Operational Semantics

Lecturer: Dr. Steffen van Bakel
Room: Huxley 425

Spring 2001

Recommended book:
Semantics with Applications A Formal Introduction
by Hanne Riis Nielson and Flemming Nielson

http://ww.dai m . au. dk/ ~bra8130/
Wl ey book/wley.htm

Lecture time
Monday: 10:00-11:00 am

Thursday: 10:00-12:00 am

Tutorial _ _
Will not be organised separately; exercises are a part of the

course.

Question time: Anytime during those two days.

Course Design

e Preliminaries:
Introduction, Induction, Wi | e.

e Natural Semantics

e Structural Operational Semantics
e Correct implementation

e Denotational Semantics

e Extensions to Wi | e:
Parallelism, Blocks and Procedures

Why formal semantics?

Syntax - Form of sentences:

The fish answered the walk
NP VP
Syntax is specified by a grammar, normally in BNF.

Semantics - Meaning of sentences
while bdo C
“Execute C repeatedly so long as the expression b is true”

It is important that the semantics is formal, systematic and
verifiable to provide

1.) the user with an unambiguous description of the effect of a
program.

2.) ayardstick for implementation.

3.) a basis for program analysis and synthesis.
— Transformation.
— Optimisation.

— Verification.

States

Semantics deals with the meaning of programs that are
executing. We need the status of the memory during execution.

The state of the memory s is a function that maps variable
names to values;

State is the set of all possible states.

We will use the notation
[213'1 = U1, L9 > U2, ..]

as a denotation for the state of the memory, indicating the values
for those variable that are relevant to the execution of the
program.

There are three approaches

Operational Semantics - How the effect of a computation is
produced- abstraction of machine execution.

Denotational Semantics - What is the effect of a computation.

Axiomatic Semantics - The properties of the effect of
executing the constructs are expressed as assertions.

We will compare these approaches using the (toy) example
program
ZIZX,XxI=Y, Y =2

that swaps the values stored in the variables = and y.

Operational Semantics

e To execute a sequence of statements separated by ‘; ',
execute the individual statements one after the other from left
to right.

e To execute ‘z: = y’, determine the value of y and assign it to
x.

Notation ‘(p, s)’, to be read as ‘the semantics of program p in
state s'.

(zi=z;x:=y,y:=z,Jx—=by—T72—0) =
(x:=y,y: =z, x> 5y—T72—5) =

(y:=z,Jx = Ty— 72— 5) =

[z +— T,y — 5,z +> b

Denotational Semantics

Effect of a program is a function in State — State.

e The effect of ‘; ' is the functional composition:
Sds [51; s2]l = Sas [s2]10Sas [51]]
(Notice the inversion of s; and s,.)

e The effect of ‘z: = ¢’ is a function in State — State: the new
state is identical to the old state except that the (new) value
of z is equal to the (old) value of y.

Sasl[x:=v]lsy = sy, ify#£z
— v, otherwise
In other words,
Sasllz:=z;z:=y,y:=2] =
Suslly: = z[loSus [z : = ylloSas [z : = =]

Take s; = [z +— 5,y +— 7,2+ 0], so = s1[2 > 5], 53 = ol — 7],
and s, = s3[y — 5], then

Susllz:=z; 2=y, y:=z](s

(s1) =

Suslly: = 2l0Sgs [z : = ylloSus[z: = 2] (s1) =
Suslly: = 2]oSas [z : =yl (s2) =

Saslly : = 2] (33)

Axiomatic Semantics

Partial correctness (with respect to Pre- and Post-condition)

Take
{r=n&y=m}lz:i=zx;x:=y;y:=z{x=m&y=n}

Let

Pl-{z=n&y=m}z:=z{z=n&y=m}
P2-{z=n&y=m}zx:=y{z=n&x=m}
P3-{z=n&y=m}lz:=z;2x:=y{z=n&z=m}
Pa-{z=n&z=m}ly: =z{y=n&z=m}
PS5-{z=n&y=m}z:=z;z:=y;y:=2{y=n&zx=m}

But how to work on
{r=n&y=m}whiletruedoskip{y=n&zx=m}

IS not easy to see.

Mathematical Induction
To prove a property P(x) for all natural numbers:

Base case - Prove P(0).

Inductive Case - For every k, using the assumption that P(k)
holds, prove P(k + 1).

Then P(n) holds for all n.
In Logic :
P(0) Vk € IN.[P(k)—=P(k+1)]
Vn € IN.P(n)

Theorem: Y ,i*=(nx (n+1)x (2n+1))/6.
Proof : By induction.
Base case - Trivial.

Inductive Case - Ek—i—l 9

(Shy)+ (k+1)° = (IH)
(kx(k+1)x (2k+1))/6+ (k+1)* =
(kx(k+1)x (2k+1)+6(k+1)%)/6 =
(2k% + 3k* + k + 6k* + 12k + 6) /6 =
(k+1) x (k+2) x (2k +3))/6

Why does this work?

The set IN of natural numbers satisfies:

e €N
o ifz €IN, thenz +1 € IN.

and IN is the least set with both of these properties.

Usually, one would write ‘Proof: by induction on »’, but the
correct formulation is ‘Proof: by induction on the structure of
natural numbers’.

Theorem: Suppose X satisfies the properties
e (c X
oifzr e X,thenz +1 € X.

then IN C X.

Proof : By mathematical induction over IN. Take £ € IN. Then
either £ = 0, or kK = k' + 1, with ¥’ € IN. To show: k € X.

k = 0 - By definition of X, we have 0 € X.

k =k +1-Since k' € IN, by induction also &’ € X. Then, by
definition of X, also k£ +1 € X.
So,forallk €IN, k£ € X.

Not every (correct) statement over numbers is proved by
induction:

Theorem: There are infinitely many prime numbers.

10

Complete Induction

An alternative to the rule for induction is the principle of
Complete Induction (course of values):

To prove a property P(x) for all natural numbers:

Base case - Prove P(0).

Inductive Case - For every k, on the assumption that P(i)
holds for every ¢ smaller than or equal to &, prove P(k+1).

Also these two proofs give you the ‘right’ to say that P(n) holds
for all n.

In Logic:
P(0) VEk.[(Vi<k.P(i))—P(k+1)]

Vn.P(n)

Theorem: These two principles of induction coincide, i.e.
accepting one principle you can show the other holds, and
vice versa.

11

Other induction

In general, we will define many sets, relations, ..., as the least
ones satisfying a set of conditions or rules.

Example: Ev is the least set such that:

e (cEv.

o if L € Ev, then k+2 € Ev.
Induction for Ev: to prove P(n) for all n € Ev, you
Base case - Prove P(0).

Inductive Case - For every k, using the assumption that P(k)
holds, prove P(k + 2).

Theorem: If n € Evand m € Ev, then n+m € Ev.

Proof : P(z) =Vm € Ev.[z+m € Ev|. By induction on the
structure of Ev.

Base case - Vm € Ev.[0+m € Ev|. Inmediate.

Inductive Case - To show: Vm € Ev.[(z+2) + m € Ev|. By

induction, Vm € Ev.[xz +m € Ev]. Then also
Vm € Ev.[(z+m) + 2 € Ev].

So Vn € Ev.VYm € Ev.[n+m € EV|.

12

Structural induction

Take: List(IN).

e || € List(IN).
e If n € IN, and [€ List(IN), then n : [€ List(IN).

An other representation technique is through rules:
premises

conclusions
that has the intended meaning:

if premises, then conclusions.

An inductive proof for P(l) with [€ List(IN), would follow:

Base case - Prove P([]).

Inductive Case - Assuming P(l), prove P(n :1).

13

Example: Take the ‘Miranda’ program

maxi mum [] =0
maxi mum (a: x) = a, a >=n
n

where n = maxi num X

l ength [] =0

length (a:x) =1 + length X
sum [] =0

sum (a: x) = a + sumx

Let P(l) = suml<maxi mum/ x | engt h/, then for all [€ List(IN),
P(l).
Base case - P([]) is trivial, since sum[] =0

|

Inductive Case - sum(n : [)

n + suml

IA A

n + maxi mum/ x | engt h [

maxi num(n : [) + maxi mum(n : 1) x l ength [

maxi mum(n : 1) X I ength (n : 1)

14

The general case

As mentioned before, the principle of induction extends to every
‘inductive’ structure, i.e. to every set X defined in terms of

Base case - constants a4, ..., a, are assumed in X.

Inductive Case - There is a limited number of constructors
Ci,...,C,, that, given a number of elements of X, produce
another element of X:

iftl,...,tnl € X, then Cl<t1,...,tn1) e X.

iftl,...,tnm € X, then Cm<t17--->tnm) e X.

Closure - X is defined as the smallest set satisfying the above
two rules.

Because of the third rule, the general form of structural induction
states that to prove P(x) for all elements = € X, itis sufficient to:

Base case - Prove P(a;) up to P(a,,).

Inductive Case - For every C};, assuming that P(¢;) up to
P(t,,), prove that also P(Cj(t1, ..., ty,)).

15

Example:
E = zero| Fy X Ey | (F)

or, alternatively
Ey e EXp Es € Exp E € Exp

zero € Exp FE1 x Es € Exp Ey x (F) € Exp
Constructors are *- x -"and ‘(-)’, ‘zer o’ is a constant.

Property: P(E)=#'("in E=#')"in E.

Proof : Induction on the structure of Exp.

Base case - #'("inzero =0=#) in zero.

Inductive Case 1- E = E; x Es, and by induction P(FE;) and
P(E,). Let#("in By =ny =#') in Ey, and
#’(I N E2 = N9 = #,)/ In EQ. Then
#,<, in B = ny+nNo = #,)’ in E.

Inductive Case 2 - E = (E;), and by induction P(E;). Let
#("in By =n; =#) in Ey, then
#H('iNnE=n+1=#)inE.

16

We occasionally need to do a proof by structural induction over a
number of domains simultaneously, like

S = xEx
E = +5 | #x

Exercise: All S-values have an even number of occurrences
of the x-token.

We have informally used rules in our inductive definitions:
premises

conclusions
But since paper is patient, care is needed. What set is defined

by:

neX
n+3e€X
or.
neX n+2eX
0e X n+2eX ne&X

We can define many relations using rules.

17

How to use rules

(Implicative) Logic (IL), where we derive statements of the shape
[' = A, whose intention is ‘I" shows A’, or ‘from [we can
deduce A’

AeTl Fru{A}+B 'FA—-B TFHA
(=1 (—E)
'-A I'-A—B '+ B

(AX)

These rules describe how to build derivations.
For any set I" of formulae, if A occursin ', then
Aerl
'FA

IS a correct derivation.

18

Suppose we have derived I' U {A} F B.

\ o/

ru{A}+ B

then by the second rule (—1), the following is a correct

derivation:

ru{A}+ B

' A—B

19

And, similarly, if we have D, and D», one for I' - A— B, the
other for I' = A, then by (—E), the following is a correct

derivation.

' A—B

I'-B

These three steps are the only permitted to construct
derivations; the set of derivations for IL is the smallest set
closed for the three derivation constructors, the rules (Ax),
(—1), and (—E) given above.

Correct denotation for objects defined by these rules would be
D :T'H A. Weuse I'+ A when speaking of objects in IL. This
then is meant to say that

There exists a derivation built using the three rules above,
that ends with ' = A.

since, normally, we are not interested in the actual structure of
the derivation showing I' = A, but only in the fact that the formula
is derivable.

20

However, when you are aiming to prove properties of IL
inductively, the actual structure of derivations becomes
important. An inductive proof over the structure of derivations
would have the following structure.

Proof: By induction on the structure of derivations. We focus on
the last rule used.

(AXx) - Here the derivation is nothing but an application of rule Ax.
AeTl

' A
This is the base case of the induction, and you need to show

directly that the property to prove holds for this derivation.

21

(—1) - We have a derivation D’ of the structure

\ o/

ru{A}+ B

' A—=B
The derivation D with conclusion" U {A} F Bisa
subderivation of D’ for ' - A— B. We can assume that the

property to prove holds for D, and use that to prove that it
holds for D'.

(—E) - We have a derivation D' of the structure

VAN

'FA—B

I'tB
The derivations D; and D, are subderivations of D’, and we

can assume that the property to prove holds for both, and
use that to prove that the property holds for D’.

22

(Apparent) Static and Reverse Induction

Take the system defined by:

A~B N~N N ~M N~ P
Again, writing M ~ N means that there exists a derivation that
has that formula in the bottom line.

Exercise: Show: If M ~ N, theneither M = N,orM = A
and N = B,or M = Band N = A.

Exercise: Let X be defined by:
nexX neX

(n > 5)
0eX n+3ecX n—5eX

Show that IN C X.

23

Concrete syntax

The Concrete syntax defines the sequences of symbols
allowable in a syntactically correct program:

(exp) == (num | (exp)(op)(exp)
(op) ==+ | =[x/
(num == (digit) | (digit){num
(digit) ==01]1]2]|3]4]5|6]|7[8]9]0
Ambiguous: precedence 4 x 2 — 1, associativity .

Instead, take

(exp) == (num | ({exp){op)(exp))

(op) == +[—=|x1]/

(num == (digit) | (digit)(num
(digit) ==0]1[2]3|4]5]|6]|7[8]9]0

The bracketing now forces the computation.

24

Abstract syntax

The Abstract syntax formalises the Allowable Parse Trees.

Syntactic categories
e € exp
op € Op
n € Numeral
Definitions
op n=+|—| x|/

e m=n| (e opey)

25

Natural Semantics

Syntactic Categories:
a € Arithmetic Expressions
n € Numeral
x € Variables
where Variables is an infinite set of variable names.

Definitions:

a=nl|x|(a+a2) | (a1 —a2) | (a1 X az)

26

Natural Semantics of Arithmetic Expressions

Semantics as a transition system.

Configurations:
(a,s) — Arithmetic Expressions and state
v — an integer (in Z, the final state)

We consider two sets of ‘numbers’.

e Numeral, syntactic representation of numbers.

e Z, the actual numbers.

For example, the forty-second positive number can be
represented as 42,y = 101010y = 2224 = 525 = 2A15 = 104. We
will use underline to distinguish. So, 4 € Numeral is a syntactic
representation of the fourth number, and 4 € Z is its actual
value. Sometimes, alternatively, we will use N[], so N [4] = 4
is the fourth element of IN.

27

Natural Semantics deals with the relation between the initial and
final state, denoted by: (a, s) — v (remember that a state maps
variables to values).

The rules :
(NUMns) —
(n,s) = n
(VARps) —
(x,8) > sz
(a1,s) = vy {ag,s) — vy
(OPns)
(ay op ag, s) — v1 0P Uy
where ‘op’ is any of ‘4, x, —'. Notice that the Natural Semantics

maps pairs of (expression, state) to a value, a number in Z.
This implies that a state is a mapping from variables to the ‘real

world’ of Z.

28

Example: Semantics for (3 x z) + 8, in a state s such that
sz = 4. The last rule applied: (4s).
(3xx,8) =7 (8,8) =7

(Bxz)+8,s) =7

The last rule for the left-hand result was: (xps).
(3,s8) =7 (x,s) =7

(3 X x,8) =7 (8,5) =7

(B3xx)+8,s) =7

By rules (NUMns) and (VARys), the three lacking derivations
are easy to construct:

(3,5) — 3 (x,5) >4
(3x x,8) > 12 (8,5) — 8

(3xz)+8,s5) =20

29

Determinism
The Natural Semantics for natural numbers is deterministic:

Theorem: |If (a,s) — v and (a,s) — o', then v = v’

Proof : By induction on the structure of derivations, where we
focus on the last rule applied.

Exercise: This semantics is terminating, i.e., for every
a € Arithmetic Expressions, for all states s, there is a v such
that (a, s) — v.

30

Denotational Semantics for Arithmetic Expressions

Memory is modeled by functions of type

State = Variables — Z.

The Denotational Semantics on Arithmetic Expressions is a
total function

A : Arithmetic Expressions — State — Z.

Aln]s = n
Alz]ls = sz
Alla; op a1]s = Afai]l s op Aflai] s

Example: Suppose sz = 3. Then:
Allz +1]s = Aflz] s + A[1] s
=sr+1
=3+1
=14

31

Free variables

FV (n)
FV (z)
FV (a1 op ag)

0
{7}
FV <CL1) U FV (CLQ)

Theorem: Let s and s’ be such that sz = s'z, for all
r € FV (a). Then Afa]l s = A[a] s

Proof : By induction on the structure of terms in
Arithmetic Expressions.

32

The language wi I e

Abstract syntax:

a € Arithmetic Expressions
n € Numeral

x € Variables

b € Boolean Expressions
S € Statements

a =nl|z|(a+a) | (a1 —a2) | (a1 X as)
b= true|false]|(a =as) | (a1 < as)
| (=0) | (b1 & by)
S =wx:=a|skip|(Si; S2) | (whilebdoS)
| (if bthen S; el seSy)
We will normally only write those brackets that are necessary to
avoid confusion.
Example:

y:=1;while-(z=1)do(y:=yxz;z:=x—1)

33

Semantics of Boolean expressions

B : Boolean Expressions— State—T
where T = {t, ff}, the set of (semantic) truth values — as follows:
Bltrue]s =t
B[fal se]]s = ff
Bllai = as]ls = t, if Aflai]l s = Aflas] s
= ff, if AfJa1]] s # Aas] s
Bllai < ax]s = t,if Ala1]ls < Afa2] s
= ff, if AfJai] s > Aflas] s
B[-b]s = tt, if B[[b]] s = ff

= ff,if B[b] s =t
B[b; &bs]ls = tt,if B[b1]]s=t & B[[bs]]s=1t
— ff, otherwise

34

Natural Semantics of wii | e

Configurations:
(S,s) — S is to be executed from state s,
s — aterminal state, or value.

Transitions: (S,s) — s’ Rules: (extended by (NUMps), (VARps),
and (OPns))

(a,s) = v
(x == a,s) = slx — v

(SKIPns) (skip,s) — s (ASSns)

<Sl, S1> — S9 <Sg, 82> — S3
(S1; Sa,81) = 83

(COMPs)

= ff
(WHILEFY) (whilebdo S, s) — S0l
(S, s1) = so(whilebdo S,sy) = s

(whilebdo S,s) — s3 B« =t

(WHlLEnTS)

S
51,91) = 5 B s = t

T
(CONDy) (if bthen Sielse Sy, s1) — 9

S
(52, 91) = 5 BH s — f

F
(CONDns) (7 then S, el se Sy, 1) — 55

35

When looking for the semantics of a certain statement S in a
specific state s, we would first need to construct the derivation

/

(S,s) =7

The syntax of .S guides the construction of the derivation

[V

<51781 ‘52782 _>?

(S,s) =7

We will, normally, end up looking for derivations for (n, s’y —7 or
(ski p, s’y —7, which is easy.

The only problem is rule (WHILE;,I_S).

2/

(whilebdo S,s) =7

36

Suppose B[b] s = tt, then the derivation is as follows:

N

<S, S> —7 <Whl | e bdo S, 71> —79

(whilebdo S, s) =7

Does this always terminate?

2/

(whi | e true do skip,s) —7

Since B[t rue] s = tt for all s, we obtain

\» /

(skip,s) — s (whi | e true do skip,s) —7

(whi | e true do skip,s) —7

The execution of a statement S on a state s

e terminates if and only if there is a state s’ such that
(S,s) — ¢, and

e loops if and only if there is no state s’ such that (S, s) — <.

37

Semantic Equivalence

Two statements S| and S, are semantically equivalent if for all
states s and s’

(S1,s) — s ifand only if (Sy,s) — ¢

Lemma: The statements
whilebdo S
and
if bthen (S; whilebdoS)elseskip
are semantically equivalent.

Proof : On the Black/White Board.

Theorem: If (S,s) — s' and (S, s) — s?, then s' = s°.
Proof : On the Black/White Board.

Meaning of statements:

Shs . Statements — State — State

Sns[[S]s = ¢, if (S,s) — s
— undef, otherwise

Well-defined, since (-,-) — - is deterministic.

38

Structural Operational Semantics

Focuses on individual steps of the execution. Transitions:
(S,s) = ~,~ ofthe form (5’ s') or &'

A configuration is stuck if there is no v such that (S, s) = 7.

Rules:
(ASSges) (z:=a,s) = s[z — Ala]s]

(SKIPsos) (skip,s) = s

<Sl,81> = 89
(comP’
(S1; Sa2,81) = (S92, 52)
(S1,81) = (51, 52)
(COMP{y)
(S1; So,81) = (S1; S2, s9)
(WHILEgos)

(whilebdo S,s) = (if bthen(S; whilebdoS) el seskip,s)
(COND{,, (if bthen S el se Sy, s) = (S,s), B[b]s =t

(CONDF <i f bthen Sy el se SQ, S> = <SQ,S>, B[[b]]s — ff

SOS

39

Sequences

Sequence of S in s: configurations~g, 71,72, - - ., such that
Yo = (S, 8), % = s for 0 <.

A sequence is a derivation sequence if:

e the sequence is finite (n > 0), and -, is terminal or stuck, or

e the sequence is infinite.

Notation: vy ="~ Y ="
Also, for each step there is a derivation tree.

Remark:

e no stuck configurations for the Structural Operational
Semantics.

e semantics is deterministic (later), so only 1 derivation
seqguence for each configuration.

40

Some properties

The execution of a statement S in s

e terminates if and only if there is a finite derivation sequence
of S'in s.

e loops if and only if there is an infinite derivation sequence of
Sin s.

e terminates successfully if there is a s’ such that (S, s) =* ¢

NB: any terminating execution is also successful in Wi | e - this
does not hold for some of the extensions to that language we will
discuss later.

A statement S always terminates (loops) if it terminates (loops)
on all states.

Theorem: If (S;; S, s1) =" s9, then there exists a state s
and natural numbers k; and k, such that (S, s;) =" ¢, and
<SQ, S()> = k2 So, and k = ki + ko.

Proof : By induction on the length of derivation sequences.

41

S, and S, are semantically equivalent if for all states s:

e (S1,s) =*ifand onlyif (Sy, s) ="~ (v either stuck or
terminal), and

e there is an infinite derivation sequence for .S; in s if and only
if there is one for S5 in s.

Meaning of statements:

Ssos : Statements— State — State

Ssos[S]s = ¢/, if (S,s) =*¢
= undef, otherwise

Equivalence of the two semantics.
Theorem: For every S, Sis[S] = Ssos [S])-
Follows from the following lemmae.

Lemma: If (S}, s1) =F s9, then (S;; So,51) =F (S, s9).

Lemma: (S,s1) — so implies (S, s1) =" so.

Lemma: (S,s;) =" s, implies (S, s;) — ss.

42

Comparison

Operational Semantics

Natural Semantics Structural Operational Semantics

Natural Semantics - Gives, for each statement, a mapping
from an intial state to the final state; it gives no detail on how
the latter is obtained from the first.

It can be used to show program equivalence, etc

Structural Operational Semantics - Gives a derivation
sequence vy = v, =, Where each* = ’represents a small
step in the computation.

In SOS, we can express some properties that are impossible to
express in Natural Semantics, like parallelism (later).

43

Provably correct implementation

Wi | e
Compilation

Assembly language

Steps

e Define meaning of abstract machine instructions.

e Define translation functions.

Correctness : if we translate a program into code and execute
that code on the abstract machine, we get the same result as
was specified by Sps or Sgos.

44

The abstract machine AM has configurations (c, e, s) where

e c is the code to be executed,
e ¢ is the evaluation stack, and
e s is the storage.

The evaluation stack is used to evaluate arithmetic and boolean
expressions:
e € Stack = (ZuUT)*.

We also have s € State, as before.

45

The abstract machine language

Syntactic categories:

inst € Machine Instructions
¢ € Code sequence of instructions.

Abstract syntax:
inst ::= PUSH—n | ADD | MULT | SUB | TRUE | FALSE
| EQ| LE | AND | NEG | FETCH—z | STORE—x
| NOOP | BRANCH (¢, ¢) | LOOP (¢, ¢)
c == e|inst:c

Configurations:

(c,e,s) € Code x Stack x State
(c,e,s) isterminal if ¢ = e.
The transition relation >:
(c,e,s) > (c,€,s)

specifies how to execute instructions.

46

(PUSH—n : ¢c,e,s) > (¢, N[n] :e,s)
(ADD:¢,21:29:€,8) D> {(c,z1+29:¢€,8)

(TRUE : ¢, e s) > (c,tt:e,s)
(FALSE c,e,s) > (cff:e,s)
<EQ C, 21 - > >

(c, (21 =29) 1 €,8)if 21,20 € Z

(AND: ¢, by : by - e,5) >
(c,(by & bo):e,s)ifby,by e

(FETCH—z : c,e,s) > (c,(sx):e,s)
(STORE—x : ¢,z :e,8) > (c,e, s[z+— z|)
(NOOP : c,e,s) > (c,e,S$)
(BRANCH(c1,¢9) s c,beys) > (c1:c,e s)ifb=t
(BRANCH(cq1,¢9) s c,b e, s) D> (co:c e s)ifb ="

(LOOP (c1,¢9) s c,e,8) D

(¢1 : BRANCH (¢2, LOOP (¢4, ¢2), NOOP) : ¢, €, S)

Define a computation sequence by analogy to a derivation
sequence.

47

Note: initial configurations always have an empty evaluation
stack.

Example: Take the code

PUSH—1 : FETCH—x : ADD : STORE—z

and s such that sz = 3, then
(PUSH—1 : FETCH—x : ADD : STORE—1, €, S)
(FETCH—x : ADD: STORE—1z, 1, 5)
(ADD : STORE—x,3 : 1, 5)
(STORE—1z, 4, s)
(€, €, s[x > 4])

L OOP (TRUE, NOCP) is non-terminating.

(ADD, ¢, s) is stuck.

48

By analogy with the SOS-style semantics of Wi | e we can prove
properties of AM.

Lemma:
(c1,e1,8) BF (d, e, s") =

(c1:coer e, 8) DF (i ey € i ey,8)

Lemma: If <Cl . Co, €1, 81> [>k <€, €3, 33>, then there are S9, €9, k1
and k, such that k; + ky = k, and (c;, e1, s1) > (e, ey, 55) and

(2, €2, 82) > (€, €3, 53).

Theorem: The machine semantics is deterministic:
For all vy, 9,73, if 1 > v and v; > 73, then v, = ~s.
Proof : Exercise.

The meaning of a sequence of instructions can be expressed as
a partial function from State to State.

Msos : Code — State — State

Mlc]s = ¢, if (c,e,s) > (€,¢€,5)
— undef, otherwise

49

Translation of expressions

CA : Arithmetic Expressions — Code

CA[[n] = PUSH—n

CA[[z] = FETCH—=z
CAfla; + as]]l = CAflas] : CAflaq]] : ADD
CAfla; — as]] = CAfao] : CA[a] : SUB
CAfla; x as]] = CAJas] : CAfla1] : MULT

CB : Boolean Expressions — Code

CB[true] = TRUE
CB[f al se]] = FALSE
CB[[a; = as]]l = CAflas] : CAfla1]] : EQ
CBlla; < as]] = CAflas] : CAla1] : LE
CB[-b]] = CBJDb] : NEG
CB b1 & bs]] = CB[bs] : CB[b1]] : AND

50

Translation of statements

CS : Statements — Code

CS[[z:=a]] = CA[a] : STORE—=z
CS [ski p]] = NooP
CS[[51; So = GS[51] : GS [15:]]
CS[[if bthen S;else Sy =
CB[b] : BRANCH(CS [511, CS [[S21)
CS[whil e b doS] = LOOP (CB] : CSTST)

The meaning of a statement S can now be obtained by first
translating it into code for A M and next executing the code on
the abstract machine:

Sam : Statements — State — State

Sam = Mo(CS

51

Correctness of translation

Sns — Sam
or
Ssos — Sam

These two results need proof, and express that, if we first
translate a statement into code for AM and the execute that
code, we must obtain the same result as specified by the
operational semantics for Wi | e.

In proving this result, we will deal with expressions and
statements separately: we will first show

(CAlall, e, s) >* (¢, A[als,s)
and
(CB[D],e,8) >* (¢, B[b]s,s)
and use these results to show

Sns [[S]] — Sam [[S]]

52

Correctness for expressions

Correctness of the translation from Wi | e into the Abstract
Machine Language, restricted to the set of
Arithmetic Expressions is formulated by:

Theorem: (CA[al, e, s) >* (e, A[la] s, s)

Proof : By induction on the structure of arithmetic expressions.
Booleans are dealt with in a similar way.

53

Correctness for Statements

For every statement .S of Wi | e we have to show:
Sns — Sam-

This equality expresses two properties:

e |f the execution of S from some state s terminates in one of
the semantics, then it also terminates in the other semantics
and the resulting states will be equal.

e Furthermore, if the execution of S from some state s loops in
one of the semantics, if will also loop in the other.

Lemma: Forevery S, s, so,
if (S, s1) — s9, then (CSST, €, s1) >* (€, €, 59).

Lemma: Forevery S, sy, so: if (CS[ST, ¢, s1) >F (€, e, s9), then
<S7 31> — S2.

We could have used Ssqs instead - the proof for equivalence
might have been easier because both Ssos and Sam focus on
single steps.

54

Denotational Semantics

Operational approach: how a program is executed. Denotational
approach: the effect of executing a program.

The basic idea is:

e Define a semantic function for each syntactic category - it
maps each syntactic construct to a mathematical object
(which describes the effect of executing the construct).

In Denotational Semantics, the semantic functions are defined
compositionally:

e there is a semantic clause for each of the basic elements of
the syntactic category.

e for each method of constructing a composite element there is
a semantic clause defined in terms of the semantic function
applied to the immediate constituents of the composite
element.

Examples: A, B, and non-examples: Shs, Ssos.

55

Sygs : Statements — State — State

Sasl[z:=a]ls = slxz — A[a] s]
Sys[[skip] = id
Sas [S1; S2]l = Sus [S210Sus [51]]
Sygsl[i f bthen Sy el se So =
cond (B [0], Sas [51], Sus [521)
Sgs [whi | e b do S]] = Problematic ...

id is the identity function on states.

Sds [51; S2ll s
= (Sds [S2lloSas [51]1) s
= Sys [52] (Sds IS 3)
(s), ifSus[Si]s = 51, and
Sas [S2]1 51 = s2.
= § undef, if Sgs[S1] s = undef, or
Sas [S1] s = s1, but
Sys [S2] s1 = undef.

g2, fgrs=t
cond <gl7927g3)3 - .
g3 s, if gis = ff

56

What is the effect of ‘whil e bdo S’. We want;

Sys [[whi | e b do S|
= Sgs[li f bthen (S; whilebdo S) el se skip]l
= cond (B[[b], Sgs[[S; whi | e bdo ST, Sgs [ski p])
= cond (B [[b]], Sgs [whi | e b do SToSys [ST,1d)
Not compositional. Assume Sgs [[whi | e b do ST is a function f.
Then the equation above expresses that this f should at least
satisfy:
f = cond (B[0], foSqs [ST,1d)
We can now define a functional F' as follows:
Fz = cond (B[b]], xoSgs [S1, id)
Then, in particular:
Ff = cond (B[b], foSgs[ST,id) = f
Then f is a fixed point of F.

Sgs [whi | e b do S is a fixed point of F', where
Ff=cond(B[bl, foSgs[[ST,id).

57

Example: Fixed points of functions do exist:
o fo=1,with f: Z — Z, then 1 is a fixed point of f.
e fx =2 x z,then 0 is a fixed point of f.

We will define a special function, Fix, that, given an input
function f, constructs the fixed point of f. The intention is that
Fix F' is a fixed point of F"

F(FiXF) = Fix F

Let f be defined by
fx = ‘some expression in which’ f ‘appears’,
then we can define F' by:
Fgx = ‘some expression in which’ g ‘appears’,
and the solution for the first equation is then Fix F'.
The intended types for the functions mentioned are:
f o= %% (f is a function)
F o (3= % %)= % — % %
FiX @ ((%— % %)= % — % %) — * —> * %

58

Unfortunately, this does not suffice:

e There are functionals which have more than one fixed point.
For example, the function fz = x has infinitely many fixed
points, and fz = e* — 1 has two.

e There are functionals which have no fixed points at all. For
example, let g; # g2, and define GG by:

,ifg =
Gg = g1, g 9'2
go, otherwise

Our solution to these two problems is:

e to Impose requirements on the fixed points such that there is
at most one fixed point satisfying them.

e to establish a framework such that every functional does
have at least one fixed point satisfying the requirements.

59

Fixed Point Construction

Remember that we want the denotational semantics to satisfy:

Sds [whi | e b do ST
= cond (B [[b]], Sgs [[whi | e b do SToSys [ST,1d)

Therefore, Sys [whi | e b do ST should be a function f such that
(using the definitions above):

fs = cond (B[0], foSys [ST,1d) s

(foSusST) s, if BIb]s = tt
s, if BIO] s = f

S0 Sys [[whi | e b do ST should be a fixed point of F', where F'is
defined by:
(foSusST) s, if B[b]] s =t

Ffs —
s {3, if B[[0]] s = ff

60

Example: ‘whi | e =(z = 0) do ski p’. The intended semantics
for this program, using the construction discussed above, f is:
fs = cond (B[~(x =0)], foid,id) s
= cond (B[[-(x = 0)], f,1d) s

) fs, ifsz #£0

a { s, Ifsx=0
As suggested above, we write
fs, ifsx#0
s, Ifsx=0

Ffs{

Now, once we have a fixed point for F', we have a solution for
our problem. Well, notice that

undef, if sz #£ 0
hs = _
s, if sz =0
is a fixed point of F".
rhs, if sx #£0
s, ifsx=0
[undef, if sz #0

s, if sx =0

Fhs =

\

= hs

61

Example: Take ‘whi |l e true do ski p’. Following the above
definition, we get:

Ffs = cond (B[t ruell, foSys[skip],id) s

(

| (foSgs[skipl)s, if Btrue]s =t
- | 5 if BItruel] s =ff
B ' foid)s, ift =t

s i tt = f

— fS

Take f, s = undef, for all s. Notice that F'f, = fy, SO fyis a
fixed point of F'. Moreover, f; is the intended semantics for
‘whi | e t rue do ski p’, i.e. the semantics you would want it to
have.

62

Example: Take ‘while z =0do x: =5". Following the above
definition, we get:

Ffs = cond (B[z =0], foSgs[[z: =5],id) s

B <' (foSusz:=5])s, if Bz =0]s =t
s if B[x =0]]s=ff
B J f(sle —5]) ifsx=0
s, if sx #0

Take f, s = undef, for all s. Then

fs—Ffys — J fo(slx = 5]), ifsz=0
| s, if sx # 0

B (undef if sz =0

_is, if sz # 0

63

and
' fi(slx = 5]), ifsz=0
| s, if sz # 0
(| undef if slx — 5]z =0
= ¢ | sle = 5], if sz — 5lax#£0
s, if sx £ 0
'ﬁmﬁﬂJMx:O
| s, if sz #0
applying the construction again, we get:
' fo(slx = 5]), if sz =0
| s, if sz #0
(| s[z+— 5] ifslz— 5]z =0
= sl — 5], if slx — 5lx #0
s, if sz # 0
’ﬁmﬁﬂJM$:O
| s, if sx # 0

= fas
So f, = f3, and, therefore, f; is a fixed point of F'. Also, f; is
the intended semantics for ‘while z =0do z:=5".

fos=Ffis =

ifsz =0

f38:Ff28 =

ifsz =0

= A

64

Example: Now take ‘while z > 0do z: = z—1". Following the
above definition, we get:

Ffs = cond(B[z > 0], foSgs[[z: = z—1],id) s
) fslz e (s —1)]), ifsz >0
: { S, ifsx <0
Take f, s = undef, for all s. Then
undef if sx > 0
S, ifsz <0
and (where s’ = s[z — (s — 1)])
' fi(s), ifsx >0

f1Ff0{

s=Ffis =«
> I S, if sz <0
(| undef ifs'z >0
_ if sz >0
=1 |4, if /2 <0
s, if sz <0

(undef ifsx > 1
= {slz— 0], ifsz=1
s, ifsx <0

65

Applying the construction again, we get:

(

Js=Ffs = 1

\
(

\
)

\

fos ifsz >0
s, ifsz <0
[undef

{ Sz 0], ifsdz=1

S?
undef if sz > 2
sl = 0], ifsx=1,2

S, if sz <0

if s’z > 1|

| 5, if s'z <0 |

fsxz >0

ifsz <0

Continuing this construction, after the n-th step we get:

fnS:

[undef ifsz >n

s, if sz <0

sl — 0], ifsz=1,..

7

If we continue ad infinitum, we will obtain the function

Joo 8

slx — 0], ifsz >0
s, ifsx <0
which is exactly the intended semantics for

‘Whilez >0doxz:=x2—1".

66

Partial order relations

We define an ordering, C , on the function space
State — State, such that:

g L 9
means that ‘if g; s; = so, then g» s; = 59’ which expresses two
properties:

e the domain of ¢, is a subset of the domain of g, (the
converse need not hold), and

e ¢, and g, are identical on the domain of ¢;.

Example:
Take then g
e VRN
S, ifsz >0
g2 S = < _ 92 94
undef, otherwise N 3
S, ifsz =0 v 7
gs S — | _
undef, otherwise 93
, s, if sz <0
gsS = 3 _
undef, otherwise

67

Partial Ordered Set

A partial ordered set is a pair (D, C) such that

eVdeD.dCd
Ole,dQ,dgeD.dlng & dggdg = dlgdg
0Vd1,d2€D.d1Ed2&dQEdlﬁdlde

IfvVd' € D.dC d,dis called a least element of D:

Exercise: If a partially ordered set (D, C) has a least
element, then it is unique.

The least element of D is Lp or just L.

Exercise: Let S # () and define P(S) ={V |V C S}. Then
(P(S),C) is a poset.

Lemma: (State — State, C) is a poset, and Ls = undef is
its least element.

Fix I’ needs to satisfy:

o F(FiXF)=FixF.

e Fix F'is a least fixed point of F, i.e. if, for some g, Fg = g,
then Fix F' C g.

68

Least Upper Bounds

Consider (D, C)andY C D. IfVd' € Y .d C d, thend is an
upper bound of Y. d is the least upper bound (lub) of Y if and
only if:

If d’ is an upper bound of Y, thend C d'.

We denote the lub of Y as LY.

Chains

We call Y a chain if le,dg cY .d; L dy V dy L dy.

Example: (P({a,b,c}),C).

Example: Let g, : State — State be defined by:

'undef, ifsz >n
gns = {slz—1], if0<sx<n

S, if sz <0

\

It is easy to verify that ¢, C ¢,,, whenever n < m, and that,
therefore, Y = {g, | n > 0} is a chain. Then
sl = 1], if0< sz

LY's = _
s, ifsz <0

69

CCPO

A poset (D, C) is a chain-complete poset (ccpo) whenever
LY exists for all chains Y. It is a complete lattice if LIY exists
for all subsets Y of D.

Exercise: (P(S), C) is a complete lattice, and (hence) a
ccpo, for all non-empty S.

Exercise: If (D, C) is accpo, it has a least element .

Exercise: State — State is not a complete lattice.

Lemma: State — State is a ccpo. The least upper bound of
a chain of functions Y, L1Y, is given by
graph(LlY) = U {graph(g) | g € Y}, i.e.:

(UY)s=¢ <= dgeVY .gs=4¢

70

Monotone functions

Let (Dy,C,) and (D5, C,) be ccpos and f : D; — D,. We call f
monotone if and only if, for all d,,d, € Dy, if diy C; ds, then

fdi Ty fds.

Example:

X {a,b,c}|{a, b} {a,c} | {b;c} {a} |{b} |{a}
HX | {d,e} | {d} [{d,e}|{d, e} {d} |{d} {e}
X {d} | {d} | {d} | {e} [{d}|{e}|{e} |{e}

0
0

Exercise: Let (Dy,C,;), (D, C,) and (D3, C5) be ccpos and
let /1 : Dy — D and f5 : Dy — D3 be monotone functions,
then fyof; : D; — D5 is a monotone function.

Lemma: Let(D,,C,)and (D, C,) be ccpos and
f: Dy — Dy be a monotone function. If Y is a chain in Dy,
then {fd | d € Y} is a chain in D,. Furthermore,

Lb{fd[deY} Ty f(LLY).

Exercise: Prove this lemma.

71

In general, we cannot expect that a monotone function
preserves lubs on chains, i.e.

Up{fd|deY} = f(LLY)
only holds in special cases, as illustrated by the next example.

Example: Consider f: P(IN U {a}) — P(IN U {a}), defined

by:
X

, if X is finite

fX =

X U {a}, if X is infinite

Clearly, f is monotone. But consider the set
Y = {{0,1,...,n} | n >0}

Then LIY = IN. Now

LI{fX|XeY}=1H{X|XeY} =LY =IN
But

fUY) = fIN = IN U {a}.

72

Continuous Functions

We shall be interested in functions which do preserve lubs of
chains. An f: D; — D, defined on ccpos (D, ;) and (D5, C,)
is called continuous if it is monotone and, moreover:

U {fd|deY} = f(LLY)

holds for all non-empty chains Y in (D, C;). (When this also
holds for the empty chain, so

0 =L{0} = f(LL0) = f(0)

, We say that f is strict).

Lemma: (Dy,C,), (D9, Cy) and (D3, C,) be ccpos and let
f1: Dy — Dyand fy: Dy — D3 be continuous functions. Then
foof1 : Dy — D3 is a continuous function.

73

The Fixed Point Theorem

Above, we have defined continuous functions as functions that
are monotone, i.e. preserve the order, and continuous, i.e.
preserve lubs of chains.

Lemma: Let f: D — D be a continuous function on the
ccpo (D, C) with least element L. Let

0 =id
frHl = fof™ forn >0
Then
Fix f = U{f"L|n>0}

defines an element of D and this element is the least fixed
point of f.

74

Denotational Semantics

Using the result above, we can now define the Denotational
Semantics for a program in Wi | e.

The meaning of a statement S is a (partial) function from State
to State:

Sds - Statements — State — State

Sasl[x:=al]s = slz — Ala] s]
Sys [[ski p] = id
Sas [51; Sall = Sas [S2ll0Sas [51]
Ses[[i f bthen S; el se Sy =
cond (B [b], Sas [.51], Sus [.521))
Sys [whil e bdo S]] = Fix F,
Fg = cond (B[b], goSqs[[51,1d)

Only well-defined in the context of continuous functions.

75

Example: Consider the function
fs, ifsxz#0

s, Ifsx=0

Ffs{

The elements of { F" L | n > 0} are defined as follows:
F's =idLs = 1L s = undef

FOs, if 0
Flls = (FoF%1ls= > _ se7
s, ifsx=0
| undef, if sz # 0
S, if sx =0
Fls, if 0
Fols — (FoF)Ls—{ ! & Ts07
s, ifsx=0
[[undef, if 0
Mse 2004 0 20
= 1| s, if sz =0
s, ifsx =0
’undef, if sx # 0
= 9
s, if sz =0

So:
L{F"L |n>0} = L{F°L,F'1} = F'1 = FixF

76

Existence

We need to show that:
Ff = cond (B[b], foSus[S],id)

IS continuous. So:

Lemma: Leth : State — State, b : State — T, and define
Fg =cond (b, g,h). Then F' is continuous.

Lemma: Leth : State — State, and define F'g = goh. Then
F'is continuous.

Theorem: Sgys IS a total function.

Thus, from the fixed point theorem, Fix F' is well-defined. So
Sgs [[whi | e b do ST is well-defined.

As before, S; and S, are called semantically equivalent if and
only if Sus [51]] = Sus [52]

Example: S;skip and S are semantically equivalent.

77

Equivalence to Operational Semantics

Lemma: Notice that:

e Let f: D — D be continuous, and let d € D satisfy
fd C d. Then Fix f C d.

o |f <Sl, 31> :>k S9, then <Sl; SQ, 31> :>k <SQ, 82>.
e ‘0o’ and cond are monotone.

We conclude the discussion of Denotational Semantics, by
showing that, for the language Wi | e, there is no difference
between this semantics and the Structural Operational
Semantics.

Theorem: For every statement S of Wi | e:
Ssos [[S]] — Sds [[S]]

Ssos [[S]] C Sds [[S]]

and
Sds |IS]] E Ssos [[S]]

/8

Extensions to Wi | e

We have seen that Operational Semantics are good for
formally describing implementation aspects of programming
languages. Furthermore:

e Structural Operational Semantics are good for describing
low-level details (abstract machine).

e Natural Semantics are good for reasoning (more abstract -
more intuitive)

We will now see some other differences. We will do that by
defining extensions to the language Wi | e, adding new
language constructs.

79

Aborting

We start by adding the new statement abort .

Approach 1 - Consider (abort, s) to be a stuck configuration.
No extra rule to either the Natural or the Structural
Operational Semantics added.

Note that

(whi | e true do skip,s;) — sy implies
(abort,sy) — s9
(abort,s;) — sy implies
(whi | e true do skip,s;) — S

so equivalent in the Natural Semantics. In Structural
Operational Semantics ‘whi | e t r ue do ski p’ generates
infinite number of steps, and ‘abort’ none

Approach 2 - Add a new terminal configuration to the
system, error, and add

(abort,s;) — error
(abort,s;) =*error

We can now distinguish between the statements in both
semantics.

80

Non-determinism

We add ‘S or S,’. For example:

(z:=1)or (x:=2;z:=2x+2)
result state: x has value 1, or 4. Natural Semantics:
(S1,81) — s9

L
(ORnS) <Sl or SQ, 81> — S9

<SQ, 81> — 89

R
(ORnS) <Sl or SQ, 81> — S9

Then we have the following derivations:

(x:=1,5) = sz — 1]

(x:=lor (z:=2;z:=2+2),s) = sl — 1]

(x:=2,5) = s[x 2] (x:=x+2,s[x — 2]) — s[z+— 4]

(x:=2,x:=204+2,5) = slx — 4

(x:=1lor (z:=2;z:=2+2),s) = slx — 4]

Non-determinism suppresses looping
((Whiletruedoskip)or (z:=2; z:=2+2),s) — s[z > 4]

81

Likewise, :
(Syor Sy, s) = (S1,s) and (Sjor Sy, s) = (Sy,9)
Then we have:
(x:=1lor (z:=2;x:=2+2),s) = (x:=1,s)
= s[z 1]

and
(x:=lor (z:=2;x:=2+2),s)

= (z:=2;z:=x+2,s)
= (r:=x+2,s[z— 2])
= s[z > 4]

But replacing ‘z : = 1’ by ‘whi | e t r ue do ski p’ will still give two
derivation sequences; one will be infinite:
((whiletruedoskip)or (z:=2; x:=x+2),s)
= (whi | e true do skip, s)

and the other is finite:
((whiletruedoskip)or (z:=2; x:=x+2),s)
= (x:=2;z:=2+2,5s)
S (o= 242,82 2)
= slz — 4]

82

Parallelism
Add the construct ‘par’, and expect the execution of S; and 5
to be ‘interleaved’. For example, the program
(z:=1)par (z:=2;z:=x+2)
has the following different ways to execute:

r:=1 =2 r:=x+2|sx=4

=2 r:=1 r:=x+2|sx=3

r.:=2 x:=x+2 r:.=1 sr =1

Rules for Structural Operational Semantics

LT (S1,81) = s9
(PARSOS <Sl par 52,81> = <SQ,SQ>
L] <51731> = <‘91732>
(PARSOS /
(Sy par Ss,s1) = (S] par Ss, s2)

(pARRT) <SQ,S1> = 89
S0S <Sl par 52,81> = <Sl,82>
(pARR! (S2,51) = (51, 82)
S07(S) par Sy, s1) = (Sy par 57, s9)

Exercise: Verify the results above.

83

To accomplish the same expressive power in Natural
Semantics, we run into problems. Assume the rules that need
to be added are:

(S1,81) = 52 (S2,82) = s3

<S1 par SQ, 81> — S3
<SQ, 81> — 89 <S1, 82> — S3

<S1 par SQ, 81> — S3

Using Natural Semantics, we cannot describe the intuitive
semantics, because Natural Semantics is defined using the
iImmediate constituents of a program, not the individual
computation step. In a sense, Natural Semantics is too
abstract.

84

Blocks

New programming language Bl ock

Abstract syntax:

Numeral

S

Variables

8

IS

€

€

€ Arithmetic Expressions
€ Boolean Expressions
€
€

D, € Declared Variables
S € Statements
a=mnl|x|a+ay|a —asl|a Xay
b = true|false|a1:a2|a1§a2|—|b|b1&b2
D, :==var z:=a; D, |€

S u=ux:=al|skip|Sy; Sy|if bthenS;elseS,
| whilebdo S | begin D, S end

Variables are local to the block in which they are declared,
and it is possible to use an identifier more than once in a
declaration in a program.

85

Example:
begin var y:=1;

x:=1;

begin var x: = 2;
y:=x+1

end;

r.=y+x

end

For the Natural Semantics, take

if 1%
s1lV = so]z = 2t I ve
six ife &V
DV (var z:=a; D,) = {z} U DV (D,)
)

DV (¢)

We add the following rules:

(Dy, s1]z — Afa]l s1]) = 2

(varz:=a,s;) — S

(DECLns)
(NO-DECLpg) ——
(€,8) — s
<Dv, 81> — S9 <S, 82> — S3
(begin D, S end, s;) — s3|DV (D) + s9]

(BLOCKhps)

86

Procedures

Pr oc, a language that allows for the definition of
(parameterless) procedure declarations

n € Numeral

x € Variables
a € Arithmetic Expressions
€ Boolean Expressions
p € Procedure Names
D, € Declared Variables
D, € Declared Procedures
S € Statements
a =mnl|x|a+ay|a—as|a Xa
b:=truel|false|a;=ay|a; <as|—-b|b &b
D, :==var z:=a; D, | €

D, = procpis S; D,|e
S =ux:=al|skip|Sy; Sy|if bthen S;elselS,
| whilebdo S|beginD,D,Send|call p

87

Three different semantics

e Dynamic scope for variables as well as procedures.

e Dynamic scope for variables, and static scope for
procedures.

e Static scope for variables as well as procedures.

Example:
begin var x:=0;
procpisz:.=x X 2;
proc giscall p;
begin var x:=5;
procpisz:.=x+1;
call q;
y:=zx
end
end
Qy:
o y—=10
.y:

88

Dynamic / Dynamic

Procedure environment
env, € Env, = Procedure Names — Statements

The transition rules will now be of the form:

env, F (S, s1) — s

We need to be able to update the environment.
Update,(proc pis S; D,,env,) =
Update,(D,, env,[p — S])
Update,(e, env,) = env,

We add two rules

env, - (S, s1) —
pt {5y 0) = o (env,p = S)

rec
CALL
(ns env, - (cal | p,s;) — s9

(BLOCKps)
(D,,s1) — s Update, (D,,env,) F (S, s9) — s3

env, - (begin D, D, S end, s1) — s3|DV (D,) — s1]

Procedures can always be recursive,

89

Dynamic / Static

Procedures will use those declarations that are defined at the
moment the procedure itself was declared. We also need to
state the environment in which procedures are defined:

Env, = Procedure Names — Statements x Env,

Update,(proc pis S; D,,env,) =
Update,(D,, env,[p — (S, env,)])
Update,(e, env,) = env,

We then just need to update the rule (CALLs). If procedures
In Pr oc are non-recursive, we use:

env. (S, s) — s
(CALLps) p 715 01) 7 o2

env,p = (S, env
env, - (cal | p,s;) — s9 (e, (2

But if procedures are recursive, we need:
env,[p — (S,env))] = (S, s1) — s

(cALLEC (env,p = (S, envy))

env, - (cal | p,s;) — s9

Exercise: Try to construct a statement which illustrates the
difference between these two rules.

90

Static / Static

Approach defined above, and variables can appear in more
than one declaration. We need to replace the state with two
mappings:

env, € Env, = Variables — Locations
store € Store = Locations U {next} — Z

Locations = Z, and next is a special token which holds the
next free location. A machine is now represented as a infinite
number of locations, and a variable = now will point to a
location through a mapping that is called a variable
environment, env,. The location env, = points at will hold its
value through the function store that maps locations to
values.

Entering a new block can make that x will be redeclared,
making x point to a new location. We also use a function
‘new’ that produces the number of the next free location.

new : Locations — Locations

newl! = [+1
(Note that s = storeoenv,,.)

91

We need to consider transitions of the form
(D,,env,, store;) — (env, store,)
For evaluating the variable declarations, we have rules
(D,,env,[z — [], store[l — v]|[next — new!(]) — (env,, store,)

(var z:=a; D, env,,store) — (env), store,)

(e, env,, store) — (env,, store)

where
v = Ala] (storecenv,)

[= store next
We must further update procedure environments:
Env, = Procedure Names — Statements x Env, x Env,

Update, (proc pis S; D,,env,,env,) =
Update, (D,, env,, env,[p — (S, env,, env,)])
Update, (¢, env,, env,) = env,

92

The transition system for statements now has rules of the
form

env,,env, F (S, store;) — store,
Most rules are similar to their original, but the rule for blocks
Is modified:

(D,,env,,store;) — (env,, store,)
env,, env, - (S, store,) — stores

env,, env, - (begi n D, D, S end, store;) — stores
where
env, = Update, (D,,env,,env,)

And the new rules for cal | are:
env,, env, - (S, store;) — store,

(CALLps)
™ env/ env, I- (cal | p,store,) — store,

env,, env [p — (S,env,,env,)] - (S, store;) — store,

rec
(CALLg
env,,env, - (cal | p,store;) — store,

where
env, = (S,env;,env,).

93

