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Abstract

We show that the basic feasible functions of Cook and Urquhart’s BFF [8,9] are
precisely the functionals definable in a natural system of ramified recurrence that
uses type intersection (for tier-variants of a common type). This further confirms
the stability of BFF as a notion of computational feasibility in higher type. It also
suggests the potential usefulness of type-intersection restricted to sort-variants of a
common type.

INTRODUCTION: COMPUTABILITY AND FEASIBIL-

ITY IN HIGHER TYPE

Computable higher type functionals have been studied for about a century, for
several intertwined reasons. One of the first to explicitly consider feasibility

of functionals was Robert Constable, who in [6] introduced a machine model
for functionals, and considered the definability of the functionals computable
therein in a certain function algebra. 3 Melhorn [18] refined Constable’s alge-
braic approach by lifting to second order types the characterization given by
Cobham [5] of the class FP of functions computable in polynomial time. A
corresponding machine model was defined by Kapron and Cook in [13], and
shown to be equivalent to Mehlhorn’s class.

Another thread in the evolution of the subject was concerned with func-
tional interpretation of proofs in Buss’s Bounded Arithmetic. In [2] Buss
introduced a system IS1

2 of arithmetic and showed that its definable functions
form precisely FP. In [3] Buss considered the intuitionistic variant of IS1

2 , and

1 Research partially supported by NSF grant CCR-0105651.
2 Email: leivant@cs.indiana.edu
3 See [4] for a correction.
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defined a complex functional interpretation which yields a poly-time instan-
tiation theorem for the system. This approach was substantially refined and
simplified by Cook and Urquhart in [8,9], where they defined a system BFF

(for Basic Feasible Functionals), based on the typed lambda calculus, and
which supports a functional interpretation of IS2

1 , analogous to Gödel’s func-
tional interpretation of first order arithmetic [10]. 4 In [14] Cook and Kapron
showed that the second order fragment BFF2 of BFF contains precisely the
functionals defined in Mehlhorn’s system, viz. the same as the functionals
computable by the machine model of [13].

It is not immediately clear that BFF2 should be admitted as a canonical
delineation of the feasible second order functionals. Indeed, Cook exhibited
in [7] a functional L that might be considered feasible, and yet falls outside
BFF2. Cook stated three conditions that any proposed definition of type 2
feasibility must satisfy, and those are in fact satisfied by BFF2 appropriately
augmented with L. However, Seth showed [19] that when two additional
and quite natural conditions are imposed, then BFF2 emerges as the only
admissible notion of feasibility for second order functionals. Nonetheless, it
is useful to lift doubts about the robustness of BFF2, and more generally
of the class BFF, by providing additional natural characterizations, notably
ones that are not tied umbilically to explicit resource restrictions, as are all
characterizations above.

Frameworks for characterizing computational complexity classes without
any reference to resources have been developed over the last dozen odd years,
jointly referred to as Implicit Computational Complexity. Included are, among
others, ramified functional programs, ramified first order proof systems, higher
order logics with restricted set-existence, structural restrictions on applicative
terms and proofs, and modal and linear type systems and proof systems. Such
formalisms are particularly attractive for delineating notions of feasibility in
higher type: they are based on concepts that do not refer directly to func-
tions and computations, and consequently they lift seamlessly to higher type
computing.

One implicit characterization of BFF was proposed in [12], where a rami-
fied imperative programming language of loop programs is presented, dubbed
Type 2 Inflationary Tiered Loop Programs (ITLP2), which computes in type
2 exactly BFF2. The imperative framework is appealing from an expository
viewpoint, as well as for implementations. However, the formalism of [12] is
based on a principle of “inflationary tiers”: it posits functions that embed
lower (i.e. weaker) tiers under a size-bound into higher tiers, that is functions
lift

ij
: Wi → Wj → Wi for i > j (where W is the term algebra representing

4 Initially the system was denoted PV
ω

.
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{0, 1}∗ and the subscript designates the tier), such that 5

lift
ij
(x, y) =





y if |y| ≤ |x|

ε otherwise

Thus, the system intertwines tiers with explicit bounding of resources, not
significantly different from the use of Cobham’s bounded recurrence, thereby
defeating the very rationale of ramification and similar implicit characteriza-
tions of computational complexity.

One problem with ramification in higher type is that within a ramified
setting one can define functionals which become unfeasible if ramification re-
strictions are removed. For instance, once we allow function variables of type
Wi→Wi we can define the iteration functional

λfWi→Wi λxWi+1 .Rεffx

(where R denotes a recursor operator for W), which is not definable in BFF,
and indeed maps a feasible function that doubles the input size to an unfeasible
function of exponential growth. We cannot bypass this issue by insisting
that function variables be assigned types of the form Wi → Wj with j > i,
since these could be composed with downward-tier coercion functions to yield
function arguments of type Wi → Wi. Assigning to function variables types
Wi → Wj, with fixed j < i, is also undesirable, since that would exclude
the perfectly legitimate self composition functional λf.λx.f(f(x)). This issue,
and similar ones, imply the need for a more flexible system of ramification
for higher type functionals. This is not unexpected, since the mechanics of
object tiering uses the definability of tier-reduction functions, which make tier
intersection unnecessary: the intersection of several tiers is computationally
equivalent to the highest of these tiers. In contrast, no such mechanism is
available for higher types.

This issue is addressed in [12] by a tier quantification mechanism, allowing
types such as ∀i.Wi+1→Wi, where Wi is the type of words in tier i. This device
permits to lift to types of rank 1 the implicit mechanism of intersection, but
does not seem to have any easy extension to higher types. Indeed, even if
all function variables are assigned the type above, compound terms denoting
unary functions may have other types, for example f ◦ f would have type
∀i.Wi+2 → Wi, and unary constructors would have type ∀i.Wi → Wi. The
composition of these variables would no longer have this type, leading to the
impossibility of assigning properly tiered types to higher order functionals.

In this paper we show that finite intersection of tier-variants of a given type
will do the job at all ranks. Our advance over [12] is thus in: (a) Avoiding
reference to resource bounds (“inflationary tiering”); and (b) Characterizing

5 In [12] these functions are named down, and tiering is reversed, with lower tiers driving
computation in higher tiers.
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of BFF in all finite types. It is of interest that both [12] and our present work
extend ramified recurrence in the style of [16], rather than [1]. Indeed, the
notion of “safe composition” used in the latter goes contrary to the treatment
of ramification as a form of sorting, and it is this treatment that permits
natural extension of ramified recurrence to higher type.

While we consider here an adaptation of type ramification to higher types,
it is also possible to study BFF via weak forms of polymorphism. Results
along that line can be found in [17]. Significantly, both approaches yield ro-
bust characterizations of BFF by lifting to higher type natural type-theoretic
characterizations of poly-time.

1 FUNCTIONAL PROGRAMS OVER FREE ALGE-

BRAS

1.1 Primitive recursion over free algebras

Let A be the free algebra generated from constructors c1 . . . ck (k > 0), with
arity (ci) = ri ≥ 0, and set r =df max(ri). Special cases of this generic
definition include the algebra N of unary numerals, generated from the zero-
ary 0 and the unary s (the successor functions), and the algebra W ∼= {0, 1}∗

of binary words, generated from the zero-ary ε and the unary 0 and 1.

The schema of primitive recursion on A allows the definition of a function
over A of arity q+1 from functions gc1 . . . gck

, where gci
are of arity ≤ q+2ri,

by
f(~x, ci(a1 . . . ari

)) = gci
(~x,~a, f(~x, a1), . . . f(~x, ari

))

It is useful to consider the monotonic cases of this schema, in which the func-
tions gci

have no direct access to ~a:

f(~x, ci(a1 . . . ari
)) = gci

(~x, f(~x, a1), . . . f(~x, ari
))

We dub this simplified form of primitive recursion recurrence. 6 Another re-
stricted form of primitive recursion, orthogonal to recurrence, is the Branching

schema, where the functions gci
have no access to the previous value of f :

f(~x, ci(a1 . . . ari
)) = gci

(~x,~a)

Using Branching we obtain the definition-by-cases and destructor functions:

cases (ci(~a), x1 . . . xk) = xi

dstr j(ci(~a)) = aj (0 < j ≤ ri)

dstr j(ci(~a)) = ci(~a) (ri < j ≤ r)

6 This schema, for A = N, is also known as iteration with parameters, but the phrase
“iteration” is inappropriate for W and other algebras.
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For example, for A = N the unique destructor is the cut-off predecessor, and
cases (x, y, z) = if (x = 0) then y else z. It is easy to see that every instance
of the Branching schema is reducible to the cases and destructor functions,
using composition.

We are particularly interested in recurrence over the algebra W, that is

f(~x, ε) = gε(~x)

f(~x,0w) = g0(~x, f(~x, w))

f(~x,1w) = g1(~x, f(~x, w))

The simultaneous definition of a vector ~f of functions is similar, referring
to given vectors of functions ~gε, ~g0 and ~g1.

Let λ1 be the simply typed lambda calculus with product types, and cor-
responding pairing 〈·, ·〉 and projection functions π0, π1. In addition to β-
reductions, we have here the pairing reduction: πi〈t0, t1〉 7→ ti. We write ι

for the base type, and associate → to the right. When convenient, we write
(τ 1 . . . τm)→σ for τ 1→ τ 2→· · ·→ τm→σ (m ≥ 0). 7 If all τ i are all one and
the same type τ , we write τm→σ for the above.

Let λ1(W) be the following extension of λ1. The identifier ε is admitted as
a constant of type ι, and the identifiers 0 and 1 as constants of type ι→ ι. In
addition, we include constants for the branching and recurrence operations, B

and R, both of type (ι, ι→ ι, ι→ ι, ι)→ ι. The reductions of λ1 are augmented
with reductions for B and R:

Btεt0t1ε → tε

Btεt0t1(iw) → ti(w) i = 0, 1

Rtεt0t1ε → tε

Rtεt0t1(iw) → ti(Rtεt0t1w) i = 0, 1

It is clear how function definition by recurrence is conveyed in λ1(W): if
f is defined from gε, g0, and g1 as above, and gi is defined by Gi (i = ε, 0, 1),
then f is defined by the term

F =df λx1 . . . xm, w.R(Gε~x)(G0~x)(G1~x)w

The rendition of the branching schema by B is similar.

1.2 Bounded primitive recursion

In his seminal paper [11] Grzegorczyk gave his famous classification of prim-
itive recursive functions, closing each class under the schema of bounded re-

cursion, i.e. the schema that admits a function f if the functions g0, gs and j

7 This simulation of type-product is useful in the product-free version of λ1.
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are admitted, and 8

f(~x, 0) = g0(~x)

f(~x, sw) = gs(~x, w, f(~x, w))

f(~x, w) < j(~x, w)

Cobham [5] showed that the functions over N computable (on a Turing ma-
chine) in polynomial time can be characterized by admitting initial functions
that yield values of size polynomial in the input’s size, and then closing under
bounded primitive recursion on words. That is, a function over W is in FP iff
it is definable from the constructors of W, and a size multiplication function
u ∗ v =df 1|u|·|v|ε, using explicit definitions and the following schema BR of
bounded primitive recursion: 9

f(~x, ε) = gε(~x)

f(~x, iw) = gi(~x, f(~x, w)) (i = 0, 1)

|f(~x, w)|< |j(~x, w)|

We use the following alternative rendition BR′ of bounded primitive re-
cursion:

f(~x, ε) = gε(~x)

f(~x, iw) = gi(~x, w, f(~x, w) � J(~x, w)) (i = 0, 1)

Here u � v is the truncation of u to the length of v, e.g. 0010ε � 01ε = 00ε,
and 0010ε � 11111ε = 0010ε.

Lemma 1 The schema BR′ over W is equivalent, modulo linear time simula-
tions, to BR.

Proof. If f is defined from gε, g0, g1 and j by BR, then f is defined from
gε, g0, g1 and J by BR′, where J(~x, w) =df max[j(~x,0w), j(~x,1w)]. Con-
versely, if f is defined from gε, g0, g1 and J by BR′, then f is defined from
gε, g0, g1 and j by BR, where j(~x, w) = if w = ε then g0(~x, w) else J(~x, p(w)),
where p is the predecessor function. a

1.3 Bounded recurrence

When a bounded primitive recursion is monotonic, we dub it bounded recur-

rence:

8 This “doctrine of size” for function definition is strikingly similar to “doctrine of size”
for function definition is strikingly similar to Zermelo’s doctrine of size for taming the
comprehension principle of naive set theory: the naive admission of set definition by ar-
bitrary description, {x | P (x)} is replaced by the Separation Schema, which only admits
{x ∈ S | P (x)}, S an already defined set.
9 The generic statement of BR for arbitrary word algebras is similar. Cobham’s phrased
this schema as “bounded recursion on notations”, and insisted on working with natural
numbers. This was in accord with the early focus of mathematical logic on number systems,
and the exclusive reference to numeric computing in traditional Recursion Theory.
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f(~x, ε) = gε(~x)

f(~x, iw) = gi(~x, f(~x, w) � J(~x, w)) (i = 0, 1)

Proposition 2 Each instance of bounded primitive recursion over W can be
derived from branching and bounded recurrence.

The proof is similar to the proof of [16, Lemma 4.2], and uses function-
definitions by simultaneous recurrence as an auxiliary notion, where simulta-
neous recurrence is made possible by the presence of pairing. The simulation
requires a quadratic increase in computation time. The reference to W is
essential here, e.g. the argument does not work for N.

In order to incorporate bounded recurrence into a definition of higher
type functionals, Cook and Urquhart [8,9] rephrased bounded recurrence as a
functional operator, with reduction rules, to be adjoined to the simply typed
lambda calculus λ1. They dub their system PVω; we use here a slight variant
of that calculus. Let R be a function identifier of type ι→ (ι→ ι)3 → ι→ ι.
The reductions conveying the intended meaning of R are:

RGεG0G1Jε 7→Gε

RGεG0G1J(iX) 7→ (GiH) � (JX) (i = 0, 1)

where H =df RGεG0G1JX

Thus, if f is defined by bounded recurrence as above, and functions gε, g0, g1

and j are defined by terms Gε, G0, G1, and J , then f is defined by the term

F =df λ~x, w.R(Gε~x)(G0~x)(G1~x)(J~x) w

Our variant λ
−
1 (W) of PVω is an extension of λ1, identical to λ1(W) except

for two modifications: (a) The constant R and the associated reduction rules
are replaced by R and its associated reduction rules; (b) The constant � is
included as a primitive, with reduction rules x � ε 7→ ε, ε � x 7→ ε, and
ix � jw 7→ i(x � w).

From Proposition 2 we obtain:

Proposition 3 A functional over W is definable in PVω iff it is definable in
λ

−
1 (W).

2 RAMIFIED RECURRENCE IN FINITE TYPES

2.1 Ramified recurrence

The schema of recurrence over N embodies an impredicative reading of the
natural numbers (and similarly for other algebras A). Consider the definition
of exponentiation from the doubling function: doubling is defined by R0s2,
where s2 ≡ s ◦ s ≡ λz. s(s(z)). So base-2 exponentiation is defined by E =df

R(s0)(R0s2). A term of the form E(st) reduces then to R0s2(Et). In the
latter, the recurrence argument is a symbolic term Et, representing a value

7
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of the function we are in course of defining. Moreover, since that value is the
iterative argument of the term R0s2(Et), the meaningfulness of the definition
hinges on admitting Et not only as some value, but as a natural number. Thus,
E should be assumed as mapping N into N before its defining equations are
admitted as meaningful. The same phenomenon is visible in the definition of
Ackermann’s function, there already in regard to function definition (whereas
here it is manifested only in function computation).

Ramified recurrence, introduced in [15] as a sorted variant of recurrence,
breaks this impredicativity by postulating a many-sorted data structure, with
copies Ai (i ≥ 0) of the algebra A in hand. The copy Ai is referred to as
the i’th tier. Recurrence over tiers A1 . . . Ai is then permitted only when the
recurrence argument is in a tier > i. This prevents, in particular, that a
recurrence argument refer back to the function being defined.

We convey ramified recurrence over W in a variant λ
∗
1(W) of λ1(W), ob-

tained as follows. We refer to an unbounded list ιp of base types, with ιp
intended to denote the tier Wp. For each p ≥ 0, and each constructor c (i.e.,
ε, 0, or 1) we have a constant cp denoting the copy of c in ιp. (We drop the tier
subscript when in no danger of confusion.) For each p we also have a branch-
ing operator Bp, of type ιp → (ιp → ιp)

2 → ι0 → ιp. For each type τ which is a
product of base types, we have a constant Rτ of type τ →(τ →τ)2→ ιp+1→τ ,
where p is the maximal tier in τ . The reductions of λ1 are augmented here
with reductions for Bp and Rτ , similar to the reductions for B and R above,
but subject to the revised types.

We claim that the constants Bp and Rτ are as general as the tiered forms
of branching and recurrence described in the preceding paragraph. The key
observation is the definability of a downward coercion function Dp from Ap+1

to Ap: Dp =df Rιpεp0p1p. The composition of these functions yields coercion
functions Dp,q from Ap+1 to Aq for every q ≤ p. Recurrence over τ can thus
be driven by a recurrence argument of any type p′ > p by composing Dp′,p+1

with Rτ .

The relevance of ramified recurrence to machine independent complexity
is the following: 10

Theorem 4 [16] The functions over A definable in λ
∗
1(A) are precisely the

functions computable in polynomial time on a register machine over A. In
particular, the functions definable in λ

∗
1(W) are precisely the functions com-

putable in polynomial time on Turing machines, and the functions definable
in λ

∗
1(N) are the functions definable in linear space on Turing machine. 11

10 A related result was proved earlier in [1]. However, the notion of “safe recursion” used
there relies on a notion of “safe composition” which is not type-correct, does not conform
to a reading of the tiers as base types, and therefore seems inappropriate for extensions to
higher type computation.
11 The latter is the second level E2 of the Grzegorczyk Hierarchy.
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2.2 Ramified recurrence with type intersection: a motivating discussion

Theorem 4 and Cobham’s Theorem [5] give two machine-independent charac-
terizations of the functions over W computable in polynomial time. We wish
to establish a correspondence between the extensions to higher type of these
two approaches: the extension λ

−
1 (W) of Cobham’s system, and the higher

type functionals definable in the ramified system λ
∗
1(W).

Since in λ
−
1 (W) one defines functionals over W, whereas functionals defin-

able in λ
∗
1(W) are over over a multi-sorted data-structure, we must first clarify

what we mean by definability in λ
∗
1(W) of functionals over W. Surely, we can-

not admit all functionals with a ramified definition, because (as pointed out in
the Introduction) the iteration functional would be definable, even though it
is not definable in λ

−
1 (W), and indeed maps doubling (a feasible function) to

base-2 exponentiation (a non-feasible function). We thus restrict attention to
functional definitions in λ

∗
1(W) which are tame in a sense to be defined below.

In tandem with the restriction to tame terms, we will need an extension of
the type system. The rationale is this. We wish to inductively transform each
term M of λ

−
1 (W) into a term M ′ of λ

∗
1(W) which, tiers disregarded, defines

the same functional as M . When M ≡ M0M1 we can stipulate λ
∗
1(W)-term

M ′
0 and M ′

1, corresponding to M0 and M1, are already defined. However, if
x, of type τ , is a free variable occurring in both M0 and M1, then x may
be assigned in M ′

0 and M ′
1 two different tiered variants τ 0 and τ 1 of τ . This

we resolve by simply adopting type intersection, and tentatively assigning to
x in M the type τ 0 ∩ τ 1. (Note that the intersection here is between tier-
variants of the same type.) If x is not an argument of an application in M ,
then this simple measure resolves the issue. In general, however, there is a
potential for typing conflict: we may have, for example, M0 with a subterm
s0(x), where s0 : τ 0 → σ0. Re-assigning to x the type τ 0 ∩ τ 1 necessitates a
modification of the tiering of s0 so as to yield a type (τ 0∩ τ 1) → σ0. However,
the tiering of functionals of higher rank has no computational consequences,
since recurrence, where tiering matters, is restricted to functions over base
types. Thus, the needed proliferation to higher type of type-intersection can
go through harmlessly.

2.3 Generic tiering

We now define formally the extension λ
∩
1 (W) of λ

∗
1(W). Given a ramified type

τ , we write τ̃ for the un-ramified type that arises from disregarding the tiers
in τ . Call ramified types τ and σ compatible if τ̃ = σ̃. The formation rules
of λ

∗
1(W) for types are expanded as follows. If τ and σ are compatible types,

then τ ∩ σ is a type. We say that τ and σ are the direct intersects of τ ∩ σ;
the relation “is an intersect of” is the reflexive and transitive closure of “is a
direct intersect of”. Constants and their types are precisely as in λ

∗
1(W). If

M is a term of λ
∩
1 (W), we write M̃ for the un-ramified form of M ; note that

since intersection is applied to compatible types only, M̃ is well-defined.

9



Leivant

For correct typing of terms, we refer to the usual Curry-style derivations
of typing statements.

2.4 Main result

We call a type (τ 1 . . . τ r)→σ critical if it fails to consistently reduce tiers, in
the following sense: σ is of the form ιp1

× · · · ιp`
(` ≥ 1), and some τ i is a

product of base types, one of which is ιq with q ≤ pj for some j. A term of
λ

∩
1 (W) is tame if no λ-abstracted variable therein has a type with a critical

intersect.

Theorem 5 A functional Φ over W is definable in λ
−
1 (W) iff Φ = Ψ̃ for some

tiered-functional Ψ over W definable in λ
∩
1 (W) by a tame term.

As mentioned in the Introduction, an alternative characterization of BFF,
based on positive comprehension in the second order lambda calculus, is given
in [17].

3 FROM RAMIFIED FUNCTIONALS TO BFF

Given functional identifiers (variables or constants) ~f , a functional-polynomial

in ~f is a function P : W
r → W defined explicitly definable from ~f , ε, 0, 1,

concatenation and word-multiplication. Here we take multiplication to mean
u ∗ v =df 1|u|·|v|ε. 12

A tiered functional Φ over W is admissible if it satisfies the following
boundedness condition: If Φ̂ : (τ 1 . . . τ `) → ιp, is explicitly defined from Φ

and projections, then there is a functional-polynomial P such that |Φ̂~x| ≤
|P (~y)|+maxj[|zj|], where ~y consists of the xi’s of higher type or of types with
an intersect ιq where q > p, and ~z consisting of the xi’s whose type is the
intersection of types ιp, p ≤ q. Note that when ~y above is empty, P is a
constant. Recall that the tiered first-order functions definable in λ

∗
1(W) are

admissible, by [16].

Since the collection of functional-polynomials is closed under application
and under composition, we have:

Lemma 6 The collection of admissible functionals is closed under application
and under composition. a

Proposition 7 Suppose a tiered-functional Φ over W is defined by a tame
term λ~u.M . Let Φ′ be a tiered-functional obtained by binding the critical-
type arguments of Φ to admissible tiered-functionals f1 . . . fm. Then

(i) The functional Φ′ is admissible.

12 This choice of a degenerated form of word-multiplication is motivated by the fact that
we are only interested in the size of the output of functional-polynomials.
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(ii) If the un-tiered versions f̃1 . . . f̃m, of f1 . . . fm respectively, are definable

in λ
−
1 (W), then so is the un-tiered version Φ̃′ of Φ′.

Proof. By induction on M . The cases where M is one of the constructors ε,
0 and 1, or one of the variables ~u are almost immediate. The cases where M

is one of the constants Bp (p ≥ 0) are also straightforward.

Consider next the case M ≡ Rτ . Recall that τ must be a product of
base types. Thus the critical-type arguments of Rτ are the second and third
(corresponding to the cases for the two successors). So Φ′ here is a tiered-
functional defined by λxεw.Rτxεf0f1w, where f0, f1 are admissible, i.e. for
some constant a, |fi(z)| ≤ a + |z|. Hence |Φ′(xε, w)| ≤ |xε| + |w| · a, and Φ′ is
admissible, with P (xε, w) =df xε + w ∗ 1a

ε as bounding polynomial.

To demonstrate (2), assume that f̃0 and f̃1 are defined in λ
−
1 (W), by F0 and

F1 respectively. Let J(xε, w) be a term of λ
−
1 (W) that defines P above (recall

that a is a fixed value, depending on f0 and f1). Then λxε, w.R̄xεF0F1(Jxεw)w
This concludes the induction’s basis.

For the inductive step we consider λ-abstraction and application; we omit
a discussion of pairing and projections, which are straightforward. Let M =
λxτ .M0. Since M is assumed tame, the condition (1) for M is identical to (1)
for M0, which holds by IH. Also, (2) for M0 trivially implies (2) for M .

Suppose M = N τ→σQτ , and let Φ be the functional defined by λ~u.M . Let
ΦM be obtained by binding the critical-typed arguments of Φ to some fixed
admissible functionals ~f . Let Φn and ΦQ be defined similarly for the function-
als λ~u.N and λ~u.Q. Towards showing that ΦM is admissible, suppose that the
functional Φ̂ : (τ 1 . . . τ `)→ ιp is explicitly defined from ΦM and projections.
Then it is explicitly defined from ΦN , ΦQ and projections. The functionals
ΦN and ΦQ are bounded by functional-polynomials, by IH. It follows, by a

straightforward induction on (the length of) the definition of Φ̂ from ΦN , ΦQ,

that Φ̂ too is bounded by a functional-polynomial.

Property (2) for M follows trivially from the IH for N and Q. a

4 FROM BFF TO RAMIFIED FUNCTIONALS

When mapping λ
−
1 (W) to λ

∩
1 (W) we use the boundedness condition on recur-

rence to enable appropriate tiering. The core of this mapping is given in the
following Lemma.

Lemma 8 For every p ≥ r ≥ 0, there is a λ
∗
1(W)-term M of type ιr→ ιp+1→ ιp,

such that (the un-tiered variant of) M defines the function �.

Proof. Let τ = ιr × ιp. Define

N =df π0Rτ 〈ε, u〉F0F1v

11
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where

Fi = λx. 〈case (π1x, π0x,0π0x,1π0x), pπ1x〉.

By induction on its second argument we see that λu, v.N defines the � function
reversed, i.e. λu, v. (rev (u)) � v. Thus, the term

M =df λu, v. π0Rτ 〈ε, N〉F0F1v

defines �. a

It is easy to see that every function definable in λ
−
1 (W) is already defin-

able in λ
−
1 (W) without product types. We are therefore free to focus on the

product-free fragment in λ
−
1 (W), somewhat simplifying technical details.

Proposition 9 Suppose Φ is a functional over W, of product-free type (τ 1 . . . τ r)→
ι, defined in λ

−
1 (W) by a normal term M ≡ λxτ1

1 · · ·xτr
r .M0. Then Φ is defined

by some term M of λ1(W) that has a tame typing in λ
∩
1 (W).

Proof Outline. We prove, by induction on M0, that there is a term M as
above, with the property that for every q ≥ 0 there is a p ≥ q such that for all
s ≥ p M can be assigned in λ

∩
1 (W) the type ~σs→ ιq. Here we write τ s for the

intersection of all possible non-critical ramified variants of τ , with tiers ≤ s.

More precisely, our proof uses an auxiliary calculus, which results from
augmenting λ

∩
1 (W) with the typing rule

η ` M : ιp+i

η ` M : ιp

That is, the role of the downward-coercion functions Dp is taken over by the
typing rules. This permits an inductive proof in which we can ignore the
need to insert Dp when called for. When done with the inductive proof, we
can convert a typing derivation for a term M , which uses the coercion rule
above, into a typing derivation of some variant of M that results from inserting
instances of the functions Dp.

Turning to the induction basis of the proof of the claim above, the inter-
esting case is the bounded recursion operator, i.e. M is R. Let

R=df λe, f0, f1, j, w.Ref ′
0f

′
1w

where

f ′
i ≡ λv.((fi(v) � (jv)) (i = 0, 1)

Given q, we can type R by setting, for any r ≤ q, e : ιq, v : ιq, fi : ιq → ιr,
j : ιr→ ιq+1→ ιq, w : ιq + 1. We can thus take p = q + 1.

For the induction step, consider first the case where M0 ia an application.
Since M0 is assumed normal, it must then be of the form AN1 · · ·Nk, where
A is either a constant or a variable. The least trivial case with A a constant
is M0 ≡ REF0F1JW (i.e. k = 5). We let

M =df λx1 . . . xr.R(E)(F ′
0)(F

′
1)(J)(W )

12
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where

F ′
i ≡ λv.((F i(v) � (Jv)) (i = 0, 1)

where E,F0, F1, J, and W are obtained by IH applied to E,F0, F1, J, and W ,
respectively. Next, suppose given q ≥ 0. Towards defining the appropriate
value for p, consider the variables x1 : τ1, . . . , xr : τr free in M0, and let pE and
pJ be obtained for the given q by IH applied to E and J , respectively; let pN

be obtained for q+1 by IH applied to N ; and let p0 and p1 be obtained for the
value q = 0 by IH applied to F0 and F1. If we set p =df max[pE, p0, p1, pJ , pN ],
and assign xi : τ

p
i , then, using the fundamental rules for type intersection, we

obtain as derived typings E : ιq, F i : ιq→ ι0, J : ι0→ ιq+1→ ιq, and W : ιq + 1,
so p satisfies the required property with respect to M .

The other cases for R (i.e. fewer than 5 arguments) are included in the
above by η-conversion. The cases where A is one of the remaining constants,
ε, 0, 1, Bp or � are straightforward.

If A above is a variable, x1 say, we let

M =df λxτ1
1 . . . xτr

r . x1N1 · · ·Nk

where N i is obtained by IH applied to Ni (i = 1 . . . k). Let σi be the (untiered)
type of Ni Given q ≥ 0, let pi be obtained by IH for q and Ni. Let p̄ =df

max[p1 . . . pk]. Then all tiers in σ
p̄
i are ≤ p. Choosing p =df p̄+1, we guarantee

that the type
σ

p̄
1→· · ·→σ

p̄
1→ ιq

is one of the intersects of τ
p
1, and therefore the typing is correct. This concludes

the proof of the induction step for an applicative M0.

The case of λ-abstraction is trivial. a
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