
 Iris Recognition

Why Iris Recognition?

Biometric identification

Iris recognition

Stable - unchanging over

lifetime

Unique - huge pattern

variability

Reliable

Primary Tasks

Display image of an eye and
identify the pupil and
Iris edge

Two possible methods:

a. User input

b. Auto-detection

Encoding the Iris Pattern

Comparing the Iris Codes

Iris Auto-Detection

Process for identifying circles.

Iris and pupil concentric circles (roughly)

Several steps involved:

• Reduce noise

• Threshold image

• Edge-detect

• Identify circle

Median Filter

Used for noise reduction

Reduces pixel complexity without

losing edge fidelity

Sobel Filter

Kernel-based edge detection

Uses first derivative of image

Hough Transform for Locating Circles

 Resilient to noise
 Adaptable to variable input
 Provides a good best-fit

× Computationally quite expensive
× Requires experimentation for best

results

Identifying the Pupil

Most reliable, uniform, circular artefact in image
Used to guide search for iris in next step

1. Median: reduce noise

2. Threshold: remove irrelevant information

based on histogram analysis.

3. Sobel: detect edges

4. Hough Transform: estimate circle identifying

pupil

Identifying the Iris

Similar method to the pupil detection

Hough parameter space is constrained
using pupil location and dimensions

Result is a good estimation of iris bounds
in a matter of milliseconds

Eyelids

Need to eliminate useless bits from the iris

Generate a mask to mark areas as bad bits

Eyelids generally have higher intensity than

the iris and sclera

Specular Highlight Removal

Highlights can encroach on iris data

and affect phase information

High intensity pixels in the image can

be masked and safely discarded in the

encoding phase

Encoding the Iris: Gabor Filters

Gabor wavelets are used for encoding the
iris

Phase quantisation of the iris pattern

Encode based on the signs of real and
imaginary parts

Gabor Wavelet plotted on

complex plane

Gabor Wavelets

Returns 2 bits depending on the phase quadrant

Gabor Filter Placement and Size

• 2048 bit string
• Filters applied to 256 angular directions

Comparing Bitcodes

Calculate Hamming Distance between bitcodes
• Method for comparing strings of equal length

20 bits, 6 differences → Hamming distance of 0.3 (6 / 20)

Iris Bitcode 1 Iris Bitcode 2

10110110001001011011 11010110110001111011

Comparing Bitcodes with Mask

Iris Bitcode Mask Mask A or Mask B Useful Comparable

Bits

1010110011 1100111111
1100001111

10 _ _ _ _ 0011

1000010011 1111001111 10 _ _ _ _ 0011

Codes match on useful (iris information) bits

Design Decisions

C++

– Extremely fast

– Flexible

Qt

– GUI toolkit

– Cross-platform

– Many useful classes

http://qt.nokia.com/

http://qt.nokia.com/

Demonstration!

Results

• 0 false positives in ~ 35,000 comparisons

• ~70% success on iris auto-detection, resulting in an overall

70% match rate

• Inaccuracy due to auto-detection failure

• Manual point selection improves the rate

Hamming Distances

Resembles a binomial distribution with μ = 0.45, σ = 0.024

Future Work

• Improve auto-detection of iris with Otsu method

• Eyelash detection and removal

• Improve eyelid detection using Hough Transform

• Progress application to a client/server implementation

Source Code

Code freely available under the GPL licence:

http://projectiris.co.uk

