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Course Design

� Preliminaries:
Introduction, Induction, While.� Natural Semantics� Structural Operational Semantics� Correct implementation� Denotational Semantics� Extensions to While:
Parallelism, Blocks and Procedures
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Why formal semantics?

Syntax - Form of sentences:

The fish� ��� �
NP

answered the walk� ��� �
VP

Syntax is specified by a grammar, normally in BNF.

Semantics - Meaning of sentences

while
�
do �

“Execute � repeatedly so long as the expression
�

is true”

It is important that the semantics is formal, systematic and
verifiable to provide

1. ) the user with an unambiguous description of the effect of a
program.

2. ) a yardstick for implementation.

3. ) a basis for program analysis and synthesis.

– Transformation.

– Optimisation.

– Verification.
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States

Semantics deals with the meaning of programs that are
executing. We need the status of the memory during execution.

The state of the memory 	 is a function that maps variable
names to values;

State is the set of all possible states.

We will use the notation
���
��� ��
��������� ����������� �
as a denotation for the state of the memory, indicating the values
for those variable that are relevant to the execution of the
program.
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There are three approaches

Operational Semantics - How the effect of a computation is
produced- abstraction of machine execution.

Denotational Semantics - What is the effect of a computation.

Axiomatic Semantics - The properties of the effect of
executing the constructs are expressed as assertions.

We will compare these approaches using the (toy) example
program !

:=
�
;

�
:= " ; " := !

that swaps the values stored in the variables
�

and " .
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Operational Semantics

� To execute a sequence of statements separated by ‘; ’,
execute the individual statements one after the other from left
to right.� To execute ‘

�
:= " ’, determine the value of " and assign it to�

.

Notation ‘ #%$ � 	'& ’, to be read as ‘the semantics of program $ in
state 	 ’.

# !
:=

�
;

�
:= " ; " := ! �(
��)�� *�� " �� +�� ! �� ,�� &.-

# �
:= " ; " := ! �(
��)�� *�� " �� +�� ! �� */� &.-

#0" := ! �(
��)�� +�� " �� +�� ! �� */� &.-
��)�� +�� " �� *�� ! �� */�
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Denotational Semantics

Effect of a program is a function in State
�

State.

� The effect of ‘; ’ is the functional composition:1
ds [[ 	 


; 	 �
]] 2 1

ds [[ 	 �
]] 3 1

ds [[ 	 

]]

(Notice the inversion of 	 

and 	 �

.)� The effect of ‘
�
:= " ’ is a function in State

�
State: the new

state is identical to the old state except that the (new) value
of

�
is equal to the (old) value of " .1

ds [[
�
:=

�
]] 	4" 2 	4" �

if " 52 �
2 �6�

otherwise

In other words, 1
ds [[

!
:=

�
;

�
:= " ; " := !

]] 21
ds [[ " := !

]] 3 1
ds [[

�
:= " ]] 3 1

ds [[
!
:=

�
]]

Take 	 
 2 
��)�� *7� " �� +�� ! �� ,��
, 	 � 2 	 
 
 ! �� */�

, 	�8�2 	 � 
9�)�� +/�
,

and 	�:�2 	�8 
 " �� */�
, then1

ds [[
!
:=

�
;

�
:= " ; " := !

]] ;0	 
=< 21
ds [[ " := !

]] 3 1
ds [[

�
:= " ]] 3 1

ds [[
!
:=

�
]] ;0	 
 < 21

ds [[ " := !
]] 3 1

ds [[
�
:= " ]] ;0	 � < 21

ds [[ " := !
]] ;0	 8 < 2 	 :
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Axiomatic Semantics

Partial correctness (with respect to Pre- and Post-condition)

Take> � 2 ? & "@2 A B !
:=

�
;

�
:= " ; " := ! > � 2 A & "C2 ?DB

Let

P1 -

> � 2 ? & "C2 A B !
:=

� > ! 2 ? & "E2 A B
P2 -

> ! 2 ? & "E2 A B �
:= "

> ! 2 ? &
� 2 A B

P3 -

> � 2 ? & "C2 A B !
:=

�
;

�
:= "

> ! 2 ? &
� 2 A B

P4 -

> ! 2 ? &
� 2 A BF" := ! >

"@2 ? &
� 2 A B

P5 -

> � 2 ? & "C2 A B !
:=

�
;

�
:= " ; " := ! >

"C2 ? &
� 2 A B

But how to work on> � 2 ? & "C2 A B while true do skip

>
"E2 ? &

� 2 A B
is not easy to see.
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Mathematical Induction

To prove a property GH; � <
for all natural numbers:

Base case - Prove G@; , <
.

Inductive Case - For every I , using the assumption that G@;JI <
holds, prove G@;KIML N <

.

Then G@;O? <
holds for all ? .

In Logic :

GH; , < P IRQ IN
�S
 GH;KI < � G@;KIML N < �

P ? Q IN
� G@;O? <

Theorem: TVUWYX[Z�\ � 2 ;]? ^ ;]?HL N < ^ ;`_�?aL N <b<dc'e �
Proof : By induction.

Base case - Trivial.

Inductive Case - Tgfih 
WYX[Zj\ � 2
;`T fWkX[ZD\ � < L ;KIlL N < � 2 ; IH <

;JIm^ ;KIlL N < ^ ;`_nIML N <=<dc'e L ;KIlL N < � 2
;JIR^ ;KIML N < ^ ;`_nIlL N < L e ;KIlL N < � <dc'e 2

;`_oI 8 L p�I � L IML e I � L N/_nIlL en<dc'e 2
;b;KIlL N < ^ ;KIML _ < ^ ;`_oIlL p <b<dc'e
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Why does this work?

The set IN of natural numbers satisfies:

� , Q IN� if
� Q IN, then

� L NqQ IN.

and IN is the least set with both of these properties.

Usually, one would write ‘Proof: by induction on ? ’, but the
correct formulation is ‘Proof: by induction on the structure of
natural numbers’.
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Theorem: Suppose r satisfies the properties� , Q r� if
� Q r , then

� L NqQ r .

then IN s r .

Proof : By mathematical induction over IN. Take IRQ IN. Then
either IC2 ,

, or IC2 I7t'L N , with I7t6Q IN. To show: IRQ r .

I@2 ,
- By definition of r , we have

, Q r .

I@2 I t L N - Since I t Q IN, by induction also I t Q r . Then, by
definition of r , also IML NqQ r .

So, for all I.Q IN, IRQ r .

Not every (correct) statement over numbers is proved by
induction:

Theorem: There are infinitely many prime numbers.
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Complete Induction

An alternative to the rule for induction is the principle of
Complete Induction (course of values):

To prove a property GH; � <
for all natural numbers:

Base case - Prove G@; , <
.

Inductive Case - For every I , on the assumption that G@;]\ <
holds for every \ smaller than or equal to I , prove G@;JIuLlN <

.

Also these two proofs give you the ‘right’ to say that G@;O? <
holds

for all ? .

In Logic: GH; , < P I �S
 ; P \ovHI � G@;O\ <b< � G@;KIwLMN < �
P ? � G@;O? <

Theorem: These two principles of induction coincide, i.e.
accepting one principle you can show the other holds, and
vice versa.
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Other induction

In general, we will define many sets, relations, . . . , as the least
ones satisfying a set of conditions or rules.

Example: Ev is the least set such that:� , Q Ev.� if IRQ Ev, then IuLx_jQ Ev.

Induction for Ev: to prove G@;O? <
for all ? Q Ev, you

Base case - Prove G@; , <
.

Inductive Case - For every I , using the assumption that G@;KI <
holds, prove G@;JIyL _ <

.

Theorem: If ? Q Ev and A Q Ev, then ?4LzA Q Ev.

Proof : G@; � < 2 P A Q Ev
�{
9� LzA Q Ev

�
. By induction on the

structure of Ev.

Base case -
P A Q Ev

�{
|, LzA Q Ev
�
. Immediate.

Inductive Case - To show:
P A Q Ev

�S
 ; � Lx_ < L A Q Ev
�
. By

induction,
P A Q Ev

�S
�� L A Q Ev
�
. Then alsoP A Q Ev

�{
 ; � LzA < L _}Q Ev
�
.

So
P ? Q Ev

� P A Q Ev
�S
 ?4L~A Q Ev

�
.
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Structural induction

Take: List ; IN <
.

� 
�� Q List ; IN <
.� If ? Q IN, and �DQ List ; IN <

, then ? ����Q List ; IN <
.

An other representation technique is through rules:
premises

conclusions
that has the intended meaning:

if premises, then conclusions.

An inductive proof for G@;`� <
with ��Q List ; IN <

, would follow:

Base case - Prove G@; 
/� <
.

Inductive Case - Assuming G@;`� <
, prove G@;O? ��� <

.
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Example: Take the ‘Miranda’ program

maximum [ ] = 0
maximum (a:x) = a, a >= n

n
where n = maximum x

length [ ] = 0
length (a:x) = 1 + length x

sum [ ] = 0
sum (a:x) = a + sum x

Let G@;`� < 2 sum ��v maximum ��^ length � , then for all ��Q List ; IN <
,G@;`� <

.

Base case - GH; 
�� <
is trivial, since sum


��
= 0 .

Inductive Case - sum ;O? ��� < 2
?�L sum � v

?�L maximum �V^ length � v
maximum ;O? ��� < L maximum ;O? ��� < ^ length ��2

maximum ;O? ��� < ^ length ;O? ��� <
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The general case

As mentioned before, the principle of induction extends to every
‘inductive’ structure, i.e. to every set r defined in terms of

Base case - constants � 
���������� �7� are assumed in r .

Inductive Case - There is a limited number of constructors� 
 ��������� � � , that, given a number of elements of r , produce
another element of r :

if � 
���������� � U�� Q r , then � 
 ;S� 
���������� � U�� < Q r .
. . .

if � 
 ��������� � U�� Q r , then � � ;S� 
 ��������� � U�� < Q r .

Closure - r is defined as the smallest set satisfying the above
two rules.

Because of the third rule, the general form of structural induction
states that to prove G@; � <

for all elements
� Q r , it is sufficient to:

Base case - Prove G@;]� 
 <
up to GH;]� � <

.

Inductive Case - For every � W , assuming that GH;S� 
 <
up toG@;S� U�� < , prove that also GH;K� W ;S� 
���������� � U�� <b<

.
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Example: �
����2 zero �

� 
 ^
� � �u;

� <
or, alternatively

zero Q Exp

� 
 Q Exp

� � Q Exp� 
 ^
� � Q Exp

�
Q Exp� 
 ^ ;
� < Q Exp

Constructors are ‘ ��^ � ’ and ‘ ;b� < ’, ‘zero’ is a constant.

Property: G@;
� < 2 �Mt];St in

�
2 �Mt < t in

�
.

Proof : Induction on the structure of Exp.

Base case - � t ; t in zero 2 , 2 � t < t in zero.

Inductive Case 1 -

�
2

� 
 ^
� �

, and by induction GH;
� 
 <

andG@;
� � <

. Let �MtO;St in

� 
 2 ? 
 2 �Mt < t in

� 

, and�MtS;St in

� � 2 ? � 2 �Mt < t in

� �
. Then� t ; t in

�
2 ? 
 L ? � 2 � t < t in

�
.

Inductive Case 2 -

�
2 ;

� 
 <
, and by induction G@;

� 
 <
. Let� t ; t in

� 
 2 ? 
 2 � t < t in

� 

, then�MtS;St in

�
2 ?�L Nz2 �Mt < t in

�
.
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We occasionally need to do a proof by structural induction over a
number of domains simultaneously, like

� ����2 �
�

��
����2 L � ���7�

Exercise: All
�

-values have an even number of occurrences
of the � -token.

We have informally used rules in our inductive definitions:
premises

conclusions
But since paper is patient, care is needed. What set is defined
by: ? Q r

?�L p�Q r
or:

, Q r
? Q r

?HL _jQ r
?�L _�Q r

? 5Q r
We can define many relations using rules.
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How to use rules

(Implicative) Logic (IL), where we derive statements of the shape���R�
, whose intention is ‘

�
shows

�
’, or ‘from

�
we can

deduce
�

’.

; Ax
< � Q �

���R� ; �
I
< �C� > � B ���

���R� � � ; �
E

< ���R� � � ���R�
�����

These rules describe how to build derivations.

For any set
�

of formulae, if
�

occurs in
�

, then� Q �
�R�R�

is a correct derivation.

18



Suppose we have derived
� � > � B � �

.� � � � � �   ¡¡¡¡¡¡� � > � B �)�
then by the second rule ; �

I
<
, the following is a correct

derivation: � � � � � �   ¡¡¡¡¡¡� � > � B �)�
���R� � �
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And, similarly, if we have
  


and
  �

, one for
���R� � �

, the
other for

���R�
, then by ; �

E
<
, the following is a correct

derivation. � � � � � �
  
 ¡¡¡¡¡¡���R� � �

� � � � � �
  � ¡¡¡¡¡¡�a�m�

�����
These three steps are the only permitted to construct
derivations; the set of derivations for IL is the smallest set
closed for the three derivation constructors, the rules ; Ax

<
,; �

I
<
, and ; �

E
<

given above.

Correct denotation for objects defined by these rules would be  ��� ���R�
. We use

���R�
when speaking of objects in IL. This

then is meant to say that

There exists a derivation built using the three rules above,
that ends with

���R�
.

since, normally, we are not interested in the actual structure of
the derivation showing

���R�
, but only in the fact that the formula

is derivable.

20



However, when you are aiming to prove properties of IL
inductively, the actual structure of derivations becomes
important. An inductive proof over the structure of derivations
would have the following structure.

Proof : By induction on the structure of derivations. We focus on
the last rule used.

(Ax) - Here the derivation is nothing but an application of rule Ax.� Q �
���R�

This is the base case of the induction, and you need to show
directly that the property to prove holds for this derivation.
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(
�

I) - We have a derivation
  t of the structure� � � � � �   ¡¡¡¡¡¡� � > � B �)�

���R� � �
The derivation

 
with conclusion

� � > � B ���
is a

subderivation of
  t for

���R� � �
. We can assume that the

property to prove holds for
 

, and use that to prove that it
holds for

  t .
(
�

E) - We have a derivation
  t of the structure� � � � � �

  
 ¡¡¡¡¡¡���R� � �

� � � � � �
  � ¡¡¡¡¡¡�a�m�

�����
The derivations

  

and

  �
are subderivations of

  t , and we
can assume that the property to prove holds for both, and
use that to prove that the property holds for

  t .
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(Apparent) Static and Reverse Induction

Take the system defined by:

� � � ¢ � ¢
£ � ¢
¢ � £

¢ � £ £ � G¢ � G
Again, writing

£ � ¢
means that there exists a derivation that

has that formula in the bottom line.

Exercise: Show: If
£ � ¢

, then either
£ ¤ ¢

, or
£ ¤ �

and
¢ ¤ �

, or
£ ¤ �

and
¢ ¤ �

.

Exercise: Let r be defined by:

, Q r
? Q r

?�L p}Q r
? Q r ;O? ¥ * <

?�¦ * Q r
Show that IN s r .
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Concrete syntax

The Concrete syntax defines the sequences of symbols
allowable in a syntactically correct program:

# exp & ���§2 # num &F�¨# exp &�# op &�# exp &
# op & ���§2 L �[¦ ��^ � c

# num & ���§2 # digit &©�¨# digit &�# num &
# digit & ���§2 , �[N���_C�np��(ª«� * � e � + �n¬H�n­�� ,

Ambiguous: precedence ªE^ _F¦ N , associativity .

Instead, take

# exp & ���§2 # num &F�u;®# exp &�# op &�# exp & <
# op & ���§2 L �[¦ ��^ � c

# num & ���§2 # digit &©�¨# digit &�# num &
# digit & ���§2 , �[N���_C�np��(ª«� * � e � + �n¬H�n­�� ,

The bracketing now forces the computation.
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Abstract syntax

The Abstract syntax formalises the Allowable Parse Trees.

Syntactic categories ¯ Q exp

op Q Op

? Q Numeral

Definitions
op ����2 L �[¦ ��^ � c

¯ ����2 ? �[; ¯ 

op ¯ ��<
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Natural Semantics

Syntactic Categories:

� Q Arithmetic Expressions

? Q Numeral� Q Variables

where Variables is an infinite set of variable names.

Definitions:

� �°��2 ? � � �[;]� 
 L � � < �u;]� 
 ¦ � � < �u;]� 
 ^ � � <

26



Natural Semantics of Arithmetic Expressions

Semantics as a transition system.

Configurations:

#J� � 	'& ¦ Arithmetic Expressions and state� ¦ an integer (in ZZ, the final state)

We consider two sets of ‘numbers’.

� Numeral, syntactic representation of numbers.� ZZ, the actual numbers.

For example, the forty-second positive number can be
represented as ª�_ 
 Z 2 N , N , N ,±� 2 _±_±_ : 2 * _�²g2 _ � 
0³ 2 N , : �

. We
will use underline to distinguish. So, ª´Q Numeral is a syntactic
representation of the fourth number, and ª Q ZZ is its actual
value. Sometimes, alternatively, we will use µ [[ ]], so µ [[ ª ]] 2 ª
is the fourth element of IN.
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Natural Semantics deals with the relation between the initial and
final state, denoted by: #K� � 	n& � �

(remember that a state maps
variables to values).

The rules :

#0? � 	'& � ?(NUMns)

# �¶� 	'& � 	 �(VARns)

#K� 
 � 	n& � � 
 #K� � � 	'& � � �
#K� 


op � � � 	'& � � 

op

� �(OPns)

where ‘op’ is any of ‘ L � ^ � ¦ ’. Notice that the Natural Semantics
maps pairs of # expression

�
state & to a value, a number in ZZ.

This implies that a state is a mapping from variables to the ‘real
world’ of ZZ.
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Example: Semantics for ;·p´^ � < L ¬ , in a state 	 such that	 � 2 ª . The last rule applied: ;`L ns
<
.#Kp�^ �¶� 	'& � ¸ #K¬ � 	'& � ¸

#i;]pE^ � < L ¬ � 	'& � ¸
The last rule for the left-hand result was: ;¹^ ns

<
.#Kp � 	'& � ¸ # �¶� 	'& � ¸

#Kp�^ �¶� 	'& � ¸ #J¬ � 	n& � ¸
#i;]p�^ � < L ¬ � 	n& � ¸

By rules (NUMns) and (VARns), the three lacking derivations
are easy to construct:

#Kp � 	'& � p # �¶� 	'& � ª
#Kp´^ �¶� 	'& � N�_ #J¬ � 	n& � ¬

#i;]pE^ � < L ¬ � 	'& � _ ,
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Determinism

The Natural Semantics for natural numbers is deterministic:

Theorem: If #K� � 	'& � �
and #K� � 	'& � � t , then

� 2 � t .
Proof : By induction on the structure of derivations, where we
focus on the last rule applied.

Exercise: This semantics is terminating, i.e., for every�RQ Arithmetic Expressions, for all states 	 , there is a
�

such
that #K� � 	n& � �

.
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Denotational Semantics for Arithmetic Expressions

Memory is modeled by functions of type

State 2 Variables
�

ZZ
�

The Denotational Semantics on Arithmetic Expressions is a
total functionº

� Arithmetic Expressions
�

State
�

ZZ
�º

[[ ? ]] 	 2 ?º
[[

�
]] 	 2 	 �º

[[ � 

op � 


]] 	 2
º

[[ � 

]] 	 op

º
[[ � 


]] 	
Example: Suppose 	 � 2 p . Then:º

[[
� L N ]] 	 2

º
[[

�
]] 	©L

º
[[ N ]] 	

2 	 � L N
2 p»L N
2 ª
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Free variables

FV ;O? < 2 ¼
FV ; � < 2

> � B
FV ;]� 


op � � < 2 FV ;]� 
 < �
FV ;]� � <

Theorem: Let 	 and 	 t be such that 	 � 2 	 t � , for all� Q FV ;]� <
. Then

º
[[ � ]] 	q2

º
[[ � ]] 	 t .

Proof : By induction on the structure of terms in
Arithmetic Expressions.
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The language While

Abstract syntax:

� Q Arithmetic Expressions

? Q Numeral� Q Variables� Q Boolean Expressions� Q Statements

� ���§2 ? � � �[;]� 
 L � � < �u;·� 
 ¦ � � < �u;·� 
 ^ � � <
� ���§2 true � false �[;]� 
 2 � � < �u;·� 
 v � � <

�½;J¾ � < �u; � 

&

� �i<
� ���§2 �

:= � � skip �u; � 

;

� � < �[; while �
do

� <
�½; if �

then
� 


else
� ��<

We will normally only write those brackets that are necessary to
avoid confusion.

Example:

" := N ;while ¾~; � 2 N <
do ;O" := ".^ �

;
�
:=

� ¦ N <
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Semantics of Boolean expressions

¿ � Boolean Expressions
�

State
�

TT

where TT 2
>
tt

�
ff B , the set of (semantic) truth values – as follows:¿

[[true]] 	 2 tt¿
[[false]] 	 2 ff¿

[[ � 
 2 � �
]] 	 2 tt, if

º
[[ � 


]] 	©2
º

[[ � �
]] 	

2 ff, if

º
[[ � 


]] 	�52
º

[[ � �
]] 	¿

[[ � 
 v � �
]] 	 2 tt, if

º
[[ � 


]] 	jv
º

[[ � �
]] 	

2 ff, if

º
[[ � 


]] 	j¥
º

[[ � �
]] 	¿

[[ ¾ �
]] 	 2 tt, if

¿
[[

�
]] 	©2 ff

2 ff, if
¿

[[
�
]] 	©2 tt¿

[[
� 


&
� �

]] 	 2 tt, if
¿

[[
� 


]] 	©2 tt &
¿

[[
� �

]] 	©2 tt

2 ff, otherwise
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Natural Semantics of While

Configurations:

# � � 	'& ¦ �
is to be executed from state 	 �

	 ¦ a terminal state, or value.

Transitions: # � � 	'& � 	 t Rules: (extended by (NUMns), (VARns),
and (OPns))

(SKIPns) # skip � 	'& � 	 (ASSns)
#K� � 	n& � �

# � ��2 � � 	'& � 	 
����� �À�
(COMPns)

# � 
 � 	 
 & � 	 � # � � � 	 � & � 	�8# � 

;

� � � 	 
 & � 	�8
(WHILEF

ns)
¿

[[
�
]] 	 
 2 ff# while �

do
� � 	'& � 	

(WHILET
ns)

# � � 	 
 & � 	 � # while �
do

� � 	 � & � 	�8 ¿
[[

�
]] 	 
 2 tt# while �

do
� � 	 
 & � 	 8

(CONDT
ns)

# � 
 � 	 
 & � 	 � ¿
[[

�
]] 	 
 2 tt# if �

then
� 


else
� � � 	 
 & � 	 �

(CONDF
ns)

# � � � 	 
 & � 	 � ¿
[[

�
]] 	 
 2 ff# if �

then
� 


else
� � � 	 
 & � 	 �
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When looking for the semantics of a certain statement
�

in a
specific state 	 , we would first need to construct the derivation� � � � � � ¡¡¡¡¡¡# � � 	'& � ¸
The syntax of

�
guides the construction of the derivation� � � � � � ¡¡¡¡¡¡# � 
 � 	 
 & � ¸

� � � � � � ¡¡¡¡¡¡# � � � 	 � & � ¸
# � � 	'& � ¸

We will, normally, end up looking for derivations for #0? � 	�t�& � ¸
or# skip � 	 t & � ¸

, which is easy.

The only problem is rule (WHILET
ns).� � � � � �   ¡¡¡¡¡¡# while �

do
� � 	'& � ¸
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Suppose
¿

[[
�
]] 	q2 tt, then the derivation is as follows:� � � � � �

  � ¡¡¡¡¡¡# while �
do

� ��¸ 
 & � ¸ �

� � � � � �
  
 ¡¡¡¡¡¡# � � 	n& � ¸ 


# while �
do

� � 	'& � ¸ �
Does this always terminate?� � � � � �   ¡¡¡¡¡¡# while true do skip � 	'& � ¸
Since

¿
[[true]] 	©2 tt for all 	 , we obtain� � � � � �

  � ¡¡¡¡¡¡# while true do skip
� 	'& � ¸# skip � 	'& � 	

# while true do skip � 	'& � ¸
The execution of a statement

�
on a state 	

� terminates if and only if there is a state 	 t such that# � � 	'& � 	�t , and� loops if and only if there is no state 	�t such that # � � 	'& � 	�t .
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Semantic Equivalence

Two statements
� 


and
� �

are semantically equivalent if for all
states 	 and 	 t :

# � 
 � 	'& � 	�t if and only if # � � � 	'& � 	�t .
Lemma: The statements

while
�
do

�
and

if
�
then ; �

;while
�
do

� <
else skip

are semantically equivalent.

Proof : On the Black/White Board.

Theorem: If # � � 	'& � 	 

and # � � 	'& � 	 �

, then 	 
 2 	 �
.

Proof : On the Black/White Board.

Meaning of statements:1
ns � Statements

�
State Á � State1

ns [[
�

]] 	 2 	�t � if # � � 	'& � 	�t
2 undef

�
otherwise

Well-defined, since #®� � ��& � � is deterministic.
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Structural Operational Semantics

Focuses on individual steps of the execution. Transitions:# � � 	'& - Â , Â of the form # � t � 	 t & or 	 t .
A configuration is stuck if there is no Â such that # � � 	'& - Â .

Rules:
(ASSsos) # � �§2 � � 	'& - 	 
����� º

[[ � ]] 	 �
(SKIPsos) # skip � 	'& - 	

(COMP Ãsos)
# � 
 � 	 
 & - 	 �

# � 

;

� � � 	 
 & - # � � � 	 � &
(COMP Äsos)

# � 
�� 	 
 & - # � t
 � 	 � &
# � 


;
� ��� 	 
 & - # � t
 ; � ��� 	 � &

(WHILEsos)# while �
do

� � 	'& - # if �
then ; �

;while
�
do

� <
else skip

� 	n&
(COND Ãsos) # if �

then
� 


else
� � � 	'& - # � 
 � 	n& , ¿

[[
�
]] 	©2 tt

(COND Åsos) # if �
then

� 

else

� ��� 	'& - # � �/� 	n& , ¿
[[

�
]] 	©2 ff
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Sequences

Sequence of
�

in 	 : configurations Â Z � Â 
�� Â �/�������
, such thatÂ Z 2 # � � 	'& , Â W - Â W h 


for
, v \ .

A sequence is a derivation sequence if:

� the sequence is finite ( ? Æ ,
), and Â U is terminal or stuck, or� the sequence is infinite.

Notation: Â Z - W Â W Â Z - ÇDÂ W
Also, for each step there is a derivation tree.

Remark:

� no stuck configurations for the Structural Operational
Semantics.� semantics is deterministic (later), so only 1 derivation
sequence for each configuration.
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Some properties

The execution of a statement
�

in 	
� terminates if and only if there is a finite derivation sequence

of
�

in 	 .� loops if and only if there is an infinite derivation sequence of�
in 	 .� terminates successfully if there is a 	 t such that # � � 	'&M- Ç 	 t .

NB: any terminating execution is also successful in While - this
does not hold for some of the extensions to that language we will
discuss later.

A statement
�

always terminates (loops) if it terminates (loops)
on all states.

Theorem: If # � 

;

� ��� 	 
 &l- fÈ	 �
, then there exists a state 	 Z

and natural numbers I 

and I �

such that # � 
 � 	 
 &M- f®� 	 Z and# � � � 	 Z &l- fÊÉ 	 �
, and I@2 I 
 L I �

.

Proof : By induction on the length of derivation sequences.
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� 

and

� �
are semantically equivalent if for all states 	 :

� # � 
�� 	'&l- ÇËÂ if and only if # � �/� 	'&M- Ç�Â ( Â either stuck or
terminal), and� there is an infinite derivation sequence for

� 

in 	 if and only

if there is one for
� �

in 	 .

Meaning of statements:1
sos � Statements

�
State Á � State1

sos [[
�

]] 	 2 	 t � if # � � 	'&M- Ç 	 t
2 undef

�
otherwise

Equivalence of the two semantics.

Theorem: For every
�

,
1

ns [[
�

]] 2 1
sos [[

�
]].

Follows from the following lemmae.

Lemma: If # � 
�� 	 
 &M- f 	 �
, then # � 


;
� ��� 	 
 &l- f # � ��� 	 � & .

Lemma: # � � 	 
 & � 	 �
implies # � � 	 
 &l- Ç 	 �

.

Lemma: # � � 	 
 &l- fÈ	 �
implies # � � 	 
 & � 	 �

.
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Comparison

Operational Semantics

Ì Ì Ì Ì Ì Ì

Natural Semantics

ÍÍÍÍÍÍ

Structural Operational Semantics

Natural Semantics - Gives, for each statement, a mapping
from an intial state to the final state; it gives no detail on how
the latter is obtained from the first.

It can be used to show program equivalence, etc . . . .

Structural Operational Semantics - Gives a derivation
sequence Â Z - Â 
 - , where each ‘ - ’ represents a small
step in the computation.

In SOS, we can express some properties that are impossible to
express in Natural Semantics, like parallelism (later).
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Provably correct implementation

While

Î Compilation

Assembly language

Steps

� Define meaning of abstract machine instructions.� Define translation functions.

Correctness : if we translate a program into code and execute
that code on the abstract machine, we get the same result as
was specified by

1
ns or

1
sos.
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The abstract machine

ºEÏ
has configurations #ÑÐ � ¯ � 	'& where

� Ð is the code to be executed,� ¯ is the evaluation stack, and� 	 is the storage.

The evaluation stack is used to evaluate arithmetic and boolean
expressions: ¯ Q Stack

¤ ; ZZ �
TT

< Ç �
We also have 	jQ State, as before.
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The abstract machine language

Syntactic categories:

inst Q Machine Instructions

Ð Q Code sequence of instructions
�

Abstract syntax:

inst �°��2 PUSH ¦F? � ADD � MULT � SUB � TRUE � FALSE
� EQ � LE � AND � NEG � FETCH ¦ � � STORE ¦ �
� NOOP � BRANCH ;`Ð � Ð < � LOOP ;`Ð � Ð <

Ð �°��2 ÒM� inst �ÀÐ
Configurations:

#ÓÐ � ¯ � 	'& Q Code ^ Stack ^ State

#ÓÐ � ¯ � 	n& is terminal if Ð ¤ Ò .
The transition relation ¥ :

#ÓÐ � ¯ � 	n& ¥ #ÑÐ t � ¯ t � 	 t &
specifies how to execute instructions.
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# PUSH ¦x? ��Ð � ¯ � 	'& ¥ #ÓÐ � µ [[ ? ]] � ¯ � 	n&
# ADD ��Ð � ! 
 � ! � � ¯ � 	'& ¥ #ÓÐ � ! 
 L ! � � ¯ � 	'&�����

# TRUE ��Ð � ¯ � 	'& ¥ #ÓÐ �
tt � ¯ � 	'&

# FALSE ��Ð � ¯ � 	'& ¥ #ÓÐ �
ff � ¯ � 	'&

# EQ ��Ð � ! 
 � ! � � ¯ � 	'& ¥
#ÓÐ � ; ! 
 2 ! � < � ¯ � 	'& if

! 
 � ! � Q ZZ�����
# AND �ÀÐ � � 
 � � � � ¯ � 	'& ¥

#ÓÐ � ; � 

&

� � < � ¯ � 	'& if
� 
�� � � Q TT�����

# FETCH ¦ � ��Ð � ¯ � 	'& ¥ #ÓÐ � ;0	 � < � ¯ � 	'&
# STORE ¦ � ��Ð � ! � ¯ � 	'& ¥ #ÓÐ � ¯ � 	 
����� ! � &

# NOOP ��Ð � ¯ � 	'& ¥ #ÓÐ � ¯ � 	n&
# BRANCH ;0Ð 
 � Ð � < ��Ð � � � ¯ � 	'& ¥ #ÓÐ 
 ��Ð � ¯ � 	'& if

� 2 tt

# BRANCH ;0Ð 
�� Ð � < ��Ð � � � ¯ � 	'& ¥ #ÓÐ � ��Ð � ¯ � 	'& if
� 2 ff

# LOOP ;`Ð 
�� Ð � < ��Ð � ¯ � 	'& ¥
#ÓÐ 
 � BRANCH ;`Ð � �

LOOP ;`Ð 
 � Ð � < �
NOOP

< ��Ð � ¯ � 	'&
Define a computation sequence by analogy to a derivation
sequence.
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Note: initial configurations always have an empty evaluation
stack.

Example: Take the code

PUSH ¦�Ny� FETCH ¦ � � ADD � STORE ¦ �
and 	 such that 	 � 2 p , then

# PUSH ¦�N©� FETCH ¦ � � ADD � STORE ¦ �¶� Ò � 	'& ¥
# FETCH ¦ � � ADD � STORE ¦ �¶� N � 	'& ¥

# ADD � STORE ¦ �¶� p}�uN � 	'& ¥
# STORE ¦ �¶� ª � 	'& ¥

#ÓÒ � Ò � 	 
����� ª � &
LOOP (TRUE, NOOP) is non-terminating.

# ADD � Ò � 	'& is stuck.
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By analogy with the SOS-style semantics of While we can prove
properties of

ºEÏ
.

Lemma:

#ÓÐ 
�� ¯ 
�� 	n& ¥ÔfM#ÑÐ t � ¯ t � 	 t &R-
#ÓÐ 
 ��Ð � � ¯ 
 � ¯ � � 	'& ¥ÈfÕ#ÓÐ t �ÀÐ � � ¯ t � ¯ � � 	 t &

Lemma: If #ÓÐ 
 ��Ð � � ¯ 
 � 	 
 & ¥ f #ÑÒ � ¯ 8 � 	�8�& , then there are 	 � � ¯ � � I 

and I �

such that I 
 L I � 2 I , and #ÓÐ 
 � ¯ 
 � 	 
 & ¥Èf � #ÓÒ � ¯ � � 	 � & and#ÓÐ � � ¯ � � 	 � & ¥ÔfÊÉz#ÓÒ � ¯ 8 � 	�8�& .

Theorem: The machine semantics is deterministic:
For all Â 
�� Â �/� Â 8 , if Â 
 ¥ Â �

and Â 
 ¥ Â 8 , then Â � 2 Â 8 .
Proof : Exercise.

The meaning of a sequence of instructions can be expressed as
a partial function from State to State.Ï

sos � Code
�

State Á � StateÏ
[[ Ð ]] 	 2 	�t � if #ÓÐ � Ò � 	'& ¥ #ÓÒ � Ò � 	�t�&

2 undef
�

otherwise
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Translation of expressions

Ö º
� Arithmetic Expressions

�
CodeÖ º

[[ ? ]] 2 PUSH ¦F?Ö º
[[

�
]] 2 FETCH ¦ �

Ö º
[[ � 
 L � �

]] 2 Ö º
[[ � �

]] � Ö º
[[ � 


]] � ADDÖ º
[[ � 
 ¦ � �

]] 2 Ö º
[[ � �

]] � Ö º
[[ � 


]] � SUBÖ º
[[ � 
 ^ � �

]] 2 Ö º
[[ � �

]] � Ö º
[[ � 


]] � MULT
Ö×¿ � Boolean Expressions

�
CodeÖ½¿

[[true]] 2 TRUEÖ½¿
[[false]] 2 FALSEÖ×¿

[[ � 
 2 � �
]] 2 Ö º

[[ � �
]] � Ö º

[[ � 

]] � EQÖ×¿

[[ � 
 v � �
]] 2 Ö º

[[ � �
]] � Ö º

[[ � 

]] � LEÖ×¿

[[ ¾ �
]] 2 Ö½¿

[[
�
]] � NEGÖ×¿

[[
� 


&
� �

]] 2 Ö½¿
[[

� �
]] � Ö½¿

[[
� 


]] � AND
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Translation of statements

Ö�1 � Statements
�

CodeÖ�1
[[

�
:= � ]] 2 Ö º

[[ � ]] � STORE ¦ �
Ö¹1

[[skip]] 2 NOOPÖ�1
[[

� 

;

� �
]] 2 Ö�1

[[
� 


]] � Ö¹1
[[

� �
]]Ö�1

[[if
�
then

� 

else

� �
]] 2Ö×¿

[[
�
]] � BRANCH ; Ö¹1

[[
� 


]]
� Ö¹1

[[
� �

]]
<

Ö¹1
[[while

�
do

�
]] 2 LOOP ; Ö×¿

[[
�
]] � Ö�1

[[
�

]]
<

The meaning of a statement
�

can now be obtained by first
translating it into code for

ºEÏ
and next executing the code on

the abstract machine:1
am � Statements

�
State Á � State1

am 2
Ï

3 ÖØ1
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Correctness of translation

1
ns 2 1

am

or 1
sos 2 1

am

These two results need proof, and express that, if we first
translate a statement into code for

ºEÏ
and the execute that

code, we must obtain the same result as specified by the
operational semantics for While.

In proving this result, we will deal with expressions and
statements separately: we will first show

# Ö º
[[ � ]]

� Ò � 	'& ¥ Ç #ÓÒ � º
[[ � ]] 	 � 	n&

and

# Ö½¿
[[

�
]]

� Ò � 	'& ¥xÇ #ÓÒ � ¿
[[

�
]] 	 � 	n&

and use these results to show1
ns [[

�
]] 2 1

am [[
�

]]
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Correctness for expressions

Correctness of the translation from While into the Abstract
Machine Language, restricted to the set of
Arithmetic Expressions is formulated by:

Theorem: # Ö º
[[ � ]]

� Ò � 	'& ¥ Ç #ÑÒ � º
[[ � ]] 	 � 	'&

Proof : By induction on the structure of arithmetic expressions.
Booleans are dealt with in a similar way.
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Correctness for Statements

For every statement
�

of While we have to show:1
ns 2 1

am
�

This equality expresses two properties:

� If the execution of
�

from some state 	 terminates in one of
the semantics, then it also terminates in the other semantics
and the resulting states will be equal.� Furthermore, if the execution of

�
from some state 	 loops in

one of the semantics, if will also loop in the other.

Lemma: For every
� � 	 
 � 	 �

,

if # � � 	 
 & � 	 �
, then # Ö�1

[[
�

]]
� Ò � 	 
 & ¥ Ç #ÓÒ � Ò � 	 � & �

Lemma: For every
� � 	 
 � 	 �

: if # Ö�1
[[

�
]]

� Ò � 	 
 & ¥Ôfl#ÓÒ � ¯ � 	 � & , then# � � 	 
 & � 	 �
.

We could have used
1

sos instead - the proof for equivalence
might have been easier because both

1
sos and

1
am focus on

single steps.
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Denotational Semantics

Operational approach: how a program is executed. Denotational
approach: the effect of executing a program.

The basic idea is:

� Define a semantic function for each syntactic category - it
maps each syntactic construct to a mathematical object
(which describes the effect of executing the construct).

In Denotational Semantics, the semantic functions are defined
compositionally:

� there is a semantic clause for each of the basic elements of
the syntactic category.� for each method of constructing a composite element there is
a semantic clause defined in terms of the semantic function
applied to the immediate constituents of the composite
element.

Examples:

º
,

¿
, and non-examples:

1
ns,

1
sos.
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1
ds � Statements

�
State Á � State1

ds [[
�
:= � ]] 	 2 	 
����� º

[[ � ]] 	 �
1

ds [[skip]] 2 id1
ds [[

� 

;

� �
]] 2 1

ds [[
� �

]] 3 1
ds [[

� 

]]1

ds [[if
�
then

� 

else

� �
]] 2
cond ; ¿ [[

�
]]

� 1
ds [[

� 

]]

� 1
ds [[

� �
]]

<
1

ds [[while
�
do

�
]] 2 Problematic . . .

id is the identity function on states.

1
ds [[

� 

;

� �
]] 	

2 ; 1 ds [[
� �

]] 3 1
ds [[

� 

]]

< 	
2 1

ds [[
� �

]] ; 1 ds [[
� 


]] 	 <

2
ÙÚÚÚÚÚÚÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÚÚÚÚÚÚÜ

	 �/�
if

1
ds [[

� 

]] 	©2 	 


, and1
ds [[

� �
]] 	 
 2 	 �

.
undef

�
if

1
ds [[

� 

]] 	©2 undef, or1

ds [[
� 


]] 	©2 	 

, but1

ds [[
� �

]] 	 
 2 undef.

cond ;{Ý 
 � Ý � � Ýo8 < 	 2
ÙÚÚÚÛ ÚÚÚÜ Ý � 	 �

if Ý 
 	©2 tt

Ýo8�	 �
if Ý 
 	©2 ff
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What is the effect of ‘while
�
do

�
’. We want:

1
ds [[while

�
do

�
]]

2 1
ds [[if

�
then ; �

;while
�
do

� <
else skip]]

2 cond ; ¿ [[
�
]]

� 1
ds [[

�
;while

�
do

�
]]

� 1
ds [[skip]]

<
2 cond ; ¿ [[

�
]]

� 1
ds [[while

�
do

�
]] 3 1

ds [[
�

]]
�
id

<
Not compositional. Assume

1
ds [[while

�
do

�
]] is a function Þ .

Then the equation above expresses that this Þ should at least
satisfy: Þ 2 cond ; ¿ [[

�
]]

� Þ 3 1
ds [[

�
]]

�
id

<
We can now define a functional ß as follows:

ß � 2 cond ; ¿ [[
�
]]

�i� 3 1
ds [[

�
]]

�
id

<
Then, in particular:

ß�Þ 2 cond ; ¿ [[
�
]]

� Þ 3 1
ds [[

�
]]

�
id

< 2 Þ
Then Þ is a fixed point of ß .1

ds [[while
�
do

�
]] is a fixed point of ß , whereßjÞm2 cond ; ¿ [[

�
]]

� Þ 3 1
ds [[

�
]]

�
id

<
.
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Example: Fixed points of functions do exist:� Þ � 2 N , with Þ � ZZ
�

ZZ, then N is a fixed point of Þ .� Þ � 2 _�^ �
, then

,
is a fixed point of Þ .

We will define a special function, Fix, that, given an input
function Þ , constructs the fixed point of Þ . The intention is that
Fix ß is a fixed point of ß :

ß@; Fix ß < 2 Fix ß
Let Þ be defined by

Þ � 2 ‘some expression in which’ Þ ‘appears’
�

then we can define ß by:

ßqÝ � 2 ‘some expression in which’ Ý ‘appears’
�

and the solution for the first equation is then Fix ß .

The intended types for the functions mentioned are:

Þ �»� � �F� ( Þ is a function)

ß �Ô;Ó� � �x� < � � � �F�
Fix �Ô;=;J� � �x� < � � � �F� < � � � �F�
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Unfortunately, this does not suffice:

� There are functionals which have more than one fixed point.
For example, the function Þ � 2 �

has infinitely many fixed
points, and Þ � 2 ¯/à ¦ N has two.� There are functionals which have no fixed points at all. For
example, let Ý 
 52 Ý �

, and define á by:

á Ý 2
ÙÚÚÚÛ ÚÚÚÜ Ý 
 �

if Ý@2 Ý �
Ý �/�

otherwise

Our solution to these two problems is:

� to impose requirements on the fixed points such that there is
at most one fixed point satisfying them.� to establish a framework such that every functional does
have at least one fixed point satisfying the requirements.
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Fixed Point Construction

Remember that we want the denotational semantics to satisfy:1
ds [[while

�
do

�
]]

2 cond ; ¿ [[
�
]]

� 1
ds [[while

�
do

�
]] 3 1

ds [[
�

]]
�
id

<
Therefore,

1
ds [[while

�
do

�
]] should be a function Þ such that

(using the definitions above):

Þâ	 2 cond ; ¿ [[
�
]]

� Þ 3 1
ds [[

�
]]

�
id

< 	
2

ÙÚÚÚÛ ÚÚÚÜ ;KÞ 3 1
ds [[

�
]]

< 	 �
if

¿
[[

�
]] 	©2 tt

	 �
if

¿
[[

�
]] 	©2 ff

So
1

ds [[while
�
do

�
]] should be a fixed point of ß , where ß is

defined by:

ßjÞ�	 2
ÙÚÚÚÛ ÚÚÚÜ ;KÞ 3 1

ds [[
�

]]
< 	 �

if
¿

[[
�
]] 	©2 tt

	 �
if

¿
[[

�
]] 	©2 ff
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Example: ‘while ¾~; � 2 , <
do skip’. The intended semantics

for this program, using the construction discussed above, Þ is:

Þ�	 2 cond ; ¿ [[ ¾~; � 2 , <
]]

� Þ 3 id
�
id

< 	
2 cond ; ¿ [[ ¾~; � 2 , <

]]
� Þ �

id
< 	

2
ÙÚÚÚÛ ÚÚÚÜ Þâ	 �

if 	 � 52 ,
	 �

if 	 � 2 ,
As suggested above, we write

ß ÞÕ	 2
ÙÚÚÚÛ ÚÚÚÜ Þl	 �

if 	 � 52 ,
	 �

if 	 � 2 ,
Now, once we have a fixed point for ß , we have a solution for
our problem. Well, notice that

ã 	 2
ÙÚÚÚÛ ÚÚÚÜ undef

�
if 	 � 52 ,

	 �
if 	 � 2 ,

is a fixed point of ß :

ß ã 	 2
ÙÚÚÚÛ ÚÚÚÜ

ã 	 �
if 	 � 52 ,

	 �
if 	 � 2 ,

2
ÙÚÚÚÛ ÚÚÚÜ undef

�
if 	 � 52 ,

	 �
if 	 � 2 ,

2 ã 	
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Example: Take ‘while true do skip’. Following the above
definition, we get:

ß�Þâ	 2 cond ; ¿ [[true]]
� Þ 3 1

ds [[skip]]
�
id

< 	
2

ÙÚÚÚÛ ÚÚÚÜ ;0Þ 3 1
ds [[skip]]

< 	 �
if

¿
[[true]] 	©2 tt

	 �
if

¿
[[true]] 	©2 ff

2
ÙÚÚÚÛ ÚÚÚÜ ;0Þ 3 id

< 	 �
if tt 2 tt

	 �
if tt 2 ff

2 Þ�	
Take Þ Z 	©2 undef, for all 	 . Notice that ßjÞ Z 2 Þ Z , so Þ Z is a
fixed point of ß . Moreover, Þ Z is the intended semantics for
‘while true do skip’, i.e. the semantics you would want it to
have.
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Example: Take ‘while
� 2 ,

do
�
:=

*
’. Following the above

definition, we get:

ßjÞ�	 2 cond ; ¿ [[
� 2 ,

]]
� Þ 3 1

ds [[
�
:=

*
]]

�
id

< 	
2

ÙÚÚÚÛ ÚÚÚÜ ;KÞ 3 1
ds [[

�
:=

*
]]

< 	 �
if

¿
[[

� 2 ,
]] 	©2 tt

	 �
if

¿
[[

� 2 ,
]] 	©2 ff

2
ÙÚÚÚÛ ÚÚÚÜ ÞD;0	 
����� *�� <

if 	 � 2 ,
	 �

if 	 � 52 ,
Take Þ Z 	©2 undef, for all 	 . Then

Þ 
 	q2 ßjÞ Z 	 2
ÙÚÚÚÛ ÚÚÚÜ Þ Z ;0	 
��m�� */� < �

if 	 � 2 ,
	 �

if 	 � 52 ,
2

ÙÚÚÚÛ ÚÚÚÜ undef if 	 � 2 ,
	 �

if 	 � 52 ,
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and

Þ � 	q2 ßjÞ 
 	 2
ÙÚÚÚÛ ÚÚÚÜ Þ 
 ;0	 
����� */� < �

if 	 � 2 ,
	 �

if 	 � 52 ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ

ÙÚÚÚÛ ÚÚÚÜ undef if 	 
����� */��� 2 ,
	 
����� */�J�

if 	 
����� */��� 52 ,
ä ÚÚÚåÚÚÚæ if 	 � 2 ,

	 �
if 	 � 52 ,

2
ÙÚÚÚÛ ÚÚÚÜ 	 
����� *��J�

if 	 � 2 ,
	 �

if 	 � 52 ,
applying the construction again, we get:

Þ 8 	q2 ßjÞ � 	 2
ÙÚÚÚÛ ÚÚÚÜ Þ � ;0	 
����� */� < �

if 	 � 2 ,
	 �

if 	 � 52 ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ

ÙÚÚÚÛ ÚÚÚÜ 	 
����� */�
if 	 
����� */��� 2 ,

	 
����� */�J�
if 	 
����� */��� 52 ,

ä ÚÚÚåÚÚÚæ if 	 � 2 ,
	 �

if 	 � 52 ,
2

ÙÚÚÚÛ ÚÚÚÜ 	 
����� *��J�
if 	 � 2 ,

	 �
if 	 � 52 ,

2 Þ � 	
So Þ � 2 Þ±8 , and, therefore, Þ �

is a fixed point of ß . Also, Þ �
is

the intended semantics for ‘while
� 2 ,

do
�
:=

*
’.
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Example: Now take ‘while
� ¥ ,

do
�
:=

� ¦}N ’. Following the
above definition, we get:

ßjÞ�	 2 cond ; ¿ [[
� ¥ ,

]]
� Þ 3 1

ds [[
�
:=

� ¦jN ]] �
id

< 	
2

ÙÚÚÚÛ ÚÚÚÜ ÞD;0	 
����� ;0	 � ¦ N < � < �
if 	 � ¥ ,

	 �
if 	 � v ,

Take Þ Z 	©2 undef, for all 	 . Then

Þ 
 2 ßjÞ Z 2
ÙÚÚÚÛ ÚÚÚÜ undef if 	 � ¥ ,

	 �
if 	 � v ,

and (where 	 t 2 	 
����� ;0	 � ¦ N < �
)

Þ � 	q2 ßjÞ 
 	 2
ÙÚÚÚÛ ÚÚÚÜ Þ 
 ;0	 t < �

if 	 � ¥ ,
	 �

if 	 � v ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ

ÙÚÚÚÛ ÚÚÚÜ undef if 	�t � ¥ ,
	 t � if 	 t � v ,

ä ÚÚÚåÚÚÚæ if 	 � ¥ ,
	 �

if 	 � v ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ
undef if 	 � ¥ N
	 
��m�� ,��J�

if 	 � 2 N
	 �

if 	 � v ,
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Applying the construction again, we get:

Þ 8 2 ß�Þ � 2
ÙÚÚÚÛ ÚÚÚÜ Þ � 	 t � if 	 � ¥ ,

	 �
if 	 � v ,

2
ÙÚÚÚÚÚÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÚÚÚÚÚÜ

ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ
undef if 	�t � ¥ N
	�t 
9���� ,��Ó�

if 	�t � 2 N
	 t � if 	 t � v ,

ä ÚÚÚÚÚÚÚåÚÚÚÚÚÚÚæ
if 	 � ¥ ,

	 �
if 	 � v ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ
undef if 	 � ¥ _
	 
��m�� ,��J�

if 	 � 2 N � _
	 �

if 	 � v ,
Continuing this construction, after the ? -th step we get:

Þ U 	 2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ
undef if 	 � ¥ ?
	 
����� ,��J�

if 	 � 2 N ��������� ?
	 �

if 	 � v ,
If we continue ad infinitum, we will obtain the function

Þ±ç 	 2
ÙÚÚÚÛ ÚÚÚÜ 	 
��m�� ,��J�

if 	 � ¥ ,
	 �

if 	 � v ,
which is exactly the intended semantics for
‘while

� ¥ ,
do

�
:=

� ¦jN ’.
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Partial order relations

We define an ordering, è , on the function space
State

�
State, such that:

Ý 
 è Ý �
means that ‘if Ý 
 	 
 2 	 �/�

then Ý � 	 
 2 	 �
’ which expresses two

properties:

� the domain of Ý 

is a subset of the domain of Ý �

(the
converse need not hold), and� Ý 


and Ý �
are identical on the domain of Ý 


.

Example:
Take

Ý 
 	 2 	
Ý � 	 2

ÙÚÚÚÛ ÚÚÚÜ 	 �
if 	 � Æ ,

undef
�

otherwise

Ý�8�	 2
ÙÚÚÚÛ ÚÚÚÜ 	 �

if 	 � 2 ,
undef

�
otherwise

Ýo:6	 2
ÙÚÚÚÛ ÚÚÚÜ 	 �

if 	 � v ,
undef

�
otherwise

then Ý 

é ê

Ý � Ýn:ê é
Ý�8
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Partial Ordered Set

A partial ordered set is a pair #   � è & such that

� PØë Q   � ë è ë
� PØëu
 � ë×� � ë 8 Q   � ëw
 è ë×�

&
ë7� è ë 8 - ëu
 è ë 8� PØë 
�� ë � Q   � ë 
 è ë �

&
ë � è ë 
 - ë 
 2 ë �

If
PØë tìQ   � ë è ë t , ë

is called a least element of
 

:

Exercise: If a partially ordered set #   � è & has a least
element, then it is unique.

The least element of
 

is íyî or just í .

Exercise: Let
� 52 ¼ and define ï�; � < 2

>�ð
�

ð
s � B �

Then#`ï�; � < � sl& is a poset.

Lemma: # State
�

State
� è & is a poset, and íj	©2 undef is

its least element.

Fix ß needs to satisfy:

� ß@; Fix ß < 2 Fix ß .� Fix ß is a least fixed point of ß , i.e. if, for some Ý , ßqÝC2 Ý ,
then Fix ß è Ý .
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Least Upper Bounds

Consider #   � è & and ñ s  
. If

PØë t Q ñ � ë t è ë
, then

ë
is an

upper bound of ñ .
ë

is the least upper bound (lub) of ñ if and
only if:

If
ë t is an upper bound of ñ , then

ë è ë t .
We denote the lub of ñ as òÕñ .

Chains

We call ñ a chain if
PØë 
 � ë � Q ñ � ë 
 è ë �¶ó ë � è ë 
 �

Example: #`ï�;
>

� � � � Ð�B < � sl& .

Example: Let Ý U � State Á � State be defined by:

Ý U 	 2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ
undef

�
if 	 � ¥ ?

	 
����� N �J�
if

, v 	 � v ?
	 �

if 	 � ô ,
It is easy to verify that Ý U è Ý � , whenever ? v A , and that,
therefore, ñ 2

>
Ý U �'? Æ , B is a chain. Then

òÕñ@	 2
ÙÚÚÚÛ ÚÚÚÜ 	 
����� N �J�

if
, v 	 �

	 �
if 	 � ô ,
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CCPO

A poset #   � è & is a chain-complete poset (ccpo) wheneveròÕñ exists for all chains ñ . It is a complete lattice if òÕñ exists
for all subsets ñ of

 
.

Exercise: #0ïR; � < � è & is a complete lattice, and (hence) a
ccpo, for all non-empty

�
.

Exercise: If #   � è & is a ccpo, it has a least element í .

Exercise: State Á � State is not a complete lattice.

Lemma: State Á � State is a ccpo. The least upper bound of
a chain of functions ñ , òÕñ , is given by
graph ;ÓòÕñ < 2 � >

graph ;{Ý < �(ÝRQ ñ�B , i.e.:

;ÓòÕñ < 	F2 	 t õ - ö½Ý.Q ñ � Ý~	q2 	 t
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Monotone functions

Let #   
 � è 
 & and #   � � è � & be ccpos and Þ �   
 �   �
. We call Þ

monotone if and only if, for all
ëu
 � ë×� Q   


, if
ëw
 è 
 ë×�

, thenÞ ë 
 è � Þ ë �
.

Example:

r
>

� � � � Ð�B
>

� � � B
>

� � Ð�B
> � � Ð�B

>
�ìB

> � B
>

�ìB ¼
Þ 
 r

> ë � ¯ B
> ë B

> ë � ¯ B
> ë � ¯ B

> ë B
> ë B

> ¯ B ¼
Þ � r

> ë B
> ë B

> ë B
> ¯ B

> ë B
> ¯ B

> ¯ B
> ¯ B

Exercise: Let #   
 � è 
 & , #   � � è � & and #   8 � è 8 & be ccpos and
let Þ 
 �   
V�   �

and Þ � �   �÷�   8 be monotone functions,
then Þ � 3 Þ 
 �   
 �   8 is a monotone function.

Lemma: Let #   
 � è 
 & and #   � � è � & be ccpos andÞ �   
 �   �
be a monotone function. If ñ is a chain in

  

,

then

>
Þ ë � ë Q ñaB is a chain in

  �
. Furthermore,

ò � >
Þ ë � ë Q ñHB è � ÞD;Óò 
 ñ < �

Exercise: Prove this lemma.
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In general, we cannot expect that a monotone function
preserves lubs on chains, i.e.

ò � >
Þ ë � ë Q ñ�B 2 ÞD;Óò 
 ñ <

only holds in special cases, as illustrated by the next example.

Example: Consider Þ �±ïR; IN � >
�øB < � ï.; IN � >

�ìB <
, defined

by:

Þ�r 2
ÙÚÚÚÛ ÚÚÚÜ r �

if r is finite

r � >
�ìB �

if r is infinite

Clearly, Þ is monotone. But consider the set

ñ 2
>�> ,×� N ��������� ?DB��'? Æ , B

Then òÕñ 2 IN. Now

ò
>

Þ�r �±r Q ñ�B 2 ò
>

r �'r Q ñaB 2 òÕñ 2 IN

But ÞD;ÓòÕñ < 2 Þ IN 2 IN
� >

�ìB �
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Continuous Functions

We shall be interested in functions which do preserve lubs of
chains. An Þ �   
��   �

defined on ccpos #   
�� è 
 & and #   �/� è � &
is called continuous if it is monotone and, moreover:

ò � >
Þ ë � ë Q ñ�B 2 ÞD;Óò 
 ñ <

holds for all non-empty chains ñ in #   
 � è 
 & . (When this also
holds for the empty chain, so

¼}2 ò � >
¼uBM2 ÞD;Óò 
 ¼ < 2 ÞD;`¼ <

, we say that Þ is strict).

Lemma: #   
 � è 
 & , #   � � è � & and #   8 � è 8 & be ccpos and letÞ 
 �   
 �   �
and Þ � �   � �   8 be continuous functions. ThenÞ � 3 Þ 
 �   
��   8 is a continuous function.
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The Fixed Point Theorem

Above, we have defined continuous functions as functions that
are monotone, i.e. preserve the order, and continuous, i.e.
preserve lubs of chains.

Lemma: Let Þ �   �  
be a continuous function on the

ccpo #   � èy& with least element í . Let

Þ Z 2 id

Þ U�h 
 2 Þ 3 Þ U �
for ? Æ ,

Then
Fix Þ 2 ò

>
Þ U í �'? Æ , B

defines an element of
 

and this element is the least fixed
point of Þ .
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Denotational Semantics

Using the result above, we can now define the Denotational
Semantics for a program in While.

The meaning of a statement
�

is a (partial) function from State
to State: 1

ds � Statements
�

State Á � State1
ds [[

�
:= � ]] 	 2 	 
��m�� º

[[ � ]] 	 �
1

ds [[skip]] 2 id1
ds [[

� 

;

� �
]] 2 1

ds [[
� �

]] 3 1
ds [[

� 

]]1

ds [[if
�
then

� 

else

� �
]] 2

cond ; ¿ [[
�
]]

� 1
ds [[

� 

]]

� 1
ds [[

� �
]]

<
1

ds [[while
�
do

�
]] 2 Fix ß �

ßqÝC2 cond ; ¿ [[
�
]]

� Ý 3 1
ds [[

�
]]

�
id

<
Only well-defined in the context of continuous functions.
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Example: Consider the function

ßjÞ�	 2
ÙÚÚÚÛ ÚÚÚÜ Þ�	 �

if 	 � 52 ,
	 �

if 	 � 2 ,
The elements of

>
ß U í �'? Æ , B are defined as follows:

ß Z 	 2 id í 	 2 í 	 2 undef

ß 
 í 	 2 ;0ß 3 ß Z < í 	©2
ÙÚÚÚÛ ÚÚÚÜ ß Z 	 �

if 	 � 52 ,
	 �

if 	 � 2 ,
2

ÙÚÚÚÛ ÚÚÚÜ undef
�

if 	 � 52 ,
	 �

if 	 � 2 ,
ß � í 	 2 ;0ß 3 ß 
 < í 	q2

ÙÚÚÚÛ ÚÚÚÜ ß 
 	 �
if 	 � 52 ,

	 �
if 	 � 2 ,

2
ÙÚÚÚÚÚÚÚÛ ÚÚÚÚÚÚÚÜ

ÙÚÚÚÛ ÚÚÚÜ undef
�

if 	 � 52 ,
	 �

if 	 � 2 ,
ä ÚÚÚåÚÚÚæ if 	 � 52 ,

	 �
if 	 � 2 ,

2
ÙÚÚÚÛ ÚÚÚÜ undef

�
if 	 � 52 ,

	 �
if 	 � 2 ,

So:

ò
>

ßyUní �'? Æ , B 2 ò
>

ß Z í � ß 
 í�B 2 ß 
 í 2 Fix ß
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Existence

We need to show that:

ßjÞ 2 cond ; ¿ [[
�
]]

� Þ 3 1
ds [[

�
]]

�
id

<
is continuous. So:

Lemma: Let
ã � State Á � State,

� � State
�

TT, and defineßqÝ@2 cond ; � � Ý � ã <
. Then ß is continuous.

Lemma: Let
ã � State Á � State, and define ßqÝ@2 Ý 3 ã

. Thenß is continuous.

Theorem:
1

ds is a total function.

Thus, from the fixed point theorem, Fix ß is well-defined. So1
ds [[while

�
do

�
]] is well-defined.

As before,
� 


and
� �

are called semantically equivalent if and
only if

1
ds [[

� 

]] 2 1

ds [[
� �

]]

Example:
�úù
skip and

�
are semantically equivalent.
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Equivalence to Operational Semantics

Lemma: Notice that:� Let Þ �   �  
be continuous, and let

ë Q  
satisfyÞ ë è ë

. Then Fix Þ è ë
.� If # � 
�� 	 
 &M- fÈ	 �

, then # � 

;

� ��� 	 
 &M- fÕ# � �/� 	 � & .� ‘ 3 ’ and cond are monotone.

We conclude the discussion of Denotational Semantics, by
showing that, for the language While, there is no difference
between this semantics and the Structural Operational
Semantics.

Theorem: For every statement
�

of While:1
sos [[

�
]] 2 1

ds [[
�

]]

i.e.: 1
sos [[

�
]] è 1

ds [[
�

]]

and 1
ds [[

�
]] è 1

sos [[
�

]]
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Extensions to While

We have seen that Operational Semantics are good for
formally describing implementation aspects of programming
languages. Furthermore:

� Structural Operational Semantics are good for describing
low-level details (abstract machine).� Natural Semantics are good for reasoning (more abstract -
more intuitive)

We will now see some other differences. We will do that by
defining extensions to the language While, adding new
language constructs.
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Aborting

We start by adding the new statement abort.

Appr oach 1 - Consider # abort � 	'& to be a stuck configuration.
No extra rule to either the Natural or the Structural
Operational Semantics added.
Note that

# while true do skip
� 	 
 & � 	 �

implies

# abort � 	 
 & � 	 �
# abort � 	 
 & � 	 �

implies

# while true do skip
� 	 
 & � 	 �

so equivalent in the Natural Semantics. In Structural
Operational Semantics ‘while true do skip’ generates
infinite number of steps, and ‘abort’ none

Appr oach 2 - Add a new terminal configuration to the
system, error, and add

# abort � 	 
 & �
error

# abort � 	 
 &M- Ç error
We can now distinguish between the statements in both
semantics.
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Non-determinism

We add ‘
� 


or
� �

’. For example:

; � := N <
or ; �

:= _ ; �
:=

� L _ <
result state:

�
has value N , or ª . Natural Semantics:

# � 
 � 	 
 & � 	 �
# � 


or
� � � 	 
 & � 	 �(ORL

ns)

# � ��� 	 
 & � 	 �
# � 


or
� �/� 	 
 & � 	 �(ORR

ns)

Then we have the following derivations:

# �
:= N � 	n& � 	 
����� N �

# �
:= N or ; � := _ ; �

:=
� L _ < � 	'& � 	 
����� N �

and

# �
:= _ � 	'& � 	 
9���� _ � # �

:=
� L _ � 	 
����� _ � & � 	 
��m�� ª �

# �
:= _ ; �

:=
� L _ � 	'& � 	 
9���� ª �

# �
:= N or ; � := _ ; �

:=
� L _ < � 	'& � 	 
����� ª �

Non-determinism suppresses looping

#i; while true do skip
<
or ; � := _ ; �

:=
� L _ < � 	'& � 	 
��m�� ª �
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Likewise, :

# � 

or

� ��� 	'& - # � 
�� 	n& and # � 

or

� �/� 	n& - # � ��� 	'&
Then we have:

# �
:= N or ; � := _ ; �

:=
� L _ < � 	'&R- # �

:= N � 	n&
- 	 
9���� N �

and # �
:= N or ; � := _ ; �

:=
� L _ < � 	'&

- # �
:= _ ; �

:=
� L _ � 	'&

- # �
:=

� L _ � 	 
��m�� _ � &
- 	 
����� ª �

But replacing ‘
�
:= N ’ by ‘while true do skip’ will still give two

derivation sequences; one will be infinite:

#i; while true do skip
<
or ; � := _ ; �

:=
� L _ < � 	'&

- # while true do skip
� 	'&

...

and the other is finite:

#i; while true do skip
<
or ; � := _ ; �

:=
� L _ < � 	'&

- # �
:= _ ; �

:=
� L _ � 	'&

- # �
:=

� L _ � 	 
��m�� _ � &
- 	 
����� ª �
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Parallelism

Add the construct ‘par’, and expect the execution of
� 


and
� �

to be ‘interleaved’. For example, the program

; � := N <
par ; � := _ ; �

:=
� L _ <

has the following different ways to execute:�
:= N �

:= _ �
:=

� L _ 	 � 2 ª�
:= _ �

:= N �
:=

� L _ 	 � 2 p�
:= _ �

:=
� L _ �

:= N 	 � 2 N
Rules for Structural Operational Semantics

# � 
 � 	 
 & - 	 �
(PARLT

sos) # � 

par

� � � 	 
 & - # � � � 	 � &
# � 
�� 	 
 & - # � t
 � 	 � &

(PARLI
sos) # � 


par
� ��� 	 
 & - # � t
 par � �/� 	 � &

# � �/� 	 
 & - 	 �
(PARRT

sos ) # � 

par

� � � 	 
 & - # � 
 � 	 � &
# � � � 	 
 & - # � t
 � 	 � &

(PARRI
sos) # � 


par
� � � 	 
 & - # � 


par
� t
 � 	 � &

Exercise: Verify the results above.
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To accomplish the same expressive power in Natural
Semantics, we run into problems. Assume the rules that need
to be added are:

# � 
 � 	 
 & � 	 � # � � � 	 � & � 	 8
# � 


par
� � � 	 
 & � 	�8

# � �/� 	 
 & � 	 � # � 
�� 	 � & � 	 8
# � 


par
� �/� 	 
 & � 	 8

Using Natural Semantics, we cannot describe the intuitive
semantics, because Natural Semantics is defined using the
immediate constituents of a program, not the individual
computation step. In a sense, Natural Semantics is too
abstract.
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Blocks

New programming language Block

Abstract syntax:

? Q Numeral� Q Variables

� Q Arithmetic Expressions� Q Boolean Expressions }û Q Declared Variables� Q Statements

� ����2 ? � � �n� 
 L � � �n� 
 ¦ � � �'� 
 ^ � �
� ����2 true � false �n� 
 2 � � �n� 
 v � � �À¾ � � � 


&
� �

  û ����2 var
�
:= � ;   û ��Ò� ����2 �

:= � � skip � � 

;

� � � if �
then

� 

else

� �
� while �

do
� � begin  }û �

end

Variables are local to the block in which they are declared,
and it is possible to use an identifier more than once in a
declaration in a program.
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Example:
begin var " := N ;�

:= N ;
begin var

�
:= _ ;" := � L N

end;�
:= "ML �

end

For the Natural Semantics, take

	 
ü
 ð �� 	 �b��� 2
ÙÚÚÚÛ ÚÚÚÜ 	 � �

if
� Q

ð
	 
 �

if
� 5Q

ð
DV ; var �

:= � ;   û < 2
> � B �

DV ;   û <
DV ;`Ò < 2 ¼

We add the following rules:

#   û � 	 
 
��m�� º
[[ � ]] 	 
 � & � 	 �

(DECLns) # var �
:= � � 	 
 & � 	 �

(NO-DECLns) #ÑÒ � 	n& � 	
#  }û � 	 
 & � 	 � # � � 	 � & � 	 8

(BLOCKns) # begin  }û �
end

� 	 
 & � 	 8 

DV ;  }û < �� 	 �Ê�
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Procedures

Proc, a language that allows for the definition of
(parameterless) procedure declarations

? Q Numeral� Q Variables

� Q Arithmetic Expressions� Q Boolean Expressions

$ Q Procedure Names  û Q Declared Variables Mý Q Declared Procedures� Q Statements

� ����2 ? � � �n� 
 L � � �n� 
 ¦ � � �'� 
 ^ � �
� ����2 true � false �n� 
 2 � � �n� 
 v � � �À¾ � � � 


&
� �

 �û ����2 var
�
:= � ;  }û ��Ò  ý ����2 proc $ is

�
;

  ý �nÒ� ����2 �
:= � � skip � � 


;
� � � if �

then
� 


else
� �

� while �
do

� � begin   û   ý �
end � call $
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Three different semantics

� Dynamic scope for variables as well as procedures.� Dynamic scope for variables, and static scope for
procedures.� Static scope for variables as well as procedures.

Example:

begin var
�
:=

,
;

proc $ is
�
:=

� ^ _ ;
proc þ is call $ ;
begin var

�
:=

*
;

proc $ is
�
:=

� L N ;
call þ ;
" := �

end

end

� "E2 e
� "E2 N ,
� "E2 *
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Dynamic / Dynamic

Procedure environment

env
ý Q Env

ý 2 Procedure Names Á � Statements

The transition rules will now be of the form:

env
ý � # � � 	 
 & � 	 �

We need to be able to update the environment.

Update
ý ; proc $ is

�
;

  ý �
env

ý < 2
Update

ý ;   ý �
env

ý 
 $ �� � � <
Update

ý ;`Ò �
env

ý < 2 env
ý

We add two rules

env
ý � # � � 	 
 & � 	 �

(CALLrec
ns ) ; env

ý $«2 � <
env

ýF� # call $ � 	 
 & � 	 �
#   û � 	 
 & � 	 �

Update
ý ;   ý �

env
ý < � # � � 	 � & � 	 8(BLOCKns)

env
ý � # begin  �ûÿ  ý �

end
� 	 
 & � 	 8 


DV ;  �û < �� 	 
J�
Procedures can always be recursive.
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Dynamic / Static

Procedures will use those declarations that are defined at the
moment the procedure itself was declared. We also need to
state the environment in which procedures are defined:

Env
ý 2 Procedure Names Á � Statements ^ Env

ý
Update

ý ; proc $ is
�
;

 yý �
env

ý < 2
Update

ý ;   ý �
env

ý 
 $ �� ; � �
env

ý < � <
Update

ý ;`Ò �
env

ý < 2 env
ý

We then just need to update the rule (CALLns). If procedures
in Proc are non-recursive, we use:

env tý � # � � 	 
 & � 	 �
(CALLns) ; env

ý $�2 ; � �
env tý <b<

env
ý � # call $ � 	 
 & � 	 �

But if procedures are recursive, we need:

env tý 
 $ �� ; � �
env tý < � � # � � 	 
 & � 	 �

(CALLrec
ns ) ; env

ý $«2 ; � �
env tý <b<

env
ý � # call $ � 	 
 & � 	 �

Exercise: Try to construct a statement which illustrates the
difference between these two rules.
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Static / Static

Approach defined above, and variables can appear in more
than one declaration. We need to replace the state with two
mappings:

env
û Q Env

û 2 Variables
�

Locations

store Q Store 2 Locations
� >

next B �
ZZ

Locations 2 ZZ, and next is a special token which holds the
next free location. A machine is now represented as a infinite
number of locations, and a variable

�
now will point to a

location through a mapping that is called a variable
environment, env

û
. The location env

û �
points at will hold its

value through the function store that maps locations to
values.

Entering a new block can make that
�

will be redeclared,
making

�
point to a new location. We also use a function

‘new’ that produces the number of the next free location.

new � Locations
�

Locations

new �j2 �wL N
(Note that 	©2 store 3 env

û
.)
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We need to consider transitions of the form

#   û �
env

û �
store


 & � ; env tû �
store

� <
For evaluating the variable declarations, we have rules

#   û �
env

û 
��m�� � �J�
store


 � �� �À�Ñ

next

��
new � � & � ; env tû �

store
� <

# var �
:= � ;  }û �

env
û �

store & � ; env tû �
store

� <
#ÑÒ �

env
û �

store & � ; env
û �

store
<

where � 2
º

[[ � ]] ; store 3 env
û <

�j2 store next

We must further update procedure environments:

Env
ý 2 Procedure Names Á � Statements ^ Env

û ^ Env
ý

Update
ý ; proc $ is

�
;

  ý �
env

û �
env

ý < 2
Update

ý ;   ý �
env

û �
env

ý 
 $ �� ; � �
env

û �
env

ý < � <
Update

ý ;0Ò �
env

û �
env

ý < 2 env
ý
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The transition system for statements now has rules of the
form

env
û �

env
ý � # � �

store

 & �

store
�

Most rules are similar to their original, but the rule for blocks
is modified:

#   û �
env

û �
store


 & � ; env tû �
store

� <
env tû �

env tý � # � �
store

� & �
store 8

env
û �

env
ý � # begin  �û»  ý �

end
�
store


 & �
store 8

where
env tý 2 Update

ý ;   ý �
env tû �

env
ý <

And the new rules for call are:
env tû �

env tý � # � �
store


 & �
store

�
(CALLns)

env tû �
env

ý � # call $ �
store


 & �
store

�

(CALLrec
ns )

env tû �
env tý 
 $ �� ; � �

env tû �
env tý < � � # � �

store

 & �

store
�

env tû �
env

ýx� # call $ �
store


 & �
store

�
where

env
ý 2 ; � �

env tû �
env tý < �
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