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Abstract. This paper shows the Inhabitation in the lambda calculus
with negation, product, and existential types is decidable. This is proved
by showing existential quantification can be eliminated and reducing the
problem to provability in intuitionistic propositional logic. By the same
technique, this paper also shows existential quantification followed by
negation can be replaced by a specific witness in both that system and
the system with implication and bottom.

1 Introduction

Existential types are important in computer science and have been studied ac-
tively for a long time. [6] showed types of abstract data types are existential
types. [5] investigated a conversion translation by using existential types. Re-
cently [2] showed there is a Galois correspondence between the polymorphic
typed lambda calculus, that is the system F, and the type system with existen-
tial types. [4, 8, 9] found a simple proof of strong normalization in type systems
that contain existential types.

Inhabitation, type checking, and type inference of existential types are not
known to be decidable until this year. For the system F, the inhabitation was
proved to be undecidable [3, 12], and the type checking and the type inference
were proved to be undecidable [13]. In addition, [1] proved the inhabitation is
decidable in a type system with positive universal types. On the other hand,
though existential types are dual to universal types, we did not know anything
about inhabitation, type checking, nor type inference of existential types until
this year [7].

In this paper, we will investigate the type system with negation, product,
and existential types proposed in [2], and show the inhabitation of that sys-
tem is decidable. We will also show the inhabitation is also decidable when we
add the bottom elimination rule to that system. These results are obtained by
studying the corresponding logical systems and showing that their provability
is decidable. In order to prove this, we will show the existential quantification
elimination theorem, which says that any formula is equivalent to some formula
without existential quantifiers. So the decidability of provability in these systems
is reduced to that in intuitionistic propositional logic and minimal propositional
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logic. By using the same technique, we will also show that any formula with only
existential quantification of negation is equivalent to some formula without exis-
tential quantification in the system with implication, existential quantification,
and bottom. Moreover, in all these systems we will also show the second-order
witness theorem, which states that we can replace existential quantification of
negation by a specific witness effectively computed from the original formula.

The decidability of inhabitation in the negation-product-existential type sys-
tem is interesting, because its dual system is the system F whose inhabitation is
undecidable [3, 12]. This system can interpret the system F by CPS-translation,
and this translation gives a Galois correspondence between the system F and
this system [2]. Although this fact shows this system is closely related to the
system F and has expressive power, we will show this system turns out to be
decidable.

Our proof will use the following three key facts. The first one is that A[X :=
¬A[X := T]] is intuitionistically equivalent to ¬¬A[X := T] and A[X := F]. This
is proved by repeatedly using the property that A[X := B] is intuitionistically
equivalent to A[X := T] when B holds. The second one is that ∃X¬¬A is
intuitionistically equivalent to ¬¬A[X := T] ∨ ¬¬A[X := F], where disjunction
is coded by negation and conjunction. It is proved by combining the first one
and X ∨ ¬X. The third fact is that any formula is intuitionistically equivalent
to a conjunction of variables and a negation. It is proved by using the second
fact. Existential quantification elimination follows from the second and the third
facts.

As a byproduct of our proofs, in all these systems, we can also show the
second-order witness theorem, which states ∃X¬A implies ¬A[X := B] for some
formula B effectively computed from the formula A itself. This is surprising
because in first-order intuitionistic logic, the witness t such that ¬A[x := t]
holds can be obtained from the proof of ∃x¬A and it cannot be obtained from
only the formula ∃x¬A.

Section 2 defines the type system λ¬ ∧ ∃ with negation, product, and existen-
tial types, and the type system λ¬ ∧ ∃⊥ with negation, product, existential, and
bottom types. The section also states decidability theorems of their inhabita-
tion. Section 3 gives the corresponding logical systems L¬ ∧ ∃ and L¬ ∧ ∃⊥, and
states decidability theorems of their provability as well as the existential quantifi-
cation elimination theorem. The section also defines the logical system L→∃⊥
with arrow, existential, and bottom types, and states its existential quantifica-
tion elimination theorem. Section 4 discusses coding of logical connectives and
double negation translation in minimal logic. Section 5 proves the existential
quantification elimination theorems and the second-order witness theorem. In
Section 6, we will prove the decidability theorems stated in Sections 2 and 3.

2 Existential Type Systems

We will define the type systems λ¬ ∧ ∃ and λ¬ ∧ ∃⊥, and state the decidability
of inhabitation in these systems.
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2.1 System λ¬ ∧ ∃
We define the type system λ¬ ∧ ∃. We have variables x, y, z, . . . for λ-terms.
λ-terms are defined by

M, N, . . . ::= x|λx.M |MM |〈M, M〉|π0M |π1M |〈∃,M〉|M [x.M ].

We have type variables X, Y, Z, . . .. Types are defined by

A,B, . . . ::= X|⊥|¬A|A ∧A|∃XA.

Substitutions M [x := N ] and A[X := B] are defined in a familiar way.
The system has the following inference rules:

[x : A]....
M : ⊥

λx.M : ¬A
(¬I) M : ¬A N : A

MN : ⊥ (¬E)

M : A N : B
〈M, N〉 : A ∧B

(∧I) M : A ∧B
π0M : A

(∧E1)
M : A ∧B
π1M : B

(∧E2)

M : A[X := B]
〈∃,M〉 : ∃XA

(∃I) M : ∃XA

[x : A]....
N : C

M [x.N ] : C
(∃E)

where the rule (∃E) has the standard variable condition.

Theorem 2.1 (Decidability of Inhabitation) The inhabitation in the sys-
tem λ¬ ∧ ∃ is decidable.

Remark. (1) This theorem says there is an algorithm such that for any types
A,B1, . . . , Bn, this algorithm decides whether there is some term M such that
x1 : B1, . . . , xn : Bn ` M : A is provable.

(2) This result does not conflict with the existence of the CPS translation
from the system F to λ¬ ∧ ∃, because we have more proof terms in λ¬ ∧ ∃
than the image of the translation. In addition, the translation interprets F with
classical logic in λ¬ ∧ ∃.

2.2 System λ¬ ∧ ∃⊥
We define the type system λ¬ ∧ ∃⊥. Its language is the same as that of λ¬ ∧ ∃.
Its inference rules are those of λ¬ ∧ ∃ and

M : ⊥
M : A

(⊥E)
.

Theorem 2.2 (Decidability of Inhabitation) The inhabitation in the sys-
tem λ¬ ∧ ∃⊥ is decidable.

We will prove these theorems in Section 6.
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3 The Corresponding Logical Systems

We will investigate the corresponding logical systems L¬ ∧ ∃ and L¬ ∧ ∃⊥ to
λ¬ ∧ ∃ and λ¬ ∧ ∃⊥ respectively. These systems are obtained from the corre-
sponding type systems by dropping terms. We will state provability of those
systems is decidable. We will also investigate a logical system L→∃⊥ and will
state that existential quantification followed by negation can be eliminated.

3.1 System L¬ ∧ ∃
We define the system L¬ ∧ ∃. We have second-order variables X, Y, Z, . . .. We
have the constant ⊥. It does not have any meaning, since this system is based
on minimal logic and does not have the bottom elimination rule. Formulas are
the same as types of λ¬ ∧ ∃ and defined by A,B, . . . ::= X|⊥|¬A|A ∧A|∃XA.

Inference rules of the system are given by:
[A]....
⊥
¬A

(¬I) ¬A A
⊥ (¬E)

A B
A ∧B

(∧I) A ∧B
A

(∧E1)
A ∧B

B
(∧E2)

A[X := B]
∃XA

(∃I) ∃XA

[A]....
C

C
(∃E)

where the rule (∃E) has the standard variable condition.
Two formulas A and B are defined to be equivalent if A is derivable from B

and B is derivable from A.

Theorem 3.1 (Existential Quantification Elimination) In L¬ ∧ ∃, for
any formula we effectively get some formula without ∃ equivalent to it.

Theorem 3.2 (Decidability of Provability) The provability in the system
L¬ ∧ ∃ is decidable.

3.2 System L¬ ∧ ∃⊥
We define the system L¬ ∧ ∃⊥. Its language is the same as that of L¬ ∧ ∃.

Its inference rules are those of L¬ ∧ ∃ and
⊥
A

(⊥E)
.

Theorem 3.3 (Decidability of Provability) The provability in the system
L¬ ∧ ∃⊥ is decidable.

Remark. The same statement as that of Theorem 3.1 holds in L¬ ∧ ∃⊥ since
it is an extension of L¬ ∧ ∃.
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3.3 System L → ∃⊥
We define the system L→∃⊥. Formulas of this system is defined by

A,B, . . . ::= X|⊥|A→A|∃XA.

The inference rules are (∃I), (∃E), (⊥E), and

[A]....
B

A→B
(→I) A→B A

B
(→E)

Definition 3.4 A formula A is called an ∃¬-formula if every occurrence of ∃ in
A has the shape ∃X¬B for some X and B.

Theorem 3.5 (Existential Quantification Elimination) In L→∃⊥, any
∃¬-formula is equivalent to some formula without ∃.

We will prove these theorems in the rest of this paper.

4 Coding in Minimal Logic

We discuss some coding of logical connectives as well as a double negation trans-
lation in minimal logic.

In this section, we will discuss both L¬ ∧ ∃ and L→∃⊥ at the same time. All
the statements in this section hold for both systems unless we explicitly specify
a system.

First we define abbreviations for coding logical connectives. ∨, ∧ and ¬ are
coded in a standard way. We define F and T which mean the falsity and the
truth.

Definition 4.1 In L¬ ∧ ∃, we will use the following abbreviation.

A ∨B = ¬(¬A ∧ ¬B).

In L→∃⊥, we will use the following abbreviations.

¬A = A→⊥,
A ∧B = (A→B →⊥)→⊥,
A ∨B = (A→⊥)→ (B →⊥)→⊥.

In both systems, we will use the following abbreviations.

F = ⊥,
T = ¬F.

We will write J for one of L¬ ∧ ∃ and L→∃⊥. We will also write K for the
classical logic obtained from J by adding the following rule (⊥C).

[¬A]....
⊥
A

(⊥C)
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A1, . . . , An `J B says that B is provable in the system J under the assumptions
A1, . . . , An. A1, . . . , Ana`J B1, . . . , Bm stands for A1, . . . , An `J Bi for all i and
B1, . . . , Bm `J Ai for all i. We will sometimes write ` and a` for `J and a`J

respectively when they are not ambiguous.
We will write A[B] for A[X := B] when it is not ambiguous.
A context C is defined as a formula with the single hole · in a standard way.

C[A] stands for variable-capturing substitution of a formula A for the hole in the
context C. We will use C to denote a context.

We prepare several basic lemmas. They are almost standard and given in [10,
11]. However, we will give some details since we will discuss L¬ ∧ ∃ and L→∃⊥
at the same time.

Lemma 4.2 A a`B implies C[A] a` C[B].

This is proved by induction on C.
Lemma 4.3 (1) A ` ¬¬A.

(2) ¬A a` ¬¬¬A.
(3) ¬¬(A→B) a` ¬¬A→¬¬B in L→∃⊥.
(4) ¬¬A ∧ ¬¬B a` ¬¬(A ∧B).
(5) ¬¬∃XA a` ¬¬∃X¬¬A.
(6) ` A ∨ ¬A.
(7) ¬¬A ∨ ¬¬B a`A ∨B.
(8) ¬¬(A ∨B) a`A ∨B.
(9) A,B ` C implies A ∧B ` ¬¬C in L→∃⊥.

They are proved in a straightforward way.
The next lemma says that A and A[T] are equivalent when X holds, and ¬A

and ¬A[F] are equivalent when ¬X holds.

Lemma 4.4 (1) X, A a`X, A[X := T].
(2) ¬X,¬¬A a` ¬X,¬¬A[X := F] in L¬ ∧ ∃.
(3) ¬X, A a` ¬X, A[X := F] in L→∃⊥.
(4) A[X := ¬X],¬¬X a`A[X := F],¬¬X.

Proof. (1) By induction on A. We will discuss only an interesting case.
Case ∃Y A1. By induction hypothesis, we have X, A1 ` A1[T]. Hence we have

X, ∃Y A1 ` ∃Y A1[T]. Similarly we have X, ∃Y A1[T] ` ∃Y A1.
(2) By induction on A. Cases are considered according to A. We will discuss

only interesting cases.
Case X. The claim holds since F a` ¬¬F with ¬X,¬¬X ` F and F ` ¬¬X.
Case A ∧B. By induction hypothesis and Lemma 4.3 (4).
Case ∃Y A1. By induction hypothesis, we have ¬X,¬¬A1 ` ¬¬A1[F].

Hence we have ¬X, ∃Y ¬¬A1 ` ∃Y ¬¬A1[F]. Therefore ¬X,¬¬∃Y ¬¬A1 `
¬¬∃Y ¬¬A1[F] holds. By Lemma 4.3 (5), we have ¬X,¬¬∃Y A1 ` ¬¬∃Y A1[F].
Similarly we have ¬X,¬¬∃Y A1[F] ` ¬¬∃Y A1.

(3) By induction on A. We use ¬X, X ` F and ¬X, F ` X for the case
A = X. The other cases are proved in a similar way to (1).

(4) By induction on A. When A is X, the claim follows from F ` ¬X. 2

We give a definition of double negation translation.
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Definition 4.5 (Double Negation Translation) For a formula A in J , we
define the formula A− by induction on A as follows:

X− = ¬¬X,
⊥− = ⊥,
(A→B)− = A−→B−,
(¬A)− = ¬A−,
(A ∧B)− = A− ∧B−,
(∃XA)− = ¬¬∃XA−.

where the case → is for L→∃⊥ and the cases ¬ and ∧ are for L¬ ∧ ∃.
Remark. (1) If A is a formula in J , then A− is a formula in J .

(2) (¬A)− = ¬A− in L→∃⊥.

Lemma 4.6 (1) ¬¬A− a`A−.
(2) C[A]− a` C−[A−] where the hole · is interpreted by (·)− = ¬¬(·).
(3) B1, . . . , Bn `K A implies B−

1 , . . . , B−
n `J A−.

(4) ¬¬A a`A−.

Proof. (1) By induction on A. Use Lemma 4.3 (2) and (4) with induction
hypothesis. Case A→B is proved by Lemma 4.3 (3) in L→∃⊥.

(2) By induction on C. When C is the hole, the claim follows from (1). The
other cases are proved by induction hypothesis.

(3) Let Γ be B1, . . . , Bn and Γ− be B−
1 , . . . , B−

n . By induction on the proof.
Cases are considered according to the last rule.

Case (∃I). By induction hypothesis, we have (A[X := B])−. By (2), we have
A−[B−]. Hence ∃XA− holds. Therefore we have ¬¬∃XA−, which is (∃XA)−.

Case (∃E). By induction hypothesis, we have Γ−, A− ` C−. Hence
Γ−,∃XA− ` C− holds. Therefore we have Γ−,¬¬∃XA− ` ¬¬C−. By (1),
we have Γ−, (∃XA)− ` C−.

Case (⊥C). By induction hypothesis, we have Γ−,¬A− ` ⊥. Hence Γ− `
¬¬A− holds. By (1), we have Γ− ` A−.

The other cases are proved straightforwardly by induction hypothesis.
(4) By induction on A. Case ¬A is proved by induction hypothesis. Case

A ∧ B is proved by induction hypothesis and Lemma 4.3 (4). Case A → B is
proved by induction hypothesis and Lemma 4.3 (3). Case ∃XA is proved by
induction hypothesis and Lemma 4.3 (5). 2

The next lemma enables us to use classical reasoning in a negated context.

Lemma 4.7 A a`B in K implies ¬C[A] a` ¬C[B] in J .

Proof. By Lemma 4.6 (3), we have A− a`B− in J . In J , ¬C[A] is equivalent
to ¬(C[A])− by Lemma 4.6 (4), which is equivalent to ¬C−[A−] by Lemma 4.6
(2), which is equivalent to ¬C−[B−], which is equivalent to ¬C[B] by Lemma 4.6
(2) and (4). 2

We have Glivenko’s theorem, which can be proved by double negation trans-
lation since we do not have universal quantification.

Proposition 4.8 B1, . . . , Bn `K A implies ¬¬B1, . . . ,¬¬Bn `J ¬¬A.

Proof. By Lemma 4.6 (3) and (4). 2
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5 Existential Quantification Elimination

We will prove the existential quantification theorems stated in Section 3. We will
first show the existential quantification followed by negation can be eliminated in
both L¬ ∧ ∃ and L→∃⊥. We will also show the second-order witness theorem in
all these systems. In the first subsection, we will show the existential quantifica-
tion can be eliminated and any formula with existential quantifiers is equivalent
to some formula without existential quantifiers in L¬ ∧ ∃ and L¬ ∧ ∃⊥. In the
second subsection, we will show existential quantification elimination for ∃¬-
formulas in L→∃⊥.

We will use a vector notation ~e to denote a sequence e1, . . . , en (n ≥ 0). We
will sometimes use ~A to denote a conjunction A1 ∧ . . . ∧An of formulas.

The next proposition states our key properties. The claim (1) is obtained by
repeatedly replacing some formula by T when that formula holds. The claim (2)
is a more readable form and immediately follows from (1). This claim is used for
proving the claim (3) and the second-order witness theorem. The claim (3) says
that an existential quantifier can be replaced by disjunction of the true case and
the false case in the same way as in classical logic, when its body is negation.

Proposition 5.1 In both L¬ ∧ ∃ and L→∃⊥, the following hold.
(1) A[X := ¬A[X := T]] a` ¬¬A[X := T], A[X := F].
(2) ¬A[X := ¬A[X := T]] a` ¬A[X := T] ∨ ¬A[X := F].
(3) ∃X¬A a` ¬A[X := T] ∨ ¬A[X := F].

Proof. (1) From the left-hand side to the right-hand side. By letting X be
¬A[T] in Lemma 4.4 (1), we have A[¬A[T]],¬A[T] ` A[T]. Hence A[¬A[T]] `
¬¬A[T]. By letting X be A[T] in Lemma 4.4 (4), we have A[¬A[T]],¬¬A[T] `
A[F]. Combining them, we have A[¬A[T]] ` A[F].

From the right-hand side to the left-hand side. The claim follows by letting
X be A[T] in Lemma 4.4 (4).

(2) We have ¬¬A[¬A[T]]a`¬¬A[T],¬¬A[F] from (1). By Lemma 4.3 (9), we
have ¬¬A[¬A[T]]a`¬¬A[T]∧¬¬A[F]. Hence ¬A[¬A[T]]a`¬(¬¬A[T]∧¬¬A[F])
holds. Its right-hand side is equivalent to ¬A[T ] ∨ ¬A[F ] by Lemma 4.7 and
Lemma 4.3 (8).

(3) The direction from the right-hand side to the left-hand side immediately
follows from (2).

The direction from the left-hand side to the right-hand side. By Lemma 4.4
(1), we have ¬A,X ` ¬A[T]. Hence we get ¬A,X ` ¬A[T] ∨ ¬A[F]. By Lemma
4.4 (2) and (3), we similarly have ¬A,¬X ` ¬A[T] ∨ ¬A[F]. Hence we have
X ∨¬X,¬A ` ¬A[T]∨¬A[F]. By Lemma 4.3 (6), we have ¬A ` ¬A[T]∨¬A[F].
So this direction holds. 2

Remark. (1) The claim (3) does not hold in minimal logic with implication
and existential quantification. A counterexample is A := ¬(X→⊥→Y ). Then the
left-hand side holds by taking ⊥→Y as X, but the right-hand side is equivalent
to ((⊥→ Y )→⊥)→⊥, which is Peirce’s formula in minimal logic.

(2) We could not directly prove the claim (3) without the claim (2).
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(3) In order to eliminate universal quantification in a similar way, we can di-
rectly show the corresponding claim ∀X¬Aa`¬A[T ],¬A[F ] in L→∃⊥ extended
with universal quantification.

As a byproduct of Proposition 5.1, we have the next theorem, which says
that ∃X¬A implies that we can choose the witness ¬A[T] as X.

Theorem 5.2 (Second-Order Witness Theorem) ∃X¬A a` ¬A[X :=
¬A[X := T]] holds in both L¬ ∧ ∃ and L→∃⊥.

Proof. It is proved by Proposition 5.1 (2) and (3). 2

5.1 Existential Quantification Elimination in L¬ ∧ ∃
In this subsection, we will study L¬ ∧ ∃.

For a formula A, we define Ã, which does not contain ∃ and is equivalent to
A in a negated context.

Definition 5.3 Given a formula A, the formula Ã is defined by

X̃ = X,

⊥̃ = ⊥,
˜(¬A) = ¬Ã,
˜(A ∧B) = Ã ∧ B̃,
˜(∃XA) = Ã[X := T] ∨ Ã[X := F].

The next lemma shows that A and Ã are equivalent in a negated context.

Lemma 5.4 ¬¬A a` ¬¬Ã in L¬ ∧ ∃.
Proof. By induction on A. We will show only interesting cases.
Case A1 ∧A2 follows from Lemma 4.3 (4) and induction hypothesis.
Case ∃XA. ¬¬∃XA is equivalent to ¬¬∃X¬¬A by Lemma 4.3 (5), which

is equivalent to ¬¬∃X¬¬Ã by induction hypothesis, which is equivalent to
¬¬(¬¬Ã[T]∨¬¬Ã[F]) by Proposition 5.1 (3), which is equivalent to ¬¬(Ã[T]∨
Ã[F]) by Lemma 4.3 (7). Hence ¬¬∃XA a` ¬¬ ˜(∃XA) holds. 2

The next lemma is another key property. It says that any formula is equivalent
to a conjunctive normal form.

Lemma 5.5 In L¬ ∧ ∃, for a given formula A, we effectively get variables
X1, . . . , Xn (n ≥ 0) and a formula B such that A a`X1 ∧ . . . ∧Xn ∧ ¬B.

Proof. By induction on A. We will give ~X and B such that A a` ~X ∧ ¬B.
Case X. Let ~X be X and B be F.
Case ⊥. Let ~X be empty and B be T.
Case ¬A1. Let ~X be empty and B be A1.
Case A1 ∧ A2. By induction hypothesis, there are ~X1, B1, ~X2, B2 such that

A1 a` ~X1 ∧ ¬B1 and A2 a` ~X2 ∧ ¬B2. Let ~X be ~X1 ∧ ~X2 and B be B1 ∨B2.
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Case ∃XA1. By induction hypothesis, there are X1, . . . , Xn and B1 such that
A1 a`X1 ∧ . . . ∧Xn ∧ ¬B1.

Case 1 when X ∈ {X1, . . . , Xn}. We can suppose X = X1 and X 6= Xi (1 <

i). Let ~X be X2 ∧ . . . ∧Xn and B be B1[X1 := T]. By Lemma 4.4 (1), we have
X1 ∧ . . .∧Xn ∧¬B1 a`X1 ∧ . . .∧Xn ∧¬B1[X1 := T]. Hence we have ∃X1A1 `
X2∧. . .∧Xn∧¬B1[X1 := T]. We also have X2∧. . .∧Xn∧¬B1[X1 := T] ` ∃X1A1

since T∧X2∧. . .∧Xn∧¬B1[X1 := T] ` ∃X1A1. Hence we have ∃X1A1a` ~X∧¬B.
Case 2 when X 6∈ {X1, . . . , Xn}. Let ~X be X1∧. . .∧Xn and B be ¬(¬B1[T]∨

¬B1[F]). Then we have ∃XA1 a` X1 ∧ . . . ∧ Xn ∧ ∃X¬B1. By Proposition 5.1
(3) and Lemma 4.3 (8), we have ∃XA1 a` ~X ∧ ¬B. 2

Recently Sakagawa and Kashima independently showed the following claim
by using sequent calculus. We can prove it easily from Lemma 5.5.

Proposition 5.6 `J A if and only if `K A for J = L¬ ∧ ∃⊥.

Proof. It is sufficient to show the right-hand side implies the left-hand side.
By Lemma 5.5, we have X1, . . . , Xn, B such that Aa`X1∧ . . .∧Xn∧¬B. Hence
we have `K X1 ∧ . . . ∧Xn ∧ ¬B. Therefore X1, . . . , Xn are empty and A is ¬B.
By Proposition 4.8, we have `J A. 2

By using these lemmas, we can prove the existential quantification elimina-
tion in L¬ ∧ ∃.
Proof of Theorem 3.1. For a given formula A, by Lemma 5.5, we have ~X and
C such that Aa` ~X ∧¬C. By Lemma 5.4, we have ¬C a`¬C̃. Let B be ~X ∧¬C̃.
Then B does not contain ∃ and A a`B holds. 2

5.2 Existential Quantification Elimination in L → ∃⊥
In this subsection, we will study L→∃⊥.

For a formula A with only existential quantification followed by negation, we
define Ã, which does not contain ∃ and is equivalent to A.

Definition 5.7 Given an ∃¬-formula A, the formula Ã is defined by

X̃ = X,

⊥̃ = ⊥,
˜(A→B) = Ã→ B̃,
˜(∃X¬A) = ¬Ã[X := T] ∨ ¬Ã[X := F].

The next proposition shows the equivalence between A and Ã.

Proposition 5.8 A a` Ã holds for any ∃¬-formula A in L→∃.
Proof. By induction on A.
Cases X and ⊥. The claim trivially holds.
Case A→B. By induction hypothesis.
Case ∃X¬A. ∃X¬A is equivalent to ∃X¬Ã by induction hypothesis, which

is equivalent to ¬Ã[T] ∨ ¬Ã[F] by Proposition 5.1 (3). 2

Now we can prove the existential quantification elimination in L→∃⊥.
Proof of Theorem 3.5. The claim follows immediately from Proposition 5.8.
2
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6 Decidability Proof

We will prove all the decidability theorems given in Sections 2 and 3.
We will use proof normalization in our proof, which is given by the next

theorem.

Theorem 6.1 (Strong Normalization) Any proof is strongly normalizing in
both systems L¬ ∧ ∃ and L¬ ∧ ∃⊥.

This theorem is proved in a similar way to strong normalization in the second-
order logic with →,∧,∨,∀,∃ proved in [9].

We will use propositional systems corresponding to our systems.

Definition 6.2 The logical system L¬∧ is defined as the logical system ob-
tained from L¬ ∧ ∃ by deleting ∃. The logical system L¬ ∧ ⊥ is also defined
from L¬ ∧ ∃⊥ by deleting ∃. J − ∃ denotes L¬∧ and L¬ ∧ ⊥ respectively when
J is L¬ ∧ ∃ and L¬ ∧ ∃⊥.

Remark. J −∃ is a fragment of intuitionistic propositional logic and minimal
propositional logic.

Theorem 6.3 Provability in L¬∧ and L¬ ∧ ⊥ is decidable.

This claim immediately follows from decidability of provability in intuitionistic
propositional logic and minimal propositional logic.

Theorem 6.4 Let J be one of L¬ ∧ ∃ and L¬ ∧ ∃⊥. For given formulas
B1, . . . , Bn, A, we effectively get formulas B′

1, . . . , B
′
n, A′ without ∃ such that

B1, . . . , Bn ` A is provable in J if and only if B′
1, . . . , B

′
n ` A′ is provable in

J − ∃.

Proof. By Theorem 3.1, formulas B1, . . . , Bn, A are equivalent to some for-
mulas B′

1, . . . , B
′
n, A′ without ∃ in J respectively. Let Γ be B1, . . . , Bn and Γ ′

be B′
1, . . . , B

′
n.

From the left-hand side to the right-hand side. Suppose Γ ` A is provable
in J . Then Γ ′ ` A′ is provable in J . By Theorem 6.1, Γ ′ ` A′ has a normal
proof. By the subformula property, this proof does not contain ∃. Hence Γ ′ ` A′

is provable in J − ∃.
The right-hand side trivially implies the left-hand side. 2

We can finish our proof of the decidability theorems for L¬ ∧ ∃ and L¬ ∧ ∃⊥
given in Section 3.
Proof of Theorems 3.2 and 3.3. The claims are proved by combining Theo-
rem 6.4 and Theorem 6.3. 2

Finally we prove the decidability theorems for λ¬ ∧ ∃ and λ¬ ∧ ∃⊥.
Proof of Theorems 2.1 and 2.2. These claims immediately follow from The-
orems 3.2 and 3.3. 2



12

7 Concluding Remarks

We have investigated existential quantification elimination and showed inhabi-
tation in the type systems with existential types is decidable by reducing it to
provability in propositional systems without existential types.

Future work would be extending our existential quantification elimination to
(1) a type system with arrow and existential types, and (2) type checking and
type inference for various systems with existential types.

We would like to solve inhabitation problem in a system with arrow and
existential types. As we remarked in Section 5, our existential quantification
elimination cannot directly apply to that system. However, our elimination the-
orem will give a new insight into that question.

Decidability of type checking and type inference for various systems with
existential types is another interesting question. We hope our existential quan-
tification elimination will give lights for that problem.
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