they require insight and if
the correct step is not seen the proof may not be found�

As boxes are introduced� the available sentences within each box will vary�
Initially� only the initial data are available� Inside boxes additional sentences
are also available if they are assumptions made when the box is formed� for
example� in �I to show A� B� A is such an assumption� The structure
imposed by boxes also means that any derived sentences that occur in a
proof above a box X may be used within X� for their proof only required
assumptions that are also available within X�

The system of box deductions is a very formal way of writing proofs� the
�nished product can be read from top to bottom but it gives no clue as to
how the proof was derived� Doing the proof with proof boxes allows you to
be more con�dent that your argument is correct� Eventually� you will be able
to derive correct arguments every time and dispense with the explicit use of
proof boxes� as is done in the majority of proofs in this book�

Derived rules

A tautology� such as P � �P � is a sentence that is always true� It can
be derived as in Figure ����� using no data� and is also called a theorem�
Theorems can be used anywhere in a proof if they are needed� Suppose you
have derived the theorem ��A�B�� �A��B� then� if the sentence ��A�B�
appears in a proof� the theorem can be used to derive� by �E � �A � �B�
which may be a more useful form�

When � ��A � B�� �A � �B is derived� A and B can be any sentences
and the theorem is a scheme � any instance of the form of the scheme�
obtained by substituting any sentences throughout for A and B� is also a
theorem� If you become stuck in �nding a derivation� you may �nd that
using a theorem in order to transform a particular sentence makes everything
easy again� Equivalences are especially useful for this purpose� for example�
� ��A�B�� ��A��B� � so from ��A�B� and one half of the equivalence
you can derive �A � �B�
Proving theorems and then including them in a proof can make �nding

derivations much easier than starting from �rst principles and using just the
given rules� Using derived rules can also simplify derivations� As an example�
consider the following scheme� which is a typical sequence of steps for deriving
S by contradiction� The derived rule in this case will be called PC for proof
by contradiction

��	 Natural deduction

� 	S

�
���

� �

� 		S 	I

� S 		�
�

The steps can be contracted into a new proof rule

	S
���

�

S PC

It is not essential to make use of any derived rules� for the preceding rules
are enough for any proof� but they can be used to shorten a proof� The
following are some more derived rules

contrapositive from A� B and �B derive �A
simple resolution � from A � B and �A derive B
simple resolution
 from �A �B and A derive B
resolution from A � B and �A � C derive B � C

As an example� the derivation of the resolution rule is given in Figure ������

� A �B

� 	A � C

� A

� 	A

� � 	E���
�

� B � C �E

C

B � C �I

� B � C �E���

B

B � C �I

� B � C �E���

Figure �����

The natural deduction rules ��

Some hints for deriving natural deduction proofs

You have put the assumptions at the top of a proof and the conclusion
at the bottom � what do you do next� You might be able to use some
automatic steps� �I for example� which yield a requirement for deriving
various subproofs� Or� you might be able to use some insight� for example to
prove C �D using �I� prove C� Since introduction rules produce conclusions
they are usually used when �lling in a proof from the bottom upwards �
their use is dictated by the form of the conclusion� Elimination rules work on
the data and so these are usually used when �lling in a proof from the top
downwards�
In addition to these guidelines there are many useful tactics which you will

discover for yourself� We describe an assortment of such tactics next�

� � as �if� � If there is a sentence of the form D � C and the conclusion
is C then try to show D� C follows using �E � D � C can be read as
C if D� from which the tactic gets its name�

� make use of �S � If the conclusion is �� then perhaps there is a
negative sentence �S that is available which could be used in a �E step
once S had been proved�

� �E anywhere � If you cannot see what to do next perhaps you can
derive � and then use �E � This often happens in some branches of a
�E box� in those branches which �are not what the argument is about�
�for example� in the left�hand inner box of Figure �������

� combined � rules � The �I and �E rules often go together � �rst
use �E and then �I� Suppose the data is X � Y and the conclusion is
C �D� �E will force two subproofs� one using X and one using Y � and
perhaps in one you can prove C and in the other D� In both cases �I
will yield C �D� as you required�

� equivalence � Any sentence can be rewritten using an equivalence�
When �lling in a proof downwards� data can be rewritten into new data
and when �lling in a proof upwards� conclusions can be rewritten into
new conclusions�

� theorem � Remember that it is possible to use theorems anywhere in a
proof� for these are previously proved sequents that do not depend on
any data and so could be used anywhere�

� lemma � In some cases a large proof can best be tackled by breaking it
down into smaller steps� If your problem is to show Data � Conclusion
then maybe you could show Data � Lemma and then make use of
Lemma to show Conclusion � �Data and Lemma� � Conclusion� The
choice of which lemma to prove is often called a �Eureka� step for it
sometimes requires considerable ingenuity�

� excluded middle � If there are no negative sentences� then perhaps you
can introduce a theorem of the form Z � �Z and immediately use �E �

��� Natural deduction

Of course� some ingenuity is needed to choose a suitable Z� but it is
worth trying Z as the conclusion you are trying to prove�

� PC � Perhaps you can use the proof by contradiction derived rule�

� If all else fails� use PC� or excluded middle�
And if all else does not fail then do not use PC � the negated
assumptions it introduces often make the proof more di�cult to
understand�

Most practical proofs make use of three of the tactics on a large scale� they
are the lemma� equivalence and theorem tactics

� The lemma tactic is used to break the proof into smaller steps�
� The equivalence tactic is used to rewrite the data into the most
appropriate form for the problem�

� The theorem tactic is used to make large steps in one go by appealing
to a previous proof�

In practice� we make use of hundreds of theorems� some of which are exercises
in this book and some of which you will discover for yourself� So watch out
for them�

���� Examples

The various rules and tactics of this chapter are illustrated in the following
examples�

Show �P � P � Q

� 	P

� P

� � 	E��� ��

� Q �E���

� P � Q �I

Figure ����� �P � P � Q

The derivation in Figure ����� is a useful one to remember� It is used in the
following example which derives a famous law called �Pierce�s law� after the
logician Charles Pierce�

Examples ���

Show � ��P � Q�� P �� P
Two proofs are given �in Figures ����� and ����	� � the �rst uses P � �P
and the second uses PC� They both illustrate the bene�t of planning in a
proof� In the �rst proof it is clear that the sentence �P � Q�� P will yield
P � the conclusion� if P � Q can be proven� Also� the sentence P ��P means
that since P can be derived from P � P � Q will have to be proven from
�P � And we have shown this in Figure ������ In the second proof a useful
technique is used ��use PC if all else fails�� Applying it in this example
leads to the goal of � � the necessary �E step will require a sentence and
its negation to be derived� �P is already an assumption so consider deriving
P � This can be done by deriving P � Q� which follows from �P � again as in
Figure ������ Notice that here we have had to use some insight in order to

� �P � Q�� P

� 	P � P �Th�

� 	P

� P � Q �Fig� �
��
�

� P �E���
�

P

P X ���

� P �E���

� ��P � Q�� P �� P �I

Figure ����� � ��P � Q�� P �� P

� �P � Q�� P

� 	P

� P � Q �Fig� �
��
�

� P �E��� ��

� � 	E���
�

� P PC

� ��P � Q�� P �� P �I

Figure ����	 � ��P � Q�� P �� P

apply the heuristics in the correct order� If you tried to use �� as if� before
PC� that is� tried to prove P � Q without obtaining �P � you would fail�

��� Natural deduction

Show A � B � C��D� ��E � F �� C � �E � F � � A� �B � D�
The derivation for this example �in Figure ����
� proves� and then uses� the
lemma E � F to help �ll in the proof between lines � and ��� That is�
E � F can be proved �rst and then it can be used to prove D� If the proof

� A �B � C

� 	D � 	�E � F �

� C � �E � F �

� A

� B

� A �B �I�
� ��

� C �E�
� ��

� �E � F � �E��� ���a lemma�

� 	D

�	 	�E � F � �E��� ��

�� � 	E���� ��

�� D PC

�� B � D �I

�� A� �B � D� �I

Figure ����
 A � B � C��D� ��E � F �� C � �E � F � � A� �B � D�

were to be written in English it might look as follows�

Proposition ���� A � B � C��D � ��E � F �� C � �E � F � � A � �B �
D�

Proof To show A � �B � D� assume A and show B � D� So assume B
and try to show D� �Next a little bit of ingenuity is required� You notice
that to show D it would su�ce to show that E � F � as the assumption of
�D then leads to a contradiction�� So� try to show E � F � From A and
B derive C and hence E � F � Finally� D can be shown by using proof by
contradiction� �D leads to ��E � F �� which gives a contradiction with the
lemma E � F � �

A speci�cation example
One of the Miranda programs considered earlier was min

 num �� num ��

num with speci�cation
 �x�y�z� �z � x � z � y � �z � x � z � y��� where z �

min x y� This can be used to de�ne a function min� that yields the smallest

Examples ���

value of three numbers� What is the speci�cation of such a function min��
The result must certainly be one of the three numbers and should also be �
each number� A suitable program is

min�

 num �� num �� num �� num

min� x y z � min � min x y� z

That is� �nd the minimum of the �rst two numbers and then the minimum
of this result and the third number� To show that the program meets the
speci�cation� we must show that

�x�y�z� �min� � x � min� � y � min� � z � �min� � x � min� � y � min� � z��

that is

�x� y� z�

�
����

min �min x y� z � x � min �min x y� z � y�
min �min x y� z � z�

�min �min x y� z � x � min �min x y� z � y�

min �min x y�z � z�

�
����

To show that a sentence is true for all x� y� z we should show that it is
true for any arbitrary values in place of x� y� z� �See Section ������ Suppose
X�Y�Z are arbitrary values for x� y� z� Then we have to show

min �min X Y � Z � X � min �min X Y � Z � Y � min �min X Y � Z � Z�

�min �min X Y � Z � X � min �min X Y � Z � Y � min �min X Y �Z � Z�

First� what are the initial assumptions� The speci�cation of min for a start�
Any other assumptions can be added as the proof progresses� A look at the
sentence to be proved reveals that it is a conjunction of four sentences� so
each one has to be proved�
The �rst is min �min X Y � Z � X� Use the speci�cation of min � write

min X Y as u� then min u Z � u � min u Z � Z� �Since the result of
min X Y is a num� it satis�es the implicit pre�condition for the �rst argument
of min in min �min X Y � Z�� Also� u � X � u � Y � Hence� after using the
fact that � is transitive� min u Z � X� min u Z � Y � min u Z � Z� This
gives the �rst three parts� The fourth is a disjunction�
One way to prove a disjunction is to use another� From the speci�cation

of min� u � X � u � Y � and min u Z � u � min u Z � Z� Take the second
of these
 min u Z � Z will yield the result after �I� Assuming now that
min u Z � u� from the �rst disjunction there are two cases
 u � X for one
case� and u � Y for the other� Together� u � X and min u Z � u give
min u Z � X� which again yields the result� The other case is similar� The
box proof is shown in Figure ������ �Notice that lines �� 	�
 and �����
give the derivations of the four conjuncts in line ����

��� Natural deduction

� min u Z � u � min u Z � Z

� u � X � u � Y

� u � X � u � Y

� u � X� u � Y �E���

� min u Z � u � min u Z � Z

� min u Z � u� min u Z � Z �E���

�
min u Z � X

by transitivity of �
�
�
�

�
min u Z � Y

by transitivity of �
�
�
�

� min u Z � Z X�
�

�	 min u Z � u

�� u � X

�� min u Z � X

�by equality�
���� ���

��
min u Z � X�

min u Z � Y �
min u Z � Z

�I����

u � Y

min u Z � Y

�by equality�
���� ���

min u Z � X�

min u Z � Y �
min u Z � Z

�I����

�� min u Z � X � min u Z � Y �

min u Z � Z

�E���

min u Z � Z

min u Z � X�
min u Z � Y �

min u Z � Z

�I����

�� min u Z � X � min u Z � Y � min u Z � Z �E���

�� min uZ � X � min u Z � Y � min u Z � Z�

min u Z � X � min u Z � Y � min u Z � Z

�I

Figure �����

Summary ���

���� Summary

� A valid argument consists of a collection of premisses and a conclusion
such that if the premisses are true then the conclusion must be true�
too�

� The basic natural deduction rules for propositional sentences are given
in Appendix C�

� The �I� �E � �E� �E rules require some ingenuity� choosing which
rules to apply and when� whereas the �I� �E � �I� �I rules are all
automatic� requiring just some preparation� and should be applied as
soon as you realize that they can be applied�

� Derived rules can be useful� especially the rule PC� proof by contradiction�
� Boxes are useful for structuring proofs and to show where assumptions
hold�

� There are various tactics for �nding derivations

� as �if�

making use of �S
use �E anywhere
PC

excluded middle

combined � rules
equivalence

theorem

lemma

���� Exercises

�� Show

�a� � P �Q� P �b� P � Q� �P � Q�
�c� P � Q��Q � �P �d� �P � P � Q
�e� �P�P � Q � Q �f� �I � �F � ��I � F �
�g� � P � �Q� P � �h� P � S� �P � Q�� S � S
�i� F � �B �W ����B � P ��W � P � �F
�j� P � Q��P � R�Q� S�R� S � S
�k� �C �N�� T�H � �S�H � ��S � C�� P � �N � �T �� P
�l� R� �I� I � F��F � �R
�m� P � �Q� R� � �P � Q�� �P � R�

��� Natural deduction

�� For each of the equivalences A � B show A � B and B � A�
�a� P � �P �Q� � P �b� P � �P � Q� � P
�c� P � Q � �Q� �P �d� P � Q � �P �Q
�e� ��P �Q� � �P � �Q �f� ��P �Q� � �P � �Q
�g� �P � Q�� R � P � �Q� R�
�h� P �Q � ���P � �Q�
�i� P �Q � �P � Q�� Q
�j� ���P � �Q� � P �Q
�k� P � �Q � R� � �P �Q� � �P � R�
�l� �P � Q�� R � �P � R� � �Q� R�
�m� �P � Q� � �Q� P � � �P �Q� � ��P � �Q�

�� Derive an introduction and elimination rule for� based on the equivalences
A� B � �A� B� � �B � A� and A� B � �A �B� � ��A � �B�� Use
your new rules to show

�a� ��P � Q� � �P � Q

�b� P � �P �Q� � P � Q

�c� P � �P �Q� � Q� P

�d� P � Q � Q� P

�e� P � �Q� R� � �P � Q�� R

�� Many tautologies of the form � A� B give rise to derived rules of the
form A � B� Explain how�

�� Formulate a derived natural deduction rule for if �then�else I and
if �then�else E � The �rst will be based on the rules �I and �I� the
second on �E and �E � �hint� if �then�else�x� y� z� is equivalent to
x� y � �x� z��
Use the rules to show

�a� if �then�else�A�B�C� � if �then�else��A�C�B�

�b�
if �then�else�A� if �then�else�D�B�C�� C�
� if �then�else�D� if �then�else�A�B�C��C�

�� �a� Derive the rules �contrapositive� � �simpler resolution �� and �simpler
resolution ���

�b� Prove the rule �� as a derived rule using the schema Q � �Q�
�c� Prove the inverse of �� �that is� from Q derive ��Q� as a derived
rule�

Chapter ��

Natural deduction for predicate logic

In the preceding chapter we looked at natural deduction rules for the various
logical connectives� Each connective was associated with an introduction rule
for use in deriving a sentence involving the connective� and an elimination
rule for deriving further sentences from a sentence using the connective�
There are six more natural deduction rules to be introduced in this

chapter� Four of them cover the quanti�ers� which also have elimination and
introduction rules � �I� �E� �I� �E � The other two are for reasoning with
equality� which is an important predicate that has its own rules
 eqsub� which
acts rather like an equality elimination rule� and re�ex� which acts like an
equality introduction rule�

���� ��elimination ��E� and ��introduction ��I� rules

The rules

�E From a sentence �x� P �x� you may derive P �t� for any ground term t that
is available� where t is substituted for x everywhere that it occurs in
P �x��

�x� P �x�
P �t� ��E�

�I A sentence �x� P �x� can be derived from P �b�� where b is any available
ground term and x is substituted for one or more occurrences of b in
P �b�� or to show �x� P �x� try to show P �b� for some available ground
term b

P �b�

�x� P �x� ��I�

���

��	 Natural deduction for predicate logic

A ground term is one that contains no variables� In addition� the terms t or b
may only involve constants and�or function symbols that are already available
in the current context�
Function symbols and constants appearing in proofs cannot be invented as

the fancy takes you� rather� they must

� either be occurring in sentences in the overall problem �that is� sentences
which are mentioned in the premisses or conclusion��

� or be implicit because a particular interpretation of the predicates is
known �for example� various numbers��

� or be introduced when using the rules �I or �E �see Section ������

This means that at di�erent places in a proof di�erent constants may be
available for substitution in the use of �E or �I�
The �E rule is frequently used and allows a general sentence about all
individuals to become a particular sentence about some individual t� The �I
rule is mostly used when �lling in a proof from the conclusion upwards� That
is� to show �x� P �x�� �rst a particular b is chosen �using some ingenuity� and
then an attempt to show P �b� is made�
Notice that the term t in an application of �E must be substituted for all

occurrences of the bound variable� for otherwise the resulting sentence would
not be properly formed�
The �I rule can also be used forwards� for if a sentence P �b� has been

derived then certainly �z� P �z� is true� too� In that case� any number of
occurrences �� �� of the selected term b can be replaced by the bound
variable x� In order that the resulting sentence �x� P �x� is properly formed
the bound variable x should be new to P �b��
Quite a bit of ingenuity is necessary in using these rules� in the use of the

�E rule you need to prevent too many particular sentences being generated
that are not going to be useful to the proof� in the backward use of the �I
rule you need to pick an individual b for which P �b� can indeed be proved�
The notation using typed quanti�ers is widely used in specifying programs�

especially for quali�ers such as �person�� �lists�� �numbers�� etc� The �E and
�I rules each have a typed counterpart that is derived from the translations

�x
 type� P �x� translates to �x� �is�type�x�� P �x��

and

�x
 type� P �x� translates to �x� �is�type�x� � P �x��
The typed rules are

is�type�t� �x
 type� P �x�
P �t� ��E�

is�type�b� P �b�

�x
 type� P �x� ��I�
For �E the term t must be of the correct type and satisfy is�type�t� in

order for an implicit �E step to be made to derive P �t�� For the �I rule
the term b must satisfy is�type�b� so that an implicit �I step can be made�
These conditions mean that an additional check must be made on the terms

��elimination 	�E
 and ��introduction 	�I
 rules ��

being substituted� Suppose� as an example� that a term of type �integer� was
required in a �E step� The derivation so far may not mention any numbers
explicitly� but implicitly the data includes a whole theory about integers�
including all the facts we know about numbers such as � 	� �� � is prime� and
so on� Any integer can be used as a substitute for t� Similarly� before using
�I to derive �x
 int� P �x� from P ���� say� you must check that is�int��� is
true� which of course it is�

The �E rule is often used together with �E or �E to form combined rules
called� respectively� ��E and ��E� In both of these cases the �E step is
implicit� Moreover� just as �E and �E can be used backwards as well as
forwards� so� too� can the combinations be used backwards as well as forwards�
We will see several examples of this in the next section�

The formats are

�x� �P �x�� Q�x�� P �c�

Q�c� ���E� and
�x� �P �x� P �c�

� ���E�
The ��E rule can be used to show a contradiction by showing some sentence

P �c� and then implicitly using �E to derive �P �c� and the contradiction�

Some examples

In our �rst example� shown in Figure ����� we give a proof of
tired�lenny� � lion�lenny� � does�lenny� sleep�� The initial data appears in
lines ��� and� after the automatic step of �I� several non�automatic
steps are made in lines ��	� The ��E rule is used several times� For
example� at line � �E is �rst �implicitly� applied to line �� to derive
lion�lenny�� does�lenny� hunt� � does�lenny� sleep� and then �E is applied to
derive does�lenny� hunt� � does �lenny� sleep�� After that� another automatic
step is made to prepare for �E�
The second example� shown in Figures ���� and ����� is a proof of an

existentially quanti�ed sentence �x� �shot�x�Diana�� The initial data given in
lines ��� can be used to show the conclusion in two di�erent ways� The
simpler way is given �rst� This example is typical of real situations when more
data than is required to prove the given goal is available� making ingenuity
even more necessary in �nding the proof�

The �rst derivation proves that Diana did not shoot herself� and the second
that Janet did not shoot Diana� The combined rule ��E is used in the second
derivation at line 	 � the new conclusion inhouse�Janet� � ingarden�Janet� is
derived because if this is proved then �E using line � will give a contradiction�
All uses of �E and �I require some insight into which substitutions for the
bound variable will prove suitable� In this case there are two names� Janet
and Diana� and either might be appropriate�

��� Natural deduction for predicate logic

� �x� �lion�x�� does�x� hunt� � does�x� sleep��

� �x� �y� �does�x� y�� can�x� y��

� �x� �tired�x� � lion�x�� 	can�x� hunt��

� tired�lenny� � lion�lenny�

� tired�lenny� �E�
�

� lion�lenny� �E�
�

� does�lenny� hunt� � does�lenny� sleep� ��E���
�

� 	can�lenny� hunt� ��E���
�

� does�lenny� hunt�

�	 can�lenny� hunt� ��E��� ��

�� � 	E���� ��

�� does�lenny� sleep� �E

does�lenny� sleep�

does�lenny� sleep� X���

�� does�lenny� sleep� �E���

�� tired�lenny� � lion�lenny�� does�lenny� sleep� �I

Figure ���� Proof of tired�lenny� � lion�lenny�� does�lenny� sleep�

� �x� 	shot�x� x�

� inhouse�Janet�

� �x� 	�inhouse�x� � ingarden�x��

� �x� �shot�x�Diana�� ingarden�x��

� 	shot�Diana�Diana� �E���

� �x� 	shot�x�Diana� �I���

Figure ���� Proof of �x� �shot�x�Diana�

Show P �a� � P �b���x� �P �x�� Q�x�� � �x� Q�x�
Figure ���� illustrates a feature of the �I rule� Many problems are
straightforward in that there is a particular term that makes �x� A�x�
follow from the current data� �For example� if the data had been
�x� �P �x� � Q�x��� P �a� then �x� Q�x� would follow because of Q�a�� �
Sometimes� this is not the case� and although �x� A�x� follows from the

��elimination 	�E
 and ��introduction 	�I
 rules ���

� �x� 	shot�x� x�

� inhouse�Janet�

� �x� 	�inhouse�x� � ingarden�x��

� �x� �shot�x�Diana�� ingarden�x��

� shot�Janet�Diana�

� ingarden�Janet� ��E�
� ��

� inhouse�Janet�� ingarden�Janet� �I���
�

� � �	E��� ��

� 	shot�Janet�Diana� 	I

�	 �x� 	shot�x�Diana� �I���

Figure ���� Another proof of �x� �shot�x�Diana�

� P �a� � P �b�

� �x� �P �x�� Q�x��

� P �a�

� Q�a� ��E��� ��

� �x� Q�x� �I

P �b�

Q�b� ��E��� ��

�x� Q�x� �I

� �x� Q�x� �E���

Figure ���� P �a� � P �b���x� �P �x�� Q�x�� � �x� Q�x�

available data there may be uncertainty as to which term makes it do so�

Typically� this occurs when there is a disjunction in the data and one
�witness� �substitution for x� is appropriate in the context of one disjunct and
another in the context of a second� Our example has a disjunction in its data
which is applied before the application of �I� On the other hand� in the proof
of �x� �P �x� � Q�x����P �b� � P �a� � �x� Q�x�� shown in Figure ����� the
disjunction P �b� � �P �b� is added as a theorem� This is a common technique�
but you may need several attempts before you �nd the correct disjunction
to introduce� The one used here is not the only possibility for either of
P �a� � �P �a� or �x� Q�x� � ��x� Q�x� could have been used instead�

��� Natural deduction for predicate logic

� 	P �b�� P �a�

� �x� �P �x�� Q�x��

� 	P �b� � P �b� �Th�

� 	P �b�

� P �a� �E���
�

� Q�a� ��E��� ��

� �x� Q�x� �I�
�

P �b�

Q�b� ��E���
�

�x� Q�x� �I���

� �x� Q�x� �E���

Figure ���� �x� �P �x�� Q�x����P �b�� P �a� � �x� Q�x�

� �x � num� P �x�

� P ���� �E���

� �x � num� P �x� �I���

Figure ���� �x
 num� P �x� � �x
 num� P �x�

Show �x
 num� P �x� � �x
 num� P �x� �Figure �����
Here� in order to show the conclusion an assumption has to be made that
there are some numbers� so suppose that there are� Two checks then have to
be made � that ���� is a number in deriving line � from line �� and that
���� is a number in deriving line ��

���� ��introduction ��I� and ��elimination ��E� rules

��introduction

The next rule that we consider is �I� and its use introduces a new constant
into the proof� The rule is

A proof of �x� P �x� can be obtained from a proof of P �c� for some
new constant c�

��introduction 	�I
 and ��elimination 	�E
 rules ���

c �I
���

P �c�

�x� P �x� ��I�
or typed

c �I is�t�c�
���

P �c�
The �new� means that c is introduced for the �rst time inside the box

that contains the subproof of P �c�� c is only available within that box and it
cannot be mentioned outside it� So� in particular� c cannot occur in �x� P �x��
The c �I in the left�hand corner is a reminder that c must be new�
The version using a typed quanti�er is derived from the untyped version

and �I using the translation of �x
 t� P �x� into �x� �is�t�x�� P �x���
The �I rule is completely automatic and is used in a backwards direction

from goal to subgoal� The motivation behind this rule is the commonly quoted
law

If one can show P �u� for an arbitrary u� then �x� P �x� holds�

The use of a new term for c implements the �arbitrary� part of the law�
The following is an informal explanation of why the rule �works�
 in order

to derive �x� P �x�� the derivation should work for whatever value v could be
substituted for x and should not depend on properties of a particular v� Since
c is new� any data that is used to prove P �c� will not mention c and the
derivation cannot rely on special properties of c �apart from that it is of type
t�� as there are none� Properties are either not relevant or are completely
general� of the form � � � �� in which case they apply to any value�
A very common pattern used in quanti�ed sentences is �x� �P �x�� Q�x���

If this sentence is a conclusion then two automatic steps are immediately
applicable � �rst a �I step and then a �I step� These can be combined
into one step� ��I� that requires just one box instead of two� as is done
implicitly in deriving a typed version of the �I rule�
Remember that in Chapter �� we encountered a di�culty in checking

whether a universal sentence was true when there was an in�nite number of
values to check� Well� now we have an alternative approach� The sentence is
checked for one or more arbitrary values which between them cover all the
possible cases� For example� to show that �x
 int� P �x�� we might try to
show that P �c� for an arbitrary integer c� Now� any integer is either � ��
� � or � �� so we could try to show that P �c� is true in each of the three
cases� �Alternatively� any integer is also prime or non�prime� so we could try
to show that P �c� is true in those two cases��

��� Natural deduction for predicate logic

��elimination

The �E rule is another completely automatic rule that introduces a new
constant into a proof� It may seem a little di�cult at �rst sight and you
should thus learn it by heart and understand why it appears as it does�

To derive Q using �x� P �x�� derive Q using P �c�� where c is a new
constant�

The format for the �E rule is

�x� P �x�

c�E P �c�
���

Q

Q ��E�
or typed

�x
 t� P �x�
c�E P �c�

is�t�c�
���

Q

Q ��E�
The version using a typed quanti�er is derived from the untyped version and
�E using the translation of �x
 t� P �x� into �x� �is�t�x� � P �x���
Again� c must be a new constant and the box is used to indicate where c

is available� In particular� the conclusion Q must not mention c� Notice that
the conclusion appears twice� outside the box it is justi�ed by �E and inside
by something else� The rule is best applied as soon as possible in a proof so
that the new constant c is available as soon as possible�

An informal explanation of why the rule works is as follows
 in order to
use �x� P �x� a name has to be given to �x the �x that makes P �x� true��
Although it would be possible to keep referring to this value as �the x that
makes P �x� true�� this is a very cumbersome name and also one that could
be ambiguous if there were more than one such x� so a new constant c is
introduced� c must be new since all that is known about it is that P �c� is
true �and if the quanti�er is typed that c is of type t�� If c were not a
new constant� then the proof of Q might inadvertently use some additional
properties that were true of some values but not all� and it could be that the
�x that makes P �x� true� was one of those values for which these additional
properties were not true�

��introduction 	�I
 and ��elimination 	�E
 rules ���

Some more examples

In this section we look at some typical examples involving sentences with
quanti�ers�

Show �y� �x� P �x� y� � �u� �v� P �u� v� �Figure �����
�If there is some y that makes P �x� y� true for all x� then for every u there
is some v �the same one for each case� that makes P �u� v� true��
The �rst two steps� �I and �E� are automatic but could easily have been

in the opposite order� Once a and b have been introduced there are enough
clues in the proof so far �lines ��� and ���� to �ll in the gap� Notice that
the reverse deduction is not valid

�u� �v� P �u� v� � �y� �x� P �x� y�

� �y� �x� P �x� y�

b�I �

a�E � �x� P �x� a�

� P �b� a� �E���

� �v� P �b� v� �I�
�

� �v� P �b� v� �E���

� �u� �v� P �u� v� �I

Figure ���� �y� �x� P �x� y� � �u� �v� P �u� v�

In the next example� shown in Figure ���	� lines ��� form the initial data�
The data include a commonly occurring pattern of quanti�ers � �x� �y� Each
time the �E rule is applied to a sentence such as �x� �y� likes�x� y�� the �E
rule can be applied to generate a new constant� In turn� the new constant
can be used in another application of �E� which generates yet another new
constant� and so on� In this case only one round is needed� Also� note that
as B must be new it cannot be A� After that� the rest can be �lled in fairly
easily� Note� If a sentence has the form Qx�Qy� �� � ��� where Q is either �
or �� then� usually� you will want to eliminate both the quanti�ers in one
elimination step or introduce them in one introduction step� This is quite
acceptable and the two steps together are still labelled by �E� �E � �I or �I
�and not by ��E� for example��

Show �x� �y
 num� ���z
 num� xz � y�� R�x� y�� � �w
 num� R�w�w�
�Figure ���
�� Here� there are two lines where checks must be made that
the terms being substituted are of the correct type� The information at line

��� Natural deduction for predicate logic

� �x� �y� likes�x� y�

� �x� �y� �likes�x� y�� likes�y� x��

� �u� �v� ��w� �likes�u� w�� likes�w� v��� likes�u� v��

A�I �

� �y� likes�A� y�

B�E � likes�A�B�

� likes�B�A� ��E���

� likes�A�B� � likes�B�A� �I���
�

� �w� �likes�A�w�� likes�w�A�� �I

�	 likes�A�A� ��E���

�� likes�A�A� �E���

�� �x� likes�x� x� �I

Figure ���	 Proof of �x� likes�x� x�

� �x� y � num� ���z � num� xz � y�� R�x� y��

A�I � is�num�A�

� is�num��� �arithmetic�

� A� � A �arithmetic�

� �z � num� Az � A �I

� R�A�A� ��E

� �w � num� R�w�w� �I

Figure ���
 Proof of �w
 num� R�w�w�

� that is�num�A� is part of the preparation for �I� Since we only want to
show R�w�w� for all numbers� A can be an arbitrary number� In turn� to use
the sentence at line � requires a check that the terms substituted for x� y are
both numbers� They are� for both x� y are replaced by A� At line � a check
must be made that � is a number before applying �I� Finally� all the rules
of arithmetic apply�

Equality ���

Does �x� P �x� � �x� P �x�� �Figure ������
If you try to show this using natural deduction you will �nd that you cannot
get started because you have no knowledge that any individuals exist and so
cannot make any substitutions in the �E or �I rules� In order to show the
conclusion you must add to the data the sentence �z� �� where � is the
sentence that is always true� If you think about it� it is no real surprise that

� �x� P �x�

� �z�

I�E �
 I exists

� P �I� �E

� �y� P �y� �I

� �y� P �y� �E

Figure ����� �x� P �x�� �z� � � �y� P �y�

the proof does not work without the extra sentence� For it could be that a
situation exists in which there are no individuals� In such a situation� certainly
�x� P �x� is true� for there is nothing to check� but� equally� �y� P �y� is false�
�z� � is often taken for granted� but not in this book�

���� Equality

The equality relation ��� is a predicate that is very commonly used and
everyone has a fairly good idea of what a � b is supposed to mean � that
a and b denote the same element or individual� This in turn means that
whatever properties are possessed by a will also be possessed by b� So� for
example� if

Dr Jekyll � Mr Hyde
Mr Hyde killed someone

then it can be deduced that Dr Jekyll killed someone� For� if the sentence
�x� killed�Mr Hyde� x� is satis�ed by Mr Hyde� then it is also satis�ed by
Dr Jekyll� that is� �x� killed�Dr Jekyll� x�� The example illustrates the main
rule for reasoning with equality � the rule of equality substitution � which
allows one side of an equation to be substituted for the other� An equality
atom such as Susan � Sue is often called an equation�

��	 Natural deduction for predicate logic

Using equality in translation

Let us look �rst at how equality can be used in sentences to express sameness�
uniqueness and functionhood�
Consider the following short propositions

�� Tig eats vegetables
�� Tig only eats vegetables
�� Tig dances with Jig
�� Tig only dances with Jig

The straightforward translations of the �rst two into logic are

�� �x� �vegetable�x�� eats�Tig� x��
�� �x� �eats�Tig� x�� vegetable�x��

If the third and fourth sentences are paraphrased in a similar way then they
become

�x� �x � Jig� dances�with�Tig� x��

and

�x� �dances�with�Tig� x�� x � Jig�

An equation is used to express the proposition that �x is Jig�� that is�
x � Jig� The third sentence can be rewritten equivalently and more naturally
as dances�with�Tig� Jig��
Equality is also used to express uniqueness� For example� suppose we

wanted to express in logic the sentence

There is exactly one green bottle�

This sentence says the following

�� There is at least one green bottle�
�� There is at most one green bottle�

And in logic we have

�x� greenbottle�x� � ��u� �v� �greenbottle�u� � greenbottle�v� � u 	� v�

An alternative and equivalent expression is obtained by paraphrasing the
sentence as

There is a greenbottle x and all greenbottles are the same as x

which in logic is

�x� �greenbottle�x� � �u� �greenbottle�u�� u � x� �

The �rst approach can be generalized for n � � greenbottles

�x� � � � xn

	
greenbottle�x�� � � � � � greenbottle�xn�
�x� 	� x� � � � � � xn 	� xn��

�

��u�� � � � � un
�
�� greenbottle�u�� � � � � � greenbottle�un��
u� 	� u� � u� 	� u� � � � � � u� 	� u� � � � �

� � � � � un 	� un��

�
��

Substitution of equality ��

The second approach can also be generalized

�x� � � � xn
�
��
greenbottle�x�� � � � � � greenbottle�xn��
x� 	� x� � � � � � xn 	� xn���
�u� �greenbottle�u�� u � x� � � � � � u � xn�

�
��

It is not always necessary to use equality to express �sameness�� For
example� �a and b have the same parents� might be written as

�x� �parent�of�x� a�� parent�of�x� b��

Actually� the logic only says that �if a and b have any parents then they have
the same ones�� and to express that a and b have some parents �as implied
by the English� we must add

��x� �parent�of�x� a��
Equality is also used in expressing that a particular relation is a function�

For example� the relation mother�of�x� y� is a function of y � for each y
there is just one x that is related to it� This is expressed as

�y� �x� �z� �mother�of�x� y� �mother�of�z� y�� z � y�

If� in addition� we state that �everyone has a mother�

�y� �x� mother�of�x� y�
then it is possible to simplify sentences such as

�u� �mother�of�u�Ann�� mother�of�u� Jeremy��

to

�u� �mother�of�u�Ann� �mother�of�u� Jeremy��

See Exercise
�

���� Substitution of equality

Equality is such a frequently used predicate that there are built�in natural
deduction rules to deal with it� The main natural deduction rule for making
use of equations is the rule of substitution

a � b S�a�

S�b� �eqsub�

where S�a� means a sentence S with one or more occurrences of a identi�ed
and S�b� means those occurrences replaced by b� �There is no need to identify
all occurrences of a in S��

Any ground equation of the form a � a can be introduced into a proof by
the re�ex rule

a � a �re�ex�

The re�ex rule is usually used in a backwards direction � a conclusion a � a
�say� can always be derived by using it�

��� Natural deduction for predicate logic

Any equation a � b means the same as the equation b � a� This is a
consequence of the Symmetry law of equality which is derivable using the
two new rules eqsub and re�ex� See Figure ������ Line � is obtained by

a� b�I � a � b

� a � a re�ex

� b � a eqsub

� �x� �y� �x � y � y � x� ��I

Figure ����� Proof of symmetry law

substituting b for the �rst a of line �� The symmetry property means
that a � b and b � a can be treated as the same equation� for although
eqsub using a � b is de�ned as substituting b for an occurrence of a� the use
of symmetry allows b � a to be derived and hence a can be substituted for
an occurrence of b� The symmetry is not usually made explicit� equalities
being used in whichever direction is most appropriate� Transitivity of �
��x��y��z��x� y � y � z� x � z�� can similarly be shown�
The symmetry of equations enables the eqsub rule to make sense whether it

is used forwards �as described already� or backwards� In that case� we can use
it to show S�b� if we are given b � a� which is the same as being given a � b�
and can show S�a�� The e�ect is to transform the current goal S�b� �say� into
a new goal S�a� as at line � in the fragment shown in Figure ������

�
���

� a � b

�
���

� S�a�

� S�b� eqsub

Figure �����

Show P �a�� �x� �x � a� P �x�� �Figure �����	
This example illustrates the use of the eqsub and re�ex rules� The �nal line
of Figure ����� is derived by �I followed by the use of the de�nition of
A � B as A� B � B � A� The �rst half of this proof is very useful as it
shows how equality conditions of a particular kind can be eliminated� This is

Substitution of equality ���

� �x� �x � a� P �x��

� a � a� P �a� �E���

� a � a re�ex

� P �a� �E��� ��

�
�x� �x � a� P �x��
� P �a�

�I

P �a�

t�I t � a

P �t� eqsub

�x� �x � a� P �x�� ��I

P �a��
�x� �x � a� P �x��

�I

� P �a�� �x� �x � a� P �x�� �defn�

Figure �����

always the case for sentences of this sort which have conditions involving an
equation with at least one variable argument� For example�

�x� y� �x � a � y � b � P �x� y�� Q�x� y��

will yield the simpler P �a� b�� Q�a� b��
In a similar way� �x� �x � a � P �x��� P �a� is also true�

Rewrite proofs

A method of showing that an equation is true� familiar from school
mathematics� is to use rewriting� That is� to show a� � b� a� is rewritten into

� �xs� ys� �rev xs��ys � rev ys��rev xs�

� �z�zs� � �z���zs

� rev �z�zs�

� � rev ��z���zs� ���

� � rev zs��rev �z� �E���

� � rev zs���z� prop of rev

Figure ����� A rewrite proof

a�� and then a� is rewritten into a�� and so on� until b is obtained� Each step
implicitly uses the eqsub rule� A typical proof using this technique is used to
derive rev �z
zs� � rev zs��!z"� shown in Figure ������
A rewrite proof can be seen as a contraction of a more cumbersome

sequence of equations in which each follows from the next by the eqsub rule�
The corresponding full proof of Figure ����� is given in Figure ������ The

��� Natural deduction for predicate logic

� �xs� ys� �rev xs��ys � rev ys��rev xs�

� �z�zs� � �z���zs defn of �

� rev �z� � �z� property of reverse

� rev zs���z� � rev zs���z� re�ex

� rev zs��rev �z� � rev zs���z� eqsub���

� rev ��z���zs� � rev zs���z� �E���� eqsub

� rev �z�zs� � rev zs���z� eqsub���

Figure �����

proof uses some properties of rev� one occurrence of the re�ex rule and
several applications of eqsub� It has the general pattern shown in Figure ������
where at each step eqsub is used to rewrite either the left or right side of
an equation� �So either ai is identical to ai�� or bi is identical to bi���� The
proof given in Figure ����� is naturally formed by working backwards from
the conclusion� at each step applying eqsub to some term until the two sides
are identical� when the re�ex rule is used� It can quite naturally be contracted
into the rewrite proof given in Figure ������

various equations
���

an � an re�ex

an�� � bn�� eqsub
���

a� � b� eqsub

a� � b� eqsub

Figure �����

Delete

We will illustrate the various features of natural deduction by proving that
the del program meets its speci�cation �that is� it deletes the �rst occurrence

Substitution of equality ���

various equations
���

a� � a�

� a�
��� � an

� bn��
��� � b�

Figure �����

of c from l�� First of all the program and speci�cation

del

 � �� !� "�� !� "

��pre
 c belongs to l

��post
 �E�m�n
!� "!z�m��n � l�m��!c "��n �

�� not�c belongs to m�"

�� where z� del c l

del c �h
t� � t� c�h

� �h
 del c t�� c 	� t

Now the proof � the outline structure is given in Figure ����	 and the
two cases for the induction step are given in Figures ����
 and ������ In the
proof we use the following abbreviations

P �l� � �c

� �c � l� Q�l��

and

Q�l� � �m�n
 !
 "�del c l � m��n � l � m��!c"��n � �c � m�

We also give the proof in English for comparison�

Proposition ���� del satis�es its speci�cation� We have to show �l
 !
"� P �l�
and we use induction on l and show P �!"� and P �h
t��
The base case P �!"� is vacuously true because c � !" is always false� For

the induction step we can assume as hypothesis P �t�

�c� �c � t� �m�n
 !
 "�del c t � m��n � t � m��!c"��n � �c � m��

So� �x c as a constant C and suppose C � h
t� There are two cases

either C � h or C 	� h� If C � h then l � ! "��!C"��t with C �� ! "� and
by de�nition del C l � t � ! "��t� Hence we can take m � ! "� n � t� If C
	� h then notice that because C � h
t we must have C � t and hence by
the hypothesis there is some m� and n� such that

�del C t � m���n� � t � m���!C"��n� � �C � m��

��� Natural deduction for predicate logic

� Base Case

�I � c� � �

� c� � � �

� �
prop�
of lists

� Q���� �E

�
�c � �� �c � ��

� Q�����
��I

� P �� �� defn

�

�

�	

��

��

Induction step

h � �� t � � � �

P �t� hypothesis

�I C � �

C � �h�t�

C � h � C �� h

C � h

���

Q�h�t�

C �� h

���

Q�h�t�

Q�h�t� �E���
�c � �� �c � �h�t�
� Q�h�t��

��I

P �h�t� defn

�� �l � � � �� P �l� induction

Figure ����	 Outline proof of delete

� First part of �E

� C � h

�
del C �C�t� � � ���t�

�C�t� � � ����C���t � 	C � � �
�I �del C �C�t� � t�

�

del C �h�t� � � ���t�

�h�t� � � ����C���t�
	C � � �

eqsub���

� �m�n � � � �

�
�� del C �h�t� � m��n�

�h�t� � m���C���n�
	C � m

�
�� �I�m � ��� n � t�

Figure ����

Since del C �h
t� � �h
del C t� � �h
m����n� and h
t � �h
m����!C"��n�
with C �� h
m�� we can take m � h
 m�� n � n� to satisfy the conclusion� �

In Exercise �� you are asked to identify the corresponding steps in the
formal and informal proofs�

Summary ���

� second part of �E

� C �� h

� C � t �C �� h and C � h�t�

� �m� n � � � �

�
�� del C t � m��n�
t � m���C���n�

	C � m

�
�� �E�hypothesis�

m�� n��E �

del C t � m���n��
t � m����C���n��
	C � m�

� del C t � m���n� �E

� �h�del C t� � �h�m����n� properties of lists

� del C �h�t� � �h�m����n� program

� t � m����C���n� �E

�	 �h�t� � �h�m�����C���n� properties of lists

�� 	C � m� �E

�� 	C � �h�m�� �C �� h�

��

del C �h�t� � �h�m����n��
�h�t� � �h�m�����C���n��
	C � �h�m��

�I

�� Q�h�t� �I �m � �h�m��� n � n��

�� Q�h�t� �E�
�

Figure �����

���� Summary

� The natural deduction rules for quanti�ers are collected in Appendix C�
� The rules �I and �E are automatic� whereas �E and �I are not and
require some ingenuity in their use� A useful tactic for dealing with
quanti�ers is

Apply the automatic �I and �E rules as soon as possible for
they will yield constants that can be used in �I and �E steps
later�

� It can be helpful to apply equivalences to quanti�ed sentences so
that the quanti�ers qualify the smallest subsentences possible� For
example� �x� ���y� Q�x� y��� P �x�� might be easier to deal with than
�x� �y� �Q�x� y�� P �x���

� The eqsub and re�ex natural deduction rules are also listed in Appendix C�

��� Natural deduction for predicate logic

� Equality is used to express uniqueness and functionhood�
� The equality rules can be used to show the symmetry and transitivity
of ��

� The equality rules can be used to give a rewrite proof�

���� Exercises

�� Show

�a� dragon�Pu��� �x� �dragon�x�� �y�x�� � �x� �y�x�
�b� �x� ��man�x� � woman�x���

man�tom�� woman�jill�� woman�sophia� � �x� �man�x�
�c� �x� y� �arc�x� y��� path�x� y��

�x� y� ��z� �arc�x� z� � path�z� y��� path�x� y���
arc�A�B�� arc�B�D�� arc�B�C�� arc�D�C� � �u� path�u�C�

How many di�erent proofs are there�

�d� �x� y� z� �R�x� y� �R�y� z�� R�z� x��� �w� R�w�w�
� �x� y� �R�x� y�� R�y� x��

�e� On�A�B��On�B�C��
�x� ��Blue�x� �Green�x��� Green�A�� Blue�C��
�x� y� �On�x� y� �Green�x� � �Green�y�� Ans�x� y��
� �x� �y� Ans�x� y�

�f� �x� y� ��z�z � x� z � y�� x � y��
�x� ��x � ��� �y� y � U � �r� � � r ��s� s � U � �t� t � t

�� Show

�x� y� z� �less�x� z� � less�z� y�� between�x� y� z���
�x� less�x� s�x��� �x� y� �less�x� y�� less�x� s�y���
� �a� � �b� � �c�

where

�a� �between�s���� s�s�s������ s�s�����

�b� ��x� �between��� x� s���� � between�s�s����� s�s�s�s������� x��

�c� ��x� �y� �between��� x� y� � between�s���� s�s�s������ x��

�� Use Natural Deduction to show

�a� �x� �P �x� � ��x� P �x�
�b� ��x� P �x� � �x� �P �x�
�c� �x� �F �x��G�x�� � �x� F �x� � �x� G�x�
�d� �x� F �x� � �x� G�x� � �x� �F �x�� G�x��

Exercises ���

�e� �x� �F �x��G�x�� � �x� F �x� � �x� G�x�
�f� �x� F �x� � �x� G�x� � �x� �F �x�� G�x��
�g� �x� y� F �x� y� � �u� v� F �v� u�
�h� �x� �y� F �x� y� � �u� �v� F �v� u�
�i� �x� �y� G�x� y� � �u� �v� G�v� u�
�j� �x� y� �S�y�� F �x�� � �y� S�y�� �x� F �x�
�k� �x� �P �x� � ��x� P �x�
�l� ��x� P �x� � �x� �P �x�
�Hint� assume that ��x� �P �x� and derive a contradiction� this
time the only way to use the negated premiss��

�m� P � �x� Q�x� � �x� �P � Q�x��

�n� �x� �P � Q�x�� � P � �x� Q�x�
�o� P � �x� Q�x� � �z� � � �x� �P � Q�x��

�p� ��x� P �x��� Q � �x� �P �x�� Q�

�q� �x� �P �x�� Q� � ��x� P �x��� Q

�r� �x� P �x�� Q� �z� � � �x� �P �x�� Q�

�s� �x� �F �x��G�x�� � �x� F �x� � �y� G�y��
�Hint� use �x�F �x�� ��x� F �x���

�t� �x� �y� �F �x�� G�y��� �z� � � �y� �x� �F �x� �G�y��
�Hint� use the theorem X � �X where X is the conclusion
�y� �x� �F �x�� G�y����

�� Show by natural deduction

�a� �x� P �a� x� x���x� y� z� �P �x� y� z�� P �f	x
� y� f	z
�� � P �f	a
� a� f	a
�
�b� �x� P �a� x� x���x� y� z� �P �x� y� z�� P �f	x
� y� f	z
��

� �z� �P �f	a
� z� f	f	a

��
�c� �y� L�b� y���x� z� �L�x� y�� L�s	x
� s	y
�� � �z� �L�b� z��L�z� s	s	b

��

�� One of the convenient ideas incorporated in Natural Deduction is that
it is possible to use �derivation patterns� �or derivation schemes�� for
example� the pattern �A�A � B � B can be derived� Such schemes
enable larger steps to be taken in a proof than are possible using only
the basic rules� If the scheme is very common it is sometimes called
a derived rule and given a name� �The bene�t lies in the fact that
any sentence can be substituted throughout the scheme for A or B �for
example� and the scheme remains true� For example� in �a� below we
could have �x� �P �b� x�� Q�x� x��� P �b� a� � Q�a� a� ��

��	 Natural deduction for predicate logic

Some useful schemes are given below� in each case give a Natural
Deduction proof of the scheme� The notation P �x� means that x occurs
in the arguments of P if P is a predicate� or� more generally� in P if it
is a sentence

�a� �x� �P �x�� Q�x����x� P �x� � �x� Q�x� or �x� �P �x�� Q�x��� P �a� �
Q�a�� where a is a constant

�b� �x� �P �x��R�x�� Q�x��� P �a�� R�a� � Q�a�� where a is a constant�
Why doesn�t �x� �P �x� �R�x�� Q�x����x� P �x���x� R�x� � �x� Q�x�
work�

Collecting lots of these schemes together enables more concise
derivations to be obtained that are still sure to be correct� There
are lots of schemes for arguing about arrays� too� For example�

�c� If n � � then �i�� � i � n � � � P �i�� � �i�� � i � n � P �i�� � P �n�
holds in both this direction and the opposite one and is useful for
dealing with situations when P �i� is a sentence about array values�

�� Use natural deduction to show the following

�a� �x� �x � a � x � b� � �P �b�� Q�a� � �x� �P �x�� Q�x��

�Hint� Use the �E and �E rules��
�b� ��� �x� �B�x� x� � �x� �y� �B�x� y�� x 	� y�

��� �x� �y� �B�x� y�� x 	� y� � �x� �B�x� x�
�c� KB is either at home or at college� KB is not at home

� home 	� college�
�d� Everyone likes John� John likes no�one but Jack � John � Jack�
�e� S is green� S is the only thing in the box

� Everything in the box is green�
�f� �x� �y� �z� �R�x� y� � R�x� z�� z � y�� R�a� b�� b 	� c � �R�a� c��
�g� a � b � a � c� a � b � c � b� P �a� � P �b� � P �a� � P �b�
�h� � �x� �y� y � f�x�

�i� � �y� �y � f�a�� �z� �z � f�a�� y � z��

�j� �x� �x � a � x � b�� g�a� � b�
�x� �y� �g�x� � g�y�� x � y� � g�g�a�� � a

�Hint� You will need to use �E in the �rst sentence with g�b�
substituted for x��

�� Express in logic

�a� For each x there is at most one y such that y � f�x��

�b� For each x there is exactly one y such that y � f�x��

Exercises ��

	� Show �a� ��� � ���� �b� ��� � ��� and �c� ��� � ��� by natural deduction

��� �x� �g�x� � �z� �g�z�� z � x��

��� �x� �z� �g�z�� z � x�

��� �x� �g�x�� � �z� �y� �g�z� � g�y�� z � y�

� Show by natural deduction that

�y� �x� �z� �mother�of�x� y� �mother�of�z� y�� z � y�
�y� �x� mother�of�x� y�
� �u� �mother�of�u�Ann�� mother�of�u� Jeremy�� �
�u� �mother�of�u�Ann� �mother�of�u� Jeremy��

��� Identify the corresponding steps between the English and box proofs in
Section ����� in which it was shown that del meets its speci�cation�

��� Give Miranda programs for the functions given below and then use box
proofs to prove� using induction if appropriate� that the functions meet
their speci�cations� That is� show that the speci�cation follows from
any assumed pre�conditions and the execution and termination of the
program� �Show that the program terminates as well��

�a� last

 !char" �� char� last x is the last character of x

�x
 !
 "� �x 	� !"� �y
 !
 "� x � y���last x� �

�b� odd

 num �� num� odd x is the least odd number larger than x

�x
 num
	
odd�odd x� � x � odd x�
��y
 num� �odd�y� � y � x � y � odd x�

�c� prime

 num � Bool� prime x is true i� x is prime

�x
 num� �prime x� ��z
 num� �divisor�z� x� � z � � � z � x��

�d� uni

 !char" �� Bool
 uni x is true i� x has no duplicates

�x
 �char�
�
�� uni x� ��y
 char�
�m
 !char"� �n
 !char"� �p
 !char"�
!x � m��!y"��n��!y"��p"

�
��

Chapter ��

Models

�	�� Validity of arguments

So far� we have used natural deduction to justify that a conclusion C follows
from some premisses P and when we successfully derive C from P we write
P � C�
We justi�ed the natural deduction rules from an informal idea of meaning

P � C is intended to capture the fact that in any situation where P holds� C
must hold� too� But the relation P � C that we ended up de�ning � �C can
be proved from P by natural deduction� makes no mention of �situations� or of
sentences �holding� and is purely formal
 to apply the rules correctly �though
to do it successfully and reach the desired conclusion is another matter� you
just need to manipulate the syntactic structure of the sentences� the symbols
used to write them down� So how do we know that P � C means what we
intended� To give any kind of answer we need a more mathematical account
of the meanings of the symbols� and this will enable us to give a precise
de�nition of an independent relation P j� C that more plainly says �in any
situation where P holds then C holds� too�� Our question� then� is whether �
and j� are equivalent

� If we prove P � C by natural deduction� do we really know P j� C�
�that is� is natural deduction sound��

� If P j� C is it possible to prove P � C by natural deduction� �that is�
is natural deduction complete��

We call the relationship j� logical implication or logical entailment� When
P j� C is true� we say that it is a valid statement or argument�

���

Validity of arguments ���

Informal predicate structures

When you write a set of sentences in logic� you usually have in mind some
interpretations which can be attached to the symbols used� For example�
in writing lives	John� Fort William
 � likes	John�climbing
 you might have in
mind that John referred to a particular person called John� Fort William
referred to the place in Scotland� climbing referred to a sport� and lives and
likes were predicates with their usual interpretations� But this need not be
so� Perhaps the sentence is secret code for something else� and John refers
to a place� Fort William and climbing to a time� lives to the predicate �good
weather at� and likes to the predicate �will smuggle at�� Then the sentence
could be saying that if the weather at some place and time is predicted to
be good� that place and another time will be used for smuggling� The reader
of such a sentence can only understand it if a precise interpretation of the
symbols is given�

More usually� we indicate the particular interpretation we have in mind
by using standard notation� For instance� a constant called � would suggest
the number zero� a binary function called � and written in�x �x� y� would
suggest numeric addition and a binary predicate called � and written in�x
would suggest numeric comparison� Moreover� these implicitly introduce a
domain of objects �the numbers� that the sentences are about�

If you are writing your sentences about numbers� you would certainly expect
ordinary facts about numbers such as �x� x � x to be available for use
without being explicitly written down� But for the moment we are going to
look at what pure logic can do on its own� without knowing any implicit
premisses� The idea behind logical implication is to be able to forget about
intended meanings and to focus on the logical structure instead�

Formal predicate structures

Logic itself provides us with connectives and quanti�ers� but the predicates�
functions and constants used in sentences are �extralogical� � outside logic�
Hence to know exactly what sentences we are allowing� we need to know
what extralogical symbols we are using and how they are used � whether
they are predicates� functions or constants� and �for predicates and functions�
what their arities are� A speci�cation of this extralogical information is called
a signature� For instance� the sentence �x� �P �x� � �y� Q�x� f�y��� uses a
signature that comprises �at least� a unary �unary means one argument � of
arity �� function f� � and two predicates� P � � and Q� � ��

To �nd the meaning of a sentence we need to know both the range
of possible values over which variables can vary� and the meanings� or
interpretations� of the extralogical symbols� We provide these through the idea

��� Models

of a structure for a signature
 the structure comprises

� a set D� known as the domain�
� for each constant in the signature� a corresponding element of the
domain�

� for each function symbol in the signature� an actual function from Dn

to D �where n is the arity of the function�� and
� for each predicate P � an n�ary relation on D� that is� a subset of Dn

�where n is the arity of P ��

Dn here is the set of n�tuples of elements from D
 so in Miranda notation�
D�� the set of pairs� is �D�D�� D	 is �D�D�D�� and so on� Also� D� is D
and D� has only one element� the unique ���tuple� � ��
The idea for the predicates is that P �u� v� � � �� should be true if and only if

the tuple �u� v� � � �� is in the corresponding subset of Dn� Note that if n � �
�the predicate has no arguments � it is a proposition� then P is interpreted
either as true �the subset is f� �g� or false �the subset is f g��
Example �	�� of Signatures

�� Suppose we have a signature with predicates P � � and Q� � �� no
functions� and a constant A� Two possible structures are

�a� The Domain is the set of authors of this book
P �v� means �v is female�
Q�u� v� means �u lives further away from College than v�
A is the �rst in alphabetical order �that is� hessam�

�b� Domain is the set of positive integers
P �v� means �v is even�
Q�u� v� means �u � v�
A is the number �

�� Suppose the signature has predicate P � � � �� function s� � and constant
a then two di�erent structures are

�a� Domain is the set of positive or zero integers
P �x� y� z� means x� y � z
s�n� means n� �
a is the number �

�b� Domain is the set of integers � �
P �x� y� z� means x� y � z
s�n� means � � n
a is the number �

Once we have a structure for a sentence S� that is to say a structure for
a signature that includes all the extralogical symbols used in S� then we
can determine the truth or falsity of S by using the rules given earlier and
repeated in Figure �	���

Validity of arguments ���

� �x� S is true i� for each d in D� S�d�x� is true� where
S�d�x� means d replaces every occurrence of x in S that is
bound by �x�

� �x� S is true i� for some d in D� S�d�x� is true
� A �B is true i� both A and B are true�
� A �B is true i� at least one of A or B is true�
� A� B is true i� A is false or both A and B are true�
� �A is true i� A is false�
� A� B is true if A and B are both true or both false�
� t � u is true i� they are identi�ed with the same element in
the domain�

Figure �	�� Determining the truth value of a sentence

Example �	��

�� Find the truth or falsity of P �A� � �x� �y� �P �x�� Q�y� x�� using the
�rst pair of structures of Example �	���

�a� P �A� means �hessam is female�� which is false� hence the whole
sentence is false� But let us �nd the truth value of the
other constituent �x� �y� �P �x� � Q�y� x�� anyway� It means
�x� �y� �female�x� � lives�further�from�college�y� x�� and its truth
value will depend on the value for each x in the domain� that is�
for x � hessam� x�krysia� x�steve and x�susan�

x � hessam
 �y� �female�hessam�� lives�further�from�college�y� hessam��
is true for any y as female�hessam� is false�
Similarly for x � steve�

x � krysia
 �y� �female�krysia� � lives�further�from�college�y� krysia��
is true as female�krysia�� lives�further�from�college�steve� krysia�
is true� as lives�further�from�college�steve� krysia� is true�
Similarly for x � susan�

Thus �x� �y� �P �x�� Q�y� x�� is true in this structure�

�b� After interpreting the symbols P � A� Q we have

even��� � �x� �y� �even�x�� y � x� is again false since � is
not an even integer�

However� �x� �y� �even�x�� y � x� is true

even integers x � �
 �y� �even�x� � y � x� is true� for y can
always be x� ��

odd integers x � �
 �y� �even�x� � y � x� is true for any choice
of y� for even�x� is false�

��� Models

�� Find a structure with Domain � fjames�edwardg that makes both �i�
and �ii� true�

�i� Dr Jekyll � Mr Hyde

�ii� �x� killed�Mr Hyde� x�

Either both Dr Jekyll and Mr Hyde must be edward or both must
be james in order to satisfy �i�� Say they are both interpreted as
edward� To make �ii� true� at least one of killed	edward�edward
 or
killed	edward�james
 must be true�

At last we come to the important notion of model
 a model for a sentence S
is a structure in which S is true� We can now say that

A j� B is true if each structure of fA�Bg that is a model of A is
also a model of B�

and

A j� B is false if some structure of fA�Bg that is a model of A is
not a model of B�

In general� it is rather di�cult to test directly whether A j� B is true
for there are very many structures to check� Natural deduction allows us
to circumvent this di�culty� The two relations j� and � between a set of
sentences S and a conclusion T are the same� That is� if you want to show
S j� T you can show S � T instead� that is� if S � T then S j� T � It is also
the case that if S j� T then S � T so that natural deduction is an adequate
alternative to checking models�
These properties are� respectively� called soundness and completeness of
natural deduction and their proofs are discussed in Sections �	�� and �	���

�	�� Disproving arguments

By now you will have tried to prove all sorts of arguments by natural
deduction and may well be �nding that sometimes it is just not possible
to �nd a proof� In other words� for some problem to show P � C� there
seems no way to derive C from premisses P by natural deduction� In this
case� what can you conclude� Can you conclude that P � C� Well� no� you
cannot� For in any proof that appears to be stuck you can� for example� go
on introducing theorems of the form X � �X for all kinds of exotic formulas
X and one of them just might lead to a proof of C � you never can tell�
Instead� you might try to show that� after all� P � C does not hold� You can
do that by �nding a counter�example interpretation of fP�Cg which makes
P true but C false� We might call this the �failed natural deduction by
counter�example� technique�

Disproving arguments ���

Certainly� if P � C then it will not be possible to show P � C� for if
it were� P j� C would hold �by soundness� which we shall prove in Section
�	���� The next few examples show some typical situations in derivations that
cannot be completed successfully� Very often� the apparent impasse provides
some help as to what the counter�example interpretation might be�

Try to show �x� P �x� x� � �u� �y� P �u� y�

� �x� P �x� x�

a�I �

b�I �
���

� fcannot show P �a� b�g

� P �a� b�

� �y� P �a� y� �I

� �u� �y� P �u� y� �I

Figure �	�� Failure to prove �x� P �x� x� � �u� �y� P �u� y�

The failure in Figure �	�� occurs because no instances of �x� P �x� x� will
yield P �a� b�� When b is introduced� it is in a context that now includes a
and so b cannot be the same as a� In this case� from the failed derivation a
counter�example situation can be found

Let the domain be the set of constants fa� bg and suppose P �a� a� and

P �b� b� are true and other atoms are false� then this is a situation in which
�x� P �x� x� is true but �u� �y� P �u� y� is false�

Try to show �x� P �x� � �x� P �x�
Here� a is introduced in a context which includes b and so a must be di�erent
from b and no successful derivation can be found� If instead of using a �I
step �rst a �E step using �x� P �x� is made� a similar di�culty arises� A
counter�example situation can be found here as well � suppose that the
domain is again fa� bg and take P �a� to be true �as assumed in the proof
attempt� and P �b� to be false� Then �x� P �x� is true but �x� P �x� is not�

Try to show f�z� ���x� �y� P �x� y�g � �u �v� P �u� v�
�see Figures �	�� and �	���� In Figure �	��� after c has been introduced at
line � it is natural to use it in a �E step and then in a corresponding �I
step� in order to try and make P �c� d� and P �u� v� match� But the term used
in place of v in the �I step has to be new and so cannot be the same as
d� It is easy to see that a counter�example situation must have a domain of

��� Models

� �x� P �x�

b�I �

a�E � P �a�

�
���

� fcannot complete proofg

� P �b�

� P �b� �E���

� �x� P �x� �I

Figure �	�� Failure to show �x� P �x� � �x� P �x�

� �z�

� �x� �y� P �x� y�

c�E �

� �y� P �c� y� �E���

d�E � P �c� d�

e�I �

�
���

� fcannot �ll gapg

� P �c� e�

�	 �v� P �c� v� �I

�� �u� �v� P �u� v� �I

�� �u� �v� P �u� v� �E�
�

�� �u� �v� P �u� v� �E���

Figure �	�� Failure to show f�z� ���x� �y� P �x� y�g � �u� �v� P �u� v�

at least two elements � say fc� dg with P �c� d� and P �d� c� both true and
P �c� c� and P �d� d� both false� Then the premisses are true but the conclusion
is false�

On the other hand� after line � has introduced d we can use it to deduce
�y� P �d� y�� which leads to another � to eliminate and so on� The alternative

Intended structures ���

proof attempt is shown in Figure �	��� We can write down the constants that

� �z�

� �x� �y� P �x� y�

c�E �

� �y� P �c� y� �E���

d�E � P �c� d�

� �y� P �d� y� �E���

e�E � P �d� e�

�
���

� fcannot �ll gapg

�	 �u� �v� P �u� v�

�� �u� �v� P �u� v� �E�
�

�� �u� �v� P �u� v� �E�
�

�� �u� �v� P �u� v� �E���

Figure �	�� Failure to show f�z� ���x� �y� P �x� y�g � �u� �v� P �u� v�

arise in Figure �	��� with an arrow from x to y whenever P �x� y�

c� d� e� � � �
This suggests an in�nite model

Domain � set of natural numbers f�� �� �� �� � � �g
P �x� y� means that y � x� �

It is indeed a counter�example� You cannot possibly choose u so that
�v� P �u� v�� for you never obtain P �u� ���

�	�� Intended structures

There is often� implicitly� an intended interpretation for the extralogical
symbols� For example� the writer of ��x
 nat� less�zero� s�x��� quite probably
had in mind the interpretation in which the domain is the set of natural
numbers� less is �� s is the successor function and zero is the number
�� Intended interpretations allow the possibility of domain�speci�c deductions
that go beyond logic� In Part I of this book most of the arguments were not
pure logic � they had intended structures �for example� numbers� lists� etc��

��	 Models

in mind and freely used known properties of those structures� For instance�
in the speci�c domain of lists we can reason that if c � �h
t� and c 	� h then
c � t� Now� this deduction could be made by making the particular facts
about lists explicit� such as

�u� v

� �t
 �
�� �u � �v
t�� u � v � u � t�

Or� we may think of the fact as being part of our stock of information
about lists and quote it as the �reason� for our deduction� The restricted
interpretation gives us more powerful deductions�
In the case of program speci�cations� the pre� and post�conditions usually

make clear what is the intended domain and interpretation� So if our
speci�cation indicated that the domain was integers� say� we might make use
of sentences such as �x
 num� �x � � � x � � � x � ���
We could in principle axiomitize �add extra premisses to constrain the

structures to be su�ciently like the intended one� so that the arguments are
pure logic� and this is often a good thing to do � it lays bare the logical
structure of the mathematics � but we are not so formal� Hence we have
used a �mixture of logic and mathematics�� Natural deduction still helps one
to get through the purely logical aspects of the argument�
Of course� any proof we make in pure logic is correct for any interpretation
that satis�es the various sentences we have used� not just the particular one
we had in mind� And this is really all we can expect� for when trying to
show S j� T by showing S � T � the natural deduction rules know nothing of
interpretations and so cannot be speci�c about any particular one�

�	�� Equivalences

In Chapter �� we de�ned two sentences S and T to be equivalent �S � T �
if they had the same truth�value as each other in every situation� What we
meant� was that

S � T i�
in each structure for fS� Tg S and T are either both true or both false
that is� S � T is true in every structure �it is a tautology�
that is� S j� T and T j� S

The last property holds� since� if it is not possible to have S true in any
structure of fS� Tg and T false� or T true and S false� then in any structure
which makes S true T must be true� too� and in any structure which makes
T true then S must be true� too� Hence S j� T and T j� S�

We now take a second look at some quanti�er equivalences and see how the
important property of equivalent sentences� that they can be substituted for
each other in any context� is a�ected�
In many cases� the same principles as before apply� A constituent of a
sentence can be replaced by any other equivalent sentence� For example�

Equivalences ��

��x� P �x� � �x� �P �x� and any occurrence of the �rst sentence can be
replaced by the second� or vice versa� So from S � ��x� P �x� we can obtain
S � �x� �P �x�� This applies as long as there is no nested reuse of variables�
for example� �x� �x � � �� but remember we said we would not allow such forms�
�They can always be avoided by renaming variables��
If you cannot remember a useful equivalence it does not matter� for you can

always derive it each time you need it� The only disadvantage is the extra
time taken� Several useful quanti�er equivalences are given in Appendix B
and although most of the equivalences were stated for unquali�ed quanti�ers�
quali�ed quanti�ers present no problem and behave quite well� For example�
the equivalence above also holds in the form ��x
 N� P �x� � �x
 N� �P �x��
In any quanti�er�free sentence S any subsentence may be replaced by an

equivalent sentence without a�ecting the meaning of S� This is very useful as
one form of a sentence may be more convenient than another� For example�
��P �Q� may not be as useful a sentence form in a natural deduction proof
as the equivalent �P � �Q� which can be broken into two smaller pieces�
�P and �Q� and �x� �P �x� is almost always more useful than ��x� P �x��
Many equivalences� such as those given in Appendix B� once instantiated by
replacing F � G etc�� by particular sentences� can be used as they stand to
replace one side of the equivalence by the other�
The quanti�ers � and � also respect equivalences

if F �a� � G�a� then

�x� F �x� � �x� G�x�� and
�x� F �x� � �x� G�x�

�Exercise
 asks you to prove this��
For example� since �F �a� � G�b�� � �G�b� � F �a��� �y� �F �a� � G�y�� �

�y� �G�y� � F �a�� and �x� �y� �F �x� �G�y�� � �x� �y� �G�y� � F �x���
In Sections �	�� and �	�� we show that A j� B i� A � B and hence we

have A � B i� A � B and B � A� An equivalence proof is therefore a good
way to show A � B � show instead the stronger A � B using equivalences�
Reasoning using equivalences can also be a useful way of making progress in
a proof� That is� from

S � S� and S� � S� and � � � and Sn�� � Sn
you can deduce S � Sn and hence that S � Sn and Sn � S�
Example �	�� As an example of the use of equivalences we show

�y� �x� �F �x� �G�y�� � �x� �y� �F �x�� G�y��
and

�x� �y� �F �y� � �G�x�� H�y��� � �y� �x� �F �y�� �G�x�� H�y���

In the proofs the particular equivalences used are left to the reader to supply
as an exercise�

�y� �x� �F �x��G�y�� � �y� ��x� F �x��G�y�� � �x� F �x���y� G�y�
� �x� �F �x�� �y� G�y�� � �x� �y� �F �x� �G�y��

��� Models

�x��y��F �y�� �G�x�� H�y��� � �x��y��F �y�� ��G�x� �H�y���
� �x��y���F �y�� �G�x�� � ��F �y��H�y���
� �x���y��F �y�� �G�x�� � �y��F �y��H�y���
� �x��y��F �y�� �G�x�� � �y��F �y��H�y���
� �y��x��F �y�� �G�x�� � �y��F �y��H�y��
� �y���x��F �y�� �G�x�� � �F �y� �H�y���
� �y��x���F �y�� �G�x�� � �F �y� �H�y���
� �y��x��F �y�� �G�x�� H�y���

Equivalence proofs are very helpful within natural deduction proofs for they
allow premisses and conclusions to be rewritten to more useful forms� There
are many useful �half�equivalences�� that is� true sentences of the form A j� B�
and some are shown in Figure �	���

� �x� �y� F �x� y� j� �y� �x� F �x� y�
� �x� F �x� � �y� G�y� j� �x� �F �x��G�x��
� �x� �F �x��G�x�� j� �x� F �x� � �x� G�x�
� �x� �F �x�� G�x�� j� �x� F �x�� �x� G�x�
� �x� �F �x�� G�x�� j� �x� F �x�� �x� G�x�
� �x� �F �x�� G�x�� j� �x� F �x�� �x� G�x�
� �x� �F �x�� G�x�� j� �x� F �x�� �x� G�x�

Figure �	�� Useful implications

In particular� if the data contains �� and � j� �� then � can be added to
the data� Using half�equivalences to replace subsentences is possible but there
are some dangers� Exercise �� considers this�

A natural deduction view of equivalence
Natural deduction gives another view of equivalences� For example� the proof
obligations of the two sentences �x� �F �x�� S� and �x� �F �x�� S�� which are
shown in Figure �	��� are essentially the same� Here� the proof obligation is
to show S from the data F �c�� where c is a new constant in the proof� Hence
either of the original sentences behaves as a conclusion in a proof essentially
in the same way� If you try a similar exercise for other equivalences you will
often see that they exhibit the same kind of pattern � the proof obligation
for a pair of equivalent sentences is rather similar�
Equivalent sentences� however� also operate in essentially the same way
when used as data� For example� if the two sentences �x� �F �x�� S� and
�x� �F �x�� S� were part of the data their use would lead to the fragments
shown in Figure �	�	� Here� the proof obligations amount to showing F �a� for
some a in the current context� These examples� although not a proof� should
help to convince you that equivalent sentences often �behave in a natural
deduction proof in the same kind of way��

Soundness and completeness of natural deduction ���

c�I

F �c�
���

S

F �c�� S �I

�x� �F �x�� S� �I

�x� F �x�

c�E F �c�
���

S

S �E

�x� F �x�� S �I

Figure �	��

���

�x� �F �x�� S�
���

F �a�

S ��E

�x� F �x�� S

���

F �a�

�x� F �x� �I

S �E

Figure �	�	

�	�� Soundness and completeness of natural deduction

In this section we consider the two important properties of natural deduction�
soundness and completeness�

��� Models

One of the uses of natural deduction is as a technique for showing that
S j� T for sentences S and T � It is successful mainly because natural
deduction is sound

If S � T then S j� T

This is obviously a necessary property� otherwise all manner of sentences T
might be shown to be proven from S regardless of any semantic relationship�
and natural deduction would be useless�

At least� therefore� we can be sure that natural deduction proofs are correct�
But there could still be a problem� Perhaps� for a particular pair of sentences
S� and S�� we cannot seem to �nd a proof� We may ask whether we have
enough natural deduction rules to make a deduction� Well� in fact we do�
because of completeness

If S j� T then S � T

So we know there should be a proof�

Since we probably do not happen to know whether or not S� j� S�� and
hence whether or not a deduction should be possible or not� then it might
be worth looking for a counter�example model if our proof attempts were
�oundering� Completeness is not such a crucial property as soundness � for
it might be good enough in practice to be able to �nd a proof in most of
the cases for which we expect to �nd one�

Natural deduction is just one method that can be used to answer the
problem �does P j� C�� and there are other methods which are not considered
in this book� But natural deduction cannot be used to answer the question
�does P � C��

We say that a problem with the property that there is some method which
can always decide correctly between �yes� and �no� answers is decidable� In our
problem is there some method that� given P and C� always tells you �yes�
when P j� C and �no� when P � C� In this case� there is no method that will
always give the correct answer� Some methods may� like natural deduction�
always answer yes correctly� and may even be able to answer no correctly for
some cases� but no method can answer correctly in all cases� The problem�
then� of checking whether P j� C is called semi�decidable� A decidable problem
would be one for which a method existed which correctly �answered� both yes
and no type questions�

The problem of checking whether P j� C when P and C are propositional
is decidable� for then a method that checks all interpretations for the symbols
in fP�Cg is possible and is essentially the method of truth tables�

Proof of the soundness of natural deduction ���

�	�� Proof of the soundness of natural deduction

In this section the important soundness property of Natural Deduction is
proved

if A � B then A j� B soundness

that is� if a conclusion B is derivable from premisses A then it should be �
the argument is valid�
The underlying idea is quite simple
 when you read a proof from top

to bottom �not jumping backwards and forwards in the way that it was
constructed� you see a steady accumulation of true sentences� Each new one
is justi�ed on the basis that the preceding ones used as premisses by the
rule you are applying have themselves already been proved and so are true�
�This is an induction hypothesis� It uses induction on the length of the
proof� because the earlier sentences were proved using shorter proofs� Also�
disregard the fact that some parts of the proof are written out side by side
� rearrange them one after the other��
For instance
 consider �E � If you have already proved A � B� by induction

you know that it is true �given the premisses� and it follows � check the
truth tables if you are really in doubt � that the A delivered by �E is also
true�
This is the basic idea� but it is all made much more complicated by the

boxes� The problem is that �true� here means �true in every model of the
premisses�� but the class of models varies throughout the proof� Each sentence
A appearing in the proof is proved in a context of constants and premisses

the constants are not only those posed in the question �by being mentioned
in the overall premisses and conclusion�� but are also those introduced by �I
or �E at the tops of boxes containing A� and the premisses are not only the
overall premisses but are also the assumptions introduced for �E � �I� �I or
�E at the tops of boxes containing A�
What you introduce as a new constant or a new assumption at the top of
a box is part of the context of everything inside the box�
To take proper account of both premisses and context� we shall� for the
time being� use more re�ned notions of models and semantic entailment �j���
A model for a context �S� P � �S the set of constants� P the set of premisses�
the constants in sentences in P must all be in S� is a model for P with
interpretations given for all constants in S� Then we write P j�S C to mean
that C is true in every model of �S� P ��
Note the following
 if �S�� P �� is a bigger context than �S� P � � all the
constants and premisses from �S� P � and possibly some more � then any
model of �S�� P �� is also a model of �S� P �� �Exercise� prove this�� It follows
that if P j�S C then P � j�S� C� This is a technical explanation of why in
a proof we are allowed to import sentences into boxes �smaller context to
bigger�� but not to export them out of boxes�

��� Models

The basic result� proved by induction on the length of the proof� is this

if natural deduction proves C in context �S� P �� then P j�S C�

A proof of length � is one that simply repeats an assumption �that is� the
conclusion C is in P � and we have shown that this is always allowed from a
smaller context into a larger one� Clearly� P j�S C in that case�
Let us see �rst how the �I rule works� as it is typical of the rules that do

not involve boxes �the boxes used for it are purely decorative� because they
do not introduce new assumptions or constants�� Suppose A �B is proved in
the context �S� P �� The rule relies on having proved A and B earlier� possibly
in smaller contexts �and imported�� so by induction we have P j�S A and
P j�S B� We want to prove P j�S A �B� so consider any model of �S� P �� In
it we know that both A and B are true� so A � B must be as well �again�
use the truth tables if you do not believe this��
The reasoning is really just the same for �E � �I� �E � �E � �E� ��� �E

and �I� We can safely leave most of these as exercises� but let us look at a
few of the more subtle ones�

�E Suppose A is proved in the context �S� P � by �E � so we already have
P j�S �� This means that in any model of �S� P �� false is true � but
that is impossible� so we conclude that there are no models of �S� P ��
Hence in all of them A is true� so P j�S A�

�E We have �x� A�x� in the context �S� P �� and also t is a term in the context
� that is to say it is built up from the function symbols provided
and the constants in S� In any model of �S� P �� those ingredients are
all interpreted� and so t is interpreted as a value of the model� But
�x� A�x� is true in the model� that is� A�v� is true for all possible
values v� and in particular the A�t� delivered by the rule is true�

�I This case is rather similar to �E and is left as an exercise�

We now turn to those rules that really do use boxes�

�E The rule gives C in a context �S� P �� and we have already proved A �B
so we know P j�S A � B� We have also already proved C twice but in
larger contexts
 once in a box headed by the assumption A � so the
context is �S� P � fAg� � and once with B� From these what we know
is that P�A j�S C and P�B j�S C� We want P j�S C� so consider a
model of �S� P �� A � B is true in it� so we have either A true or B
true� It follows that the model is also a model either of �S� P � fAg� or
of �S� P � fBg�� and in either case we can deduce that C is true� �Of
course� this argument is just a formalization of the idea of case analysis
by which we originally justi�ed the rule��

�I The rule gives A� B in a context �S� P � when we have already proved B
in the larger context �S� P � fAg� and hence know P�A j�S B� Consider

Proof of the completeness of natural deduction ���

a model of �S� P �� If A is false in it� then A � B is certainly true�
whilst if A is true then it is also a model of �S� P � fAg� so that B�
and hence also A� B� are true�

�I The rule gives �A in context �S� P � when we have already proved � in a
context �S� P � fAg� and hence know P�A j�S �� in other words� there
are no models of �S� P � fAg�� A model of �S� P � cannot be a model of
�S� P � fAg�� so A must be false � �A is true�

�I The rule gives �x� A�x� in a context �S� P � when we have already proved
A�c� in a context �S � fcg� P � and hence know that P j�S�fcg A�c��
Consider a model of �S� P �
 we want to know that A�v� is true for
every possible v� But for any particular value v we can make the model
into one for �S � fcg� P � by interpreting c as v �note that c had to be a
new constant� for otherwise c would already be interpreted as something
else�
 then we know that A�c�� that is� A�v�� is true�

�E The rule gives B in a context �S� P � when we have already proved
�x� A�x� in the same context and have proved B in the context
�S � fcg� P � fA�c�g�� In any model of �S� P � we know that there is at
least one value v such that A�v� is true� if we pick one� then we can
make the model into one of �S � fcg� P � fA�c�g� by interpreting c as v
�again� c must be new�� but then we deduce that B is true�

�

�	�� Proof of the completeness of natural deduction

In this section we give a proof of the completeness property for propositional
sentences and outline the changes needed for quanti�er sentences�
Our method is a traditional one but� as you will see� it does not seem

to be fully in the spirit of Natural Deduction� for although it shows that a
deduction of B from A exists when A j� B� the method does not show how
to construct such a proof� Moreover� the proof that is guaranteed to exist is
also rather contrived� There are other� constructive� methods� but they are
beyond the scope of this book�

Theorem �	�� completeness If A j� B then A � B� that is� if an argument is
valid then the conclusion can be derived from the premisses�

Proof
 First some de�nitions

A set of sentences A is inconsistent i� A � ��
A set of sentences A is consistent i� it is not inconsistent�

To show A � B� we have to show Proposition �	��

if A is a consistent set of sentences then A has a model�

��� Models

We can then argue

If A j� B then A � f�Bg has no models� �Why��
Hence A � f�Bg cannot be consistent �by Proposition �	����
Hence A � f�Bg is inconsistent�
Hence fA��Bg � ��
Hence A � B by �I and ���

�

Notice that in the penultimate step the existence of a natural deduction
proof is asserted but there are no means given to help you to �nd it�
We will �rst deal with a simple case in which the only logical symbols

allowed in A are ��� and � �called �� � �� form� and all negations are
immediately before a proposition symbol or another negation� In the case
when the sentences in A � f�Bg are in �� � �� form the natural deduction
proof of � will be one in which �E � �E and �E are used exclusively� In
Exercise � you have a chance to �nd such a proof� This does not mean that
the other rules are unnecessary� for� as Exercise 	 shows� they are all used in
deriving the �� � �� form of a sentence by natural deduction�
Proposition �	�� If A is a consistent set of sentences then there is some
model for it�

Proof
 The idea is to construct a larger set of consistent sentences� called
A�� that includes A and for which we can give a model� This model will be
a model for A as well�
The construction of A� from A uses the rules given below

�� A� � A

�� if A� �A� � A� then A� � A� and A� � A�

�� if A� �A� � A� then A� � A� or A� � A�

�� if ��A� � A� then A� � A�

Nothing else belongs to A� apart from the sentences forced to do so by
�������� A� is constructed by applying the rules above to A until they can
be applied no more� choosing in step ��� whichever of A� or A� will maintain
consistency�

A� is consistent
Rule ��� obviously preserves consistency
 if you could prove � using A� and
A� then you could also prove it without them using A� � A� and �E � And
what about rule ���� The point is that you have at least one option that
preserves consistency� For if you can deduce � using A� and you can also

Proof of the completeness of natural deduction ���

deduce it using A� then by �E you could also deduce � using A� �A�� Rule
��� is left for you to deal with�

An example
A � f���P � Q� � P � � �Pg
A� � f���P �Q� � P � � �Pg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � Pg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � P�P��P �Qg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � P�P��P �Q�Qg �rule ��

All the sentences have now been dealt with and to �nd a model of A� just
look at the atoms or their negations in A�� in this case P and Q� The
assignment Q � tt� P � tt is a model� as you can check�
This is not the only consistent set that can be constructed by applying the

rules� Another one is

A � f���P � Q� � P � � �Pg
A� � f���P �Q� � P � � �Pg �rule ��
A� � f���P �Q� � P � � �P��Pg �rule ��

This time� �P was chosen from ���P �Q��P � � �P to satisfy the third rule�
You can check that the assignment P � ff and Q � ff is also a model of A�

and A�
�Since A� is consistent it cannot contain C and �C for any C� Why��

A� has a model
We now show that A� has a model I �say�� For each proposition symbol X
used in sentences in A�

If X � A� then X is assigned tt in I�
If �X � A� then X � ff in I�
If X �� A� and �X 	� A� then X is assigned ff in I�

I is a model of A�

Suppose not� and that Y in A� is the smallest sentence in A� that is not

true in I�
�Use the ordering
 a proposition symbol and its negation are the smallest

sentences� the constituents of a sentence are smaller than it� so A is smaller
than A �B� etc��

Y could be an atom� No� as Y would have been assigned tt�
Y could be �Y �� Y � an atom� No� as Y � would have been assigned
false in I and so �Y � is true in I�

Y could be A� � B� or A� � B�� No� as either A� or B� �or
both� would be false in I and both are smaller than Y � the
supposed smallest false sentence�

��	 Models

Y could be ��A�� No� as A� would have been in A�� too� and
also false in I�

Since I is a model for A� it is a model for A� �

If A and B are general propositional sentences then Proposition �	�� can
still be used� It does not matter if you replace A by an equivalent set of
sentences A�
 A is consistent i� A� is consistent� Any propositional sentence
A is equivalent to one in the �� � �� form used in Proposition �	�� and the
�� � �� form can be deduced by natural deduction from A and vice versa �see
Exercise 	�� So every sentence in A � f�Bg can be replaced by an equivalent
sentence in �� � �� form before applying Proposition �	���
What has been proved here is often called weak completeness� That is� it

simply shows that a natural deduction proof exists� But suppose you are
trying to derive a sequent and do not follow this �correct� path �as given
by the theorem�� whatever it is� You want to know that under reasonable
circumstances� the conclusion can still be derived� This is indeed the case�
but showing it is belongs to the realm of automated deduction�

Completeness for quanti�er sentences

The proof method for propositional sentences can be extended to quanti�er
sentences as outlined next� Suppose that the problem is to show A � B� The
construction of A� has to be extended so that it includes sentences pre�xed
by a quanti�er� Initially� the context of A� is just the context of A� S say�
The rule for dealing with � will increase this context and so the �nal context
of A� will not� in general� be the same as the context of A� We have to take
this into consideration when showing that the � rule maintains consistency of
A��
The rules for constructing A� now include

�� If �x� P �x� � A� then P �a� � A�� for all a formed from symbols in the
current context S of A��

�� If �x� P �x� � A� then P �e� � A�� for a new constant e �� S� The context
is updated to S � feg�

We can show that rules ��� and ��� maintain consistency

�� A� is the result of the construction so far� �x� B�x� � A� and A� is
consistent� A��fB�t�x�g is consistent� where t is a term constructed from
symbols in the context S� of A�� If not� a proof of A� � fB�t�x�g � �
could be converted to a proof of A� � � by an additional use of �E�
giving a contradiction�

�� A� is the result of the construction so far� S� is the context so far and
�x� B�x� � A� and A� is consistent� A� � fB�e�x�g is consistent� where

Summary ��

e is a new constant �� S�� If not� a proof of A� � fB�e�x�g � � could
be converted to a proof of A� � � by using �E � which would then be
contradictory�

The construction of A� will be an in�nite process unless there are no
function symbols in A �because of step �����

Finally� we have to show that the model formed by considering atoms and
their negations in A� is still a model of A�� The atoms we consider are
all atoms formed from predicates in A and terms using symbols in the �nal
context S� of A�� The domain of the interpretation I is just the set of terms
formed from symbols in S� and each term is interpreted by itself�

The additional cases cover Y being either of the form �x� P �x� or �x� P �x�

Y could be of the form �x� P �x�� No� as then some sentence of
the form P �t�x� would also be false and this is smaller than Y �

Y could be of the form �x� P �x�� No� as then every sentence
of the form P �d�x� would be false� where d � domain of I�
In particular� P �e�x� would be false� a contradiction as this is
smaller than Y �

�	�	 Summary

� A signature is a collection of extralogical symbols �predicates� functions
and constants� with their arities�

� A structure �for a signature or for some sentences� gives concrete
interpretations for those symbols as relations� functions or elements from
some particular set� the domain�
Once this is done� any sentence using those symbols is interpreted and
it can be determined whether it is true or false�

� A model for a sentence is a structure in which the sentence is true�

� The �failed natural deduction by counter�example� technique can be used
to show that P � C�

� Intended interpretations correspond to extralogical deductions�
� Quanti�er equivalences can be applied to transform sentences�
� Natural deduction is sound

If P � C then P j� C

� Natural deduction is complete

If P j� C then P � C

�	� Models

�	�
 Exercises

�� �a� If A � B then A j� B �soundness of natural deduction�� Hence� if
A � B then � � ��

�b� If A � B does A j� �B�
�c� If A j� B does A � �B�
�d� If A � B what about A � �B�
�e� If A � �B does A � B�
�f� If fS�� S�� � � � � Sng j� T is valid does fS�� � � � � Sng � T �
�g� If S is true in no situations then �S is true in every situation�
True or false�

�� Complete the missing cases in the proof of soundness of Natural
Deduction given in Section �	���

�� �a� Apply the method used in the completeness proof to derive a model
of the sentences fC � N � T�H � �S� �H � ��S � C��� P�N��Pg�
First convert the sentences to the restricted form using equivalences
and then apply the method�

�b� Find a natural deduction proof of � from the converted sentences�
�� Show that the following arguments are not valid� that is� the premisses �
the conclusion� Find two structures in each case in which the premisses
are true but the conclusion false� Try the �failed natural deduction by
counter�example� technique in order to help you to �nd the structures

�a� likes�Mary� John���x� �likes�John� x�� � ��y� ��likes�Mary� y���

�b� ��x� �y� �Di��x� y��R�x� y�� R�y� x�� � �u� �v� �Di��u� v��R�u� v��
�R�v� u���

�c� �x� �F �x��G�x�� � �x� F �x� � �y� G�y��
�d� �v� F �v� � �u� G�u� � �x� �F �x� �G�x���
�e� �x� �y� M�x� y� � �v� �u� M�u� v��

�� For each structure and each set of sentences decide the truth�falsity of
the sentences in the structure

�a� f�x� R�x� x���x� �y� �R�x� y�� R�y� x��g Structures

i� D � fa� b� cg� R�a� b� � R�a� c� � R�b� c� � R�c� b� � tt�
R�a� a� � R�b� b� � R�c� c� � R�b� a� � R�c� a� � ff

ii� D � f�� �� �� �� � � �g� R is the relation �

iii� D � f�� �� �� � � �g� R is the relation divides�x� y�

�b� f�x� �y� �P �x� � Q�x� y��� �z� P �z�� �z� �Q�b� z� � �u� P �u��g
Structures

i� D � f�� �� �� � � �g� b is the number �� P �x� is the relation x
is even� Q�x� y� is the relation divides�x� y�

Exercises �	�

ii� D � fFred� Susan� Maryg� b is Mary� P �Fred� � Q�Mary�Fred� �
Q�SusanFred� � tt� P �Susan� � P �Mary� � ff � all other pairs for
Q � ff

�c� f�z� �u� P �f	u
� z�g Structures

i� D � f�� �� ��� �� ��� � � �g� P is the relation �� f is the
function
 f	u
 �j u j

ii� D � f�� �� �� � � �g� P is the relation �� f is the successor
function�

�� Find as many di�erent models as you can for the sentences

f�x� �y� �z� �P �x� y� z�� P �s	x
� y� s	z
����x� P �a� x� x�g

�� Decide on the truth values of the sentences of Example �	�� in the
structure with domain� f��
��
�� � � �g and in which A means ��
P �n� means n � �� and Q�m�n� means m� � n�

	� The completeness proof for propositional sentences given in the text can
be extended to include all logical operators by using the fact that the
following �ND� equivalences can be found

��A �B� � �A � �B ��A �B� � �A � �B
��A� B� � A � �B A� B � �A � �B ��A � A

That is �for example�� A� B � �A �B and �A �B � A� B�

�a� Prove each of the above �ND� equivalences�

�b� Once you have proofs of the equivalences they can be used to
rewrite any sentence into �� � �� form� The A and B can be any
sentences� In particular� prove that if A � B� B � A� A� � B� and
B� � A� then

�A � �B and �B � �A
A �A� � B � B� and B �B� � A �A�

A �A� � B � B� and B �B� � A �A�

A� A� � B � B� and B � B� � A� A�

� Show that quanti�ers respect equivalences� That is� if A�a� � B�a� for
sentences A and B and some constant a� then �x� A�x� � �x� B�x� and
�x� A�x� � �x� B�x�� �Hint� use induction on the structure of A and
B��

��� We say that A occurs positively in a sentence F if it is within an even
number �or zero� of negations� It occurs negatively otherwise� Show that�
if A occurs positively in a sentence F and A j� B and replacing A by
B in F gives G� then F j� G� Also� show that if A occurs negatively in
F then G j� F �

Appendix A

Well�founded induction

Find a simplest counter�example

One justi�cation for induction arguments is that they say

�� Find a simplest possible counter�example
 in other words� all simpler
possibilities work correctly�

�� But then from that we manage to deduce that the counter�example� too�
works correctly � it is not a counter�example at all�

�� Contradiction
 so there are no counter�examples�

��� is just logic� and ��� depends entirely on the problem to hand �what we
are trying to prove�� It is the induction step� But ��� depends not so much
on what we are trying to prove� as on the things we are proving something
about
 it says that there is some notion of �simplicity�� and that we can
indeed �nd a simplest� For instance� for numbers� �simpler� might be �less
than�� Then �nding a smallest number is something you can always do with
sets of natural numbers but not necessarily with sets of integers or reals�

Well�founded orderings

Suppose we are interested in proving �by induction�� that is� using �������
above� statements of the form �x
 A� P �x�� where A is some set such as nat�
We formalize the idea of simplicity with the notion of well�founded ordering�

De�nition A�� Let A be a set� and � a binary relation on A� � is
a well�founded ordering i� every non�empty subset X of A has a minimal
element� that is� some x � X such that if y � x then y 	� X�

�	�

Well�founded induction �	�

Note that although � is called an ordering� there is no requirement for it
to be transitive or to have any other of the usual properties of orderings�

Theorem A�� Let A be a set and � a binary relation on A� Then the
following are equivalent

�� � is a well�founded ordering�

�� A contains no in�nite descending chains a� � a� � a	 � � � �

�Of course� a � b means b � a��

�� �Principle of well�founded induction� Let P �x� be a property of elements
of A such that for any a � A� if P holds for every b � a then P also
holds for a� Then P holds for every a�

Proof

� �� � �This is really an abstraction of the induction idea presented
informally above� The condition on P is the formalization of the step
�nding that the counter�example is not a counter�example�� Let P be a
property as stated� and let X be the set fx � A
 �P �x�g� If X 	� �

then by well�foundedness there is a minimal element a in X ��a simplest
counter�example��� For any b � a we have b 	� X� so P �b� holds� hence
by the conditions on P we have P �a�� which contradicts a � X� The
only way out is that X � �� that is� P �a� for all a�

� �� � Choose a� � X �possible� because X 	� ��� If a� is minimal in X�
then we are done� otherwise� we can �nd a� � a� � X� Again� either a�
is minimal or we can �nd a� � a	 � X� We can iterate this� and it
must eventually give us an element minimal in X� because otherwise we
would obtain an in�nite descending chain� contradicting ����

� �� � Let P �x� be the property �there is no in�nite descending chain
starting with x�� Then P satis�es the condition of ���� and so P holds
for every a� Hence there are no in�nite descending chains at all� �

These three equivalent conditions play di�erent conceptual roles� ���� as
in the de�nition of well�foundedness� is the direct formalization of the ability
to ��nd simplest counter�examples�� ��� is usually the most useful way of
checking that some relation � is well�founded� and ��� is the logical principle�

Box proofs

We can put the induction principles into natural deduction boxes� This is
not so much because we want to formalize everything� as to show the proof
obligations� the assumptions and goals when we use induction�
The general principle of well�founded induction� given a set A and a

well�founded ordering �� is shown in Figure A���

�	� Well�founded induction

a � A �y � A� �y � a� P �y�� IH
���

P �a�

�x � A� P �x� induction

Figure A��

The box� with the piece of proof that you have to supply� is the induction
step� The formula labelled �IH� is the induction hypothesis� and it is
a valuable free gift� If it weren�t there� then the proof would just be
ordinary �I introduction and the goal in the box would be more di�cult �or
impossible�� We shall now look at examples of well�founded orderings� with
their corresponding induction principles�

nat

This is the most basic example� You cannot have an in�nite descending
sequence of natural numbers� so the ordinary numeric ordering � is
well�founded� Figure A�� gives the principle of course of values induction

n � nat �m � nat� m � n� P �m�
���

P �n�

�x � nat�P �x� induction

Figure A��

A variant on this is obtained by taking � to be not the ordinary numeric
order� but a di�erent relation de�ned by m ���n if n � m � �� Then the
induction hypothesis is �m
 nat�n � m� �� P �m��� which works out in two
di�erent ways according to the value of n� If n � �� it is vacuously true �
there are no natural numbers m for which � � m � �� If n � �� the only
possible m is n � �� and so it tells us P �n � ��� Separating these two cases
out� and in the second case replacing m by n � �� we obtain in Figure A��
the principle of simple induction�
It is no coincidence that these two boxes �the base case and the induction

step� correspond to the two alternatives in the datatype de�nition for natural

Well�founded induction �	�

���

P ���

n � nat P �n�
���

P �n 	 ��

�n � nat� P �n� induction

Figure A��

numbers

num

� � � suc num

Note two non�examples of well�founded orderings�

�� The integers under numeric �
 for there are in�nite descending chains
such as

� � �� � �� � �� � � � �

�� The positive rationals under numeric �

� � ��� � ��� � ��� � ��� � � � �

Recursion variants

Let A be any set� and v
 A � nat any function� Then we can de�ne a
well�founded ordering � on A by

x � y i� v�x� � v�y� �numerically�

The induction principle is given in Figure A���

a � A �y � A� �v�y� � v�a�� P �y��
���

P �a�

�x � A� P �x� induction

Figure A��

This is course of values induction �on v�� Plainly nat here could be replaced
by any other set with a well�founded ordering� The programming examples

�	� Well�founded induction

had P expressing the correct working of some function f � and it could be put
into the form

P �x� � pre�x�� post�x� f�x��

where pre and post together give the speci�cation� v is now the recursion
variant� and the �principle of circular reasoning� comes out �after incorporating
some �I� in Figure A���

a � A �y � A� �pre�y� � v�y� � v�a�� post�y� f�y���

pre�a�
���

post�a� f�a��

pre�a�� post�a� f�a�� �I

�x � A� �pre�x�� post�x� f�x��� induction

Figure A��

Lists

For lists xs� ys
 !�"� we can de�ne a well�founded order easily enough by
using the length� $ �for example� as a recursion variant�

xs � ys i� $ xs � $ ys

However� an interesting alternative is to de�ne

xs � ys i� xs is the tail of ys

This gives the principle of list induction�

���

P ����

h � �� t � ��� P �t�
���

P �h � t�

�xs � ���� P �xs� induction

Figure A��

Figure A�� contains an example of structural induction�

Exercises �	�

Pairs and tuples

Theorem A�� Let A and B be two sets with well�founded orderings� We
shall �naughtily� write the same symbol ��� for both the orderings� Then
A�B can be given a well�founded ordering by

�a� b� � �a�� b�� i� a � a� � �a � a� � b � b��

Proof Suppose there is an in�nite descending chain �a�� b�� � �a�� b�� �
�a	� b	� � � � � � We have a� � a� � a	 � � � � and it follows from the
well�foundedness of a that the ais take only �nitely many values as they go
down� Suppose an is the last one� then eventually an � an�� � an�� � � � � and
bn � bn�� � bn�� � � � � � But this is impossible by well�foundedness on B� �

This can be extended to well�founded orderings on tuples� and it is really
the same idea as lexicographic �alphabetical� ordering� but note that this
depends critically on the �xed length of the tuples� For strings of arbitrary
�though �nite� length� lexicographic ordering is not well�founded� For example�

�taxis�� �a�taxis� � �aa�taxis� � �aaa�taxis�� �aaaa�taxis�� � � �

There is a reasoning principle associated with the well�founded orderings on
tuples �see Exercise ��� but perhaps the most common way to exploit the
ordering is by choosing a recursion variant whose value is a tuple instead of
a natural number�

A�� Exercises

�� Another variant of the principle of course of values induction� shown in
Figure A��� is obtained by using a well�founded ordering on any subset
of the natural numbers �for example� � on the set of even natural
numbers�� Write down the proof obligations using proof boxes for such
a variant�

�� Write down the proof obligations using proof boxes for a reasoning
principle based on a well�founded ordering on tuples�

Appendix B

Summary of equivalences

Equivalent propositional forms

zero law P � ff � �P
complement laws P � �P � ff P � �P � tt
idempotence P � P � P P � P � P
commutativity P �Q � Q � P P �Q � Q � P
associativity P � �Q �R� � �P � Q� �R P � �Q � R� � �P �Q� �R
De Morgan�s laws ��P �Q� � �P � �Q ��P � Q� � �P � �Q
distributivity P � �Q �R� � �P � Q� � �P �R�

R� P �Q � �R� P � � �R� Q�
P � �Q� R� � �P �Q�� R
P � �Q �R� � �P � Q� � �P �R�
�P �Q�� R � �P � R� � �Q� R�

others ��P � Q� � P � �Q
��P � Q� � �P � �Q� � ��P �Q�
P � Q � �P �Q � ��P � �Q� � �Q� �P
P � Q � �P �Q� � ��P � �Q� � �P � Q� � �Q� P �

Equivalent predicate forms

�x� �y� G�x� y� � �y� �x� G�x� y�
�x� �y� F �x� y� � �y� �x� F �x� y�
��x� F �x� � �x� �F �x�
��x� F �x� � �x� �F �x�
Qx� �S � F �x�� � S �Qx� F �x� fQ can be � or �g
Qx� �S � F �x�� � S �Qx� F �x�
�x� �S � F �x�� � S � �x� F �x�
�x� �F �x�� S� � �x� F �x�� S
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�for � �u� F �u� � �v� G�v�g
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�

�		

Appendix C

Summary of natural deduction rules

�E � �I� �E � and �I rules

� �E
P� � � � � � Pn

Pi ��E�
for each of Pi� i � �� � � � � n�

� �I

���

P�

� � �
���

Pn

P� � � � � � Pn ��I�
� �E

P� � � � � � Pn

P�

���

C

� � � Pn

���

C

C ��E�
� �I

Pi

P� � � � � � Pn ��I�
for each of Pi� i � �� � � � � n

�	

�
� Summary of natural deduction rules

�I� �E � �I� �E and �� rules

� �I
P
���

Q

P � Q ��I�
� �E

P P � Q

Q ��E�
� �I

P
���

�
�P ��I�

� �E
P �P
� ��E�

� ��
��Q

Q ����

Equality rules

� eqsub

a � b S�a�

S�b� �eqsub�

where S�a� means a sentence S with one or more occurrences of a
identi�ed and S�b� means those occurrences replaced by b�

� re�ex

a � a �re�ex�

Summary of natural deduction rules �
�

Universal quanti�er rules

� �E
�x� P �x�

P �t� ��E�
where t occurs in the current context�

� typed �E
is�type�t� �x
 type� P �x�

P �t� ��E�
� �I

c�I
���

P �c�

�x� P �x� ��I�
where c must be new to the current context�

� typed �I

c�I is�t�c�
���

P �c�

�x
 t� P �x� ��I�
� ��E and ��E

�x� �P �x�� Q�x�� P �c�

Q�c� ���E� and
�x� �P �x� P �c�

� ���E�

�
� Summary of natural deduction rules

Existential quanti�er rules

� �I
P �b�

�x� P �x� ��I�
where b occurs in the current context�

� typed �I
is�type�b� P �b�

�x
 type� P �x� ��I�
� �E

�x� P �x�
c�E P �c�

���

Q

Q ��E�
where c is new to the current context�

� typed �E
�x
 t� P �x�

c�E P �c�

is�t�c�
���

Q

Q ��E�

Further reading

R�C� Backhouse� Program Construction and Veri�cation� Prentice Hall� �
	��

R� Bird and P� Wadler� Introduction to Functional Programming� Prentice
Hall� �
		�

R� Bornat� Programming from First Principles� Prentice Hall� �
	��

O� Dahl� Veri�able Programming� Prentice Hall� �

��

E� W� Dijkstra� A Discipline of Programming� Addison�Wesley� �
���

E� W� Dijkstra and W�H�J� Feijen� A Method of Programming� Addison�Wesley�
�
		�

S� Eisenbach and C� Sadler� Program Design with Modula�
� Addison�Wesley�
�
	
�

D� Gries� The Science of Programming� Springer Verlag� �
	��

C� Morgan� Programming from Speci�cations� Prentice Hall� �

��

S� Reeve and M� Clarke� Logic for Computer Science� Addison�Wesley� �

��

J� C� Reynolds� The Craft of Programming� Prentice Hall� �
	��

R� Smullyan� What is the Name of this Book� Prentice Hall� �
�	�

V� Sperschneider and G� Antoniou� Logic� A Foundation for Computer
Science� Addison�Wesley� �

��

N� Wirth� Programming in Modula�
� Springer Verlag� �
	��

�
�

Index

accumulating parameter� �
�
actual parameter� ��
adjacency matrix� ���
aggregate type� �	
and�
� �
	
append� �
� 	�
argument� ��� ���
arithmetic� ��
arity� ���� ���� ���
assertion� ���
associative� �
� ��

atom� �

axiomatic approach� 	�

base case� ��� ��� 	�
bind� ���
black box� ��
bottom� ���
box proof� 	�
built�in functions� ��� ��

characters� ��
Church�Rosser property� ��
circular reasoning� �	
code� �
comparison operators� ��� ��
completeness� ���� ���� ���
complexity� �	�
components�
�
composition� �

compound types�
�
concatenate� �

conclusion�

conjunction� �
	� ���
connectives� 	
cons� �
� ��
consistency� ���
constant� ���
construct� ��
context� ���
contract� ��
contradiction� ��
� ���
correct� �� ���
course of values induction� ��
curried functions�
�
currying�
�

data structures� �	
data types� ��
decidable� ���
declaration� �	
deduction� �
�
defensive speci�cation� �

de�ning functions� ��
de�ning values� ��
de�nition� �	� ��� �	
derived rules� ���
disjunction� �
	
domain� ���� ��

double induction� ��

�
�

Index �
�

Dutch national �ag algorithm� ���

edge� ���
elimination rules� ���
eqsub rule� ��

equality� ���
equation� ��� ��� ���
equivalent� ��	
errors� �
Euclid�s algorithm� ��� ��
exclusive or� ��� ���
expression evaluation� ��

falsehood� ��

forall�

formal�

formal methods� ��
formal parameter� ��
formal parameters� ��� ��	
formality� ��
formula� ���
function� �� ��
function application� ��
functional composition� �	
functional language evaluator� ��
functional term� ���

generic�

global� �
graph� ���
ground term� ��	
guard� �	

head� �
� 	�
higher�order function� ���

identi�er� ��
implication�
� �
	
inconsistency� ���
induction hypothesis� ��� 	�
induction step� 	�
in�nite lists� ��
in�x� ��� ���
insertion sort� ��
instantiation� ��

interpretation� ���� ��

introduction rules� ���
invariant� ���
iteration� �	�

layout� ��
lazy evaluation� ��� ��
length� ���
lists� �	
local� �� ��
local de�nitions� ��
logic� 	
logic operators� ��
logical constants� ���
logical entailment� ���
logical implication� ���
logical notation� 	
loop invariant� ���� ���
loop test� ���
loop variant� ���
looping� ��� �	�

map� �	
mapping diagram� ��
mathematical induction� ��
mathematical logic� �
�
meaning� ��
mid�condition� ���� ���
model� ���� ���� ��

module� �
Modus Ponens� ���
mutually exclusive� �	

node� ���� ���
nullary constructor� ���

o�side rule� ��� ��
or� �
	

partial application�
�
partition� ���
path� ���
pattern� �	� �
� ���
pattern matching� �	
patterns of recursion� ���

�
� Index

PC� ���
polymorphic type� ��
polymorphism�
�
post�condition� �	� �

pre�condition� �	� �

precedence� ��
predicates� ��� �

pre�x� ��
premiss�

preparation� ��	
primitive functions� ��
primitive types�
�
Principle of course of values

induction� ��
Principle of list induction� 	�
Principle of mathematical induction�

��
procedure� �
procedure call� ���
proof by contradiction� ���
propositional logic� �

quali�er� ���
quality� �
quanti�cation� ���
quanti�er� ���

reasoned program� �
recurrence relationship� ��
recursion� ��� �	�
recursion variant� ��
recursive� ��� ��
redex� ��
reduction strategy� ��
re�ex rule� ��

relation� ���
relational operators� ��
reserved words� ��
result� ��� ��

rule� ��� ��
rule of substitution� ��

scheme� ���
semantics� ��
semi�decidable� ���

sentences� �

sequent� ���
signature� ���� ��

simple induction� ��
simpli�cation� ��
soundness� ���� ���� ���
speci�cation� �� ��� ��� ��� �	
string� ��� 	�
strong typing�
�
structural induction� ���
structure� ���� ��

substitution� ��
symmetry law of equality� ���
syntax analysis�
�

tail� �
� 	�
tail recursion� �	�
tautology� ��

terms� �

� ���
theorem� ���
theorem tactics� ���
top�down design� ��
transitive closure� ���� ���
truth table� ���� ���
tuple�
�� ���
type checking�
�
type variables�
	
typed quanti�ers� ���
types� �	� �	

union types� ���
unit law� �

universal quanti�er� ���
user�de�ned constructors� ���
user�de�ned functions� ��

valid�
� ���� ���
values� ��
variable� ���� ���
variant� ���

weak completeness� ��	
well�founded induction� ��� �	�

