Airline Optimisation

Napat Amphaiphan Slim Foudhaili Dimitrios Giannarakis
 Yingxin Jia Elena Kostova

Imperial College London

March 24, 2010

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand forecasting
9. Conclusion

Introduction

- Aim: minimise costs or maximise profit
- Basic fleet assignment
- Task: allocate an aircraft to each flight leg
- Operation research problem

Outline

1. Introduction

2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

The basic fleet assignment model

(G) AlRBUS

The basic fleet assignment model

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Demonstration

Input

Flight schedule

ID	Dept.	Arr.	Fleet	Dept. time	Arr. time	Ready time
1	LHR	CDG	A340	360	480	505
1	LHR	CDG	B747	360	460	485
2	CDG	LHR	A340	700	920	945
2	CDG	LHR	B747	700	900	925
\ldots						

Fleet information

Aircraft	Code	Total	Seats	Weight (kg)	Consumption
Airbus 340	A340	2	308	177,800	10,980
Boeing 747	B747	1	344	396,890	12,788

Demonstration

Output

Fleet assignment

Flight Leg	Airbus	Boeing
LHR - CDG	0	1
CDG - LHR	0	1
LHR - CPH	1	0
CPH - LHR	1	0
LHR - SOF	1	0
SOF - LHR	1	0
LHR - ATH	0	1
ATH - LHR	0	1

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Cost and profit calculation

- Passenger demand data is confidential
- We sample Gamma distribution to generate demand
- Flight duration - Ticket price relationship

Passenger Demand

$$
\begin{aligned}
& \mu \sim U(\min \text { capacity, } \max \text { capacity }) \\
& \sigma=Z \sqrt{\mu} \quad \text { where } \quad Z \sim U(1,2)
\end{aligned}
$$

$\Gamma(k, \theta)$

$$
\begin{aligned}
& \mu=k \theta \\
& \sigma^{2}=k \theta^{2}
\end{aligned}
$$

Spill and Spill Cost

spill $=\max \{$ demand - capacity, 0$\}$
spill cost $=$ spill * ticket price

Ticket Price

Price $=0.85 \times$ Duration +280

 price in $£$ and duration in min

Cost and profit calculation

- Passenger demand data is confidential
- We sample Gamma distribution to generate demand
- Flight duration - Ticket price relationship

For a single flight:
cost $=$ fuel consumption * duration * fuel price + landing fees * weight
total cost $=$ cost + spill cost
revenue $=\min \{c a p a c i t y$, demand $\} *$ ticket price
profit $=$ revenue - cost

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation

5. Enhancement

6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Aggregation

Aggregation

Aggregation

Time reduction

Virgin 19.34 \%
KLM
14.46 \%

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Network and fleet planning

Problem
Extra flight leg (Dublin).
Not enough aircraft to service it.

Network planning

Idea \#1
Keep the most profitable legs and eliminate the others.

Fleet planning

Idea\#2
Buy additional aircraft.

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning

7. Time windows

8. Demand Forecasting
9. Conclusion

Time windows

Idea

Assume a flight arrives from Paris less than 30 minutes after one leaves for Sofia

Time windows

Idea

Some passengers from Paris might have been
interested in a connection to Sofia.

Time windows

Idea
Slight schedule change \rightarrow increase demand for Sofia flight \rightarrow increase profit

Time windows

We used a 30-minute time window for Virgin, and a 20-minute time window for KLM.

Cost decrease

10.52
5.87
22.80

Yearly results in £Million.

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Demand Forecasting

$$
\begin{aligned}
& \mathrm{R} \text { - real } \\
& \mathrm{E} \text { - expected }
\end{aligned}
$$

$$
\frac{c_{R}\left(X_{R}\right)-c_{R}\left(X_{E}\right)}{c_{R}\left(X_{R}\right)}
$$

	Cost increase	Profit decrease
Virgin	48.68	53.92
KLM	144.68	255.04

Yearly results in $£$ Million.

Outline

1. Introduction
2. The basic fleet assignment model
3. Demonstration
4. Cost and profit calculation
5. Enhancement
6. Network and fleet planning
7. Time windows
8. Demand Forecasting
9. Conclusion

Conclusion

Virgin Airlines

Aggregation Time reduction

$$
19.34 \text { \% }
$$

Time windows

Cost decrease
 10.52
 Profit increase

Yearly results in $£$ Million for a 30-minute time windows.

Bibliography

Peter P. Belobaba and Andras Farkas.
Yield management impacts on airline spill estimation.
Transportation Science, 33(2):217-232, 1999.
C. A. Hane, C. Barnhart, E. L. Johnson, et al.

The fleet assignment problem: solving a large-scale integer program.
Math. Program., 70(2):211-232, 1995.
J. Lofberg.

Yalmip: A toolbox for modeling and optimization in matlab.
In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

William M. Swan.
Spill modeling for airlines.
Boeing Marketing, 1998.

Models

Basic fleet assignment

$$
\begin{align*}
& \min \sum_{i \in L} \sum_{f \in F} c_{f i} X_{f i} \tag{1}\\
& \sum_{f} X_{f i}=1, \forall i \in L, \tag{2}\\
& \sum_{d} X_{\text {ffot }}+Y_{\text {fot }^{-} t}-\sum_{d} X_{\text {fodt }}-Y_{\text {fott }^{+}}=0, \forall\{f o t\} \in N, \tag{3}\\
& \sum_{i \in O(f)} X_{f i}+\sum_{o \in C} Y_{f_{f o t}^{n}} t_{1} \leq S(f), \forall f \in F, \tag{4}\\
& Y_{\text {fott }^{+}} \geq 0, \forall\left\{f_{\text {fott }}+\right\} \in N, \tag{5}\\
& X_{f i} \in\{0,1\}, \forall i \in L \text { and } f \in F . \tag{6}
\end{align*}
$$

Models

Network planning

$$
\begin{align*}
& \min \sum_{i \in L} \sum_{f \in F}\left(-p_{f i}\right) X_{f i} \tag{7}\\
& \sum_{f} X_{f i}=Z_{i}, \forall i \in L, \tag{8}\\
& \sum_{d} X_{\text {fdot }}+Y_{\text {fot }}{ }^{-t}-\sum_{d} X_{\text {fodt }}-Y_{\text {fott }}{ }^{+}=0, \forall\{f o t\} \in N, \tag{9}\\
& \sum_{i \in O(f)} X_{f i}+\sum_{o \in C} Y_{f o t_{n} t_{1}} \leq S(f), \forall f \in F, \tag{10}\\
& Y_{\text {fott }}{ }^{+} \geq 0, \forall\left\{\text { fott }^{+}\right\} \in N, \tag{11}\\
& X_{f i} \in\{0,1\}, \forall i \in L \text { and } f \in F \text {, } \tag{12}\\
& Z_{i} \in\{0,1\}, \forall i \in L . \tag{13}
\end{align*}
$$

Fleet planning

$$
\begin{align*}
& \min \sum_{i \in L} \sum_{f \in F} c_{f i} X_{f i}+\gamma S_{p} \tag{14}\\
& \sum_{f} X_{f i}=1, \forall i \in L \tag{15}\\
& \sum_{d} X_{f d o t}+Y_{f_{f 0}{ }^{-} t}-\sum_{d} X_{f o d t}-Y_{f o t t^{+}}=0, \forall\{f o t\} \in N, \tag{16}\\
& \sum_{i \in O(f)} X_{f i}+\sum_{o \in C} Y_{f o t_{n} t_{1}} \leq S(f), \forall f \in F \text { and } S(p)=S_{p} \tag{17}\\
& Y_{f o t t^{+}} \geq 0, \forall\left\{f o t t^{+}\right\} \in N \tag{18}\\
& X_{f i} \in\{0,1\}, \forall i \in L \text { and } f \in F . \tag{19}
\end{align*}
$$

Models

Time windows

$$
\begin{align*}
& \min \sum_{i \in L} \sum_{f \in F} \sum_{u \in U} c_{f i} X_{f i u} \tag{20}\\
& \sum_{f} \sum_{u} X_{\text {fiu }}=1, \quad \forall i \in L, \tag{21}\\
& \sum_{d} X_{f d o t_{u}}+Y_{f o t_{u}^{-} t_{u}}-\sum_{d} X_{f o d t_{u}}-Y_{f o t_{u} t_{u}^{+}}=0, \forall\left\{{\left.f o t_{u}\right\} \in N, ~}_{d}\right\} \tag{22}\\
& \sum_{i \in O(f)} X_{f i u}+\sum_{o \in C} Y_{f o t_{n_{u}} t_{1 u}} \leq S(f), \forall f \in F, \tag{23}\\
& Y_{\text {fot }_{u} t_{u}^{+}} \geq 0, \forall\left\{f_{\text {fot }}^{u} t_{u}^{+}\right\} \in N, \tag{24}\\
& X_{\text {fiu }} \in\{0,1\}, \forall i \in L, f \in F \text { and } u \in U \text {. } \tag{25}
\end{align*}
$$

