Airline Optimisation

Napat Amphaiphan Slim Foudhaili Dimitrios Giannarakis Yingxin Jia Elena Kostova

Imperial College London

March 24, 2010

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand forecasting
- 9. Conclusion

Introduction

- Aim: minimise costs or maximise profit
- Basic fleet assignment
 - Task: allocate an aircraft to each flight leg
 - Operation research problem

1. Introduction

2. The basic fleet assignment model

- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

The basic fleet assignment model

The basic fleet assignment model

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

Demonstration

Input

Flight schedule

ID	Dept.	Arr.	Fleet	Dept. time	Arr. time	Ready time
1	LHR	CDG	A340	360	480	505
1	LHR	CDG	B747	360	460	485
2	CDG	LHR	A340	700	920	945
2	CDG	LHR	B747	700	900	925

Fleet information

Aircraft	Code	Total	Seats	Weight (kg)	Consumption
Airbus 340	A340	2	308	177,800	10,980
Boeing 747	B747	1	344	396,890	12,788

Demonstration

Output

Fleet assignment

Flight Leg	Airbus	Boeing
LHR – CDG	0	1
CDG - LHR	0	1
LHR – CPH	1	0
CPH – LHR	1	0
LHR – SOF	1	0
SOF – LHR	1	0
LHR – ATH	0	1
ATH – LHR	0	1

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

Cost and profit calculation

- Passenger demand data is confidential
- We sample Gamma distribution to generate demand
- Flight duration Ticket price relationship

Passenger Demand

$\mu \sim U(\min capacity, \max capacity)$ $\sigma = Z\sqrt{\mu}$ where $Z \sim U(1,2)$

 $\Gamma(k,\theta)$ $\mu = k\theta$ $\sigma^2 = k\theta^2$

Spill and Spill Cost

spill = max{demand - capacity, 0}

spill cost = spill * ticket price

Ticket Price

$Price = 0.85 \times Duration + 280$

price in £ and duration in min

Cost and profit calculation

- Passenger demand data is confidential
- We sample Gamma distribution to generate demand
- Flight duration Ticket price relationship

For a single flight:

cost = fuel consumption * duration * fuel price + landing fees * weight

total cost = cost + spill cost

```
revenue = min{capacity, demand} * ticket price
```

```
profit = revenue - cost
```

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

Aggregation

Aggregation

	Time reduction
Virgin	19.34 %
KLM	14.46 %

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

Network and fleet planning

Problem

Extra flight leg (Dublin).

Not enough aircraft to service it.

Network planning

Idea #1

Keep the most profitable legs and eliminate the others.

Fleet planning

Idea #2 Buy additional aircraft.

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning

7. Time windows

- 8. Demand Forecasting
- 9. Conclusion

Time windows

Idea

Assume a flight arrives from Paris less than 30 minutes after one leaves for Sofia

Time windows

Idea

Some passengers from Paris might have been interested in a connection to Sofia.

Time windows

Idea

Slight schedule change → increase demand for Sofia flight → increase profit

We used a 30-minute time window for Virgin, and a 20-minute time window for KLM.

	Cost decrease	Profit increase
Virgin	10.52	04.46
KLM	05.87	22.80

Yearly results in £Million.

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

$$\begin{array}{l} \mbox{Demand Forecasting}\\ \mbox{R-real}\\ \mbox{E-expected} \end{array} \quad r = \frac{c_R(X_R) - c_R(X_E)}{c_R(X_R)} \end{array}$$

	Cost increase	Profit decrease
Virgin	48.68	053.92
KLM	144.68	255.04

Yearly results in £Million.

- 1. Introduction
- 2. The basic fleet assignment model
- 3. Demonstration
- 4. Cost and profit calculation
- 5. Enhancement
- 6. Network and fleet planning
- 7. Time windows
- 8. Demand Forecasting
- 9. Conclusion

Conclusion

Virgin Airlines

Aggregation Time reduction

19.34 %

Time windows		
Cost decrease	Profit increase	
10.52	4.46	

Yearly results in £Million for a 30-minute time windows.

Bibliography

Peter P. Belobaba and Andras Farkas.

Yield management impacts on airline spill estimation.

Transportation Science, 33(2):217–232, 1999.

C. A. Hane, C. Barnhart, E. L. Johnson, et al. The fleet assignment problem: solving a large-scale integer program. *Math. Program.*, 70(2):211–232, 1995.

J. Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. *In Proceedings of the CACSD Conference,* Taipei, Taiwan, 2004.

William M. Swan. Spill modeling for airlines. *Boeing Marketing*, 1998.

Models Basic fleet assignment

$$\min \sum_{i \in L} \sum_{f \in F} c_{fi} X_{fi}$$
(1)

$$\sum_{f} X_{fi} = 1, \forall i \in L,$$
(2)

$$\sum_{d} X_{fdot} + Y_{fot^{-}t} - \sum_{d} X_{fodt} - Y_{fott^{+}} = 0, \forall \{fot\} \in N,$$
(3)

$$\sum_{i \in O(f)} X_{fi} + \sum_{o \in C} Y_{fot_{n}t_{1}} \leq S(f), \forall f \in F,$$
(4)

$$Y_{fott^{+}} \geq 0, \forall \{fott^{+}\} \in N,$$
(5)

$$X_{fi} \in \{0, 1\}, \forall i \in L \text{ and } f \in F.$$
(6)

Models Network planning

$$\min \sum_{i \in L} \sum_{f \in F} (-p_{fi}) X_{fi}$$
(7)

$$\sum_{f} X_{fi} = Z_{i}, \forall i \in L,$$
(8)

$$\sum_{f} X_{fdot} + Y_{fot^{-}t} - \sum_{d} X_{fodt} - Y_{fott^{+}} = 0, \forall \{fot\} \in N,$$
(9)

$$\sum_{i \in O(f)} X_{fi} + \sum_{o \in C} Y_{fot_{n}t_{1}} \leq S(f), \forall f \in F,$$
(10)

$$Y_{fott^{+}} \geq 0, \forall \{fott^{+}\} \in N,$$
(11)

$$X_{fi} \in \{0, 1\}, \forall i \in L \text{ and } f \in F,$$
(12)

$$Z_{i} \in \{0, 1\}, \forall i \in L.$$
(13)

Models Fleet planning

$$\min \sum_{i \in L} \sum_{f \in F} c_{fi} X_{fi} + \gamma S_{p}$$

$$(14)$$

$$\sum_{f} X_{fi} = 1, \forall i \in L,$$

$$(15)$$

$$\sum_{d} X_{fdot} + Y_{fot^{-}t} - \sum_{d} X_{fodt} - Y_{fott^{+}} = 0, \forall \{fot\} \in N,$$

$$(16)$$

$$\sum_{i \in O(f)} X_{fi} + \sum_{o \in C} Y_{fot_{n}t_{1}} \leq S(f), \forall f \in F \text{ and } S(p) = S_{p},$$

$$(17)$$

$$Y_{fott^{+}} \geq 0, \forall \{fott^{+}\} \in N,$$

$$(18)$$

$$X_{fi} \in \{0, 1\}, \forall i \in L \text{ and } f \in F.$$

$$(14)$$

Models Time windows

$$\min \sum_{i \in L} \sum_{f \in F} \sum_{u \in U} c_{fi} X_{fiu}$$
(20)
$$\sum_{f} \sum_{u} X_{fiu} = 1, \ \forall i \in L,$$
(21)
$$\sum_{d} X_{fdot_{u}} + Y_{fot_{u}^{-}t_{u}} - \sum_{d} X_{fodt_{u}} - Y_{fot_{u}t_{u}^{+}} = 0, \ \forall \{fot_{u}\} \in N,$$
(22)

$$\sum_{i \in O(f)} X_{fiu} + \sum_{o \in C} Y_{fot_{n_u}t_{1_u}} \le S(f), \ \forall f \in F,$$
(23)

$$Y_{fot_ut_u^+} \ge 0, \ \forall \{fot_ut_u^+\} \in \mathbb{N},$$
(24)

 $X_{fiu} \in \{0,1\}, \ \forall i \in L, f \in F \text{ and } u \in U.$ (25)