
Susan Eisenbach 1

Lecture 1 : Introduction to
Programming in Java

Lecturer : Susan Eisenbach
This is the 1st lecture on Java

programming.This course is primarily
about writing imperative programs using

the Kenya system.
Next term you will learn to write object

oriented Java programs.
2

Textbooks
�No textbook is required.
�For programming beginners:

Java Software Solutions: Foundations of Program
Design, John Lewis and William Loftus,
Publisher: Addison Wesley, 2002.

�For experienced programmers:
– Learning the Java™ Language at

http://java.sun.com/docs/books/tutorial/
– Thinking in Java, Bruce Eckel, Prentice Hall

3

Software is required

�http://www.doc.ic.ac.uk/kenya/
�download Java onto your home machine
�follow the instructions to install it
�then follow the instructions to install

either Kenya or KenyaEclipse

4

Functional versus
imperative languages

� Functional languages are ideal for expressing the
functional (the problem to be solved) component of any
problem however...

� at least 50% of all programs deal with input/output
rather than a problem and functional languages aren’t
very good at input/output.

� Think of the programs you use now:
editor
mail
language translator (Haskell or Java)
web browser

� Functional programming should have taught you to
appreciate concise elegant programs.

5

A statement written in Java
println("Write this in Haskell!");

Commented version
/* Susan Eisenbach
* 12 November 2007
* a bit of bravado
*/

String exclaim = "Write this in Haskell!";
println(exclaim);

every statement is
terminated with a ;

6

print() and println()
�Text can be printed on the screen using
print() or println().

�Using println(" ") puts a carriage
return on the end of the line.
print("7*3");
println("="); println(7 * 3);
This code prints:
7*3=
21

7

Concatenating output with +
� String drink = "slammers";

print("I like "); println(drink);
This code prints: I like slammers

� println("I like Tequila " + drink);
This code prints: I like Tequila slammers

� println
("6/9 = " + 6/9 + " or " + 6.0/9.0);
This code prints:
6/9 = 0 or 0.6666666666666666

8

Comments
� There are two ways of commenting code.
� // comments are terminated by the end of line

// Susan Eisenbach
// 12 November 2007
// a bit of bravado

� /* comments in Java are also terminated by */
/* Susan Eisenbach
* 12 November 2007
* a bit of bravado
*/ good to make several

lines of comments stand
out in your program

9

A function written in Haskell
bigger :: Int -> Int -> Int
-- post: returns the larger of two numbers
bigger a b|a>b = a

|otherwise = b

Same method written in Java
int bigger(int a, int b){
//post: returns the larger of the 2 values
if (a > b) {return a;}

else {return b;}
}

argument types

arguments

10

A function written in Haskell
bigger :: Int -> Int -> Int
-- post: returns the larger of two numbers
bigger a b|a>b = a

|otherwise = b

Same method written in Java
int bigger(int a, int b){
//post: returns the larger of the 2 values
if (a > b) {return a;}

else {return b;}
}

result type

11

A function written in Haskell
bigger :: Int -> Int -> Int
-- post: returns the larger of two numbers
bigger a b|a>b = a

|otherwise = b

Same method written in Java
int bigger(int a, int b){
//post: returns the larger of the 2 values
if (a > b) {return a;}

else {return b;}
}

method bodies are
surrounded by { }

then and else
branches are
surrounded by { }

12

Returning from a method and
conditionals
int bigger(int a, int b){
//post: returns the larger of the 2 values

if (a > b) {return a;}
else {return b;}
}

conditionals - using the keywords if and optionally else

results have
to be returned
using the keyword
return

predicate (test) must be in brackets()

13

A function written in Haskell
biggest :: Int -> Int -> Int -> Int
-- post: returns the largest of 3 numbers
biggest a b c = bigger a (bigger b c)

Same function written in Java

int biggest(int a, int b, int c){
//post: returns the largest of the 3 values

return bigger(a, bigger(b,c));
}

14

A Java program must contain a
main method

� It is the main method that starts the execution
of a program off.

� It doesn’t return anything. The return type of a
method that does not return anything is void.

� The first statement can be made into a program
as follows:

void main(){
println("Write this in Haskell!");

}
� By custom the main method is the first method in

the program.

15

/*Susan Eisenbach
*12 November 2007
*chooses the largest of 3 numbers
*/
void main(){

print("Type in your 3 numbers -> ");
println(biggest(readInt(),readInt(),readInt()));

}
int bigger(int a, int b){
//post: returns the larger of the 2 values

if (a > b) {return a;}
else {return b;}

}
int biggest(int a, int b, int c){
//post: returns the largest of the 3 values

return bigger(a, bigger(b,c));
}

16

Variable declarations
� Variables are names of storage locations. Variables can be

declared of the following types:
int double boolean char String

� They must be declared before they are used.
int j;
double cost;
String firstname; String surname;

� Variables can be initialised in declarations
int total = 0;
char answer = 'y';
double start = 0;
double sum = 0.0;
boolean finish = false;

17

The assignment statement
� Initialisation is a form of assignment.
� Assignment gives a variable (named storage

location) a value.
� variables can have their values changed

throughout a program.
total = total + 1;
total = total / 2;
answer = 'n';

�Haskell does not have such a low level feature.

18

Assignment - don't use too many
variables

int i =6;
int j = 5;
println(i+j);

int i = 6;
int j = 5;
int k;
k = i+j;
println(k);

Better stylePoor style

superfluous to requirements

19

Summary
� The syntax of the Java programming language

is introduced in this course for coding
solutions to the problems set.

�We have seen
– methods (Haskell functions) with { }
– statement terminators - ;
– variables
– conditionals – if (predicate) {…} else {…}
– assignments
– input/output
– main method
– complete Java program

Susan Eisenbach 20

Lecture 2: Recursion

Lecturer : Susan Eisenbach
For extra material read parts of

chapters 1,3 and 11
of

Java Software Solutions

21

Revision from Haskell

�Define the base case(s)
�Define the recursive case(s)

– Split the problem into subproblems
– Solve the subproblems
– Combine the results to give required answer

22

Haskell program -> Java method
divisor :: Int -> Int -> Int
--pre: the arguments are both
-- integers > 0
--post: returns the greatest common divisor
divisor a b | a==b = a

| a>b = divisor b (a-b)

| a<b = divisor a (b-a)

23

becomes:
int divisor (int a, int b){
assert (a > 0 && b > 0):
"divisor must be given arguments > 0";
//post: returns the gcd of a and b

if (a == b) {return a;}
else {if (a > b) {return divisor (b, a - b);}

else {return divisor (a, b - a);}}
}

24

What does assert do?
assert (a > 0 && b > 0):
"divisor must be given arguments > 0";

evaluates the predicate
true? – continue to execute the code

false? – print the string on the screen and
stop the program

Do not execute code which you know may crash or loop
forever.

25

When should you have an assertion?
� If you write a method that expects something special

of its inputs then you need to put as a precondition
whatever needs to be true before the code can be run.

� The precondition should be coded (if possible) as an
assertion.

� Assertions can also be written without the String
message. In this case, if the assertion fails then your
program stops with an AssertionError.

� If the user has given a method arguments that meet
the precondition and the code is correct then the
postcondition to the method will hold. Postconditions
are written as comments at the top of the method
after the word post.

26

Haskell program -> Java method
fact :: Int -> Int
--pre: n>= 0
--post: returns n!
fact 0 = 1
fact (n+1) = (n+1)* fact n
� becomes :
int fact(int n){
assert (n>= 0 && n < 17):
"factorial must be given an argument >= 0";
//post: returns n!

if (n==0) {return 1;}
else {return n*fact(n-1);}

}

27

Java method -> Java program
void main(){

print("Factorial number that you want? ");
println("Answer = " + fact(readInt()));

}
int fact(int n){
assert (n>= 0):
"factorial must be given an argument >= 0";
//post: returns n!

if (n==0) {return 1;}
else {return n*fact(n-1);}

}

� Rewrite this program with a more efficient fact
method.

28

Methods
�Haskell has functions that return results.
� Java has methods that return results (just like

Haskell)
� Java has methods that don't return any values,

they just execute some code.
– their return type is void.

– they frequently consume input and/or produce
output

– The special main method must be void.

� Both types of methods can be recursive.
� Java programs can never be recursive.

29

Menu method
void menu(){
//post: 5 lines of text appear on the screen
println("Enter 0 to quit");
println("Enter 1 to add");
println("Enter 2 to subtract");
println("Enter 3 to multiply");
println("Enter 4 to divide");

}

30

processMenu method
void processMenu(int reply){
assert (0<= reply && reply <=4);
switch (reply){
case 0: {println("Bye"); break;}
case 1: {println(readInt()+readInt()); break;}
case 2: {}
case 3: {}
case 4: {println(" not yet implemented"); break;}
default: {println("not possible!");}
}

}

curly brackets are
used for each case

31

switch
switch (reply){
case 0: {println("Bye"); break;}
case 1: {a = readInt(); b = readInt();

println(a+b); break;}
case 2:{}
case 3:{}
case 4: {println(" not yet implemented"); break;}
default:{println("not possible!");}
}

}

int used to choose the case to
execute, chars can also be used

if integer does not match any case -- not required

break prevents cases
falling through

32

Question
� Rewrite processMenu changing it in two ways.

– remove the precondition
– produce the correct answer on the screen for each

of the operations
� Notes

– only read in the numbers once
– you can put ifs and switches inside each other or

themselves
– tell the user there is an error if reply < 0 or
reply > 4

33

Input
� There are a huge number of ways of reading

input into Java programs.
�Whitespace means what you get when you hit

the space bar or the enter keys.
�We are using the Kenya system which contains:

– readInt() –ignores whitespaces, stops after the last digit
– readDouble() –ignores whitespaces, stops after the last

digit
– readString() –ignores whitespaces, stops on the first

whitespace after the string
– readChar()–ignores whitespace, then reads one character
– read() – reads the next character (even if it is whitespace)

� readSomething() consumes the carriage return
character.

34

Developing a Java program to
reverse a string

� Specification:
– The program should accept a line of text and print

it out in reverse order.
� Remember:

– A program cannot be recursive only a method can.
� The main program just calls the method reverse
reverse:
Read a character //progress- one char closer to CR
If CR not yet reached //guard the recursive call

then
reverse
print Character.

35

IMPORTANT
�Guard your recursive calls.
�Not guarding your recursive calls can

lead to infinite recursion.
�Make sure there is progress towards the

terminating condition between
invocations of the recursive routine.

�Comment both the guard and the
progression.

36

The program
void main(){
print("type in your word to reverse ->");
reverse();

}
void reverse(){
//post: reads in a string (terminated by ENTER '\n')
// and prints it out in reverse order
char ch;
ch = read(); //progress- one char closer to CR
if (ch != '\n') {
reverse();
print(ch);

}
}

37

reverse();

void reverse(){
char ch;
ch = read();
if (ch != '\n'){
reverse();
print(ch);

}
}

ch ='c'
reverse()

reverse()

ch='o'
reverse()

ch='d'
reverse()

Program Input cod Output

ch='\n'

d

print(ch)
print(ch)

o

print(ch)

c

38

Summary
� A routine that calls itself is called recursive.
� Methods can be recursive, programs cannot.
� Recursive methods that produce a single result are just like

Haskell functions.
� Void methods are used when the same operation is to be

performed on different data and the result wanted is
output on the screen.

� In order that the repetition may be finite, within every
recursive method there must appear a terminating condition
to guard the recursive call and a progression to
distinguish one call from another.

� Switch statements are used rather than conditionals when
there are several choices based on an integer or character.

Susan Eisenbach 39

Lecture 3 : Arrays and For Loops
Lecturer : Susan Eisenbach

For extra material read parts of chapters 3
and 6 of Java Software Solutions.

This is the 3rd lecture on Java in which arrays
and for loops are examined.

40

What is an array?
� for problems which deal with large quantities of data
� perform the same, operations on the individual items
� elements of an array are all of the same type and

referred to by an index
� arrays can be one or more dimensional
� arrays are called vectors and matrices by non-

computing people
� comparison with Haskell lists

– every element can be accessed with equal ease
– multi-dimensional arrays are easy to access

41

double[] vec = new double[10];

Example of an array variable
declarations

its an array

the name of the array is vec

each element is a double

{ get space to
hold 10 doubles

42

If we want to store the sentence “Tom
is not my friend” we would use:

String[] words = new String[5];

Another example of an array
variable declaration

“Tom”

“is”

“not”
“my”

“friend”

43

int[][]mat = new int[5][4];

Examples of array variable
declarations

This is an
array of arrays

44

� String[] names = {“Bradley","Eisenbach",
"Gillies","Field",
"Hodkinson"};

� double[] vector = {0.1, 1.2, 0.0, 34.6,
-3.0, 34.1, 0.0,
0.4, 0.8, 0.1};

Arrays can be initialised at
declaration

45

Getting the size of an array
� To get the size(no. of elements) of an array, you write

arrayname.length
� The length of the array is determined by the number

of values provided between { }.
� for example if

boolean[] answers = {true, false,
true, true, false};

then
answers.length is 5

� Note that length is not a method and so does not
have (). It is built into Java.

� Once created, the size of the array cannot change.
� The length of the array must be specified when it is

created.
46

Examples of array variable
declarations (cont.)

How do you declare and initialise a data structure
for the following?

HoggerJohnChristopher
FieldJohnAntony
EisenbachSusan

String[][] fullNames = {
{"Susan","","Eisenbach"},
{"Antony","John","Field"},
{“Christopher",“John","Hogger"}

};

47

Referencing array elements
� each array element is referenced by means of the array

identifier followed by an index expression which uniquely
indexes that element

� the first element of an array is at 0, the last at length – 1
� example array references:

firstName = fullNames[2][1];

vec[1] = mat[1][0]+mat[1][1]+mat[1][2]+
mat[1][3]+mat[1][4];

if (i==j) {mat[i][j] = 1;}
else {mat [i][j] = 0;}

48

Using arrays:
� You can pass arrays as arguments to methods:

void printNames(String[][] names)
� You can return arrays as results from methods:

String[][] copy(String[][]names)

Do not assign complete arrays:
secondYears = firstYears

since any change to firstYears will
happen to secondYears as well (more
later on this).

49

Bounded iteration
� arrays exist in order to hold a large number of elements of the

same type
� frequently the same operation is performed on each array value
� traversing all the elements of an array can be achieved by means

of a control construct known as the for loop. Using a for
statement is called looping or iteration and causes repetitive
execution
for (int i = lowerbound; i < upperbound ; i++) {

loop body
}
for (int i = upperbound - 1; i >= lowerbound; i--) {

loop body
}

50

for (int i = lowerbound; i < upperbound; i++) {
loop body

}

for (int i = upperbound-1; i >= lowerbound; i--) {
loop body

}

Bounded iteration

first value of iusually 0

on each loop iteration
i=i+1

on each loop iteration
i=i-1stops executing the loop when

i hits this value

51

A for loop example
� for loops are ideal for traversing arrays - each iteration of the

loop accesses an element of the array
� a program to calculate the mean of an array of doubles:
void main(){

double[] vec = {1,0,3,0,5,0,7,-2,9,10};
println(mean(vec));

}
double mean(double[] v){
//post:returns the average of the elements in v
double total = 0;

for (int i =0; i < v.length; i++) {
total = total + v[i];

}
return total/v.length;

} 52

Tracing the execution of some
code

�When trying to understand what some
piece of Haskell code does, you use
rewrites:

�fact 4 = 4*fact 3 = 4*3*fact 2 =
4*3*2*fact 1 = 4*3*2*1= 24

53

When trying to understand what some piece of Java
code does you hand execute all the code working out
what the values of the variables are:

mean total i v[0] v[1] v[2] v[3] v[4]
1 0 3 1 5 void main(){

double[] vec = {1,0,3,1,5};
println(mean(vec));

}
double mean(double[] v){
int i;
double total = 0.0;

for (int i =0;i<v.length;i++)
{
total = total + v[i];

};
return total/v.length;

}

54

When trying to understand what some piece of Java
code does you hand execute all the code working out
what the values of the variables are:

mean total i v[0] v[1] v[2] v[3] v[4]
1 0 3 1 5

void main(){
double[] vec = {1,0,3,1,5};
println(mean(vec));

}
double mean(double[] v){
int i;
double total = 0.0;

for (int i =0;i<v.length;i++)
{
total = total + v[i];

};
return total/v.length;

}

0
0
1
2
3
4
5

1
1
4
5
10

2

55

Nested for loops
� a 2-dimensional array requires 2 for loops to traverse

it:
int sum(int[][] m){
//post: returns the sum of the elements of m
int theSum = 0;

for (int i = 0; i<m.length; i++){
for (int j = 0; j<m[i].length; j++){
theSum = theSum + m[i][j];

}
}
return theSum;

}

� an n-dimensional array requires n for loops to traverse
� If int mat[50][100] is passed to sum, what is the

value of m.length? For each i, what is the value of
m[i].length? 56

void main(){
String[][] students ={
{"BSc", "Homer", "Marge", "Bart", "Lisa", "Maggie"},
{"MSci", "Moss", "Jen", "Roy"},
{"BEng", "Peter", "Lois", "Meg", "Brian", "Stewie",},
{"MEng", “Harry", "Adam", "Ros", "Malcolm","Zafar","Connie"}

};
printNames(students);

}
void printNames(String[][] names){

for (int i = 0; i < names.length; i++) {
print(names[i][0] + ": ");
for (int j = 1; j < names[i].length; j++) {

print(names[i][j] + " ");
}

println();
}

}

What is the value of names.length?
For each i, what is the value of names[i].length?

57

Summary
� Arrays are data structures suitable for problems

dealing with large quantities of identically typed
data where similar operations need to be
performed on every element.

� Elements of an array are accessible through their
index values. Arrays using a single index are
called vectors, those using n indices are n-
dimensional arrays. A two dimensional array is
really an array of arrays, a 3-dim., an array of
arrays of arrays, etc.

58

Summary
� Arrays have a type associated with them: the

type of the elements. The index is always a non-
negative integer.

� Space has to be allocated explicitly for arrays.
Either they are initialised with values and then
the right amount of space is allocated or the
keyword new is used to specify the allocation of
space.

� Repetition of the same operation is called
iteration or looping. A for loop can be used to do
the same operation to every element of an array.

Susan Eisenbach 59

Lecture 4 : Using Arrays

Lecturer : Susan Eisenbach
For extra material read parts of chapters 3 and 6 in

Java Software Solutions.
This is the 4th lecture in which code is developed that

uses arrays and parameter passing mechanism is
examined in some detail.

60

Consider a game to play noughts
and crosses

� Assuming that each space on the board can
have a 'X', an 'O' or a ' ', write an array
declaration to hold a board, initialising it all to
empty.

� char[][] board = {{' ',' ',' '},
{' ',' ',' '}, {' ',' ',' '}};

�Write a statement that puts a 'X' into the
middle square

� board[1][1] = 'X';

61

boolean isFull(char[][] b){
for (int r = 0; r < 3; r++){

for (int c = 0; c < 3; c++){
if (b[r][c] == ' ')

{return false;}
}

}
return true;

}

Write a predicate isFull which returns true iff
there are no empty spaces on the board.

X

O

X O

X

O X

O

X
62

Write a method initBoard which
returns a new board filled with spaces.

char[][] initBoard(){

char[][] b = {{' ',' ',' '},

{' ',' ',' '},

{' ',' ',' '}

};

return b;

}

63

Checking for a winner

�After each move a check has to be made
whether the current player has won.

�A player has won if their piece fills one
of the diagonals, one of the rows or one
of the columns.

X

O

X O

X

O X

O

X
64

Write a predicate isDiagonal that takes as
arguments an X or O and a board and returns true iff
one of the diagonals is filled with the piece.

boolean isDiagonal(char ch, char[][] b){
assert (ch='X' || ch='O');

return b[0][0]== ch &&
b[1][1]== ch &&
b[2][2]== ch ||
b[0][2]== ch &&
b[1][1]== ch &&
b[2][0]== ch;

}

X
O
X O

O X

65

Write a predicate hasFullRow that takes as
arguments an X or O and a board and returns true
iff one of the rows is filled with the piece.

boolean hasFullRow(char ch, char[][] b){
assert (ch='X' || ch='O');
boolean found;

for (int r = 0; r < 3; r++){
found = true;
for (int c = 0; c < 3; c++){

found = found && b[r][c] == ch;
}
if (found) {return true;}

}
return false;

}

X

O

X O

X

O X

OX

66

boolean hasFullCol(char ch, char[][] b){
assert: ch='X' || ch='O';
boolean found;

for (int c = 0; c < 3; c++){
found = true;
for (int r = 0; r < 3; r++){

found = found && b[r][c] == ch;
}
if (found) {return true;}

}
return false;

}

Write a predicate hasFullCol that takes as
arguments an X or O and a board and returns true
iff one of the columns is filled with the piece.

X

O

X O

X

O X

O

X

67

Exercises to do yourself:

�Write the predicate hasFullCol that takes as
arguments an X or O and a board and returns
true iff one of the columns is filled with the
piece using only one loop.

� Rewrite the code in the slides with
the board as a one dimensional array.
How much harder is it to write the
predicates?

X

O

X O

X

O X

O

X
68

Put them together to produce a
predicate isWinner

boolean isWinner(char ch, char[][] b){
assert: ch='X' || ch='O';

return isDiagonal(ch,b) ||
hasFullRow(ch,b) ||
hasFullCol(ch,b);

} X

O

X

O

X

O

X

O

X O

X

O X

O

X

69

� You could (mouse) click on the square on the screen and the
coordinates could be converted into the appropriate
noughts and crosses index.

� This requires very sophisticated input routines.
� Simpler would be to read in from the keyboard chess

notation for the square and then convert it to the
appropriate array indices.

� So if a user wants the middle square, it is b2 or 2b
and the bottom lefthand corner is c1 or 1c

How do you get which square
the next player wants?

X

O

X O

X

O X

O

X

a

b

c
1 2 3 70

You need to know if the character the
user typed in is for a row or a column
�Write a predicate IsRow which takes as an

argument a character and returns true iff the
argument is an 'a', a 'b' or a 'c'.

boolean isRow(char c){
return 'a' <= c && c <= 'c';

}
�Write a predicate IsCol which takes as an

argument a character and returns true iff the
argument is an '1', a '2' or a '3'.

boolean isCol(char c){
return '1' <= c && c <= '3';

}

71

Convert the input characters into numbers
that can be used for array indices
�Write a method convert that takes a character

that is a valid row or column and returns the
appropriate number to use for the row index or
column index. So if '2' is passed as an argument
to convert it returns 1.
int convert(char c){
assert (isRow(c) || isCol(c));

if (c=='1' || c=='a') {return 0;}
if (c=='2' || c=='b') {return 1;}
return 2;

}
72

Arguments to methods
�We have been passing arguments to methods.
� Java's argument passing is slightly more

restrictive than Haskell's – you can pass
anything to a Java method, except another
method.

� In Java methods, arguments are passed by
value. When invoked, the method receives the
value of the variable passed in, creates a local
copy, works on it and then discards it when the
method is left.

� This means that a method cannot change the
value of its arguments.

73

What happens when you pass a variable to a
method and change its value within the method?

void main(){
int a = 1;
int b = 2;
println("a & b = " + a + b);
swap(a,b);
println("after swap " + a + b);

}

void swap(int a, int b){
//post: this method does very little
int temp = a;

a = b;
b = temp;
println("inside swap " + a + b);

}
74

What happens when you pass a variable to a
method and change its value within the method?
void main(){
int a = 1;
int b = 2;

println("a & b = " + a + b);
swap(a,b);
println("after swap " + a + b);

}
void swap(int a, int b){
//post: this method does very little
int temp = a;

a = b;
b = temp;
println("inside swap " + a + b);

}

b = 2

temp = 1

a = 2

b = 1

a & b = 1 2

println

println

inside swap 2 1

println

after swap 1 2

a = 1

75

When a method is called the runtime system of
any language holds method data in a stack

b = 2

temp = 1

println

println

println

a = 1

Aa = 1, b = 2push

push Aa = 1 , b = 2 , temp = 1
a = 2

2 b = 11pop

76

Summary
� A predicate is a method that returns a boolean

result.
� It is sensible to name predicates starting with is,
are, can or some other similar word.

�We have developed a variety of methods that are
necessary if one is writing a noughts and crosses
game.

� In Java methods, arguments are passed by value.
When invoked, the method receives the value of
the variable passed in, creates a local copy, works
on it and then discards it when the method is left.

� This means that a method cannot change the value
of its arguments.

77

Tutorial questions

1. Translate the following Haskell
functions into Java functions.

power :: Int -> Int -> Int
-- pre: the second argument is a non-negative

integer
-- post: computes first arg to power of second arg
power x n | n==0 = 1

| otherwise = x * power x (n-1)

78

int power(int x, int n){
assert (n >= 0);
//post: x^n

if (n==0) {return 1;}
else {return x * power(x, n-1);}

}

79

power1 :: Int -> Int -> Int
-- pre: the second arg is a non-negative integer
-- post: computes first arg to power of second arg
power1 x n |n==0 = 1

|n==1 = x
|n `mod` 2 == 0 = z*z
|otherwise

= z*z*x
where z = power1 x (n `div` 2)

� In Java `div` is / and `mod` is %

80

int power1(int x, int n){
assert (n > 0);
//post: x^n

if (n==0) {return 1;}
else{

if (n==1) {return x;}
else{

int z = power1 (x, n / 2);
if ((n%2) == 0) {return z*z;}
else {return z*z*x;}

}
}

}

81

2. Write a Java function that calculates
factorials using a for loop. In Java you
can have for loops that go backwards.
They are of the form:

for (i = 10; i > 0; i--) {
loop body

}

82

int fact(int n){
assert (n>= 0&& n <17);
//post: computes n!

int f = 1;
for (int i=n; i>0; i--){

f = f*i;
}
return f;

}

Susan Eisenbach 83

Lecture 5 : Classes

Lecturer : Susan Eisenbach
For extra material look at chapters 2 and 4 of Java

Software Solutions.
This is the 5th lecture in which classes and objects are

introduced.

84

Tuples
� When you want to group many of the same type of

element together in Haskell you use a list, in Java you
use an array.

� You access elements in a list through the head and an
array by index (position of element).

� Sometimes you want to group a few items of (possibly)
different types together.

� In Haskell you would use a tuple. The position of the
piece of data would tell you what it was.

� In Haskell you wanted to hold an applicant's name
followed by the A level points of the top 3 A levels you
might say:
– type Applicant = ([Char], Int, Int, Int)
– and you would know that the name was the first element of an
Applicant.

85

In Java there are classes
� Classes can be used like tuples, (although they are

much more powerful as you will see later in the course)
� Classes contain fields and fields are accessed by name

(not position like tuples)
class Applicant{
String name;
int grade1;
int grade2;
int grade3;

}
� Classes are types, (like Haskell types). You create the

type with the class declaration and then you need to
declare variables of the type you have created. 86

Using variables of type Applicant

� Classes can be passed as arguments and returned from methods
boolean areSame(Applicant a1, Applicant a2)

� What is the difference between the two statements?
– println(me.name + (me.grade1 + me.grade2 +

me.grade3));
– println(me.name + me.grade1 + me.grade2 +

me.grade3);

class Applicant{
String name;
int grade1;
int grade2;
int grade3;

}

Applicant me;
Applicant you;

me.name = "Susan";
me.grade1 = 60;
me.grade2 = 40;
me.grade3 = 0;

Susan100

Susan60400

87

� Rewrite the class declaration for Applicant
so the three grades are held in an array. Draw
a diagram of your new class.

grade1name grade2 grade3
Susan 060 40

�Draw a diagram of an Applicant.

class Applicant{
String name;
int[] grades =

new int[3];
}

name grades
0 1 2

Shakil 120 120 120

Draw a diagram to understand

88

Example of an array of classes

0

1

2

.

.
137

:

good style to put
class declarations
at top of program

class Applicant{
String name;
int[] grades = new int[3];

}
void main(){
Applicant[] firstYears = new Applicant[138]; …

Wing 120 120 120

Anita

Bintal

Carl

120 120 120

120 120 120

120 120 100

89

� How do you access the fifth person's second A level
result?

� firstYears[4].grades[1]
� How do you write a method that takes firstYears as an

argument and returns the index to the first student with
name "Dimitri" and –1 if there is no Dimitri in
firstYears.

� int find(String name, Applicant[] aa){
for(int i=0; i<aa.length; i++){

if (name == aa[i].name) {return i;}
}
return -1;

}

You need to be able to access elements

90

� Read in from the keyboard chess notation for the
square and then convert it to the appropriate
array indices.

� So if a user wants the middle square, it is b2 or 2b
and the bottom righthand corner is c3 or 3c

Back to noughts and crosses –
getting the user's input

X

O

X O

X

O X

O

X

a

b

c
1 2 3

91

You need to know if the character the
user typed in is for a row or a column
� the predicate IsRow which takes as an argument a

character and returns true iff the argument is an
'a', a 'b' or a 'c'

boolean isRow(char c){
return 'a' <= c && c <= 'c';

}
� the predicate IsCol which takes as an argument a

character and returns true iff the argument is an
'1', a '2' or a '3'

boolean isCol(char c){
return '1' <= c && c <= '3';

} 92

Convert the input characters into numbers
that can be used for array indices
� the method convert that takes a character that

is a valid row or column and returns the
appropriate number to use for the row index or
column index. So if '2' is passed as an argument
to convert it returns 1.
int convert(char c){
assert (isRow(c) || isCol(c));

if (c=='1' || c=='a') {return 0;}
if (c=='2' || c=='b') {return 1;}
return 2;

}

93

Declare a class to hold the
coordinates of a move

� The coordinates need to be integers so they
can index the board array.

�Next write a method getMove which reads
from the keyboard the user's input. If it isn't
a legal input (forget whether the square is
occupied) then prompt again and read in the
user's input. Continue this until correct input
is typed in. The method should return a Coord.

class Coord{
int row;
int col;

}

94

Declare getMove
� getMove takes no arguments (it reads its

inputs from the keyboard) and returns a
Coord.

�What local variables are needed by getMove?
Coord getMove()

-two variables to hold the input characters

-a variable to hold the coordinates of the move to be
returned

char c1, c2;

Coord move;

95

What is the algorithm for getMove?
c1 = readChar()
c2 = readChar()

if isRow(c1) && isCol(c2)
move.row = convert(c1)
move.col = convert(c2)
return move

else if isCol(c1) && isRow(c2)
move.row = convert(c2)
move.col = convert(c1)
return move

else println("bad coordinates, re-enter-->")
return getMove() 96

getMove in Java
Coord getMove(){
Coord move;
char c1; char c2;

c1 = readChar();
c2 = readChar();
if (isRow(c1) && isCol(c2)){

move.row = convert(c1);
move.col = convert(c2);
return move;

}
else{

if (isCol(c1) && isRow(c2)){
move.row = convert(c2);
move.col = convert(c1);
return move;

}
else{

println("bad coordinates, re-enter-->");
return getMove();

}
}

}

97

While loops
� for loops are ideal to use with arrays, where you know

exactly the number of iterations.
� When you want repetition and you don't know in

advance how many times the repetition will occur you
can use recursion or a while loop construct.

� It is a matter of taste whether you use while loops or
recursion when you don't know beforehand how many
times you need to repeat.

� Like recursion generalised loops can go infinite. When
writing code you must ensure that your code will
terminate.

98

Loops
while (condition)
{
body of loop

}
the body of loop includes something that will make the

condition go false eventually
� A loop where the condition cannot become false is an infinite

loop. The loop below will not stop.
while (true)
{
body of loop

}

99

Example of a generalised loop
void main(){
char answer = 'y'; char buf = ' ';
showInstructions();
while (answer == 'y‘ || answer == ‘Y’){

playGame();
print("Do you want to play again(y/n)? ");
answer = readChar();
buf = readChar() ;
}
println("thanks for playing");

}
buf is needed to hold the
Return character which is
never used, just discarded

100

Example of a generalised loop
� The rest of the code:

void showInstructions(){
println("instructions go here");

}
void playGame(){
println("the whole game goes here");

}

� ¿How would you implement this recursively?
� Trace the code with the input y y k. In addition

to the column for the variable answer have a
column for the methods being executed, a column
for input and a column for output.

101

meth in ans output method

Do you want to play again(y/n)? kkkmain

the whole game goes hereplayGame

ymain

Do you want to play again(y/n)? yyymain

the whole game goes hereplayGame

Do you want to play again(y/n)? yyymain

the whole game goes hereplayGame

instructions go hereShowInstructions

102

Summary
� To group a few items of (possibly) different types

together a class is used.
� Access is by field name (not position).
� To access the field f in class C we write C.f
� It is good style to place all the class declarations at

the very top of the program before the main
method.

Susan Eisenbach 103

Lecture 6 : Objects

Lecturer : Susan Eisenbach
For extra material read chapter 4 of Java Software

Solutions.
This is the 6th lecture in which primitive types and

objects are introduced. The last tutorial question is also
gone over.

104

Primitive values
� ints, doubles, booleans, Strings, and
chars are primitive.

� Java has many other number types that are
also primitive.

� Primitive variables are names for storage
locations that contain the values of the
variables.

�What happens when during the execution of
your program checking the expression a==b
where a and b are both ints is reached?

105

Primitive values
�What happens is the bit pattern that is the

value at the storage location called a is
compared with the bit pattern at the storage
location called b.

� If they are identical the value of the
expression is true otherwise it is false.

� int a = 3;
� int b = 4;
� a==b?

0…0…011 0…0…100== ???

a b

106

Objects
� Arrays and classes are not primitive. They are data

structures and stored as objects.
� Objects (of an array or class type) need to have their

space explicitly allocated before they can be used.
� For arrays you do this explicitly by using new.
� If you look at the Java code for class declarations

generated by the Kenya system you will see the word
new. This word means create the object on the heap.

� Object variables are names for storage locations that
contain a reference or pointer to the data structure.

� The actual data structure is stored in a part of
memory called the heap.

107

heap

How objects are stored

�Consider the following declarations:
char[] v1 = {'a','a','a','a'};
char[] v2 = {'a','a','a','a'};

a aaa
(but in binary)

aaaa

(but in binary)address
10000 address

11000

v1 v2

108

How objects are stored

�What are the values of v1 and v2?
The two references (or addresses 10000
and 11000) to locations in the heap.

a aaa
(but in binary)

aaaa

(but in binary)address
10000 address

11000

v1 v2

109

What gets printed?

void main(){
char[] v1 = {'a','a','a','a'};
char[] v2 = {'a','a','a','a'};

if (v1 == v2) {println("same");}
else {println("different");}
v2 = v1;
v1[0] = 'b';
if (v1 == v2) {println("same v2[0]="+v2[0]);}
else {println("different");}

}
different
same v2[0]= b

110

Why?
void main(){
char[] v1 = {'a','a','a','a'};
char[] v2 = {'a','a','a','a'};

if (v1 == v2) {println("same");}
else {println("different");}
v2 = v1;
v1[0] = 'b';
if (v1 == v2) {println("same v2[0]="+v2[0]);}
else {println("different");}

}

same v2[0]= b

different

a aaa a aaa

v1 v2

b

111

Take care with = and ==
� If you wish to assign one object to another

then you must do it component at a time.
Otherwise you will just have 2 names (known as
aliases) for the same object.

� Instead of writing
me = you;

you should write
me.name = you.name;
me.grade1 = you.grade1 etc. Then you

will have two different objects with the same
values.

112

Java provides arraycopy for
copying arrays.

� arraycopy takes source and copies it to
destination

�What gets printed?
int[] v1 = {1,1,1,1};
int[] v2 = {2,2,2,2};
arraycopy(v1,v2);
v1[0] = 33;
for (int i=0; i < v2.length; i++){

print(v2[i]);
}

1111

113

Arguments to methods – repeat
of earlier slides (reminder)

�We have been passing arguments to methods.
� Java's argument passing is slightly more

restrictive than Haskell's – you can pass
anything to a Java method, except another
method.

� In Java methods, arguments are passed by
value. When invoked, the method receives the
value of the variable passed in, creates a local
copy, works on it and then discards it when the
method is left.

� This means that a method cannot change the
value of its arguments. 114

What happens when you pass a variable to a
method and change its value within the method?

void main(){
int a = 1;
int b = 2;
println("a & b = " + a + b);
swap(a,b);
println("after swap " + a + b);

}

void swap(int a, int b){
//post: this method does very little
int temp = a;

a = b;
b = temp;
println("inside swap " + a + b);

}

115

What happens when you pass a variable to a
method and change its value within the method?
void main(){
int a = 1;
int b = 2;

println("a & b = " + a + b);
swap(a,b);
println("after swap " + a + b);

}
void swap(int a, int b){
//post: this method does very little
int temp = a;

a = b;
b = temp;
println("inside swap " + a + b);

}

b = 2

temp = 1

a = 2

b = 1

a & b = 1 2

println

println

inside swap 2 1

println

after swap 1 2

a = 1

116

What happens when you pass an object to
a method and alter the object?

void main(){
int[] p = {1,2};
println("p[0] & p[1] = " + p[0] + p[1]);
swap(p);
println("after swap " + p[0] + p[1]);

}
void swap(int[] p){
int temp = p[0];
p[0] = p[1];
p[1] = temp;
println("inside swap " + p[0] + p[1]);

}

117

What happens when you pass an object to
a method and alter the object?
void main(){
int[] p = {1,2};

println("p[0] & p[1] = " + p[0] + p[1]);
swap(p);
println("after swap " + p[0] + p[1]);

}
void swap(int[] p){
int temp = p[0];

p[0] = p[1];
p[1] = temp;
println("inside swap " + p[0] + p[1]);

}

p =

1 2

temp = 1

12

p[0] = 2

p[1] = 1

p[0] & p[1] = 1 2

println

println

inside swap 2 1

println

after swap 2 1 118

What happens when you pass an object
to a method and alter the object?

�What is passed to a method is the address of
the object.

� Like arguments, this is copied and the local
copy is worked on and then discarded, at the
end.

�However the object lives in the heap and there
is no such thing as a local heap.

� Any alterations to the heap that happen during
the execution of a method are permanent.

119

Details about the heap
� Both arrays and classes are objects that when created

live in the heap, which is just a special part of
computer memory.

� Anything that lives in the heap must get allocated
some space in the heap before it can be accessed.

� The way an array or class is accessed is via its address
in the heap also called a pointer.

� If an object has not been allocated space then the
address will be a special one called a Null Pointer.

� If you try to access an object that has not yet been
allocated some space then you will get a
NullPointerException.

� A NullPointerException means you tried to access an
object, which did not exist.

120

What does this program print out?
void main(){
int[] p = {10,20};

println("p[0] & p[1] = " + p[0] + " " + p[1]);
change1(p);
println("p[0] & p[1] = " + p[0] + " " + p[1]);
change2(p);
println("p[0] & p[1] = " + p[0] + " " + p[1]);

}
void change1(int[] p){

int[] q = {99,999};
p = q;
println("inside change1: p[0] & p[1] = "+p[0]+" "+p[1]);

}
void change2(int[] p){

p[0] = 1000;
println("inside change2: p[0] & p[1] = "+p[0]+" "+ p[1]);

}

121

Answer:
p[0] & p[1] = 10 20
inside change1: p[0] & p[1] = 99 999
p[0] & p[1] = 10 20
inside change1: p[0] & p[1] = 1000 20
p[0] & p[1] = 1000 20

�Why do you get this output?

122

Consider an array of classes
class Thing{

int value = 0;
char answer = 'y';

}

void main(){
printThings(initThings());

}

void printThings(Thing[] tt){
for (int i = 0; i < tt.length; i++){

println("value = "+tt[i].value+" answer = "+tt[i].answer);
}

}

123

How do we write Thing[]initThings?
� Within initThings we need first to create an array.
� Thing[] tt = new Thing[5];
� If tt just held integers then each array element would

contain a 0.
� But since each array element holds an object it needs

to contain the address of the object.
� As none of the objects have yet been given addresses

then each array element contains the special null
address which is normally shown with the symbol you
can see below:

124

To initialise every cell in tt
for (int i = 0; i < tt.length; i++){

Thing t;
tt[i] = t;

}
� If you check each array element before the

statement tt[i] = t; has been executed you will
see that it contains the value null.

� If you check each element after tt[i] = t; has
been executed you will see that it has been
initialised.

� Execute the program in step mode and check the
array values at each for loop iteration.

125

What happens when you execute one
iteration of the for loop (say i = 2)

0 ‘y’

0 ‘y’

Thing t;

tt[2]=t;

0 ‘y’

126

The complete program
class Thing{

int value = 0;
char answer = 'y';

}

void main(){
printThings(initThings());

}

Thing[] initThings(){
Thing[] tt = new Thing[5];
for (int i = 0; i < tt.length; i++){

Thing t; //grabs appropriate space on the heap
tt[i] = t;

}
return tt;

}

void printThings(Thing[] tt){
for (int i = 0; i < tt.length; i++){

println("value = " + tt[i].value + " answer = " + tt[i].answer);
}

}

127

Summary
� Variables declared as a class or array type are

objects and not primitive. This means they are
actually references to memory addresses in the
heap.

� Tests for equality and assignment have to be
undertaken subcomponent by subcomponent.

� Arrays can be assigned using arraycopy.
�Objects are held on the heap and when changed in a

method are permanently changed.

Susan Eisenbach 128

Lecture 7 : Enumerated Types and
Simulation

Lecturer : Susan Eisenbach
For extra material read chapter 3 of Java Software

Solutions.
This is the 7th lecture in which enumeration types are

explained and a simulation program for a vending
machine is developed.

129

Kenya has enumerated types like
Haskell

� An enumerated type is a type whose legal values consist of a
fixed set of constants.

� When the data your program uses is not numeric then using an
enumerated type makes your program more readable and hence
more maintainable

� Haskell:
 data Day =
 Sun|Mon|Tues|Wed|Thurs|Fri|Sat
� Kenya:
 enum Day{
 SUN,MON,TUES,WED,THURS,FRI,SAT;
 }
� By convention the constants are all written in upper case.

130

Enumerated types - examples
�compass directions, which take the

values North, South, East and West
�days of the week, which take the values

Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, and Saturday

�suits in a deck of cards
�values in a deck of cards
�planets in our solar system
�operators for a calculator

131

Using an enumerated type
� You must use the name of the enumerated

type before the value so with declaration
enum Day{
 SUN,MON,TUES,WED,THURS,FRI,SAT;
 }

 you write code such as:
 Day today;
 today = Day.MON;
 println(today);

Day must prefix
every value of Day 132

The next element
void main() {

Days d = Days.SUN;
while (d != Days.SAT){

println(d);
d = enumSucc(d);

}
println(d);
}

This gives the next day
In the list of Days

133

Can use enumerated types with for
loops

void main() {
for(Days d = Days.SUN;

d != null;
d = enumSucc(d))

{
println(d);

}
}

Cannot use < or > on
an enumerated type,
just == and !=.

134

Enumerated types and switch
statements

�One of the most useful things you can do
with an enumerated type is use it for a
switch variable.

�In switch cases, you must remember not
to put the type-name as a prefix for the
constants.

135

switch (today){
case MON :{}
case TUES :{}
case WED :{}
case THURS :{work(); break;}
case FRI :{play(); break;}
case SAT :{}
case SUN :{doNothing();}

}

Day does not prefix
the choices

136

Without and with the prefix
Day closestWeekDay(Day d){

switch (d){
case SAT :{return Day.FRI;}
case SUN :{return Day.MON;}
default : {return d;}

}
}

137

Simulation
� Computer programs are regularly written to

simulate something real.
� You have probably all played simulation games

(e.g. a computer game of solitaire or a flight
simulator) but simulation is also used to help
understand some real process that is too
difficult to understand any other way

� There is an entire course in the third year for
understanding how to write simulation
programs called "Simulation and Modelling" –
Tony Field and Jeremy Bradley.

138

Vending Machine
�We will now develop a program to simulate a

vending machine that sells sweets.
�Here is the interaction between the machine

and the user
– Machine: lists sweets with numbers and prices
– User: inputs number of choice
– Machine: lists price of chosen item
– User: inputs money
– Machine: gives change (in fewest possible number of coins)

� Two simplifications on reality:
– our vending machine always has all the coins it needs to give

the appropriate change
– our users always put in at least enough money

139

Sample Vending Machine Interaction
********** Vending Machine **************
*** Choose From the Following ***********
1: Mars Bars ******** 50 p *
2: Polos ******** 36 p *
3: Mini Skittles ********* 12 p *
4: Crisps ********* 44 p *

Please make your choice 4
Please pay in 44 pence, paid in 60
Your change in the fewest possible coins:
1 one pence
1 five pence
1 ten pence

140

� Declare variables to hold the choice, the payment and
the cost.

� In the program the prices of the sweets must be
known. Declare and initialise a variable to hold the
prices of the sweets.

First step in implementing:
declarations for the data

int choice;
int payment;
int cost;

int[] prices = {50,36,12,44};

141

� In order to give the appropriate change in coins, the
values of each of the coins must be known. Declare and
initialise a variable to hold the values of all coins.

� In order to print out the change, the coin names must
be known. Declare and initialise a variable to hold the
names of all the coins.

First step in implementing:
declarations for the data

String[] coinNames = {"one pence", "two pence",
"five pence", "ten pence",
"twenty pence",
"fifty pence", "one pound",
"two pounds"};

int[] values = {1,2,5,10,20,50,100,200};

142

The hardest problem
� Given an amount it will be necessary to convert

it into the (fewest) coins needed to make up
that amount. So we need a method that does
the following:
– 3 Æ {1,1,0,0,0,0,0,0}
– 65 Æ {0,0,1,1,0,1,0,0}
– 48 Æ {1,1,1,0,2,0,0,0} , etc.

� To do this the array of values is also required,
since we need to know the value of each of the
coins.

143

Declaring coins

�Write the declaration (header) for a
method called coins which takes as
arguments the amount (assume it is > 0)
and the values of the coins. Include your
pre and post conditions.

int[] coins(int n, int[] values)
assert (n > 0);
//post: the fewest coins whose values sum to
// equal n is returned

144

How do you solve the problem?
� You need to create a local (just in the method)

array money to return from the method
containing the different numbers of coins.

� You need a local variable whatsLeft that
contains the amount you haven't yet put into
money.

walk over the array values from right to left
money[i] = whatsLeft / values[i]
whatsLeft = whatsLeft % values[i]

return money

145

In Java
{
int money = new int [8];
int whatsLeft = n;

for (int i = money.length-1; i>=0; i--){
money[i] = whatsLeft / values[i];
whatsLeft = whatsLeft % values[i];

}
return money;

}

146

What if you want to be able to
do the converse of coins?

� Declare a method sum which takes as an argument an
array money which contains the number of each of the
coins and which returns the sum of the coins. You will
also need to pass values as an argument in order to
calculate the sum. Include any pre or post conditions.

� What is the algorithm for the body of the method?

int sum(int[] money, int[] values)
//post: the monetary value of m is returned

total = 0
walk over the array money (from left to right)

total = total + money[i]*values[i]
return total

147

Write the method sum in Java
int sum(int[] money, int[] values){
//post: the monetary value of m is returned
int total = 0;

for (int i = 0; i<money.length; i++){
total = total + money[i]*values[i];

}
return total;

}

148

You need to be able to print out
the change in words

� Declare a method printMoney, which takes an array
with the money to be printed and an array of the
names of the coins and prints on the screen the
number of each of the coins.

� What is the algorithm for the body of the method?

void printMoney(int[] m, String[] names)
//post: the names and numbers of the coins
// in M are printed on the screen

walk over the array money (from left to right)
if money[i]>0 println money[i] : names[i]

149

Write the method printMoney
in Java

void printMoney(int[] m, String[] names){
//post: the names and numbers of the coins
// in M are printed on the screen
for (int i = 0; i < m.length; i++){

if (m[i] > 0) {println(m[i] +
" " + names[i]);}

}
}

150

Finally, the main program
void main(){//all the declarations go here

println(" ********* Vending Machine **************");
println(" ******* Choose From the Following ******");
println(" 1: Mars Bars ****** 50 p *");
println(" 2: Polos ****** 36 p *");
println(" 3: Mini Skittles ****** 12 p *");
println(" 4: Crisps ****** 44 p *");
println(" **");
print("Please make your choice");
choice = readInt();
cost = prices[choice-1];
print("Please pay in " + cost + " pence, paid in ");
payment = readInt();
println("Your change in the fewest possible coins: ");
printMoney (coins(payment - cost, values), coinNames);

}

151

Summary
� Kenya has enumerated types like Haskell.
� An enumerated type is a type whose legal

values consist of a fixed set of constants.
�When the data your program uses is not

numeric then using an enumerated type makes
your program more readable and hence more
maintainable.

� You must use the name of the enumerated
type before the value.

� Two values of the same enumerated type can
be compared with == and != .

152

Summary

� enumSucc is used to get to the next value, so they
can be used in for loops as counters

�One of the most useful things you can do with an
enumerated type is use it for a switch variable (in
this case without the prefix.

� A simulation program for a vending machine was
developed.

� It was developed by first deciding on the data
needed and then writing the methods that worked
on the data.

Susan Eisenbach 153

Lecture 8 : The Design of
Algorithms

Lecturer : Susan Eisenbach

This is the 8th lecture on Java in which we look at
how to design programs.

154

Sorting an unknown number of
numbers

� In the tutorial question last week you were
asked to sort 10 numbers.

� This is quite a restrictive problem.
�How would you sort any number of numbers

(say up to 100)?
� Firstly you need to know how many numbers

you are going to sort.
� There are three ways of doing this. You can

type in the number of numbers, followed by
the numbers. These can be processed with a
for loop.

155

Sentinel values
� If you don't want to count the numbers first

and there is at least one value that could not
be in the list (say if you were sorting non-
negative numbers any negative value would do,
otherwise a very large or very small number
that wouldn't be in your data for example –
9999) put it at the end.

� For example, if you are sorting the numbers
1, 6, 4, 0, 7, 8

� The list 1, 6, 4, 0, 7, 8, -1 is entered and the
first 6 numbers are sorted.

� The value –1 (which mustn't be sorted) is
called a sentinel value. 156

How do you read in the list?
� You need to declare the array at its maximum

size.

� You need to declare an integer variable to hold
the actual length of the list, which you get by
counting.

� This will have to be passed to the sort method.
� You need a boolean variable that is true iff you

should continue reading numbers.

� You need a double variable to hold the number
that is read in.

double[] vector = new double [100];

int len = 0;

boolean goOn = true;

double buf;

157

Now you need a while loop to
read in the numbers
while (goOn){

buf = readDouble();
goOn = len < 100 && buf > -1;
if (goOn) {

vector[len] = buf;
len = len + 1;

}
}
� It is important not to store the sentinel value in

the array
158

The special End of File character

�When input comes from a file rather than the
keyboard after all the input has been
consumed a system predicate isEOF is set to
true.

�When input comes from the keyboard you can
set this predicate to true in 2 ways
– by typing in ^Z (pronounced Control Z)(windows) or ^D (linux)
– by pressing the EOF button on the rhs of the input panel

� This predicate can be used to stop reading in
values.

159

Now you need a while loop to
read in the numbers
double[] vector = new double[100];
int len = 0;
while (!isEOF() && len < 100){

vector[len] = readDouble();
len = len + 1;

}

160

The programming process
� programming without much thought only works

for small problems
�many different schemes exist to systematise

programming
� they encourage programmers of diverse

abilities and experience to produce programs
of uniform quality

� we'll use a three-stage process which provides
a framework to:
– generate consistent, understandable programs
– allow scope for individual programmers to apply

their own problem-solving skills

161

The programming process
� requirements specification : What should the

program do?
� results in a document known as the

requirements specification or specification
� This is written in formal logic and/or concise

English.
I know you believe you understand what you think I said,

but I am not sure you realise
that what you heard
is not what I meant.

Anon
162

The programming process
� design : How will the program satisfy these

requirements?
– data - information the program manipulates
– algorithms - methods to manipulate the data results in the

design documentation or design

� implementation : design is transformed into
code
– coding - should be routine, results in the "finished product" -

tangible code
– testing - does the program perform according to spec?

163

Design documentation
� design is an iterative process, progressively

more detailed decisions are made:
– data
– algorithms

� the process of refining the algorithms with
detail is known as
stepwise refinement or top down design

� documents required:
– data declarations - for the data
– pseudo-code or Haskell - for the algorithms

164

Specification of a calculator
� Concise verbal statement to start:

The program should accept two numbers, separated by an
arithmetic operator, and should produce the correct
arithmetic result, if this is calculable.

� Forms the basis of a discussion between
programmer and client to fill in details.
– What is a number?
– What is an arithmetic operator?
– What sums are calculable?
– What form should the sum be in?
– What should the program do if the result is not

calculable?
– How many calculations should the program do?

165

Refining the requirements
specification

The program should accept two numbers, separated by an
arithmetic operator, and should produce the correct
arithmetic result, if this is calculable.

Numbers are non-negative whole numbers.
Arithmetic operators are +, -, * and /.
Calculable means that the result must be finite, whole and

non-negative.
Input consists of number operator number return.
Input may be separated by spaces and is separated from the

result by a new line.
It is assumed that the user types in correct data.
A potentially incalculable result will produce the error

message: "cannot calculate".
166

The data
�What does a program do? It consumes input

and produces output. The first stage of design
is to figure out what inputs to the program are
and what the outputs from the program are.

� All inputs and outputs identifiers (names)
need to be declared and defined.

� Data types are those that are recognised by
Java and written in Java.

� Comments are written after // .

167

Inputs and outputs

� inputs are from the keyboard
– first
– op
– sec

�outputs are to the screen
– result
– errorMessage

�program called calculator

168

Data declarations for the
calculator

String errorMessage = "cannot calculate";
int first;
char op; //one of: + - * /
int sec;
int result;

Alternatively op could be an enumerated type:
Operator = {PLUS, MINUS, TIMES, DIVIDE}
Operator op;
�Now all we need to do is define a

calculator //performs simple arithmetic on
//non-negative integers

169

Pseudo-code
�We need a language to write our algorithms in.
� This could be Java but then you need to worry

about syntax details.
� Instead we will use a language called pseudo-

code. It has no predefined syntax.
� It is close enough to Java to translate

obviously. It is close enough to English that
you don't have to worry about fussy details of
syntax.

� Everyone's pseudo-code is slightly different.
� There has already been some pseudo-code

used in this course. 170

Stepwise refinement
�When writing the algorithm whenever things

get complicated make up a name and hive the
complication off to another process to be
dealt with later. (Use indents instead of
brackets and semicolons)

calculator:
read first, op, sec
if the expression is calculable
then evaluate the expression put the result
else put errorMessage

171

Extend data declarations to
include Expression

class Expression{
int first;
char op; //'+','-','*','/'
int sec;

}

172

Now define evaluate
evaluate:
pre IsCalculable
switch on op

'+' : result first + sec
'-' : result first - sec
'*' : result first * sec
'/' : result first / sec

How would you write evaluate in Haskell
instead of pseudo-code?

173

Now isCalculable
� Turn isCalculable into something that is obviously a

predicate - a boolean method
isCalculable :

switch on op
'-' : result first >= sec
'/' : result sec != 0
'+', '*' : result true

: result false
or isCalculable:

return op == '+' || op == '*' ||
op == '-' && first >= sec ||
op == '/' && sec != 0

174

Design complete
� For first year programs, the data declarations

(extended with anything new that comes out of the
pseudo-code) and pseudo-code form the design.

� Before proceeding to write the code, reread the
specification. Check that the design meets the
specification and change the design if it does not.

� It should be straightforward to turn the design into
code.

� The class, variable and method declarations should
come from the data declarations.

� The code should come from the pseudo-code. Amend
the pseudo-code and data declarations if you decide on
any changes. Programming is an iterative process and
there will be changes.

175

Declarations
class Expression{
int first;
char op;
int sec;

}

String errorMessage = "cannot calculate";
Expression expr;

176

isCalculable (both versions)
boolean isCalculable (Expression e){
return e.op == '+' or e.op == '*' ||

e.op == '-' && e.first >= e.sec ||
e.op = '/' && e.sec != 0;

}
boolean isCalculable(Expression e) {
switch (e.op) {
case '-' : {return e.first >= e.sec;}
case '/' : {return e.sec != 0;}
case '+' : {return true;}
case '*' : {return true;}
default : {return false;}
}

}

177

Evaluate:
int evaluate (Expression e){)
assert (isCalculable(e));
switch (e.op) {

case '+' : {return e.first + e.sec;}
case '-' : {return e.first - e.sec;}
case '*' : {return e.first * e.sec;}
case '/' : {return e.first / e.sec;}
default : {return -1;}

}
}

178

Finally, the program:
void main(){

String errorMessage = “cannot calculate”;

Expression expr ;

expr.first = readInt();

expr.op = readChar();

expr.sec = readInt();

if (isCalculable(expr))

{println(evaluate (expr));}

else {println(errorMessage);}

}

179

Summary

� To be able to solve a problem by computer you must
be able to decide what the problem is and how it
should be solved.

� Java is less abstract than Haskell so programs
written in it must be designed before they are
committed to code.

� The first step in solving a problem is to understand
what the problem is; this is called the specification
stage.

180

Summary(cont.)

� How a problem should be solved should be tackled
after completely determining what the problem is.

� How to solve the problem comes next - the design.
� The method of stepwise refinement consists of

decomposing a problem into simpler sub-problems.
� This data needs to be decided on as well.
� An algorithm describes how the inputs to a

process produce the outputs.
� Algorithms are described either in Haskell or

pseudo-code.

Susan Eisenbach 181

Lecture 9 : Designing Input
Lecturer : Susan Eisenbach

This is the 9th lecture on Java in which we look
at the kinds of difficulties reasonable input

causes a programmer.

182

Back to the calculator
� The specification of a calculator was too rigid.

Any reasonable calculator program would be
more flexible about its input. The original
specification said:

Input consists of number operator number return.
Input may be separated by spaces and is separated
from the result by a new line. It is assumed that the
user types in correct data.

�More reasonably would have been a
specification that included:

If the user fails to type in correct data then an error
message "not an expression" will be output.

183

Altering the previous
declarations

The data declarations:
class Expression{

int first;
char op;
int sec;

}
String notCalculable = "cannot calculate"
String syntaxError = "not an expression"
� The program declaration:
calculator //program performs arithmetic on non-negative ints
� The method declarations:
evaluate = int evaluate(expression)

pre isCalculable
isCalculable = boolean isCalculable(expression)

What happened to result?

184

Pseudo-code

� The only change needed in the main program is
that instead of using the Java readInt,
readChar and readInt to read in an
expression it should be hived off to its own
method to be sorted out. Pseudo-code isn't
wonderful for such fiddly details so the code
is also provided.

185

Calculator:
readExpression
if the expression isCalculable

evaluate the expression
print the result

else print notCalculable

�All the real work needs
to be done in
readExpression

expr=readExpression();
if isCalculable(expr)
{println
(evaluate(expr));}

else
{println

(notCalculable);}

186

How do we do input?
� Previously our input was done with the statements:

expr.first = readInt();
expr.op = readChar();
expr.sec = readInt();

If you type in:
x + 2

� You never want your users to see wrong answers or
messages you didn't write.

Could not read integer, incorrectly formatted number (x)

187

Why?
�Our input routine must be able to deal with receiving

syntactically incorrect data and outputting the error
message

"not an expression"
� readInt terminates on any non-numeric character.
� Given the input x + 2 readInt reads in the x, the

first non-numeric character, rejects it as a number,
and terminates the entire program.

188

Converting numeric character
strings to numbers

� readInt() reads in numbers as strings and then
converts what it has to a numeric value.

� How does it convert "345" into 345?
� You process the characters from left to right.
� string left value of number

"345" 0
"45" 10*0+3 = 3
"5" 10*3 + 4 = 34
"" 10*34 + 5 = 345

3 4 5 0334345

189

How do we convert the character
'5' to the number 5?

� All characters have ascii values.
– '0' is 48
– '1' is 49
– '2' is 50, etc

� So the ascii value of ('5') minus the ascii value
of ('0') is equal to

� You can get the ascii value of a character by
assigning it to an integer variable.

� So if c is a char, c – 48 will be the value you
want.

� Alternatively you can use the Kenya builtin
method charToInt(c).

� There is also intToChar(i).

5

190

What other builtin methods are in
Kenya?

� Check out http://www.doc.ic.ac.uk/kenya/kenya4/ReferenceGuide/
� String charsToString(char[] source);
� void main(){

char[] myChars = {
'h','e','l','l','o',‘ ','w','o','r','l','d' };

String helloWorld = charsToString(myChars);
// prints "hello world"
println(helloWorld);

}

� char[] stringToChars(String argument)

191

Switches can be used to convert a
character to a numeric value.

� Write a method that takes a character in the range '0' <=
character <= '9' and returns the numeric value, eg '0' Æ 0,
etc. Use a switch statement.

int convert(char c){
assert (isDigit(c));

switch (c) {
case '0' : {return 0;}
case '1' : {return 1;}
case '2' : {return 2;}
case '3' : {return 3;}
case '4' : {return 4;}
case '5' : {return 5;}
case '6' : {return 6;}
case '7' : {return 7;}
case '8' : {return 8;}
case '9' : {return 9;}
default : {return -1;}

}
}

this only works if
the character is a
digit

192

isDigit for the assertion

�Write a predicate (boolean method)
isDigit that returns true iff a
character is in the range '0' to '9'.

boolean isDigit(char c){
return '0' <= c && c <= '9'

}

193

Buffering input
� If you wish your program to print out all error

messages then you have to read in the characters and
convert them into numbers yourself.

� To write a calculator which will accept both 31+4 and
31 + 4 we need to process a character at a time and
convert the characters into numbers where
appropriate.

3 1 + 4 \n

{ {

3 1 + 4 \n

{ {

first number character terminating
number 194

Two ways we can write readExpression:
; read one character at a time and process it as it arrives
; read the complete input line into an array of char and then

process it
: do not use String, because you cannot process characters

in it and because readString() will only read up to the
first space

� you will only know that you have finished a number when you
are looking at the character that follows:
– 31 + 4
– 35+4

� in the first example you need to read in the ' ' to know that
the number is 31. In the second example you need to read
in the '+' before you know that the number is 35.

195

Processing a line at a time
� If we wish to process a line at a time then

readExpression will need to be rewritten.
readExpression:
readLine
if isValid //number operator number

convert line to expression
else

println syntaxError
readExpression

� readLine, isValid and convert still need to be
written. 196

if isValid //number operator number
convert line to expression

� This says divide the problem in two. First walk over
the array of characters checking that you have
characters that will convert to what you want, then
convert the entire array of characters.

� Dealing with error filled input is difficult and this
simplifies the task since you only do the conversion
on syntactically correct input.

� You can only use this technique if your input data
can be looked at more than once without consuming
it.

197

In Java
Expression readExpression(){
char[] line = new char[20];
Expression e;
line = readLine();
if (isValid(line))

{e = convert(line);
return e}

else{
println(syntaxError);
return readExpression();

}
} 198

Alternatively you could have a readExpression
which is done a character at a time:

readNum
if okay

readOp
if okay
then readNum

if not okay
println syntaxError
throw away rest of line
readExpression

� where readNum and readOp still need to be
written.

199

Summary
� Design is an iterative process so the designer may

need to return to an earlier stage for amendments and
additions.

� There are frequently several ways to solve a problem.
To find the best way solve the problem in the ways you
think are good and then compare the solutions for
clarity.

� Errors identified and corrected at the design stage
are less expensive than those that survive to the
implementation stage and beyond.

� Some program somewhere has to convert characters
typed in into numbers used in programs.

� Anything but the simplest input is difficult to do.

Susan Eisenbach 200

Lecture 10: Testing and Debugging
Lecturer : Susan Eisenbach

For extra material read part of Chapter 10 of
Java Software Solutions

This is the 10th lecture in which how to test
whether a program fulfils its specification and

how to debug it, if it doesn't are covered.

201

Testing
� test that your program does what it was required to

do go back to the specification
� test at the limits of data ranges
� alter program if it fails with any legal input data
� document what the program does in situations where

the specification does not describe the intended
behaviour

� the program should never be allowed to crash or
rubbish (an incorrect answer or inappropriate error
message) be allowed to appear on the screen

� draw up a test table
202

The specification for Calculator
� The program should accept two numbers, separated by

an arithmetic operator, and should produce the
correct arithmetic result, if this is calculable.

� Numbers are non-negative whole numbers.
� Arithmetic operators are +, -, * and /.
� Calculable means that the result must be finite, whole

and positive.
� Input consists of number operator number return.
� Input may be separated by spaces and is separated

from the result by a new line.
� If the user fails to type in correct data then an error

message "not an expression" will be output.
� A potentially incalculable result will produce the error

message: "cannot calculate".

203

Test data
Input

Expected
Outcome

Comment

3+3 6 correct addition
10-2 8 correct subtraction
3* 4 12 correct multiplication
21 /3 7 correct exact division
22/3 7 correct whole num. division

4- 11 cannot calculate appropriate error message
22/0 cannot calculate appropriate error message
0/0 cannot calculate appropriate error message
2&3 not an expression appropriate error message
3^4 not an expression appropriate error message

 204

Not so straightforward test
data

Input

Expected
Outcome

Comment

-3 ??? outside of specification
6+ ??? outside of specification
+ ??? outside of specification
= ??? outside of specification
a-b ??? outside of specification

0*0 0 at limits of specification
biggest number -
biggest number

0 at limits of specification

biggest number *1 biggest number at limits of number range
biggest number +1

overflow error outside of specification

biggest number *10

overflow error outside of specification

205

Test as you code
� bugs (technical term) are errors in programs
� bugs are difficult to find in complete programs
� test each method as soon as you have written

it
� two ways of testing methods:
� test harnesses - write a small program to test

each method
� incremental testing - use the whole program to

test each new method
� either way, testing as you go takes up less time

then post testing 206

Example test harness to test evaluate
class Expression{

int first;
char op;
int sec;

}
void main(){
Expression e;

e.first = readInt(); e.op = readChar(); e.sec = readInt();
println(evaluate(e));

}

int evaluate(Expression e) {
switch (e.op) {

case '+' : {return e.first + e.sec; }
case '-' : {return e.first - e.sec; }
case '*' : {return e.first * e.sec; }
case '/' : {return e.first / e.sec; }

}
return 0;

}

207

Alternatively, use incremental testing
�Write the declarations and main program first.
� All declarations for methods have to be

written as well. These should include
comments.

� The bodies of each method should be trivial.
These are called stubs.

� Execute the program. If there is a bug then
fix it.

� Then replace one stub at a time. Each time
testing the code.

� Bugs can always be isolated to the latest
added code. 208

Example stubs for testing the main program
Expression readExpression(){
Expression e;

e.first = 2;
e.op = '*';
e.sec = 21;
return e;

}

boolean isCalculable(Expression e) {
return true;

}

int evaluate(Expression e) {
assert (isCalculable(e));

return 42;
}

209

class Expression {
int first = 0;
char op;
int sec = 0;

}

void main(){
String notCalculable = "cannot calculate";

Expression expr;
expr = readExpression();
if (isCalculable(expr)) {println("= " + evaluate(expr));}
else {println(notCalculable);}

}
Expression readExpression(){stub code goes here}
boolean isCalculable(Expression e) {stub code goes here}
int evaluate(Expression e) {stub code goes here}

Calling the stubs

code being
tested

210

Debugging complete code
� when a program goes wrong you need:

– what code was being executed
– what data was being used

� insert debugging code
� need to produce a trace

main program entered
isCalculable entered
evaluate entered

<crash>

211

Permanent tracing code
� use a boolean constant at the top of the code

boolean tracing = true;

� at the start of each method foo include:
if (tracing) {println("foo entered");}

� at the end of each void method include:
if (tracing) {println("foo exited");}

� ¿ Why don't non-void methods get this code as well?
� When you don't want to see the trace you change the

value of tracing to false.

212

Debugging data
�Need to print out values of possible offending

variables
� Use another boolean constant for this:

boolean debug = true ;
� Insert code where it might be needed:

if debug {println("ch = " + ch);}

� Write methods to print out classes:
void printExpression(Expression e)

213

Summary
� Test throughout program development to ease finding

bugs.
� Use test harnesses and stubs to find bugs in methods.
� Test a program against its requirements.
� Test with typical data, then at limits then outside the

specification.
� If a program does not work properly it needs to be

debugged. Insert debugging code to find the source of
the error. Do this systematically.

� Trace your program by hand. Time spent this way will
be less than the time spent sitting at the machine
looking for bugs.

Susan Eisenbach 214

Lecture 11 : Abstract Data Types
Lecturer : Susan Eisenbach

For extra material read Chapter 12 of
Java Software Solutions

This is the 11th lecture on Java in which
we define abstract data types and
describe an actual use.

215

Another Calculator
� We will consider a program which can deal with a "long"

expression defined as follows:
Expression=Operand,{Operator,Operand,} "="
Operand = int
Operator =‘+’ | ‘-’| ‘*’ | ‘/’| ‘^’

� The expression now corresponds to any arithmetic
expression with several operators but without
brackets.

� In the simplest case do 'left-to-right’ evaluation. Thus
3 + 4 - 5 + 6 = (3 + 4) - 5 + 6

= (7 - 5) + 6
= 2 + 6
= 8

� The ideas embodied in the first Calculator could be
adapted to give pseudo-code along the following lines. 216

Start Off Calculation:
read first operand
read operator
calculate.
write out the result which is held in first operand.

calculate:
if operator isn't "="

read second operand
evaluate the expression
assign the result to first operand
read operator
calculate.

What is wrong with this?

217

Precedence
Left-to-right evaluation only applies to operations of the

same precedence. Consider the expression
a + b * c ^ d / e =

Precedence rules
^ highest
* / high
+ - low
= lowest

� The program will need to scan the input expression and
can safely evaluate subexpressions from left to right
until a higher-precedence operator is encountered.

� The current evaluation will have to be suspended until
the higher-precedence operation has yielded a result. 218

Operations Required
1. Insert a subexpression
2. Remove the most recently inserted

subexpression
3. Examine the most recently inserted operator.
� Better to have two data structures one for

numbers one for operators.
� This data structure is called a stack.
�Have you seen another data structure

that looks like a stack?

219

Stack Operations
� isEmpty returns true iff the stack has no

elements in it.
� empty returns an empty stack

stack = empty | push(item, stack)
� top returns the top element of the stack.
� push takes a stack and an item and returns

the stack with item added at the top.
� pop takes a stack and returns it with the top

element removed.

220

User defined types
� Java cannot provide every data structure that

is needed by every programmer.
� Java lets you create new data structures using

its classes.
�When accessing elements of these user

defined data structures methods are used.
� So instead of getting elements with x[i], like

arrays or x.i like fields in classes, the
programmer has to write methods to get items
from the user defined data structures.

221

User defined types are not enough

� Although user defined types are useful
something like Haskell’s polymorphism is
important so that the user defined types do
not have to contain the type of the elements.

� The latest Java now has generic types which
are similar to polymorphic types.

� So now in Java it is possible to define lists,
trees, etc which can be used for holding values
of any type such as ints, chars or whatever is
required by the program.

222

Many Haskell functions are polymorphic

�fst :: (a, b) -> a Pair index
�fst(3,”Hello”) of 3
Note that the type of fst involves two
type variables

�since pair elements can be of any type

223

Java Generics
� To declare a pair of two elements of the same

type in Java:
class Pair<T>{
T a;
T b;
}

� To declare a pair of two elements of (possibly)
different types in Java:

class Pair<S,T>{
S a;
T b;
}

type variable declaration

type variable declarations

224

Program using a Pair<T>
void main() {

Pair<String> twoStrings;
twoStrings.a = "hello";
twoStrings.b = "world";
println(twoStrings.a);

Pair<int> twoInts;
twoInts.a = 3;
twoInts.b = 4;
println(twoInts.a);

}

class Pair<T>{
T a;
T b;

}

225

Program using a Pair<S,T>
void main() {

Pair<String,String> twoStrings;
twoStrings.a = "hello";
twoStrings.b = "world";

Pair<int,char> intChar;
intChar.a = 3;
intChar.b = 'x';
println(intChar.b);

}

class Pair<S,T>{
S a;
T b;

}

226

Generic methods
�Methods can have generic types.
�The generic types must come before the

return type.
�Both the arguments and return type may

be generic
<S,T> S first(Pair<S,T> p){

return p.a;
}

returns something of the first generic type

227

Access methods for a stack of
items

<<T> boolean isEmpty(Stack<T> s) {//code goes here
}
<T> Stack empty() {//code goes here

//post: isEmpty(empty())
}
<T> T top (Stack<T> s) {//code goes here
assert (! isEmpty(s)) :"no top of an empty stack";
}
<T> Stack push (Stack<T> s, T item) {//code goes here
}
//post top(result)=item
<T> Stack pop(Stack<T> s) {//code goes here
assert (isEmpty(stack)) :"cannot pop an empty stack";
}

228

Using a stack
� In your program you would need the following

declarations:
enum Operator{

PLUS, MINUS, TIMES, DIVIDE;
}
Stack<int> numS;
Stack<Operator> opS;

� Write push(numS,3) to push 3 onto numS
and top(opS) is the top operator on the
operator stack.

229

Using a stack
� We have not said how the actual stack is implemented

as we have not shown the data declarations. Perhaps
our stacks will be implemented as arrays – but they
don’t have to be.

� When using a stack you don't use the actual data
declarations, because they don't model the data
structure (stack here) and may be changed.

� You only use the access methods that need to be
written: isEmpty, empty, pop, push and top.

� Use is independent of the implementation of the
method.

230

calculate:
if there is another item (operand or operator)

if it is an operand
push it onto the numberStack, skip over the item,
calculate the rest of the expression

else if the operatorStack isEmpty or its top is of
lower precedence than the item's precedence

push the item onto the operatorStack,
skip over the item
calculate the rest of the expression

else pop the top two operands and the top operator,
evaluate the expression formed,
push the result onto the numberStack,
calculate the rest of the expression

231

1

Example: calculate 1+3*4 /2 =

4
3 *

+
12 /
2

6
7

if there is another item (operand or operator)
if it is an operand

push it onto the numberStack, Skip over the item,
calculate the rest of the expression

else if the operatorStack isEmpty or its top is of
lower precedence than the item's precedence

push the item onto the operatorStack,
skip over the item
calculate the rest of the expression

else pop the top two operands and the top op,
evaluate the expression formed,
push the result onto the numberStack,
calculate the rest of the expression

232

An array implementation of a
stack

�Declaration of this stack:

‘-’ ‘*’ ‘/’‘+’

5

1 2 3 4 5 6

233

An array implementation of a
stack

Data declarations of this stack:
class Stacks{
int items = new int[20];
int pointer = 0;

//methods go here
}
pointer = ___ when the stack is empty
pointer = ___ when the stack is full

234

Modelling data relationships
� Arrays and records don't model everything.
� In Java you can define your own structures.
�Whether or not Java data structures are

suitable follow a three stages process for
establishing any data-store:
– Discern the need for a data store and establish its

characteristics and the interrelationships of its components.
– Make arrangements to create a data store within the program

which faithfully reflects the real-world structure.
– Produce code to manage the structure - i.e. to examine the

data store and to insert and remove items.

235

Important jargon
� In general these operations will not be as simple as for

arrays and each operation will be realised as a
separate method, called an access method.

� In Java you can consider the use and creation of the
data structure entirely separately.

� The programmer can consider how the data store will
be accessed without needing to bother about the
practical details of controlling and manipulating
storage - i.e. in the abstract. For this reason, the
collection of operations is often known as an abstract
data type.

� Using abstract data types is a major tool for program
decomposition in modern programming practice.

236

Summary
� When designing a data structure a programmer must:

– establish those characteristics dictated by the problem
– create a data structure that has these characteristics
– produce code to manage the structure.

� Operations designed to manage a data structure are called access
methods. A collection of such operations, all applicable to a
particular type of data structure, is called an abstract data type.

� A stack is an example of an abstract data type.
� Arithmetic expressions can be evaluated, by using stacks to store

both numbers and operators until needed.The use of the stacks
ensures that the correct order of operations is observed.

� Next term you will look at many different abstract data types
since they are a very powerful programming tool.

