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Abstract

This paper presents a new lambda-calculus with singleton types, called λβδ
≤{}.

The main novelty of λβδ
≤{} is the introduction of a new reduction, the δ-reduction,

replacing any variable declared of singleton type by its value, and the definition of
equality as the syntactic equality of βδ-normal forms. The δ-reduction has a very
odd behavior on untyped terms, which renders its metatheoretical study difficult
since the usual proof method for subject-reduction and Church-Rosser property
are inapplicable. Nevertheless, these properties can be proved simultaneously with
strong normalization on typed terms using a proof method à la Coquand-Gallier,
borrowing ideas to Goguen. In spite of its complex metatheory, our calculus enjoys
a simple, sound and complete type-inference algorithm.

1 Introduction

A singleton type {M}A is the subtype of A whose elements are equal to M
for some notion of equality. Type systems with singleton types help giving a
theoretical account of ML-like module systems and their compilation [8], or
of definitions in type theory [1].

In [1], Aspinall raises the difficult question of the decidability of type-
checking in the presence of singletons; he remarks that this question merely
reduces to the question of testing equality of terms in his system. He suggests
that one could first define a reduction replacing any variable declared of type
{M}A by M , and study it together with β-reduction to show that two given
terms are equal if and only if they have equal normal forms.

This paper presents a variant of Aspinall’s λ≤{}, called λβδ
≤{}, in which we

define and investigate this reduction and the decidability of type-checking.

Section 2 introduces λβδ
≤{}. Section 3 demonstrates the odd behavior of the

reduction on untyped terms and sketches the metatheory of λβδ
≤{}. Section 4
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presents sound and complete type inference and type checking algorithms for
λβδ
≤{}. Finally, related works are discussed in Section 5.

2 Definition of λβδ
≤{}

In this section, the λβδ
≤{}-calculus is defined. The λβδ

≤{}-calculus results from
the addition of singletons to the simply-typed lambda calculus.

2.1 Syntax

Figure 1 presents the syntax of λβδ
≤{}. λβδ

≤{} has a singleton type {M}A denoting
the type of elements of type A that are convertible to M . Moreover, the arrow
of the simply typed lambda-calculus is replaced by a dependent product.

Types

A ::= P The Atomic Type

| {M}A Singletons

| Πx :A.A Products

Terms

M ::= x Variables

| λx :A.M Abstractions

| (M M) Applications

Contexts

Γ ::= ε

| Γ; x : A

where x ranges over a set of variables.

Fig. 1. Grammar of λβδ
≤{}

This syntax is the same as Aspinall’s λ≤{}, excepted that λβδ
≤{} has only

one atomic type P whereas Aspinall considers P ranges over a set of primitive
types. This difference is irrelevant for our purpose.

We do not want to deal with name capture issues. Therefore, terms are
always assumed in Barendregt convention and the variables declared in a given
context are distinct.

2.2 Reductions

We define here λβδ
≤{} (untyped) reductions.

The intended meaning of singleton types is the following: each time a
variable x is declared with a type {M}A, the convertibility relation is extended
with the equality x = M .
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We choose to describe the equalities generated by singleton declarations
with a reduction relation, called δ-reduction. This reduction is parameterized
by a context. We note Γ ` M δ M ′ to mean that M is a δ-redex reducing to
M ′ in the context Γ and Γ `M .δ M ′ to mean that M δ-reduces to M ′.

How should we define this reduction? As we already said, we have Γ `
x δM if x : {M}A appears in Γ. But we also want more: for instance,
if x : Πx′ : A1.{M}A2 appears in Γ, we would like (x M ′) to δ-reduce to
M{x′ ←M ′} since it belongs to the type ({M}A2){x′ ←M ′}.

One could imagine defining the δ-reduction as the relation such that Γ `
M δ M ′ whenever M has (principal) type {M ′}A in Γ, but we do not adopt
this approach since it makes typing and reduction mutually recursive. Indeed
typing requires some term comparisons.

Instead, we introduce a judgment, Γ `pp M : A, read “in the context Γ,
M has pre-principal type A”, with the rules given Figure 2. We define M to
be a δ-redex reducing to M ′ in Γ (noted Γ ` M δ M ′) if Γ `pp M : {M ′}A is
derivable for some A using the rules given Figure 2.

D/VAR
Γ(x) = A

Γ `pp x : A

D/APP
Γ `pp M1 : Πx :A1.A2

Γ `pp (M1 M2) : A2{x←M2}

Fig. 2. pre-principal type inference

Notice the rule D/APP does not check anything about M2. Indeed, check-
ing M2 has type A1 would introduce a mutual dependency between typing
and reduction. On the opposite, the rules for pre-principal type inference do
not rely on term comparison, are syntax-directed, and give each term M at
most one type A.

It is clear that one can decide whether there exists A such that Γ `pp M : A
and can even compute this unique A if it exists, as the rules are syntax-directed
and for each of them the subject of its premise is a strict subterm of the subject
of its conclusion. We can now formally define the δ-reduction as follows:

• δ-reduction in one step of M to M ′ in a context Γ is noted Γ `M .δ M ′ and
is defined as the least monotonic relation including δ. As the δ-reduction
depends on a context, monotonicity has to be understood as follows:
· if Γ; x : A `M1 .δ M2, then Γ ` λx :A.M1 .δ λx :A.M2;
· if Γ; x : A ` A1 .δ A2, then Γ ` Πx :A.A1 .δ Πx :A.A2;
· if Γ ` A1 .δ A2, then Γ ` λx :A1.M .δ λx :A2.M , Γ ` Πx :A1.A .δ Πx :

A2.A, and Γ ` {M}A1 .δ {M}A2 ;
· if Γ `M1 .δ M2, then Γ ` (M1 M) .δ (M2 M), Γ ` (M M1) .δ (M M2),

and Γ ` {M1}A .δ {M2}A.

• β-reduction is defined as usual.

• βδ-reduction in one step in a context Γ is the union of β-reduction and
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δ-reduction in Γ and is noted .βδ . Its reflexive transitive closure is noted
.?

βδ .

• the convertibility relation in a context Γ is noted Γ ` M1 ./ M2 and is
defined as

∃M Γ `M1 .?
βδ M ∧ Γ `M2 .?

βδ M

We do not define convertibility as the least congruence containing .βδ as
this congruence is the total relation, as shown in section 3.1.2.

We can now give examples of δ-reduction. Let us define Γ = x0 : P ; x1 :
{x0}P ; x2 : Πy :P.{y}P ; x3 : P .

• In Γ, x1 is a δ-redex reducing to x0 since Γ `pp x1 : {x0}P .

• In Γ, (x2 x3) is a δ-redex reducing to y{y ← x3} = x3.

• We have Γ ` Πx5 :{x3}P .x5 .δ Πx5 :{x3}P .x3 since Γ; x5 : {x3}P ` x5 δ x3.

2.3 Typing

The typing rules of λβδ
≤{} are given Figure 3. Four kinds of judgments are used:

• Context formation Γ ` ok

• Type formation Γ ` A

• Subtyping Γ ` A1 ≤ A2

• Typing Γ `M : A

Let us give some explanations for these rules:

• We choose not to explicitly check the well-formedness of contexts in order
to give a presentation closer to the type-checking algorithm. Therefore,
contrasting with a more traditional presentation, the rule T/VAR does not
check the well-formedness of the context whereas the rules TY/PROD and
T/LAM check that the domain A1 is a well-formed type. Similarly, the
rules for subtyping do not ensure the upper type is well-formed, whence the
premise Γ ` A for rule T/SUB.

• T/STR is a rule to strengthen the type of a term: whenever M has type A,
it has also type {M}A. Such a rule is quite natural, but is not a consequence
of the other rules. Thus it allows to derive x : P ` x : {x}P , which could
not be derived otherwise.

• SUB/SINGR is the only rule introducing a singleton on the right of a sub-
typing judgment: a type can be lower than a singleton type {M2}A2 only if
it is itself a singleton type less than A2 and whose contents is equal to M2.

• SUB/SINGL introduces a singleton on the left of a subtyping judgment: a
singleton {M1}A1 is less than any type greater than A1. When trying to
check that a singleton is less than a given type, the rule SUB/SINGL may
prove too coarse. Indeed, it completely forgets the information that the
only element of {M1}A1 is M1. This can be problematic if A1 is a product:
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Subtyping

SUB/SET
Γ ` P ≤ P

SUB/PROD
Γ ` A′

1 ≤ A1 Γ; x : A′
1 ` A2 ≤ A′

2

Γ ` Πx :A1.A2 ≤ Πx :A′
1.A

′
2

SUB/SINGR
Γ `M1 ./ M2 Γ ` {M1}A1 ≤ A2

Γ ` {M1}A1 ≤ {M2}A2

SUB/SINGL
Γ ` A1 ≤ A2

Γ ` {M1}A1 ≤ A2

SUB/SINGPROD
Γ ` Πx :A1.{(M1 x)}A2 ≤ A

Γ ` {M1}Πx:A1.A2 ≤ A

Typing

T/VAR
Γ(x) = A

Γ ` x : A
T/LAM

Γ ` A1 Γ; x : A1 `M : A2

Γ ` λx :A1.M : Πx :A1.A2

T/APP
Γ `M1 : Πx :A1.A2 Γ `M2 : A1

Γ ` (M1 M2) : A2{x←M2}

T/STR
Γ `M : A

Γ `M : {M}A

T/SUB
Γ `M : A′ Γ ` A Γ ` A′ ≤ A

Γ `M : A
Well-formed types:

TY/SET
Γ ` P

TY/SING
Γ `M : A

Γ ` {M}A

TY/PROD
Γ ` A1 Γ; x : A1 ` A2

Γ ` Πx :A1.A2

Well-formed environments:

E/EMPTY
` ok

E/ADD
Γ ` ok Γ ` A

Γ; x : A ` ok

Fig. 3. Typing rules for λβδ
≤{}

in order to conclude

Γ ` {λx :P.x}Πx:P.P ≤ Πx :P.{x}P(1)

SUB/SINGL requires the precondition Γ ` (λx :P.x) ≤ Πx :P.{x}P , which
is not derivable. Therefore, we introduce a new rule SUB/SINGPROD,
which propagates the information that, for any product A1 the domain of
the singleton {M1}A1 is itself a singleton: in order to derive the judgment 1,
with SUB/SINGPROD, one has to derive the precondition

Γ ` Πx :P.{((λx :P.x) x)}P ≤ Πx :P.{x}P

which can easily be derived.
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3 Metatheory

In this section, we sketch the metatheory of λβδ
≤{}. We aim at proving the

subject-reduction, Church-Rosser and strong normalization properties. These
results notably allow to implement the convertibility test over typed terms
needed by the type-checking algorithm given Section 4.

Section 3.1 reviews the usual approaches to these issues and explains why
the δ-reduction makes them fail. Section 3.2 introduces a new syntactic con-
struct and a decomposition of the δ-reduction into two new reductions, the
δ′ and c reductions, enjoying better properties with respect to substitutions.
Then, Section 3.3 sketches a proof of subject-reduction, Church-Rosser prop-
erty and strong normalization.

3.1 Bad Behavior of the δ-reduction on Untyped Terms

3.1.1 Substitution and Reduction

Usual proofs of subject-reduction comprise several steps, one of which is the
substitution property, stating that judgments are preserved by well-typed sub-
stitutions. In usual systems with dependent types, the proof of this property
involves a lemma stating that the convertibility is preserved by substitution.
Proving this lemma is trivial when the conversion is the β-equivalence, as the
β-reduction is preserved by (untyped) substitutions: for any M1, M2, x, and
M , M1 .β M2 implies M1{x←M} .β M2{x←M}.

One would like to have a similar property telling that for any context
Γ, x : A, ∆, any M1, M2, and M , Γ, x : A, ∆ ` M1 .δ M2 implies Γ, ∆σ `
M1σ .δ M2σ with σ = {x←M}, but this property does not hold.

Consider for instance

Γ = x1 : P ; x2 : P ; x3 : {x1}P and ∆ = ε

Then Γ; x : {x3}P ; ∆ ` x .δ x3. Now, consider the substitution σ = {x← x2};
we do not have Γ; ∆σ ` xσ .δ x3σ.

One may think that the substitution property for δ-reduction should how-
ever hold if one requires the substitution to be well-typed, that is that x be
substituted by a term of type {x3}P . But this is false: consider x1; thanks
to the rule T/STR, it has type {x1}P ; thanks to the rule T/SUB, it also has
type {x3}P ; let σ′ = {x ← x1}; we do not have Γ ` xσ′ .δ x3σ

′, but instead
Γ ` x3σ

′ .δ xσ′.

One could hope to prove the weaker property that convertibility is pre-
served by well-typed substitution. But proving it seems to involve some subtle
arguments depending on the type of the variable being substituted, and on
the interaction between δ-rules and subtyping.
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3.1.2 Proving the Church-Rosser Property

The Church-Rosser property for lambda-calculi with only β-reduction is gen-
erally proved on untyped terms using the Tait-Martin-Löf method as described
in [9]. Unfortunately, as we show below, the Church-Rosser property for .βδ

does not hold for untyped terms in λβδ
≤{}.

A priori, this does not preclude us from using such a proof method for
proving the Church-Rosser property on untyped terms. Indeed, in his study of
βη-reduction for the Calculus of Constructions [6], Geuvers shows the Church-
Rosser property holds up to the erasure of types on lambda-abstractions, us-
ing the argument that βη is Church-Rosser for the type-free lambda-calculus.
This weaker property is enough to show the subject-reduction; then the strong
normalization property can be proved as well. Then, Geuvers shows that
terms having the same type and equal up to the erasure of types on lambda-
abstractions have a common βη-normal form, hence the Church-Rosser prop-
erty.

Unfortunately, the case of λβδ
≤{} is worse: whereas for βη the critical pairs

can be closed up to the erasure of types on lambda-abstractions, in λβδ
≤{} the

members of a critical pair can be arbitrarily different. In fact, for any pair of
terms (M1, M2), there exists an untyped term M such that M βδ-reduces to
M1 and βδ-reduces to M2:

M = ((λx :{M1}P .x) M2)

is such a term. Indeed, we have M .β M2 as M is a β-redex, and we have also

`M .δ ((λx :{M1}P .M1) M2) .β M1

3.2 Coercions

We analyze the lack of properties of δ-reduction with respect to substitution
as follows: when a variable x declared of type A is substituted by a term M ,
its pre-principal type changes; the original is lost and some reductions may
therefore be lost also. As we want to keep these reductions, we have to keep
the information that the occurrences of M come from the substitution of x of
type A. Therefore, we introduce a new syntactic construct (M : A) building a
term from any term M and any type A, called coercion. We introduce a new
δ-rule for coercions:

D/COER
Γ `pp (M : A) : A

as well as a new typing rule:

T/COER
Γ `M : A

Γ ` (M : A) : A

We also define a new reduction relation, .c , called c-reduction, or coercion
removal, defined as the least monotonic relation such that (M : A) .c M .
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Then, we can prove the following restricted substitution property for the
δ-reduction:

Proposition 3.1 (Restricted Substitution Property for δ-reduction)
For any variable x, any contexts Γ and ∆, any terms M , M1, and M2, and
any types A and A′, let σ = {x← (M : A)}, then

• if Γ, x : A, ∆ `pp M1 : A′ then

Γ, ∆σ `pp M1σ : A′σ

• if Γ, x : A, ∆ `M1 .δ M2 then

Γ, ∆σ `M1σ .δ M2σ

• if Γ `M : A and Γ, x : A, ∆ ` J where J is either ok, A′, A1 ≤ A2, M ′ : A′,
or M1 ./ M2, then

Γ, ∆σ ` Jσ

Proof. The proof is by induction on the definition of `pp for the first property
and by induction on the definition of δ-reduction for the second one. The third
property is proved by induction on the derivation of the considered judgment.
For the first property, remark the rule D/VAR is stable by restricted substitu-
tions as the pre-principal type of (M : A) is A, while not by unrestricted ones,
which renders the substitution property false for unrestricted substitutions.
Notice also that the first two properties do not need M to have type A nor
even A to be well-typed since rule D/COER has no premise. 2

However, δ-reduction still has an unexpected behavior. For instance, at
some points in our metatheoretical development, one would like Γ, x : A, ∆ `pp

M1 : A1 and Γ ` A .δ A′ to imply the existence of A2 such that Γ, x : A′, ∆ `pp

M1 : A2, and Γ ` A1 .δ A2 or A1 = A2, but this property cannot be proved
because the unrestricted substitution of rule D/APP is problematic.

Therefore, we slightly change the definition of δ-reduction. More precisely,
we introduce a new relation called δ′, such that Γ ` M δ′ M ′ if there exists
A such that Γ `pp′ M : {M ′}A, where the judgment Γ `pp′ M : A is defined
by the same rules as for Γ `pp M : A, except for the rule D/APP, which
becomes:

D/APP
Γ `pp′ M1 : Πx :A1.A2

Γ `pp′ (M1 M2) : A2{x← (M2 : A1)}
Then, we define the δ′-reduction as the least monotonic relation such that
Γ `M .δ′ M ′ whenever Γ `M δ′ M ′.

We also define a modified β-reduction relation, called β′-reduction, de-
fined as the least monotonic relation such that for any x, A, M1, and M2,
(λx :A.M1 M2) .β′ M1{x← (M2 : A)}.

Finally, we change the convertibility relation: Γ `M1 ./ M2 is defined as

∃M Γ `M1 .?
β′δ′c M ∧ Γ `M2 .?

β′δ′c M
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As the β and δ-reductions are strategies for β′c and δ′c-reductions, being in
the former notion of convertibility implies being in the latter. The converse
is also true on typed terms, and is a consequence of the strong normalization
and Church-Rosser properties proved in the next section.

3.3 Normalization

We prove the Subject-Reduction, Church-Rosser and Strong Normalization
properties simultaneously, following an idea proposed by Goguen [7] for the
Calculus of Constructions with βη-reduction. Our proof is inspired by Co-
quand and Gallier’s proofs [5,3].

3.3.1 Elementary Properties of λβδ
≤{}

We first give a few elementary properties which will be useful in the following
sections.

Lemma 3.2 For any context Γ and any type A, Γ ` A ≤ A holds.

Lemma 3.3 For any context Γ, and any types A1 and A2 such that Γ `
A1 .β′δ′c A2, then Γ ` A1 ≤ A2 and Γ ` A2 ≤ A1 hold.

Proof. Both Lemmas 3.2 and 3.3 are proved by induction on the considered
types. 2

Definition 3.4 (Context extension) The context extension relation, noted
⊇ is the smallest reflexive and transitive binary relation such that for any
context Γ, ∆, any variable x and any type A, we have Γ, x : A, ∆ ⊇ Γ, ∆.

⊇ is obviously an ordering relation.

Proposition 3.5 (Weakening) For any contexts Γ, ∆, any variable x, any
type A, and any J being A1 ≤ A2, A1, or M1 : A1, if Γ, ∆ ` J holds, then
Γ, x : A, ∆ ` J holds. Moreover, if Γ, ∆ ` ok holds and Γ ` A holds, then
Γ, x : A, ∆ ` ok holds. As a consequence, for any contexts Γ and Γ′ such that
Γ′ ⊇ Γ, any J being A1 ≤ A2, A1, or M1 : A1, if Γ ` J holds, then Γ′ ` J
holds.

Proof. By induction on the derivation of the considered judgment. 2

3.3.2 Interpretations of Types and Contexts

The idea of the normalization proof is to interpret types as sets of terms such
that every term belong to the interpretation of its types, and every interpreta-
tion contain only normalizing terms. More precisely, we define interpretations
such that they contain only semantic objects, that is, well-typed normalizing
terms having a unique normal form and whose type is preserved by reduction.
Thus we prove subject-reduction, Church-Rosser and strong normalization at
once. As we want the interpretation of convertible types to be equal, we in-
terpret only semantic types, that is, well-formed normalizing types having a
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unique normal form and whose well-formedness is preserved by reduction. We
now give the formal definitions of semantic objects and semantic types.

Definition 3.6 (Semantic Types) Given a context Γ, the set STΓ of se-
mantic types in Γ is the smallest set of types such that any type A fulfilling
the following conditions belongs to STΓ:

(i) for any A′ such that Γ ` A .β′δ′c A′, A′ ∈ STΓ,

(ii) and A has exactly one β′δ′c normal form,

(iii) and Γ ` A is derivable.

Remark 3.7 The first condition and the fact that STΓ is the smallest set
fulfilling the enumerated conditions imply that all the elements of STΓ are
strongly normalizing (otherwise the intersection of STΓ and the set of strongly
normalizing types would be smaller and still verifying the three conditions).
The second one implies that all elements of STΓ have the diamond property,
and the third one implies that they all enjoy the subject-reduction property.

Definition 3.8 (Semantic Objects) Given a context Γ and a semantic type
A in Γ, the set SOΓ(A) of semantic objects for A in Γ is the smallest set such
any term M fulfilling the following conditions belongs to SOΓ(A):

(i) for any M ′ such that Γ `M .β′δ′c M ′, M ′ ∈ SOΓ(A),

(ii) and M has exactly one normal form,

(iii) and Γ `M : A is derivable.

Remark 3.9 SOΓ(A) contains only strongly normalizing terms enjoying the
diamond and subject-reduction properties.

Proposition 3.10 For any context Γ and any two semantic types A1 and A2,
if Γ ` A1 ≤ A2 holds, then SOΓ(A1) ⊆ SOΓ(A2).

Proof. Consider M ∈ SOΓ(A1), by induction on the reduction of M , it is
enough to prove that Γ ` M : A2 holds. Since A2 is a semantic type, Γ ` A2

holds, and the results follows from rule T/SUB. 2

Proposition 3.11 For any context Γ, and any types A1 and A2 such that
A1 ∈ STΓ and Γ ` A1 .β′δ′c A2, then A2 ∈ STΓ and SOΓ(A1) = SOΓ(A2).

Proof. By Definition 3.6, Proposition 3.10, and Lemma 3.3. 2

Definition 3.12 (Measure of Types) We now define a measure ν on types
as follows:

ν(P ) = 0

ν(Πx :A1.A2) = ν(A1) + ν(A2) + 1

ν({M}A) = ν(A) + 1

This measure is clearly invariant by substitution as there is no type variable in
λβδ
≤{}: for any variable x, any type A and any term M , ν(A{x←M}) = ν(A).
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We can now define the interpretation of types by induction on this measure:

Definition 3.13 (Interpretations of Types) The interpretation of a se-
mantic type A in a context Γ, denoted by JAKΓ, is defined as follows:

• JP KΓ = SOΓ(P );

• JΠx :A1.A2KΓ = {M ∈ SOΓ(Πx :A1.A2) |
∀Γ′ ⊇ Γ ∀M ′ ∈ JA1KΓ′ (M M ′) ∈ JA2{x← (M ′ : A1)}KΓ′};

• J{M}AKΓ is the set of elements JAKΓ convertible to M if M ∈ JAKΓ, and the
empty set otherwise.

Definition 3.14 (Acceptable Types) The set ACCΓ of acceptable types
in a context Γ, is defined by induction on the measure of types as follows:

• P ∈ ACCΓ;

• Πx :A1.A2 ∈ ACCΓ if and only if Πx :A1.A2 ∈ STΓ, A1 ∈ ACCΓ, and for
any Γ′ ⊇ Γ, any M ∈ JA1KΓ′, we have A2{x← (M : A1)} ∈ ACCΓ;

• {M}A ∈ ACCΓ if and only if {M}A ∈ STΓ, and A ∈ ACCΓ, and M ∈ JAKΓ.

Proposition 3.15 for any context Γ, any acceptable type A, and any terms
M1 and M2, if Γ `M1 .β′δ′c M2 and M1 ∈ JAKΓ, then M2 ∈ JAKΓ.

Proof. By induction on A. 2

Proposition 3.16 For any context Γ, any types A1 and A2, if Γ ` A1 .β′δ′c A2

and A1 ∈ ACCΓ, then JA1KΓ = JA2KΓ and A2 ∈ ACCΓ.

Proof. By induction on A1 and case inspection, using Lemmas 3.2 and 3.3.2

Definition 3.17 (Interpretation of a Context) The interpretation JΓ′KΓ

of a context Γ′ into a context Γ is the set of substitutions over the variables
appearing in Γ′ defined as follows:

• JεKΓ = {σid} where σid denotes the substitution mapping any variable to
itself.

• JΓ′′; x : AKΓ = {σ+{x← (M : Aσ)} | σ ∈ JΓ′′KΓ and M ∈ JAσKΓ and Aσ ∈
ACCΓ}

Proposition 3.18 (Interpretations grow with the context) For any Γ
and Γ′ such that Γ′ ⊇ Γ, the following properties hold:

• STΓ ⊆ STΓ′;

• for any A ∈ STΓ, SOΓ(A) ⊆ SOΓ′(A);

• for any A ∈ STΓ, JAKΓ ⊆ JAKΓ′;

• ACCΓ ⊆ ACCΓ′.

• JΓ′′KΓ ⊆ JΓ′′KΓ′.
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3.3.3 Saturation Properties

Definition 3.19 (Pre-Principal Type) We define the pre-principal type
of M in Γ as the unique A such that Γ `pp′ M : A if it exists and ⊥ otherwise.

Definition 3.20 (First Kind of Neutral Terms) Let Γ be a context and
A ∈ ACCΓ. We define the set Nn

Γ (A) of first kind of neutral terms of level n
for the type A in Γ by induction on n as follows:

• N0
Γ(A) = ∅;

• Nn+1
Γ (A) is the set of terms M such that the following conditions hold:

(i) Γ `M : A holds;
(ii) M is not a lambda-abstraction;
(iii) PPΓ(M) is ⊥ or a singleton type;
(iv) there exists M0 ∈ JAKΓ such that Γ `M .?

β′δ′c M0.
(v) all terms M ′ verifying Γ `M .β′δ′c M ′ belong to JAKΓ∪Nn

Γ (A) and convert
with M0.

The set NΓ(A) of first kind of neutral terms for the type A in Γ is defined as⋃
n∈N Nn

Γ (A).

Definition 3.21 (Second Kind of Neutral Terms) Let Γ be a context and
A ∈ ACCΓ. We define the set N ′n

Γ(A) of second kind of neutral terms of level
n for the type A in Γ by induction on n as follows:

• N ′0
Γ(A) = ∅;

• N ′n+1
Γ (A) is the set of terms M such that the following conditions hold:

(i) Γ `M : A holds;
(ii) M is not a lambda-abstraction;
(iii) PPΓ(M) is an acceptable type and converts with A.
(iv) all terms M ′ verifying Γ ` M .β′δ′c M ′ belong to JAKΓ ∪ N ′n

Γ(A) and
convert one with each other;

The set N ′
Γ(A) of second kind of neutral terms for the type A in Γ is defined

as
⋃

n∈N N ′n
Γ(A).

Proposition 3.22 For any context Γ, any A ∈ ACCΓ and any n ∈ N,
Nn

Γ (A) ⊆ Nn+1
Γ (A) and N ′n

Γ(A) ⊆ N ′n+1
Γ (A).

Proof. By induction on n ∈ N. 2

Proposition 3.23 For any context Γ, any A ∈ ACCΓ, NΓ(A) ⊆ SOΓ(A) and
N ′

Γ(A) ⊆ SOΓ(A).

Proof. By induction on n, we show that Nn
Γ (A) ⊆ SOΓ(A) and N ′n

Γ(A) ⊆
SOΓ(A). 2

Proposition 3.24 For any context Γ, any acceptable types A1 and A2, if
Γ ` A1 .β′δ′c A2, then NΓ(A1) = NΓ(A2) and N ′

Γ(A1) = N ′
Γ(A2).

Proof. By induction on n, we prove Nn
Γ (A1) = Nn

Γ (A2) and N ′n
Γ(A1) =

N ′n
Γ(A2) using Lemma 3.3 and Proposition 3.16. 2

12



Courant

Lemma 3.25 For any context Γ, any variable x, any types A1 and A2, any
term M ∈ NΓ(Πx : A1.A2), any term M1 ∈ JA1KΓ we have (M M1) ∈
NΓ(A2{x← (M1 : A1)}).

Proof. By induction on the reduction of M and M1. The only difficult point
is to prove the condition v of definition 3.20 holds. Since PPΓ(M) is a singleton
or ⊥, PPΓ((M M1)) = ⊥, which means that (M M1) is not a δ-redex. Since
M is not a lambda-abstraction, one step of reduction of (M M1) can therefore
only lead to (M ′ M1) for M ′ ∈ NΓ(Πx : A1.A2) ∪ JΠx :A1.A2KΓ with Γ `
M .β′δ′c M ′ or to (M M ′

1) with Γ `M1 .β′δ′c M ′
1. 2

Lemma 3.26 For any context Γ, any type A ∈ ACCΓ, and any M ∈ A,
NΓ({M}A) ⊆ NΓ(A).

Proof. By induction on n, we prove Nn
Γ ({M}A) ⊆ Nn

Γ (A). 2

Proposition 3.27 For any context Γ, any A ∈ ACCΓ, NΓ(A) ⊆ JAKΓ.

Proof. By induction on A:

• NΓ(P ) ⊆ JP KΓ since NΓ(P ) ⊆ SOΓ(P ) and JP KΓ = SOΓ(P ) by Defini-
tion 3.13.

• If A = Πx :A1.A2, then consider M ∈ NΓ(A). Let Γ′ ⊇ Γ and M1 ∈ JA1KΓ′ .
Then M ∈ NΓ′(A), therefore by Lemma 3.25 (M M1) ∈ NΓ′(A2{x← (M1 :
A1)}). By induction hypothesis, (M M1) ∈ JA2{x← (M1 : A1)}KΓ. Hence
M ∈ JAKΓ.

• If A = {M1}A1 , then consider M ∈ NΓ(A). By Lemma 3.26, M ∈ NΓ(A1).
Therefore M ∈ JA1KΓ. Moreover, there exists M0 ∈ JAKΓ such that Γ `
M .?

β′δ′c M0. Therefore, the normal form of M , M0, and M1 is the same, so
M ∈ JAKΓ.

2

Lemma 3.28 For any context Γ, any A ∈ ACCΓ, any M ∈ JAKΓ,

N ′
Γ({M}A) ⊆ NΓ({M}A)

Proof. By definition of neutral terms, taking M as the M0 needed in condi-
tions iv and v of definition 3.20. 2

Lemma 3.29 For any context Γ, any variable x, any types A1 and A2, any
term M ∈ N ′

Γ(Πx : A1.A2), any term M1 ∈ JA1KΓ we have (M M1) ∈
N ′

Γ(A2{x← (M1 : A1)}).

Proof. Similar to the proof of lemma 3.25. 2

Proposition 3.30 For any context Γ, any A ∈ ACCΓ, N ′
Γ(A) ⊆ JAKΓ.

Proof. By induction on A, using Proposition 3.27 as well as Lemma 3.28 and
Lemma 3.29. 2

The usual saturation lemma about β-redexes can be proved for β′-redexes:

13
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Lemma 3.31 (Saturation for β′-redexes) For any context Γ, for any ac-
ceptable types A, A1, and A2, for any terms M1 and M2, for any variable x,
if λx : A.M1 ∈ SOΓ(Πx : A1.A2), M2 ∈ SOΓ(A1) and M1{x ← (M2 : A)} ∈
JA2{x← (M2 : A)}KΓ, then (λx :A.M1 M2) ∈ NΓ(A2{x ← (M2 : A)}). As a
corollary, (λx :A.M1 M2) ∈ JA2{x← (M2 : A)}KΓ.

Proof. By induction on the reduction of λx : A.M1 and M2, using Proposi-
tion 3.24. 2

Lemma 3.32 (Saturation for Variables) For any context Γ, any accept-
able type A in Γ, any variable x declared of type A in Γ belongs to N ′

Γ(A) and
therefore to JAKΓ.

Proof. x belongs to N ′1
Γ(A): even if x is not in normal form, then A is a

singleton type {M ′}A′ and since A ∈ ACCΓ, M ′ ∈ JA′KΓ. 2

Lemma 3.33 (Saturation for c-redexes) For any context Γ, any accept-
able type A in Γ, any M ∈ JAKΓ, (M : A) belongs to N ′

Γ(A) and therefore to
JAKΓ.

Proof. By induction on the reduction of A and M , using Proposition 3.24
and 3.16. 2

3.3.4 Main Proof

Thanks to the saturations proofs, the following main lemma can be proved
easily:

Lemma 3.34 For any contexts Γ and Γ′ and any σ ∈ JΓ′KΓ we have the
following properties:

• If Γ′ `M1 ./ M2 then Γ `M1σ ./ M2σ.

• If Γ′ ` A then Aσ ∈ ACCΓ.

• If Γ′ ` A1 ≤ A2, A1σ ∈ ACCΓ, and A2σ ∈ ACCΓ then JA1σKΓ ⊆ JA2σKΓ.

• If Γ′ `M : A then Aσ ∈ ACCΓ and M ∈ JAσKΓ.

Proof. The proof is performed by induction on the considered derivation. 2

As a corollary we can prove

Lemma 3.35 For any context Γ, if Γ ` ok, then σid ∈ JΓKΓ.

Proof. The proof is by induction on the derivation of Γ ` ok, using Lem-
mas 3.34 and 3.33. 2

Theorem 3.36 For any context Γ such that Γ ` ok, the following properties
hold:

• If Γ ` A then A ∈ ACCΓ.

• If Γ ` A1 ≤ A2, A1 ∈ ACCΓ, and A2 ∈ ACCΓ, then JA1KΓ ⊆ JA2KΓ. As a
corollary, if Γ ` A1 ≤ A2, Γ ` A1, and Γ ` A2, then JA1KΓ ⊆ JA2KΓ.

14
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• If Γ `M : A then A ∈ ACCΓ and M ∈ JAKΓ.

Proof. By Lemmas 3.34 and 3.35. 2

As a consequence all typed terms in a well-formed context are semantic ob-
jects, i.e., they have the subject-reduction property, have a unique normal
form and are strongly normalizing.

4 Typing Algorithm

Our type-inference and type-checking algorithms for λβδ
≤{} are based on the

following seven judgments:

• Γ `c A1 ≤ A2, checking A1 is a subtype of A2 in Γ (assuming A1 and A2

are well-formed types and Γ is well-formed);

• Γ `qp M : A, inferring the quasi-principal type A of M in Γ (assuming Γ is
well-formed);

• Γ `p M : A, inferring the principal type A of M in Γ (assuming Γ is
well-formed);

• Γ `c M : A, checking A is a well-formed type and M has type A in Γ
(assuming Γ is well-formed).

• Γ `wft
c M : A, checking M has type A in Γ (assuming A is a well-formed

type and Γ is well-formed).

• Γ `c A, checking the type A is well-formed (assuming Γ is well-formed).

• Γ `c ok, checking the environment Γ is well-formed.

Rules for these judgments are given Figure 4. They are syntax-directed.
The preconditions over the judgment Γ `c A1 ≤ A2 imply that SUB/SINGR
needs to decide convertibility between well-typed terms only, which can be
done by normalization. Therefore, algorithms can straightforwardly be derived
from these rules.

Notice that the rules for the algorithmic judgments are the same as the
ones of Figure 3 up to the following differences:

• SUB/SINGPROD is restricted to the case SUB/SINGR does not apply;

• SUB/SINGL applies only when neither SUB/SINGR nor SUB/SINGPROD
do;

• “`” symbols appearing Figure 3 are now decorated with p, qp, c or c and
wft.

• T/SUB has been split into two rules: T/SUBPRE and T/SUB2.

Proposition 4.1 (Soundness of the Algorithms) The rules of Figure 4
are sound. More precisely:

• If Γ `c A1 ≤ A2, then Γ ` A1 ≤ A2.

• If Γ ` ok and
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Checking subtyping

SUB/SET
Γ `c P ≤ P

SUB/PROD
Γ `c A′

1 ≤ A1 Γ; x : A′
1 `c A2 ≤ A′

2

Γ `c Πx :A1.A2 ≤ Πx :A′
1.A

′
2

SUB/SINGR
Γ `M1 ./ M2 Γ `c {M1}A1 ≤ A2

Γ `c {M1}A1 ≤ {M2}A2

SUB/SINGL
Γ `c A1 ≤ A2

Γ `c {M1}A1 ≤ A2

A2 6= {M}A, A1 6= Πx :A3.A4

SUB/SINGPROD
Γ `c Πx :A1.{(M1 x)}A2 ≤ A

Γ `c {M1}Πx:A1.A2 ≤ A
A 6= {M3}A3

Quasi-principal type inference

T/VAR
Γ(x) = A

Γ `qp x : A
T/LAM

Γ `c A1 Γ; x : A1 `qp M : A2

Γ `qp λx :A1.M : Πx :A1.A2

T/APP
Γ `qp M1 : Πx :A1.A2 Γ `wft

c M2 : A1

Γ `qp (M1 M2) : A2{x←M2}
Principal type inference

T/STR
Γ `qp M : A

Γ `p M : {M}A

Type-checking a term in a well-formed type

T/SUBPRE
Γ `p M : A′ Γ `c A′ ≤ A

Γ `wft
c M : A

Type-checking a term

T/SUB2
Γ `c A Γ `wft

c M : A

Γ `c M : A

Checking types

TY/SET
Γ `c P

TY/SING
Γ `c M : A

Γ `c {M}A

TY/PROD
Γ `c A1 Γ; x : A1 `c A2

Γ `c Πx :A1.A2

Checking environments

E/EMPTY
`c ok

E/ADD
Γ `c ok Γ `c A

Γ; x : A `c ok

Fig. 4. Type-checking and type inference algorithms
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· Γ `qp M : A,
· or Γ `wft

c M : A and Γ ` A,
· or Γ `p M : A,
· or Γ `c M : A,
then Γ `M : A.

• If Γ ` ok and Γ `c A, then Γ ` A.

• If Γ `c ok, then Γ ` ok.

Proof. The proof can be performed by a simple induction on the derivation
of the judgment, since the rules for the algorithmic judgments mostly define
a strategy for the rule for the non-algorithmic judgments. The only non-
straightforward case is T/APP, which relies on the fact that its first premise
implies A1 is a well-formed type. 2

Proposition 4.2 (Termination of the Algorithms) The algorithms given
Figure 4 terminate provided they are applied to arguments fulfilling the condi-
tions associated to the judgments presented above.

Proposition 4.3 (Completeness of the Algorithms) The rules given Fig-
ure 4 are complete. More precisely:

• If Γ ` ok and Γ ` A1 ≤ A2 and Γ ` A1 and Γ ` A2 then Γ `c A1 ≤ A2.

• If Γ ` ok and Γ `M : A, then
· Γ `c M : A,
· and Γ `wft

c M : A,
· and there exists A1 such that Γ `qp M : A1 and Γ ` {M}A ≤ A1,
· and there exists A2 such that Γ `p M : A2 and Γ ` A2 ≤ A.

• If Γ ` ok and Γ ` A then Γ `c A.

• If Γ ` ok then Γ `c ok.

Proof. The proof is by induction on the derivation of the involved judgment.
It requires some additional lemmas such as the transitivity of subtyping. The
lack of space prevents us to give them in details. 2

5 Related Work

5.1 Reduction-based versus Rule-based Equality

Compared to the algorithm given by Harper and Stone [8], comparison of
terms in λβδ

≤{} is conceptually easy, as it only requires to βδ-normalize them.
It is also more flexible as one can choose any strategy.

The equality of terms in λβδ
≤{} is an intentional equality: it is the smallest

notion of equality compatible with reduction. In Harper and Stone’s single-
tons [8] as well as in Aspinall’s, equality of terms is parameterized by the type
they are compared in. Their equality is more extensional than ours: given a
context Γ = x1 : P , whereas λx2 : {x1}P .x1 and λx2 : P.x1 are distinct βδ-
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normal form in λβδ
≤{}, in Aspinall’s λ≤{}, they are equal at type Πx2 :{x1}P .P .

In general, identifying more terms is desirable; whether one can give a sys-
tem that compares terms through βδ-reduction and whose equality is more
extensional than in λβδ

≤{} is an open question.

5.2 Proof Method for Normalization

The proof method for subject-reduction, Church-Rosser property, and strong
normalization is inspired by the one we developed in our thesis for a module
calculus [4]. The idea to add coercions to the language to have the restricted
substitution properties is especially useful.

The proof method of [4] is itself inspired by Goguen’s thesis [7] which
introduces a simultaneous proof of subject-reduction, Church-Rosser property
and strong normalization of the Calculus of Constructions with βη-reduction.
We identify the following ideas in Goguen’s proof:

• Proving subject-reduction, Church-Rosser and strong normalization at once
is slightly more difficult than proving the strong normalization property
alone. It much simplifies the subject-reduction and Church-Rosser issues.

• Requiring the interpretations of types to contain only semantic objects in
their definitions simplifies the proof. It replaces the need to prove that
interpretations contains only semantic objects at a point where little is
known about them to the need to prove that (λx : A.M)σ is a semantic
object for the case of lambda-abstraction in the proof of Lemma 3.34, at a
point where much more is known.

• Goguen defines a typed operational semantics, using the worst possible
strategy for normalizing a term, to make the proof of the saturation lemmas
easier.

We reused the first two of them for λβδ
≤{} but we do not see how the reuse the

third one. The main difficulty here is that λβδ
≤{} has a subtyping notion; we

could not see how to define a typed operational semantic taking into account
this subtyping relation. However it seems that typed operational semantics
can be used for higher-order subtyping [2]. Whether one can be given for
singleton types is an interesting area for future work.

6 Conclusion

λβδ
≤{} is a typed lambda-calculus with singleton types. Its equality notion is

defined by convertibility through a new reduction called δ-reduction.

βδ-reduction has a very odd behavior on untyped terms, as any pair of
untyped terms has a common antecedent by .?

βδ . As far as we know, βδ is
the only reduction not defined on purpose enjoying such an odd behavior.

The usual metatheoretical properties could be proved though. This seems
to show that Goguen’s method for strong normalization is quite effective and
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robust.

λβδ
≤{} enjoys a straightforward type inference and type-checking algorithm.

This algorithm just relies on a normalization function for βδ-reduction, which
is conceptually much simpler than the term comparison algorithm presented
in [8].

Finally, whether the equality in λβδ
≤{} can be made more extensional is an

open question.
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