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Abstract

This thesis contains a study of Curry-Howard correspondences for Sequent Cal-

culus formulations of Classical Logic. Starting from Gentzen’s formal definition

of logical consequence (presented in the framework of his sequent calculus), we

present an automated process to conservatively extend the framework with prim-

itive logical connectives and corresponding cut-elimination rules. The key diffi-

culty lies in deriving the main cut-elimination rules for the connective. In con-

trast to existing works, which employ brute-force techniques or methods using

equivalences, we specify an algorithm which systematically constructs the main

cut-elimination rule by operating on rows of truth-tables. (We also give a geomet-

rical interpretation of the cut rule.) The aim is to study the computational content

of the resulting formulation of classical logic.

We mechanically extract from the framework, a computational term calculus in-

spired by the X -calculus of van Bakel, Lengrand and Lescanne. We motivate our

design choices by making comparisons with existing computational calculi that

hold Curry-Howard correspondences with Classical Logic. Using our process,

we then build and study a number of computational calculi, focusing on their

simulation properties. We find that notions of logical expressibility (the ability of

a connective to logically express another) and computational expressibility (the

ability of a term calculus to simulate another) do not coincide.

Our (graphical and interactive) tool is a full implementation of the process we

design in this thesis, but additionally serves as tool for higher-order conditional

term graph rewriting in general; it also features Visser’s language of strategy

combinators, allowing one to easily study complex reduction behaviour. We de-

tail some specific implementation problems we encountered, and motivate the

solutions we adopted.
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Chapter 1

Introduction

Developments in theory and practice are like reductions in a confluent rewrite

system with critical pairs: they do not ride side-by-side, but every so often they

have a chance to join. Notions of computability were first formalised by math-

ematicians and logicians long before ‘computing machines’ were conceived in

hardware. For a while, the theory of computation led practical developments,

and conceptual devices such as Turing machines were realised only on pen and

paper.

Turing and Church each proposed quite different formalisms that could ‘com-

pute’: Turing proposed the now infamous ‘Turing machines’, while Church pro-

posed the (equally infamous) λ-calculus. Both models of computation, which

were later shown to be equivalent to one-another, formalised the idea of an algo-

rithm. Church’s model was stateless while Turing’s, stateful, but due to the ease

in which Turing’s model could be realised in hardware, the first real ‘computing

machines’ followed Turing’s design.

Since that first move, developments in practical computing accelerated and the

accompanying theory struggled to keep up. Fundamental developments in com-

puting (e.g., the introduction of high-level programming languages) were mo-

tivated by practical concerns, and were often designed by engineers who were

neither logicians, mathematicians nor (more broadly speaking) theoreticians. It

was this lack of a theoretical foundation that, in our opinion, led to programming

language failures such as the ‘GOTO’ statement, and more generally, poor levels of

abstraction (e.g., the WRITE OUTPUT TAPE command of FORTRAN). However, not-

ing this, we should also mention that had the field of practical computing waited

for theoreticians to design great programming languages, advances would have

undoubtedly been slow.
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The gap between the two fields is not so great anymore, and it is widely ac-

cepted now that any programming language worth investing time in should have

a sound theoretical foundation. Even in the case of pure hardware design, meth-

ods of formal verification are desired to ensure components which will be massed

produced ‘work’, and in the catastrophic situations where they do not, to fend off

lawsuits and try and relocate blame.

Church’s original goals were actually related to the formalisation of mathematics,

and being a logician himself, it is perhaps not entirely remarkable that an intimate

correspondence between his model of computation and a logic was discovered.

The discovery, now known as the Curry-Howard Isomorphism, was made on in-

dependent occasions by Curry and Howard, and related the type of a λ-calculus

program with a formula denoting a proposition of intuitionistic logic. The corre-

spondence also related typeable programs to logical proofs and the execution of

a program to a notion of proof normalisation.

While real world programming languages and computing machines were being

developed by implementors, masses of theoretical computers scientists were at

work: abstracting, formalising and proving. What they found was quite remark-

able: the directions taken by the implementors were not at all orthogonal to that

which would have (likely) been taken by theoreticians. In fact, we can now see

that the programming language features introduced by implementors had foun-

dations that were deeply rooted in logic. Perhaps the most prominent example is

the discovery of the continuation, which represents the dual notion of a function

(it is an object that consumes, rather than produces, a result).

Griffin was the first to relate continuations with Classical Logic. He was able to

type certain control operators (i.e., special functions which manipulated contin-

uations) with formulas corresponding to propositions of Classical Logic. Before

his discovery, it was folklore that Classical Logic did not have a computational

counterpart since it was not constructive. After this however, a number of re-

searchers began what is now referred to as a ‘quest’ to find an exact correspon-

dence between Classical Logic and some model of computation, i.e., to find a

‘Curry-Howard Isomorphism’ for Classical Logic.

Progress has been steady since Griffin’s discovery, but the difficulty of extracting

computational content from a classical logic is in finding a suitable presentation

that can also be used as a computational model. Logicians accept that the Sequent

Calculus gives the best presentation of Classical Logic since it preserves all of its

symmetries. However, the non-confluent cut-elimination and the permutability

of proofs present problems when attempting to assign computational meaning.



A major contribution was made by Parigot, who argued that neither the Natu-

ral Deduction Calculus nor the Sequent Calculus were suitable for studying the

computational content of Classical Logic. Subsequently, he introduced a logical

calculus which he called ‘Free Deduction’, for which he defined a confluent set

of rules for proof normalisation. Parigot then extracted a computational calculus

called the λµ-calculus, which inspired a wealth of research. As a result, some of

the ‘classical’ features of computing were made clear.

Another breakthrough was made by Herbelin, who managed to assign compu-

tational meaning to sequent calculus proofs. With the help of Curien, he later

designed a computational calculus (called λµµ̃) held a Curry-Howard correspon-

dence with a restricted formulation of a sequent calculus for classical logic. No-

tably, their calculus was not confluent, yet still served well as a model of compu-

tation. A subsystem of λµµ̃was later identified that held an exact correspondence

with a refinement of Gentzen’s Sequent Calculus. This subsystem was studied by

van Bakel, Lengrand and Lescanne and formed the foundation of the X -calculus.

TheX -calculus is a computational calculus which holds the closest Curry-Howard

style correspondence with Gentzen’s original presentation of Classical Logic. In

fact, the reduction system of the X -calculus is also highly non-confluent, and

features unjoinable critical pairs that mirror the standard cut-elimination. We are

certainly not advocating that these properties as ‘desirable’ when designingmod-

els of computation, but an (appropriate) answer to the following question justifies

their presence in X .

“When should one restrict a Curry-Howard calculus to study computational

behaviour?”

The main lines of work starting from Parigot introduced restrictions at the level

of the logic, and then sought to extract a computational model. The philosophy

of the X -calculus, in contrast, seeks to extract a term calculus directly from the

logic, and then looks at placing restrictions to gain a desirable model of compu-

tation. This latter approach has the advantage that the symmetries of the logic

are preserved in the computational model. In addition, comparisons between

different subsystems can be carried out within the same framework. In fact, two

simple restrictions on the reduction relation have been shown to yield two conflu-

ent reduction subsystems that correspond to dual notions of computation called

‘call-by-name’ and ‘call-by-value’.



The work carried out in this thesis has two separate concerns, but both can be

related to the X -calculus. First we are interested in understanding its complex

reduction system; we do this mainly through implementation. Second, we inves-

tigate generalisations that can be made to X , and study closely calculi built to

hold Curry-Howard correspondences.

1.1 Contributions

The contributions of this thesis are listed below.

1. We provide a novel framework for specifying higher-order conditional term

graph rewrite systems. The framework also features a rich language for de-

scribing reduction strategies. We provide an implementation of this frame-

work as an open-source tool written in Java. The tool is highly modular, has

a graphical component (enabling interactive reductions) and is intended to

be extended with user-defined representations of term graphs. Our tool can

be downloaded at:

http://www.doc.ic.ac.uk/~jayshan/GRT

2. Contrary to intuition, we show that ‘logical expressibility’ does not imply

‘computational expressibility’. That is, we show that a computational term

calculus built from a set of logical connectives: (i) may not be able to fully

simulate calculi built from the connectives it can logically express, and (ii)

may be able to simulate calculi built from connectives it cannot logically

express.

3. We specify an algorithm which can mechanically build a Curry-Howard

‘pair’ of calculi (a classical sequent calculus and a term calculus in the style

of X ). Our contribution describes an intelligent algorithm (i.e., not employ-

ing brute-force techniques), which operates on a truth function to define

cut-elimination rules. To the best of our knowledge, we are also the first to

relate the main cut-elimination rule for a connective with geometrical fea-

tures.

The above contributions have been consolidated in the implementation of our

tool. Given a truth table, the tool will (conservatively) extend a basic sequent cal-

culus and a basic term calculuswith appropriate inference rules and cut-elimination

rules and corresponding term constructors and reduction rules.



1.2 Statement of Originality

I declare that this thesis was composed by myself and that the work it presents

is my own except where stated otherwise. With the exception of the following

publications, and to the best of my knowledge, it contains nomaterials previously

published or written by another person except where due acknowledgment is

made in the thesis itself.

• S. van Bakel and J. Raghunandan. Implementing X [10].

• J. Raghunandan and A. Summers. On the Computational Representation of

Classical Logical Connectives [74].

1.3 Thesis Outline

In Chapter 2, we review the works relating to the development and understand-

ing of the X -calculus. We detail Gentzen’s Sequent Calculus presentation of Clas-

sical Logic and study several models of computation which were designed to

hold correspondences with logics. We also review some of the techniques we

considered when implementing our rewriting tool.

In Chapter 3, we introduce the X -calculus itself, giving a full description of its

novel syntax and complicated reduction mechanism. We compare the calculus

with other computational calculi with logical foundations and present some of

the optimisations we introduced to the calculus.

In Chapter 4, we give the specification for our higher-order conditional term

graph rewrite system, of which our tool was an implementation. We specify the

X -calculus as an instance of a CTGRS, and study solutions we proposed to some

implementation problems we encountered, in particular the problems of name

capture and name clash. We extend the CTGRS formalism with a rich language

for describing reduction strategies in general, and study some appropriate strate-

gies for reductions in the X -calculus. We quantitatively compare our proposed

solutions (to name capture and name clash) through a suite of benchmarks.

In Chapter 5, we study the relationship between the type system for the X -

calculus and the logic on which it is built. We detail a ‘recipe’ for building Curry-

Howard ‘pairs’ of calculi from a set of logical connectives following the style of

X . We study and relate a number of such calculi employing different sets of



logical connectives as primitive, including a calculus based on the X↔ connec-

tive. We find that our ‘recipe’ for building Curry-Howard calculi does not always

build the simplest reduction rules for the connectives in question and decide this

warrants further investigation.

In Chapter 6, we study the relationship between the classical truth functions of a

connective and its sequent calculus style inference rules, as studied by Call. We

formalise his work, specifying an algorithm that builds inference rules from truth

tables. From the insights gained, we construct a reverse process which relates the

inference rules for a connective back to the truth table rows for that connective.

We formulate a notion of ‘cut’ that acts on rows of truth tables, then design an

algorithm for building the ‘simplest’ principal reduction rules, which ‘fixes’ our

recipe for building Curry-Howard ‘pairs’ of calculi.



Chapter 2

Background

This background chapter is concerned with three topics: structural proof theory,

computability theory and higher order rewriting. We relate each of these topics

to the X -calculus of van Bakel, Lengrand and Lescanne [9], which is the main

subject matter of this thesis.

Structural proof theory and computability theory were related by Curry [33],

Howard [49] and de Bruijn [22], who independently discovered that these inde-

pendent fields of scientific research were fundamentally linked together. It was

discovered that provable formulas of minimal implicative logic in Natural De-

duction calculus could be represented as types for the terms of the λ-calculus.

Various authors have sought to extend this relationship to hold between the se-

quent calculus for classical logic and somemodel of computation. TheX -calculus

is one calculus for which the correspondence does hold.

In order to study the reduction mechanism of the X -calculus and extensions of

the X -calculus in more detail, an implementation was sought. The X -calculus is

a higher order rewriting language featuring non-standard binding structures. We

will review some of the existing implementation techniques for higher order lan-

guages and comment on their suitability for an implementation of theX -calculus.

2.1 Notation

This section describes the notation we use throughout the course of this thesis.

We will use three standard structures throughout: sets, lists and tuples. We give

details on our chosen notation below.
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Definition 2.1.1 (Sets) We may construct sets using standard set comprehension no-

tation {x ∈ V | Θ(x)} denoting the set of all elements x in some well defined set V

satisfying the predicate Θ(x); we will omit V if it is clear from the context. We use the

symbols ∪,∩, \ to describe the usual set operations union, intersection and exclusion.

The size of a set S is a count of its elements and is denoted |S|.

Definition 2.1.2 (Lists) A list of n elements of a particular type is written [a0, . . . , an−1].

We will use the symbols ‘:’ and ‘++’ to denote the usual list operators cons and concate-

nation. Direct access to an element i of a list L, indexed from zero, is permitted using

standard array notation L[i]. We will write the empty list as [ ].

If an element a is a member of a list L, we write a∈L. We also write L\e to denote a list

which has all occurrences of the element e removed from it.

Like set comprehensions, we will allow for a similar kind of ‘list comprehension’. We

will write [x ∈ V | Θ(x)] denoting the list (without duplicates) of all elements x satis-

fying the predicate Θ(x), for some deterministic enumeration of the elements in V (if a

deterministic enumeration is not obvious, one will be specified).

The size of a list L is a count of its elements and is denoted |L|.

Definition 2.1.3 (Tuples) If T = 〈X1, . . . ,Xn〉 is an n-tuple, we may access the i
th

element of the tuple using a projection operator, written Ti (with 0<i≤n. Alternatively,

we may use the more descriptive notation TXi when convenient.

The Cartesian product of sets S1 × . . .× Sm is denoted by∏(S1, . . . , Sm).

Where variables (over some well defined set) are concerned, we will use the sym-

bol to represent an anonymous variable.

Our algorithms are specified in functional pseudo-code and make use of pat-

tern matching constructs and Haskell’s guard notation (‘|’ and ‘otherwise’) when

needed.

The set of natural numbers is written IN. We will sometimes express natural num-

bers in base-2 notation, where the most significant bit is the left-most. e.g. the

natural number 5 may be written as 01012. If T is the set {0, 1}, then the func-

tion
....
r n :: IN → [T ] translates the base-10 representation natural number r to a

base-2 number that is expressed as a list with n elements according to the above

conventions.



Part of this thesis is concerned with conditional term rewrite systems. We will

use the notation:

L→ R^ S

To denote a rewrite rule, where L is the left hand side, R is the right-hand side

and S (if present) is the side-condition of the rule.

2.2 Structural Proof Theory

In formalising a mathematical theory, one abstracts away from its meaning, leav-

ing only its form. If at all possible, this process is non-trivial and involves em-

bodying all properties of the theory as explicit axioms, propositions and the-

orems. Once formalised, one may make deductions about the theory, treating

technical terms simply as words without any meaning. Kleene rationalises this:

“For to say that [‘words’ in the formal system] have meanings necessary to the

deduction of the theorems, other than what they derive from the axioms which

govern them, amounts to saying that not all of their properties which matter for

the deductions have been expressed by the axioms.”.

Logicians are concerned with proving the validity of statements within a system

of reasoning, with respect to some (interesting) metatheory. The first ‘formal’

logicians were concerned with building a logical foundation for mathematics.

Hilbert conjectured that all of mathematics could be formalised from some finite

choice of axioms which were provably consistent. Although Gödel undermined

this trail of thinking with his Incompleteness Theorem, the formalisation of logi-

cal reasoning systems was an important invention in proof theory.

Several formal systems of reasoning have been built that embody the different

systems of inferences used inmathematics. There are many accepted sets of infer-

ences or formal logics. Intuitionistic Logic, for example, permits only constructive

arguments, while Classical Logic additionally accepts indirect proofs. Mathe-

maticians can extend these formal systems with axioms and forms of inferences

for their object language of interest, then make inferences about their theory with

respect to a particular logic within the corresponding system.

Hilbert’s formalism for proving the validity of propositional statements consisted

of a collection of axiom schemas plusmodus ponens (see the rule (→ E) below). In

[41], Gentzen proposed two alternative formalisms: Natural Deduction and the

Sequent Calculus; we will discuss these formalisms next.



Gentzen’s natural deduction calculi were built up from a single axiom schema

(stating that under some assumption, the result stated by that assumption holds)

and for each sentence constructor in the propositional language, a connective in

the formal language defined as a collection of inference rules describing (i) the

grounds necessary to assert a proposition exhibited by the connective (its intro-

duction), and (ii) the conclusions that could be drawn from an assertion exhibit-

ing the connective (its elimination). For example, the rules for implication are:

(A1)
·
·
·
A2

(→ I)
A1 → A2

A1 → A2 A1
(→ E)

A2

Gentzen’s Natural Deduction proofs are presented as trees of statements in which

each node is justified by an inference rule, and each leaf (represented with brack-

ets) representing a basic axiom has been discharged. This configuration was in-

tended to mimic the style of reasoning that mathematicians followed, and thus

gained popularity in preference to the Sequent Calculus and Hilbert-style sys-

tems. A major drawback, however, was that constructing a proof relied heavily

on ones natural ability to build arguments. Gentzen found the Natural Deduc-

tion calculus unsuitable to prove his Hauptsatz and devised the Sequent Calculus

to aide him. Gentzen [41] and Prawitz [71] gave translations from Natural De-

duction proofs to Sequent Calculus proofs.

In contrast to the Natural Deduction Calculus, the Sequent Calculus provided a

systematic and mechanical method for constructing a proof; this came at the cost

of intuition and consequently the sequent calculus proofs are more difficult to

comprehend as natural language arguments.

It is widely accepted that Natural Deduction is suited to the study of intuitionistic

truths, while the Sequent Calculus is better suited to the study of classical truth.

We recall that the two fundamental laws of truth for classical logics are:

• Law of the Excluded Middle: each formula is true or false.

• Law of Non-Contradiction: no formula is both true and false.

In this thesis, we study the Sequent Calculus for Classical Logic, and more specif-

ically, we are interested in the extraction of computational content from proofs.

We will therefore restrict forthcoming discussions to Classical Sequent Calculus.

Each sequent calculus we will consider in this thesis is a system that allows one to

prove the validity of statements given in some formalised classical propositional



language. The statements of this language are propositional formulas as defined

below. Subformulas are also defined as usual.

Definition 2.2.1 (Propositional Formula) Propositional formulas are built up from

(atomic) propositional variables that range over the countably infinite set {a, a1, a2, . . .}

and represent basic propositions that may have only one of the truth-values from the set

of all truth-values, T = {true, false}. The set of propositional formulasF is ranged over

by the infinite set {A, A1, A2, . . .}. For n ≥ 0, if A1, . . . , An are propositional formulas,

then the propositional connective ∁
n with associated arity n may be used to construct the

propositional formula ∁
n(A1, . . . , An).

Nothing else is a propositional formula.

For convenience, we will allow ourselves to use the standard notation for the connectives

∨,∧,→,¬,⊥ and ⊤.

Definition 2.2.2 (Subformula) If A is a formula, then A is a subformula of A. For

n≥0, if ∁n(A1, . . . , An) is a formula, then the subformulas of each of the formulas A1, . . . , An

are subformulas of ∁
n(A1, . . . , An). Nothing else is a subformula.

The Sequent Calculus (as opposed to the Natural Deduction Calculus) allows one

to build arguments aboutmultiple cases (conclusions) from a collection of assump-

tions. This is done by maintaining a set of open assumptions and a set of open

conclusions at each step of the proof, encapsulating these details within a con-

struct called a sequent. A sequent is of the shape ‘Γ ⊢ ∆’ consisting of two parts or

contexts: an antecedent Γ and a succedent ∆which represent (possibly empty) finite

collections of propositional formulas. A suggested reading of the sequent,

a1, . . . , am ⊢ am+1, . . . , am+n (for m, n ≥ 0 and m+n > 0)

is “From the list of assumptions a1, . . . , am, it can be derived that not all of the

cases am+1, . . . , an are impossible”. A more common interpretation is the follow-

ing a1 ∧ . . . ∧ am implies am+1 ∨ . . . ∨ am+n.

The relation ⊢ defined between sets of formulas represents a logical consequence

relation, defined as follows.

Definition 2.2.3 (Logical Consequence, ⊢) The following conditions together specify

Gentzen’s basic notion of logical consequence (the last three conditions alone correspond

to Tarski’s basic definition of logical consequence).



commutativity : “The order of premises is irrelevant in any proof”. For all formulas

A1, A2 and all contexts Γ, Γ1, Γ2,∆,∆1,∆2:

if Γ ⊢ ∆1, A1, A2,∆2 (or Γ1, A1, A2, Γ2 ⊢ ∆) is provable,

then Γ ⊢ ∆1, A2, A1,∆2 (or Γ ⊢ ∆1, A2, A1,∆2) is provable.

idempotency : “The same consequences may be derived frommany (or just one) premise

or consequent”. For all formulas A and all contexts Γ,∆:

if Γ ⊢ ∆, A, A (or A, A, Γ ⊢ ∆) is provable,

then Γ ⊢ ∆, A (or A, Γ ⊢ ∆) is provable.

monotonicity : “No additional premise or consequent can affect the provability of a

statement”. For all formulas A and for all contexts Γ,∆:

if Γ ⊢ ∆ is provable,

then A, Γ ⊢ ∆ and Γ ⊢ ∆, A are provable.

reflexivity : “Every formula is deducible from itself”. For all formulas A: A ⊢ A is

provable.

transitivity : “Detours may be removed from any proof”. For all formulas A and all

contexts Γ,∆:

if Γ ⊢ ∆, A and A, Γ ⊢ ∆ are provable,

then Γ ⊢ ∆ is provable.

In the following, we will write Γ ⊢ ∆ when ∆ can be deduced from Γ using the rules of ⊢.

These properties are encoded as structural inference rules within Gentzen’s Se-

quent Calculus, and are discussed in Section 2.2.1.

In Chapters 5 and 6 of this thesis, we will design and study a general system for

building sequent calculi for propositional languages that employ arbitrary clas-

sical logical connectives as primitives. We will pay particular attention to the

form of the inference rules that prescribe the use of the connectives in proofs. The

generality of our approach requires us to be precise when formulating inference

rules. We therefore introduce an additional level of abstraction over inference

rules, which we call rule schemes or just ‘schemes’. To avoid confusion in our

presentations we will use different symbols and alphabets for each level of ab-

straction. We summarise our notation in the following definition.

Definition 2.2.4 (Proofs, Rules and Schemes) A sequent represents some concrete



statement made in some formal logic. The proof of a sequent details how one can infer

the statement starting using only the basic axioms and inferences of the logic.

An inference rule describes, in general, what can be inferred from other sequents accord-

ing to the logic.

A rule scheme describes valid shapes of inference rules.

To avoid confusion, we will adopt different notation for each level of abstraction; this is

summarised below.

Proofs : Sequents mention only propositional formulas as defined in Definition 2.2.1

(e.g., a, ∁
1(a), ∁

2(a1, ∁
1(a2))).

Rules : Rules mention variables over propositional formulas (denoted A) and variables

for contexts (denoted Γ,∆).

Schemes : Schemes mention formula schemes (denoted A ) and context metavariables

(denoted Ξ,Θ).

Definition 2.2.5 (Inference Rules and Sequent-Schemes) Every inference rule in

the formulations of sequent calculus we will consider will be of the shape described by

the following scheme.

m

⊔
k=1

A1k , Ξ1 ⊢ Θ1 ,
n

⊔
k=(m+1)

A1k . . .
m

⊔
k=1

Ask , Ξs ⊢ Θs ,
n

⊔
k=(m+1)

Ask

(R)

AL ,
s

⊔
j=1

Ξj ⊢
s

⊔
j=1

Θj , AR

where:

• s ≥ 0, m, n ≥ 0 and (m+n) > 0.

• The symbols Ξ,Ξ1,Ξ2, . . . and the symbols Θ,Θ1,Θ2, . . . are (variables for) con-

texts and AL,AR,A ,A1,A2, . . . are (variables for) propositional formulas.

• Regarding the variables AL and AR, one of the following cases holds for each in-

ference rule:

– Either AL or AR is exclusively present.

– If AL and AR are both present, then AL = AR and s = 0.

– Neither AL nor AR is present, in which case s>0.

• The notation
k

⊔
j=1
Xj is shorthand for X1,X2, . . . ,Xk.

• The comma-symbol ‘,’ is an overloaded abstract operation that specifies how to com-

bine instances of: (i) context metavariables (ii) formula schemes and (iii) context

metavariables with formula schemes.



A sequent-scheme is a pair whose components are lists of context metavariables and for-

mula schemes, whichwill be written asA1, . . . ,Am,Ξ1, . . . ,Ξt ⊢ Θ1, . . . ,Θt,Am+1, . . . ,An,

for t ≥ 0, m, n ≥ 0 and m > n.

The sequence of sequent schemes above the horizontal line will collectively be referred to

as the premises. The sequent scheme below the line is the conclusion. The bracketed

string of symbols to the right of the horizontal line is the rule name—‘R’ in the scheme

above.

The formulas which occur in the rule premises and not in the conclusion are the component-

formulas that are bound by the rule.

An application of an inference rule with s premises to a collection of s sequents,

proceeds by building a mapping by matching each variable in each rule premise

to the appropriate parts of each sequent. If there is no match, the rule is not

applicable to those sequents. If a mapping does exist, a horizontal line is drawn

beneath the sequents (arranged in sequence as shown), under which the image

under the found mapping of each variable in the rule conclusion is written. A

proof of a statement is then a derivation tree rooted at that statement (called the

endsequent) with instances of the axiom rule at its leaves; all other nodes in the

tree are built using instances of inference rules.

Inference rules have traditionally been grouped into structural rules, cut, axiom

and logical rules. These are discussed in the following sections.

2.2.1 Structural Rules

The structural rules are independent of any object language and dictate the “shape”

of valid arguments; they are responsible for describing how one may collect

premises and conclusions (rather than how statements are constructed).

Gentzen formalised the properties of his logical consequence relation (i.e., com-

mutativity, idempotency, monotonicity, reflexivity and transitivity) with five struc-

tural rules (respectively) called exchange, contraction, weakening, axiom and cut.

The exclusion of any of these rules would fundamentally change the logic in

which one was reasoning (such logics are commonly referred to as substructural



logics). The first three of these rules are given below.

Γ1, A1, A2, Γ2 ⊢ ∆
(ExchangeL)

Γ1, A2, A1, Γ2 ⊢ ∆

Γ ⊢ ∆1, A1, A2,∆2
(ExchangeR)

Γ ⊢ ∆1, A2, A1,∆2

A, A, Γ ⊢ ∆
(ContractionL)

A, Γ ⊢ ∆

Γ ⊢ ∆, A, A
(ContractionR)

Γ ⊢ ∆, A

Γ ⊢ ∆
(WeakeningL)

A, Γ ⊢ ∆

Γ ⊢ ∆
(WeakeningR)

Γ ⊢ ∆, A

Viewed as a syntactic operation on a proof, an exchange swaps two adjacent for-

mulas within a sequence, a contraction deletes an adjacent duplicate formula

from the extremity of a sequence, and a weakening appends an arbitrary for-

mula to the end of the sequence. Gentzen needed explicit formulations of these

rules in his sequent calculi because of his choice of representation of contexts as

ordered lists (or sequences) of formulas. Since the intended rôle of this formalism

is to show provability, an arguably unrequired side-effect of this representation

is the ability to construct a number of proofs for a statement that differ only in

structure. Kleene, [58], devised several variants of Gentzen’s Sequent Calculus

which greatly simplified the presentation of proofs; his sequent calculus named

G3 treated cedents as sets of formulas, making the explicit exchange and contrac-

tion rules obsolete (we note that these rules are only made implicit and not elim-

inated). He was also able to absorb the explicit weakening rules in his G3 system

by allowing arbitrary formulas in axioms, i.e. with the following formulation:

(Ax)
A, Γ ⊢ ∆, A

Kleene’s modifications, which have been widely adopted, optimize proof search

by minimizing the choices of premises for a given conclusion. We remark how-

ever that they do not eliminate all structural proof permutations, for such proof

permutations are a natural feature of the Sequent Calculus and cannot be re-

moved entirely (or at least not without working very hard). These permuta-

tions arise from the freedom tomanipulatemultiple assumptions and conclusions

within a proof and from the symmetry of the left and right inference rules.

A special rule of inference called Cut is often employed in sequent calculi. In this

thesis, we will design our sequent calculi in the style of Gentzen so that this rule

is admissible—in the sense that every proof may be transformed into a cut-free



proof of the same endsequent.

Γ1 ⊢ ∆1, A A, Γ2 ⊢ ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1,∆2

We identify the instance of the formula-variable bound by the rule (in this case

the instance of A) as the cut formula.

The cut rule captures the notion of a lemma in proof theory: that a proof of

some statement can be realised via a detour through some intermediate result.

This is especially useful, since deducing theorems from first principles is time-

consuming and verbose. To give an idea of the conciseness the cut allows one

to achieve, in the worst case, a proof which utilises the cut rule can grow hyper-

exponentially in size when expressed as a cut-free proof. A further use of the cut

is in providing a straightforward correspondence with Natural Deduction style

proofs.

Some attention should be paid to how contexts are handled in branching infer-

ence rules (those rules which have more than one premise). An additive formu-

lation (see ∨L in Section 2.2.2 for an example) shares contexts across the rule

premises, while a multiplicative rule (such as the cut rule shown above) would

join the contexts. The choice does not affect provability and preference is depen-

dent upon one’s aims. For example, an automated proof search tool might favour

an additive formulation, while one seeking compact proofs will likely prefer mul-

tiplicative rules.

Kleenewas able to capture Gentzen’s notion of logical consequence with a formu-

lation of sequent calculus featuring implicit contraction, exchange and weaken-

ing rules; he called this calculus G3a. We give the most basic fragment, featuring

no logical connectives, below.

Definition 2.2.6 (Basic fragment of G3a, G3A-BASIC) The fragment of Kleene’s G3a

sequent calculus without any logical connectives (which we will refer to as G3A-BASIC)

is given by the following rules.

(Ax)
A, Γ ⊢ ∆, A

Γ1 ⊢ ∆1, A A, Γ2 ⊢ ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1,∆2

where,

• A, A1, A2, . . . are variables for formulas.

• Γ, Γ1, Γ2, . . . and ∆,∆1,∆2, . . . are context variables.



• The comma is an abstraction operation which maps to the set union of propositional

formulas in proofs.

• The comma is overloaded and also used as a shorthand: Γ, A = Γ, {A}.

2.2.2 Logical Rules

In the Sequent Calculus, the connectives of a formal propositional language are

defined1 by a collection of logical inference rules describing the cases when a con-

nective may be introduced to the antecedent and succedent parts of a sequent in

the construction of a proof. For example, the following pair of inference rules

define the cases when the connective ∨ may be introduced.

A1, Γ ⊢ ∆ A2, Γ ⊢ ∆
(∨L)

A1∨A2, Γ ⊢ ∆

Γ ⊢ ∆, A1
(∨R1)

Γ ⊢ ∆, A1∨A2

Γ ⊢ ∆, A2
(∨R2)

Γ ⊢ ∆, A1∨A2

The new formula introduced beneath the horizontal line is the principal formula.

Ketonen, in [57], studied alternate formulations of inference rules focusing on

proof search. Gentzen originally used two left conjunction and two right dis-

junction rules (shown above) in the proof of his Hauptsatz in order to highlight

the similarities between intuitionistic and classical logics when embedded within

the Sequent Calculus (see [50] for details). Ketonen, making use of the structural

properties of the calculus, proposed invertible reformulations of the rules for logi-

cal connectives noting the advantage gained in proof search: that in searching for

a derivation of some statement, a single unique rule is applicable at each stage of

the construction.

Definition 2.2.7 (Invertibility) A rule of inference for a logical connective is invert-

ible if derivability of the lower sequent implies derivability of the upper sequent.

The two right-introduction rules for disjunction shown above, for example, can

be reformulated as an invertible rule as follows.

Γ ⊢ ∆, A1, A2
(∨R)

Γ ⊢ ∆, A1∨A2

In this thesis, we will study connectives that are defined by invertible logical

rules.

1See Section 2.2.4 for an explanation of the sense in which this word is used.



Since we will be investigating arbitrary logical connectives in the sequent calcu-

lus, we will take some time to formalise a general scheme for building logical

inference rules (which we recall are themselves schemes for building proofs).

Each of the inference rules for the propositional connectives in Gentzen’s sequent

calculi builds a complex formula out of less complex formulas.

Definition 2.2.8 (Subformula Property) Each formula occurring in any sequent of a

cut-free proof is a subformula of some formula occurring in the endsequent.

For the sequent calculi we will consider, we will also require that our cut-free

proofs have this subformula property (see Section 2.2.4 for further justification).

2.2.3 Cut-Elimination

According to Gentzen’s main result, his Hauptsatz, every application of the cut

rule in a derivation (constructed using his formulations of sequent calculus) can

either be replaced by simpler2 instances or be removed from the proof. The rules

which prescribe this transformation are known as cut-elimination rules. Themain

idea of Gentzen’s procedure was to apply local proof transformation rules to a

derivation that had the effect of shifting the cut upwards towards the leaves.

Once at a leaf, a cut is easily removed by considering a finite number of base

cases. In this Section, we will look at the ideas behind this procedure in more

detail.

When a cut is not at the leaves of a derivation, it can take on two forms depending

on its position in the proof. Consider the instance of the cut rule with cut formula

A1→A2 corresponding to logical implication
3 shown below.

M

A3, A1 ⊢ A2, A4
(CR)

A3 ⊢ (A1→A2), A4
(CR)

⊢ (A1→A2), (A3→A4)

P

⊢ A1

Q

A2 ⊢
(CL)

(A1→A2) ⊢
(Cut)

⊢ (A3→A4)

2His measure calculated a rank for each cut, based on the number of arguments in the cut
formula and the height of the cut.
3Incidentally, this would be represented as ∁

2
11012

(A1, A2) in our syntax, but we refrain from
using this notation until after its definition in Definition 2.2.11.



The elimination of a cut (in the absence of weakening) involves removing all in-

formation about a cut formula (A1→A2) from the proof. Recall that an applica-

tion of the cut rule in a proof represents a detour step of a proof; eliminating the

cut corresponds to building a more direct argument. This direct argument will

not mention any information used in the detour, and so the arguments of the cut

formula (in the example, A1 and A2) will also need to be eliminated. In the proof

above, the cut (at its current location) cannot locally access the rules in which

these arguments are discharged, since they are further up in the derivation. The

cut is therefore ‘pushed’ upwards through the structure of the derivation towards

the relevant positions. Such an instance of a cut is referred to as a commuting cut.

A typical proof transformation rule applicable in this situation would result in:

M

A3, A1 ⊢ A2, A4
(CR)

A3 ⊢ (A1→A2), A4

P

⊢ A1

Q

A2 ⊢
(CL)

(A1→A2) ⊢
(Cut)

A3 ⊢ A4
(CR)

⊢ (A3→A4)

This instance of the cut is called a logical cut, and the subformulas of the cut for-

mula are discharged in the preceding proof steps by the appropriate inference

rules for the logical connective. We will say the cut formulas are introducedwhen

the child sequents of the cut rule are either axioms or logical inference rules whose

principal formulas are those cut formulas. In this case, an appropriate proof

transformation rule would eliminate the cut (and cut formulas) from the proof

and possibly form several new cuts between subformulas of the cut formula. One

possible transformation is:

P

⊢ A1

M

A3, A1 ⊢ A2, A4
(Cut)

A3 ⊢ A2, A4

Q

A2 ⊢
(Cut)

A3 ⊢ A4
(CR)

⊢ (A3→A4)

We will call the rule that describes this transformation step a logical-cut reduction

rule, and providing a method of deriving all ‘good’ reduction rules for classical

logical connectives in general is the main contribution of this paper. Observe that

the cuts, although greater in number, have simpler cut formulas.

There are two other cases to consider: when the cut formula is weakened and

when it is the result of an axiomatic formula. The cut-elimination steps for these



cases are:

(Ax)
A2 ⊢ A2, A1

N

A1, Γ ⊢ ∆
(Cut)

Γ, A2 ⊢ A2,∆

⇒ (Ax)
Γ, A2 ⊢ A2,∆

(Ax)
Γ, A1 ⊢ A1,∆

N

A1, Γ ⊢ ∆
(Cut)

A1, Γ ⊢ ∆

⇒
N

A1, Γ ⊢ ∆

2.2.4 On the Importance of Cut-Elimination

Aside from obtaining the consistency of a logic as a corollary of cut-elimination,

the cut-elimination theorem plays an important rôle in giving proof-theoretical

semantics to sequent calculus logics. Gentzen’s remark on the autonomy of in-

troduction rules4, that they give the full ‘definition’ of a logical connective in a

proof-theoretic sense, has been adopted and developed upon by many authors

[77, 39]. We will give a brief summary of these works in the following.

Advocates of the analytically valid view of logical connectives, so called anti-

realists, maintain that the structure of the inference rules are entirely responsible

for giving a connective its meaning. Those opposing this view argue that more is

needed than mere structural rules to give meaning; Prior is famous for his con-

troversial connective ♣ (pronounced ‘tonk’) [72] whose sequent rules are given

below5.
Γ ⊢ ∆, A1

(♣L)
A1♣A2, Γ ⊢ ∆

A2, Γ ⊢ ∆
(♣R)

Γ ⊢ ∆, A1♣A2

Prior argues that his ‘definition’ of♣ is perfectly acceptable from a proof-theoretic

perspective since there should be no extra requirement to test whether the intro-

duction rules are valid. However,♣ can reduce a logic to nonsense (allowing one

to prove any statement from any two unrelated proofs) and therefore, as Prior ar-

gued, something more than the structure of introduction rules must be required

to give a connective meaning.

A number of responses to Prior’s attack stem from Belnap’s initial response, [17],

whose key observation was that in defining a logical connective, one is not work-

ing from first principles. The turnstile, ‘⊢’, denotes a logical consequence relation,

and so any extension of the logic should preserve this relation—if one wishes to

4Originally, in the context ofNatural Deduction, but which carries over to the Sequent Calculus
in a straightforward way.
5Prior works in a Natural Deduction system. The analogous sequent calculus rules shown are

from [20].



continue to build deductive arguments in the spirit of the original logic. Taking

this view, the rules for ♣ are perfectly valid, except that in a system with such

rules one can no longer claim to be reasoning in the original logic. This prompts

the question of what kinds of inference rules can define ‘good’ logical connec-

tives that preserve the properties of the original logic. Hacking and Dummett,

as we will see, are two influential researchers whose works have provided some

answers to this question.

Hacking who is interested in Classical Sequent Calculus, argues that one can pre-

serve the logical consequence relation with the requirement that any extension

is conservative and that the corresponding inference rules for the connective have

the subformula property [45].

Definition 2.2.9 (Conservative Extension, [77]) An extension of a logic S on a lan-

guage L by the addition of a constant ∁
n, yielding a language L′ extending L and a

system S′ extending S containing rules for the use of ∁
n, is conservative if any inference

in L provable in S′ (i.e., provable in the extension but not containing the new vocabulary

∁
n) is provable in S.

Remark 2.2.10 The addition of♣ toG3A-BASIC does not yield a conservative extension

(of G3A-BASIC), since we now can build a proof of Γ ⊢ ∆ (a statement expressed purely

in the syntax of G3A-BASIC) via a detour through ♣ given proofs of Γ ⊢ ∆, A1 and

A2, Γ ⊢ ∆ (both of which are also expressed in the syntax of G3A-BASIC).

The requirement of conservativeness guarantees that the set of provable state-

ments in the original system are not altered by the addition of any new connec-

tive. The subformula property then ensures that the introduction rules for the

connective are only a recursive extension of the original notion of logical conse-

quence (i.e. that any connective can be expressed purely in terms of the original

unaltered relation).

Hacking observes that one way of guaranteeing a conservative extension is to

require a cut-elimination theorem. This follows intuitively, since any proof of a

statement in the original syntax that makes a detour through the new connective

can be replaced with a direct proof without that detour (thus the use of the new

connective is shown to be redundant in proofs of statements made in the original

syntax).

Dummett who has different motivations for his investigations, also takes a proof-

theoretic view of logic, though he works on natural deduction calculi and does



not require such a strong condition as conservativeness [36]. Instead, he allows

only logical connectives defined by rules that are harmonious and have the subfor-

mula property. Dummett, in fact, gives two notions of harmony: total harmony

and intrinsic harmony. The former relates to conservativeness, while the latter re-

lates to normalisation (which corresponds to cut-elimination in sequent calculi).

A pair of inference rules are intrinsically harmonious if the introduction and elim-

ination rules are related so that one can draw from an assertion of a proposition

whose form displays the connective only those grounds which were needed to

establish that assertion.

We note that, although the ♣-connective passes the test for the subformula prop-

erty, it could not be classed as a logical connective according to Dummett, since

a proof detour through ♣ cannot be eliminated when it is introduced as the cut

formula, i.e. it is not defined by harmonious rules.

2.2.5 Axiomatisation of Logical Connectives

Model-theoretic semantics for the propositional connectives of classical logic can

be obtained from a truth-function. In this sense, a truth-function defines a classical

logical connective. Such truth-functions are commonly expressed as truth tables.

Definition 2.2.11 (Truth Table Cni ) A truth table, written Cni :: [T ] → T for a logi-

cal connective of arity n is a function which maps a list of truth values to a truth value.

The function Cni can be visualised as a table with 2
n rows (indexed 0 . . . 2n−1) and n+1

columns. The first k columns are labelled A1, . . . , An and the (k+1)
th column (or ‘defin-

ing’ column) is labelled ∁
n
i (A1, . . . , An). The truth value in row r of the defining column

is
....
n i[r] (where 0 < r ≤ 2n−1).

Pictorially, we have:

A1 A2 A3 . . . An ∁
n
i (A1, . . . , An)

0 0 0 0 . . . 0
....
n i[0]

1 0 0 0 . . . 1
....
n i[1]

...

2n−1 1 1 1 . . . 1
....
n i[2

n−1]



Definition 2.2.12 (Truth Function) A valuation is an assignment of truth values to

propositional variables. Given a valuation �, a truth function 〈[·]〉� :: F → T under

that valuation maps a propositional formula to a single truth value. The interpretation

is defined inductively on the structure of the propositional formula A with respect to a

valuation function, �:

1. if A ≡ a, then 〈[A]〉� = �(a).

2. if A ≡ ∁
n
i (A1, . . . , An), then 〈[A]〉� = Cni [ 〈[A1]〉�, . . ., 〈[An]〉� ].

Definition 2.2.13 (True Arity) A logical connective ∁
n of arity n has propositional ar-

guments a1, . . . , an. An argument aj of a connective (with 0 < j ≤ n), is said to be

trivial if-and-only-if, for all possible valuations �:

〈[∁
n
i (a1, . . . , aj−1, ∁

0
1, aj+1, . . . , an)]〉� ≡ 〈[∁

n
i (a1, . . . , aj−1, ∁

0
0, aj+1, . . . , an)]〉�

The true arity of a connective is then a count of its non-trivial arguments.

Intuitively, a connective whose true arity is not the same as its arity is one whose

truth-function always ignores one or more of its arguments in the computation

of its truth value. For example, consider an arity 2 negation function which only

negates the truth value of its first argument always ignoring the second; it’s ‘true

arity’ is 1.

Example 2.2.14 (Truth table for the connective ∁
2
11012
) The truth functionC211012

for

a binary connective ∁
2
11012

(commonly written→) denoting logical implication is defined

as follows.

A1 A2 A1 → A2

0 0 0 1

1 0 1 1

2 1 0 0

3 1 1 1

The truth function enumerates all possible assignments of truth values to the connective’s

arguments A1 and A2.

With these semantics, onemay test the validity of an arbitrary statement Γ ⊢ ∆ via

a truth table construction, reading the turnstile as an implication, the commas in

the antecedent as conjunctions, and the commas in the succedent as disjunctions.



Example 2.2.15 (Testing Validity using Truth tables) Consider the question: is A1

derivable from A1 → A2 and A2 (i.e., does A1 → A2, A2 ⊢ A1 hold). This is equivalent

to testing the validity of the formula ((A1 → A2)∧ A2)→ A1. We proceed by consider-

ing all possible assignments of truth-values to the propositional formulas A1 and A2, and

incrementally build up the truth-values of all subformulas of ((A1 → A2)∧ A2)→ A1.

The statement is valid if the truth-value assigned to the formula ((A1 → A2) ∧ A2) →

A1 is always 1.

Incrementally building up the formula in question from its subformulas, and accumulat-

ing this information together in a table, we get:

A1 A2 A1 → A2 (A1 → A2) ∧ A2 ((A1 → A2) ∧ A2)→ A1

0 0 1 0 0

0 1 1 1 1

1 0 0 0 1

1 1 1 1 1

Thus, the formula is not valid since it has a truth-value of 0when A1 and A2 are assigned

the truth-value 0.

Various researchers have shown that one can extract sequent calculus style in-

ference rules directly from truth tables in a mechanical fashion; we will briefly

discuss those most relevant to our work.

Call, in [24], describes such a mechanical procedure for classical propositional

connectives. In his paper, he (informally) outlines an interesting two-phase algo-

rithm for building sequent calculus rules from truth tables. The first phase builds

a pair of inference rules for a connective by mapping each row of the truth table

to a rule premise. The second phase simplifies each inference rule by a pairwise

merging of premises. He extends a basic sequent calculus with the generated in-

ference rules for propositional formulas, then adopts a procedure by Kleene [59]

(which he calls the ‘Kleene Search Procedure’) to show that the resulting sequent

calculus yields the valid formulas of the propositional logic. Our study of Call’s

algorithm has led us to several deep insights into the relation between classical

truth tables and the inference rules for propositional connectives in the sequent

calculus. These insights have helped us in the development of our own contri-

butions, so we will spend some time formalising Call’s algorithm in quite some

detail. This work is presented in Section 6.1.2.

Using a different approach, Baaz et al. [6, 7] describe their tool called MULTLOG

(implemented in Prolog) which also mechanically builds simplified sequent cal-



culus inference rules from truth tables. However, their methods are more gen-

eral than Call’s, and can deal with a wider class of logics, namely first-order and

many-valued logics. Their method of extraction of inference rules from truth ta-

bles also differs. The authors use an adapted Quine-McCluskey procedure6 to

express the raw formulas extracted from each line of the truth tables as a con-

junction of disjunctions. They explain that in this form, “the expressions are min-

imal in the number of conjuncts and the number of disjuncts per conjunct”, so

the number of premises per sequent inference rule are also minimal. A Natural

Deduction presentation of the resulting propositional logic is also given.

Most interestingly, the authors give details on how one can obtain a local cut-

elimination procedure that successfully reduces a cut when the cut formula is

built from the introduction rules for the generated connectives. As they explain,

the key component in defining this procedure (and indeed in obtaining a cut-

elimination theorem) is obtaining a function (which they call Red) that is able to

eliminate the outermost logical symbol from the cut formula, and thus reduce the

degree of the cut. The technique they use to build this function Red is based on

many-valued resolution techniques [5]. Wewill briefly summarize this technique,

but adapt it to the more familiar setting of classical logic.

Baaz et al. start from a truth table definition of a connective. The left- (right-)

introduction rule is built from the rows of the truth table where the principal for-

mula is assigned a truth-value of 0 (1). The function Red takes as its input the pair

of inference rules. The output is generated as follows. Clauses (sets of literals7) are

extracted from the rule premises. Each clause extracted from a particular rule cor-

responds to a case when the connective is assigned a particular truth-value, e.g.

all clauses extracted from the premises of the left introduction rule correspond

to the cases when the connective is assigned the value 0 in the truth table—for

this is how the premises were built. If one builds a clause C by combining the

premises of all introduction rules, that clause is unsatisfiable, since a connective

cannot havemore than one truth-value (according to the law of non-contradiction

for classical logic). Many-valued resolution [5] is refutation complete (the empty

clause is derived from any inconsistent set of clauses), and so there is a resolu-

tion deduction8 of the empty clause from the set C. Once a resolution refutation is

found, it is mapped to a deduction schema, which corresponds to the output of

the function Red.

6also known as ‘the method of prime implicants’, used for minimization of Boolean functions,
equivalent to Karnaugh mapping—but more practical for higher arity connectives.
7A literal is an atomic formula with a truth-value; e.g. the literal A0 means A is false, and the

literal A1 means A is true.
8A resolution deduction is a deduction built from applications of the resolution rule.



Example 2.2.16 (Extracting the function Red) Consider the sequent calculus infer-

ence rules for the disjunction connective.

A1, Γ
L
1 ⊢ ∆L1 A2, Γ

L
2 ⊢ ∆L2

(∨L)
A1 ∨ A2, Γ

L
1 , Γ

L
2 ⊢ ∆L1 ,∆

L
2

ΓR1 ⊢ ∆R1 , A1, A2
(∨R)

ΓL1 , Γ
L
2 ⊢ ∆L1 ,∆

L
2 , A1 ∨ A2

The clause translation of all the premises is:

C = {{A01}, {A
0
2}, {A

1
1, A

1
2}}

A possible refutation is:

{A11, A
1
2} {A

0
1}

{A12} {A02}

∅

From this, one can obtain a deduction schema, by replacing the resolution rule with the cut

rule and translating the sets of clauses to sequent-schemes. For example, the refutation

above would yield the following derivation scheme:

ΓR1 ⊢ ∆R1 , A1, A2 A1, Γ
L
1 ⊢ ∆L1

(Cut)
ΓR1 , Γ

L
1 ⊢ ∆R1 ,∆

L
1 , A2 A2, Γ

L
2 ⊢ ∆L2

(Cut)
ΓL1 , Γ

L
2 , Γ

R
1 ⊢ ∆L1 ,∆

L
2 ,∆

R
1

The above schema would be the output of the function Red for the input pair of rules

(∨L) and (∨R).

Ciabattoni and Leitsch, in [30], also study the automation of building cut-elimination

procedures, but for single-conclusion sequent calculus systems (actually for ‘knot-

ted commutative calculi’). Their procedure is also based on resolution techniques.

We would like to make two key observations about these two systems which

search for the key cut-elimination rule for the logical connective. First, they em-

ploy an (inefficient) brute force technique to find the rule. This does not scale well

when studying connectives of higher arity. Second, they are designed to find only

one of the possibly many permutations of the cut-elimination rule. This is accept-

able in the proof-theoretic setting since the permutation of a proof is semantically

unimportant—the important feature is that a proof exists. As we will see in the

next section, there are settings where each permutations can become important.



2.3 Computability Theory

Computability Theory is primarily concerned with the study of computable func-

tions; informally, these are functions whose values can be found mechanically by

following a sequence of atomic instructions and given unbounded resources of

time and storage space. In 1936, Turing, Church and Kleene showed that not all

functions can be solved in this way (this even includes the use of significantly

more powerful computers such as quantum computers). Despite this negative

result, the class of computable functions is very rich.

Turing is well-known for his design of a powerful abstract machine, known as

“The Universal Turing Machine”, conjectured to capture the human notion of

what is computable. Each particular ‘Turing Machine’ describes a computable

function or ‘algorithm’ at a very low-level of granularity. The machines them-

selves are inherently imperative and also very easily realised in hardware; it was

these features that shaped the field of computing in the years that followed.

Around the same time, Church, with the help of Kleene and Rosser, had formed

his own notions to capture the class of computable functions. He presented his

pure (and untyped) λ-calculus with its reduction-theory in [28] focusing on com-

putability. We will review the λ-calculus in the following section.

2.3.1 Review of λ-calculus

The λ-calculus was the result of Church’s attempt to build a formal logical foun-

dation for mathematics based on the notion of functions. When his work was

shown to be inconsistent (by admitting a variant of Richard’s Paradox) in 1933,

he extracted out the consistent part essentially by removing any axioms related

to logical notions. What remained was a very succinct language for describing

functions, i.e., via abstraction, application and the process of substitution. We

give the formal description of his language below.

Definition 2.3.1 (Pure Untyped λ-Calculus) The language for the untyped λ-calculus

is defined by the following syntax, where x, y, z, . . . range over the infinite set of variables

and M,N, . . . range over λ-terms.

M,N ::= x | (λx.M) | (MN)

variable abstraction application



Applications associate to the left as usual, and we will allow ourselves to omit bracketing

when there is no possibility of confusion.

The abstraction term gives the basic structure of a function. The “λ” symbol dis-

tinguishes the variable, x, as the formal parameter. Multi-argument functions can

be modelled by composing abstractions. The “.” separates the formal parameter

from the function body. There is no extra symbol to denote application—it is

simply the juxtaposition of two λ-terms.

Formal parameters are placeholders for expressions. To define the method of

computation over λ-terms, it will become necessary to distinguish between the

local variables of a function (i.e., those variables which refer to, or are bound to,

a formal parameter) and the variables which do not refer to a formal parameter,

called free variables. The following definition on λ-terms serves to make this

distinction.

Definition 2.3.2 (Free and Bound Variables in λ-terms) The sets of free and bound

variables and of a λ-term M, denoted fv(M) and bv(M), respectively, are defined recur-

sively over the structure of λ-terms.

fv(x) = {x}

fv(λx.M) = fv(M) \ {x}

fv(MN) = fv(M) ∪ fv(N)

bv(x) = ∅

bv(λx.M) = {x}∪bv(M)

bv(MN) = bv(M) ∪ bv(N)

Terms which have no free variables are called closed terms.

In observing that the purpose of free and bound variables is to encode the rela-

tionship between a formal parameter and its use in the function body, it is clear

that the name of the parameter itself is irrelevant. An equivalence between terms

that differ solely on the names of formal parameters is defined as follows.

Definition 2.3.3 (α-equivalence of λ-terms) Two λ-terms M and N are said to be α-

equivalent, written M ≡α N, if one is obtainable from the other by renaming bound

variables.

The computational rule of the calculus, the β-reduction rule, describes how one

may compute the value of a function for a given input. An application of an

abstraction to some other term, written (λx.M)N, is called a reducible expression

or redex. The process of evaluating such a redex involves substituting a copy of



the argument for each occurrence of the free variable in the function body that

refers to the function’s formal parameter.

Definition 2.3.4 (β-reduction) The key computational rule of the λ-calculus is,

(β) : (λx.M)N → M{N/x}

The term M{N/x} is the term M where the term N has been substituted for each occur-

rence of the free variable x. We emphasise that the notation {N/x} is a meta-operation,

not part of the language of λ-terms; this operation could be defined by:

x{N/x} = N

y{N/x} = y if y 6= x

(M1M2){N/x} = M1{N/x}M2{N/x}

(λy.M){M/x} = (λy.M) if y = x

(λy.M){M/x} = (λy.M{N/x}) if y 6= x

In Section 2.4, we will look at various implementation techniques which have been pro-

posed to compute this substitution.

The β-reduction relationwas shown to be confluent in [29]. Although there may be

many redexes in any particular λ-term, the confluence property guarantees that

the same result can be computed regardless of the order in which the redexes are

chosen for evaluation. A λ-term that has no redexes is said to be in normal form.

In the untyped λ-calculus one is allowed to apply any two terms. In particular, a

value can be applied to a function (e.g. 5 cos), suggesting some form of restriction

should be placed on the structure of terms. Since mathematical functions are

beingmodelled, a seemingly good restriction would be to insist on the constraints

that would normally apply to mathematical functions. An informal description

of these is given below.

1. All variables are members of some well defined set.

2. Instances of abstraction terms (λx.M) are (anonymous) functions whose

domain and range are well defined sets. The function maps an input value

from its domain to an output value in its range.

3. All instances of applications (MN) are function applications. That is, the

left term M should always be treated as a function, and the right term N as

an argument whose value is in the domain of the function. The application

should produce a result in the range of the function.



These constraints are formalised by a type system. A suitable and fairly simple

language of types for the λ-calculus is given below.

Definition 2.3.5 (Types) Types, denoting non-empty sets of values, are ranged over by

A, A1, A2, . . . and are defined over a set of type variables φ, φ1, φ2, φ3, . . .. The set of

types is constructed by the following grammar.

A ::= φ | A→ A

Two different ways of extending the λ-calculus with a type-theory were proposed

by Church [27] and Curry [33]. Church’s approach was to make the type annota-

tions part of the syntax, yielding a typed language. His simply-typed λ-calculus

is formulated by the grammar given below.

M,N ::= xA | (λxA1 .MA2)A1→A2 | (MA1→A2NA1)A2

We point out that, in the typed-language, expressions such as (λx.x)y are no

longer valid. The appropriate form would be ((λxA.xA)A→AyA)A. Notice that

the term (λx.xx)(λy.yy) cannot be annotated with types and is therefore omitted

from the language.

Curry’s approach, first studied in the context of combinatory logic, was applied to

Church’s λ-calculus in [33] and did not require modification of the syntax. In that

approach, given an untyped λ-term, the question of whether the term is typeable

(or not) is answered by constructing (or failing to construct) a suitable justifica-

tion. Such proofs come in the form of typing derivations, which when constructed

also give a possible type for the term. The inference rules for constructing typing

derivations are given below.

Definition 2.3.6 (Typing Derivations for the λ-calculus, [11]) A typing derivation

is a tree whose leaves are instances of the rule (Ax) and intermediate nodes are instances

of the rules (Abs) and (App).

(Ax)
Γ, x:A ⊢ x:A

Γ, x:A1 ⊢ M:A2
(Abs)

Γ ⊢ λx.M:A1→A2

Γ ⊢ M:A1→A2 Γ ⊢ N:A1
(App)

Γ ⊢ (MN):A2

1. A statement is an expression of the form M:A. The λ-term M is called the subject

and the type A is the predicate of the statement.

2. A context Γ is a set of statements with only distinct variables as subjects. We write

Γ, x:A to denote Γ ∪ {x:A}.



3. We will write Γ ⊢ M:A if the statement is derivable. i.e., if there exists a derivation

with that statement in the bottom line built using the three rules given.

A proof that the term (λx.x)y is typeable is given below. The term is typeable

with A (for all types A).

(Ax)
x:A ⊢ x:A

(Abs)
x:A ⊢ (λx.x):A→ A

(Ax)
y:A ⊢ y:A

(App)
x:A, y:A ⊢ ((λx.x)y):A

While the type systems presented above can be commended for capturing only

terms which satisfy the properties of mathematical functions, it is clear that many

equally good functions are not captured—in particular all recursive functions are

excluded. The terms of the simply-typed fragment of the λ-calculus are strongly

normalisable, guaranteeing for any term that all reduction paths will reach the nor-

mal form within a finite number of steps. It follows intuitively that this fragment

is no longer Turing-complete. There are several approaches to restoring Turing-

completeness.

The interaction between a general recursor R and a program M is given by,

RM → M(RM)

Analysing the rule, the recursor should be typed with (A→A)→A, though there

is no closed λ-term which has this type. There are, however, λ-terms that exhibit

the reduction behaviour ofR, for example the combinator:

Y
def
= (λ f .(λx. f (xx))(λx. f (xx)))

However, such terms cannot be typed due to the (untypeable) self-applications.

Unfortunately, typeable recursion cannot be expressed in the simply-typed frag-

ment of the λ-calculus, and more generally one cannot type non-terminating pro-

grams. One approach of getting round this is to enrich the language with a typed

constant such as Y , thus allowing the reduction behaviour suggested above for

Y (as done for ML), but essentially treating the inner workings of the program Y

as a black-box.



2.3.2 An Introduction to Control

As real-world programming languageswere developed, languageswere enriched

with different commands which captured useful computational behaviour. In

particular, a number of ‘control’ structures that reorganised the natural sequential

flow of a program were designed. This section is intended to introduce the reader

to ideas of control and continuations in programming languages. Given the

prevalence of imperative programming languages in practice, we will introduce

concepts in this setting before transferring notions to the functional paradigm.

An Imperative Description of Control

Procedural languages enjoy the benefits of encapsulation, where one is given the

facility to group together some functionality for clarity and re-use. When first

devised, computer memory was limited and costly making it an extremely at-

tractive paradigm from a practical perspective.

Functional procedures share similarities with mathematical functions: they are

passed inputs which they operate on and compute a value, which is then ‘re-

turned’ to the caller of the function. Perhaps the key feature of the procedure call

is the provisions it makes for resumption of program execution upon completion

of its invocation. Each procedure call disturbs a program’s natural flow of control

from one instruction to the next sequentially listed instruction.

We will look at this process of invoking a procedure in more detail.

Consider the following excerpt of code, where points in the program have been

labelled with numbers.



1 int add(int x, int y){

2 return x+y;

3 }

4

5 int divideTwo(int x){

6 return x/2;

7 }

8

9 int average(int x, int y){

10 return divideTwo(add(y,x));

11 }

Listing 2.1: Procedure Call

The function average, when invoked with a valid inputs, calculates the average

of the two arguments, then returns that value.

The definition of each procedure leaves implicit the location where execution

should resume following its call—it is simply written that the procedure will ‘re-

turn’ some value. This is of course necessary for the procedure’s use and re-use

at different points of the program.

A compiler will translate this code into the language of the machine. When the

compiled program is run, a record of the currently executing instruction is stored

in an instruction pointer. The instruction being pointed to is said to have con-

trol. For each procedure call, the generated compiled code will say where control

should jump to and resume from by manipulating the instruction pointer. Con-

structs, such as procedure calls, that alter the instruction pointer’s natural be-

haviour (from the current instruction to the next sequentially listed instruction)

are called control structures.

During each transfer of control, additional information such as the values of vari-

ables may also require saving (and later restoring). We will introduce two con-

cepts (scopes and frames) which are necessary to explain the reasons for this.

Scopes define the accessibility of program variables, i.e., where variable names

may be used. They also serve to keep variable names in different parts of the

program distinct from one another. When control enters a scope, the named vari-

ables may be associated with values. In the example above, each scope is indi-

cated with a pair of curly braces. During the execution of a program, a frame

is associated with each scope with the purpose of associating a value with each



variable in the scope.

A procedure defines a new scope, so when called during execution, a new frame

is created to record information specific to that scope. This new frame is stacked

on top of the current frame (which associates variables with values in the current

scope). For procedures, the new frame records at least the following information:

(i) the value associated with each parameter by the caller (ii) the return address

of the procedure. We will look at an example to illustrate this.

Example 2.3.7 (Applicative-style Program Execution) The invocation of the proce-

dure average(2,4) proceeds as follows.

1. Control enters at line 9. Memory for a new frame F1 will have been allocated,

mapping the formal parameters x,y to the actual values 2,4 respectively.

2. Control is passed to line 10, where a call to add(4,2) is made.

3. Control passes to line 1.

4. The procedure add defines a new scope, so memory is allocated for a new frame F2,

which maps the variables x,y to 4,2 respectively, and records the fact that control

must be returned to line 10 when the procedure completes.

5. The frame F2 is added to the top of the stack frame, saving the old frame F1 for

possible later use.

6. Control passes to line 2. Using machine level instructions, the expression 4+2 is

evaluated to 6.

7. The return statement is evaluated, which places the resulting value at an agreed

location which is accessible to the code at line 10 — e.g. in a machine register, some

shared memory space, in F1’s frame, etc.

8. Control is passed back to line 10, and the topmost frame F2(with x 7→ 2, y 7→ 4)

associated with the add procedure is popped off the stack, releasing the allocated

memory.

The procedure continues with the call divideTwo(6) in the same way, but for our purposes

we have highlighted the key steps of procedure calling.

The example above describes how control is restored to the function caller after

the procedure call. The return instruction can be seen as a special kind of jump

‘procedure’ instruction with arguments. It has the effect of abandoning the cur-

rent frame, restoring the frame of the procedure caller, then passing its parameter

(the value of the procedure’s computation) to some other program-point, where

execution is resumed from. If we were to package up this information (the re-



sumption program-point and the restored frame), we would obtain what is re-

ferred to in the literature as a continuation.

Notice in this example, all information regarding frames and instruction points

is implicit. A number of different methods exist which can be used to make these

continuations explicit. Van Wijngaarden, amongst others [75], suggested intro-

ducing a special class of continuation objects to the language.

In fact, early compilers transformed such programs into an intermediatory style

of language known as a continuation passing style (CPS), where such continuations

were made explicit by representing them as special functions.

Programs in CPS do not return control to their caller—there is no return state-

ment. Instead, every procedure is modified to take an extra parameter, namely a

continuation. These are thought of as special procedure-like objects which when

invoked (perhapswith a parameter), continue the execution of the program. They

specify what should happen next, after the procedure body has been evaluated.

To exemplify this, we will reformulate the above example in a continuation pass-

ing style. There is however the ‘small’ problem of types. Procedures no longer re-

turn and therefore have no return type9. We therefore omit the return types from

procedures, writing instead the procedure identifier proc. The second problem

is the type of the continuation function which the result of the procedure should

be passed to. Clearly this type can vary, depending on what type the procedure

previously returned (and now instead passes to the continuation). We will cover

types for continuations in Section 2.3.4. For now, we introduce an ‘umbrella type’

continuation to cover all the different cases. Objects of this type are procedures

which when invoked will execute and not return control to the caller.

Example 2.3.8 (Continuation-style Program Execution) This example describes how

to transform the procedure call in Listing 2.1 into a continuation passing style. We can

easily transform the procedures add and divideTwo as follows.

9notice that this is different from having a void return type, which would specify that the
procedure returns no value



proc add(int x, int y, continuation c){

c(x+y);

}

proc divideTwo(int x, continuation c){

c(x/2);

}

Transforming the procedure average is slightly more difficult due to the composition of

procedure calls. In CPS, we can no longer nest procedures in the usual way since values

are not returned to the caller. However, with some effort, we can build a scenario where the

result of one procedure is passed to another using a continuation. The steps to compute

average(x,y,c) which passes its result to a continuation c would include the following

steps.

1. The call to add(y,x,K) passes its result in some continuation ‘function’ K.

2. The call to divideTwowould use the argument passed to K, perform its computation

(the divide two operation) then pass that result to the continuation function c, i.e.,

the call is of the shape divideTwo(result-passed-to-K,c)

We can express this syntactically if we borrow some notation from the λ-calculus.

proc average(int x, int y, continuation c){

add(y,x,λk.divideTwo(k,c));

}

The function K we spoke of was in fact λk.divideTwo(k,c). Now consider the procedure

call average(2,4,c).

average(2,4,c)
runs-to
−−−−→ add(4,2,λk.divideTwo(k,c))
runs-to
−−−−→ λk.divideTwo(k,c) (4+2)
runs-to
−−−−→ λk.divideTwo(k,c) 6
runs-to
−−−−→ divideTwo(6,c)
runs-to
−−−−→ c(6/2)
runs-to
−−−−→ c(3)

Notice that the transformation to a continuation style modifies the structure of the pro-

gram. In the procedural style, add is the inner function and divideTwo is the outer, while

in the continuation style the composition has been reversed.



The function calls in the continuation style are all tail-calls, meaning there are no pend-

ing operations to be performed when a function is called. For instance, notice that the call

to add from average in in the procedural style (Listing 2.1) is not a tail-call because there

is a pending call to the divideTwo procedure before the average procedure can exit.

A full CPS transform works on the entire program and does much more than de-

scribed by the example. However, we will end our discussion of CPS transforms

here since we have fulfilled our goal of demonstrating how one may use contin-

uations to pass results from one program-point to another. We will now look at

these features in the more formal setting of term-calculi.

Control in λ-calculi

Listing 2.1 could have been expressed in the following λ-calculus syntax enriched

with natural numbers and arithmetic operations.

Example 2.3.9 (Translation of Listing 2.1 to (enriched) λ-calculus)

add ≡ λx.λy.(x + y)

divideTwo ≡ λv.(v/2)

average ≡ λx.λy.(divideTwo (add y x))

In λ-calculi there is no ‘return’ keyword: the computed value of a function appli-

cation is passed to the enclosing term called the evaluation context.

Here we introduce the syntax ‘[ ]’ to represent an evaluation context, which can

be thought of as a term with a single ‘hole’. If E is an evaluation context, then

E[M] denotes the term that results by plugging the hole of E with the term M. In

the function average, the evaluation context of the (add y x) call is the term that

surrounds it: λx.λy.λz.(divideTwo [ ]), and [ ] represents a hole where the term

use to sit. Once (add y x) is evaluated, its value (the result of x+ y) plugs the hole

of the evaluation context. Notice that, in general, the evaluation context is the

part of the program that specifies what should happen after the result has been

returned to the hole—it is the continuation of the program.

In the pure λ-calculus, notions of control are left implicit—it is understood that

results of computations will always be returned to their enclosing contexts. For

this reason, it is fairly well accepted that the λ-calculus is not well-suited to the



study of control. Those wishing to formally study control features have typically

taken the following approaches.

(Use of CPS transformations) : Thismethod of transforming an entire source pro-

gram results in a λ-calculus program where (i) all return locations in the

original program are made explicit, (ii) all intermediate values of a compu-

tation are named, (iii) an order of evaluation is fixed and (iv) the flow of

control or (c.f. the call-stack) is ‘inverted’. Since target programs are not at

all humanly understandable, this approach of studying control will not be

discussed further in this thesis.

Extension of existing languages : Well studied calculi are extended with con-

stants corresponding to specific notions of control (e.g. λC ).

Design of new term-calculi : Languages are designed from formal logical foun-

dations with explicit syntax for control structures (e.g. first class continu-

ations and continuation delimiters). This approach generally allows com-

putational behaviours to be studied at varying (and often finer) degrees of

granularity.

The second approach was taken by Felleisen et al. [37] who studied Landin’s

ISWIM language and developed the λC -calculus.

The λC -calculus has three syntactic categories of expressions: terms, values and

evaluation contexts. Terms are the usual λ-calculus terms plus three constants

A,K and C which describe some specific control behaviours. The ‘value’ cate-

gory is introduced to restrict the applicability of the certain reduction rules. An

explicit representation of an evaluation context (or ‘continuation’) is also given.

The formal definition is given below.

Definition 2.3.10 (λC -syntax) Where x, y, z . . . range over an infinite set of variables,

M,N range over terms, V ranges over values and E ranges over evaluation contexts, the

language of the λC -calculus is defined by the following grammar.

M,N ::= V | MN | AM | KM | CM

V ::= x | λx.M

E ::= [ ] | EM | VE

Notice that this calculus has explicit syntax for evaluation contexts. The lan-

guage λC has been especially designed so that any non-value λC -term E[R] can

be uniquely decomposed into a redex R and an evaluation context E[ ], implying



a fixed evaluation strategy. For example, the λC term ((λx.λy.x)v)((λw.w)z), de-

spite having several redexes, can only be decomposed (according to the rules of

the grammar) as follows.

E[ ] = ([ ])((λw.w)z)

R = (λx.λy.x)v

Reduction in the λC -calculus extends the usual notion of β-reduction with reduc-

tion rules that give the behaviour of the constants A,K and C:

(EvalAbort): E[AM] → M

(EvalControl): E[CM] → M(λx.AE[x])

(EvalCallCC): E[KM] → E[M(λx.AE[x])]

Notice that each use of a control operator manipulates its evaluation context in a

specific way.

• An invocation of the ‘abort’ operator,A, throws away the current evaluation

context and continues the evaluation of its argument M.

• The ‘control’ operator C is slightly more complicated. First, it creates a spe-

cial function, λx.AE[x], whose behaviour is comparable to the ‘throws’ op-

erator used in exception handlers: if applied to an argument (i.e., if ‘in-

voked’ with a parameter) it will abandon any computation and immedi-

ately return that argument to the context E. The term M is applied to this

special function. Consider the case whenM is of the shape λy.N. The reduct

is (λy.N)(λx.AE[x])—notice the ‘throws’ function is passed to the body of

the abstraction via the formal parameter y. The function body N may then

invoke the ‘throws’ function, perhaps signalling exceptional conditions, by

applying y to some value.

• The ‘call/cc’ operator K is similar to C, except a value is always returned

to the context of the call, whether or not the ‘throws’ function is used. This

prompts the question why A is applied to the reified context in the throws

function: would it not have been simpler to reify the current evaluation

context as (λx.E[x]). The essential feature to notice here is that the abort op-

erator abandons any other computations which may occur in the evaluation

of M. Practically, we can think of K as a shortcut operator for lazy evalua-

tion. Imagine its use in a list searching procedure: once the sought element

has been found, the rest of the list need not be traversed, so the element can

be ‘thrown’ back to the evaluation context.



These control operators have a variety of practical uses, and their definition in

a formal setting allows their properties to be cleanly studied. They do however

perform fairly coarse operations: the entire context of the call is captured in a

single step. Felleisen observed that capturing and reifying the whole context is

expensive and often unnecessary, and in [38], he introduced a notion of delimited

contexts. These delimiters were used to ‘section off’ the portion of the context to

be reified. Several alternative calculi have been proposed and studied which fea-

ture context delimiters. However, the origins of these calculi are quite different.

We will return to context delimiters in Sections 2.3.4 and 2.3.5, but first we will

discuss a key motivation behind the study of this computational feature.

2.3.3 Curry-Howard Correspondences

The typing rules for the λ-calculus (see Definition 2.3.6) bear a strong resemblance

to Gentzen’s Natural Deduction style of inference rules for the logical implication

connective (see Section 2.2). The relationship between these two formalisms was

studied by Howard [49] in 1969, though a relationship between logic and com-

puting had been remarked upon much earlier by Curry and Feys [33] in 1958. De

Bruijn [22] also noticed this relation when he used λ-calculus terms to represent

of proof objects in his AUTOMATH tool.

The ‘Curry-Howard Isomorphism’ describes the strong relationship between the

propositions of minimal implicative logic and the simply-typed λ-calculus, namely

that (i) propositions correspond to types (ii) proofs of propositions can be repre-

sented with λ-terms and (iii) proof normalisation corresponds to β-reduction.

Since the initial discovery, various researchers have studied this relation in dif-

ferent contexts seeking to extract other correspondences between various logics

and models of computation. For a long time, it was believed that such a corre-

spondence only existed between constructive logics and computational calculi.

However, Griffin [43] uncovered such a relationship between Classical Logic and

the control operators in Felleisen’s λC -calculus. He was able to assign types cor-

responding to classical tautologies to the operators C and K.

By typing the ‘plugging of a context’s hole with a term’ with a form of the logical

cut rule, and observing the reduction behaviour of Felleisen’s λC control opera-

tors, Griffin was able to assign the following classical types, corresponding to the

classical tautologies Double-Negation Law (DN) and Peirce’s Law (PL), to C and

K respectively.



Definition 2.3.11 (Griffin’s Type Assignment, [43]) The typing rules of the λ-calculus

(Definition 2.3.5) were augmented with the following typing rules for the extra syntactic

constructs.

Γ ⊢ M:A Γ, [ ]:A ⊢ E[ ]:B
(EvalCtx)

Γ ⊢ E[M]:B

Γ ⊢ M:⊥
(⊥E)

Γ ⊢ (AM):A

Γ ⊢ M:(A→⊥)→⊥
(DN)

Γ ⊢ (CM):A

Γ ⊢ M:(A→B)→A
(PL)

Γ ⊢ (KM):A

Note that negation is not explicitly represented in the language of types. Instead, it is

defined in terms of implication and bottom, i.e. ¬A
def

=A→⊥.

Remark 2.3.12 (Abort Operator) Observing the reduction behaviour ofA, M is actu-

ally typeable with any type B, leading to the more general type (B→A) for A. However,

falsity is used since Griffin wants to create a correspondence with a logic and therefore

requires logical consistency.

Remark 2.3.13 (Control Operator) Griffin’s type assignments were motivated by clas-

sical logic. The control operator C could have been assigned the more general type of

((A→B)→⊥)→A. Whether or not C is the ‘best’ inhabitant for ¬¬A→A has recently

been a subject of debate. Summers [83] criticises Herbelin’s criticism of de Groote [44]

and Ong and Stewart [67], who all seek Curry-Howard correspondences for Classical

Logic and study the control behaviour of terms corresponding to the Double-Negation

law. Summers argues that in each of these cases, the terms extracted correspond better to

the behaviour of Felleisen’s control operator F than to the behaviour of C.

We remark that the original Curry-Howard correspondence was discovered be-

tween two formalisms that were well studied and very well understood. In

contrast, the many Curry-Howard correspondences that have been proposed for

Classical Logic have employed non-standard presentations of the logic (which

have not been well studied or defined ad hoc) and/or some computational be-

haviour that either is not well understood or does not fit to the logic very well.

This is seen in Griffin’s system who has to make several design choices (as re-

marked upon above) to obtain the correspondence; even then, the system is not

perfect since subject reduction does not hold in general.10 We will study some of

10Several fixes have been suggested for this: Griffin himself proposeswrapping up all programs
in special contexts, while Ariola and Herbelin [2] propose adding a special ‘top-level’ constant
to the language. However, both of these changes does not make the correspondence any more
natural.



the proposed Curry-Howard correspondences for Classical Logic in the sections

to come.

The reason for the difficulty, in our opinion, is the result of a number of factors.

First, the presentation of a classical logic in the Natural Deduction calculus in-

volves the addition of a single rule11. This breaks the pattern of ‘introduction’ and

‘elimination’ rule pairs, that are traditionally understood (in a computational set-

ting) as corresponding to term ‘construction’ and term ‘destruction’. If we argue

that classical logics are best presented in sequent calculi, then the non-confluence

of cut-elimination becomes a key problem when seeking to interpret computa-

tional behaviour. Also, if we allow the sequent calculus’ right introduction rules

to be understood in the same way as natural deduction style ‘introduction’ rules,

what should the left introduction rules correspond to computationally?

Some of these problems have already been addressed (and in spite of the dif-

ficulties, progress in the area has been constant) following Griffin’s original in-

tuitions: that classical propositions correspond to types for terms that represent

or manipulate continuations of programs. In reviewing the various works seek-

ing Curry-Howard style correspondences between Classical Logic and models of

computation, we have noticed the approaches taken can be fitted into one of three

distinct camps:

1. Assignments of classical propositions as types for computational opera-

tions. (e.g. Griffin’s typing of λC ).

2. Extraction of term calculi from formal logical systems that have been care-

fully designed with properties of computational behaviour in mind (e.g.

Parigot’s λµ [68], Ong and Stewart’s λµCBV [67], Herbelin’s λ̄ and λ̄µ [46],

Curien andHerbelin’s λµµ̃ [32], Wadler’s Dual Calculus [91], Kesner’s Typed

Pattern Calculus [56])

3. Investigations into term calculi resulting from pure formal logical systems

(e.g. Urban’s calculus, Lengrand’s λξ, van Bakel and Lescanne’s X [9], Les-

canne and Žunic̀’s ∗X , dX , c©X [63, 90], Summers’ νλµ [83])

The second and third camps are similar, in that they both try to fit a computa-

tional term calculus to a formal logical system for Classical Logic, yet there is an

important and notable distinction separating them.

Researchers in the second camp hold a pre-conceived notion of how computation

11In fact, there is a choice of which rule to add which can yield classical logics of different
strengths. Ariola et al. [3] identify these rules as Peirce’s Law, the Double Negation Elimination
or the Law of Excluded middle.



may (and may not) behave before the design of their ‘Curry-Howard’ systems.

There is a strong view that confluence is an essential feature of the reduction

mechanism of any computational term calculus. Researchers holding this view

have therefore sought to restrict the normalisation mechanism of proofs in the

design of their ‘Curry-Howard’ logic to also be confluent. Finding suitable proof

rule inhabitants that express some computational behaviour is also non-trivial,

and often leads to modifications of the underlying logical inference rules.

The third camp of researchers tries not to make any changes to the logical system

influenced by computational notions, and instead attempt to extract and study

the computational content that is naturally apparent in the system. Since there

is no pre-conceived notion of computation, the resulting term-calculus syntax is

often a very straightforward proof annotation. It is also worth noting that the re-

sulting term calculus need not be ‘well-behaved’ in the conventional sense. These

points have been criticised by members of the second camp and of course are

points which need to be justified: especially the presence of non-confluence.

Nevertheless, the research in this thesis approaches the design of Curry-Howard

calculi with the mind-set of the third camp. Many of the calculi studied here

are indeed both non-confluent and non-deterministic. However, as we will see

in Chapter 3 where we study properties of the X -calculus, interesting confluent

subsystems can arise from highly non-confluent term calculi. Additionally, nice

symmetries present in the underlying logic are automatically preserved.

The third camp of thought is fairly recent in comparison to the other approaches,

but is not independent of them. The X -calculus is a result of lines of work taken

byHerbelin [32] and Urban [86], and in fact much insight we have gained into the

computational understanding of X can be attributed to the works of the second

camp. We will therefore review the key insights that led to the development of X

in the following subsections.

2.3.4 On Parigot’s λµ Calculus

Parigot criticises Griffin’s system as being “not satisfactory from a logical point

of view” and in [68] presents his own typed computational calculus, the λµ-

calculus, which holds a (restricted) Curry-Howard style correspondence with

Classical Logic. Parigot’s departure point [69] is interesting since he argues that

“neither natural deduction nor sequent calculus provide a suitable cut-elimination”

mechanism of computation, for the reasons that confluence and strong normal-



isation are not effectively apparent. He introduces a new logical framework to

study Classical Logic which he calls ‘free deduction’, designed to exhibit the de-

sired computational properties.

The terms of his λµ-calculus inhabit classical proofs formulated in free deduc-

tion. We present the propositional fragment of his calculus below, followed by an

explanation of its operations.

Definition 2.3.14 (λµ-calculus [68]) The language of the λ-calculus (Def. 2.3.1) is

extended with µ-variables α, β, . . . that range over the infinite set of names. λµ-terms

are an extension on the set of λ-terms and are constructed with the following grammar.

M,N ::= x | (λx.M) | (MN) | (µα.M) | ([α]M)

variable abstraction application activate passivate

We will omit unnecessary brackets.

The symbol µ used in the activate term identifies the adjacent name as a formal

parameter: a name bound over the term M. The name α is free in the passivate

term [α]M.

The set of types from Definition 2.3.5 is extended with a constant symbol ⊥. Typ-

ing derivations for the λµ-calculus are constructed with the following rules, in-

spired by the inference rules of free deduction.

Definition 2.3.15 (Typing Assignment Rules for λµ-calculus, [68]) The symbols Γ

and ∆ represent sets of types labelled with variables and names respectively.

• Logical Rules

(Ax)
Γ, x:A ⊢λµ x : A | ∆

Γ, x:A1 ⊢λµ M : A2 | ∆
(Abs)

Γ ⊢λµ λx.M : A1→A2 | ∆

Γ ⊢λµ M : A1→A2 | ∆ Γ ⊢λµ N : A1 | ∆
(App)

Γ ⊢λµ MN : A2 | ∆

• Naming Rules

Γ ⊢λµ M :⊥ | α:A,∆
(Activate)

Γ ⊢λµ µα.M : A | ∆

Γ ⊢λµ M : A | ∆
(Passivate)

Γ ⊢λµ [α]M :⊥ | α:A,∆



The right-hand side of the judgements are of an usual shape: M:A | ∆. The posi-

tion to the left of the vertical bar is known as the stoup, and allows one to distin-

guish a particular element from all the elements to the right of the turnstile, i.e.,

it focuses a particular conclusion in a proof.12 The (Activate) and (Passivate) rules

are structural rules (from the point of view of the logic) and respectively move an

element in or out of the stoup position. In this way, the formation of a λµ-term

is tightly controlled, ensuring a unique mapping between proofs and terms. We

remark that the (Activate) rule plays a second role, namely that it captures a mod-

ified form of the Proof by Contradiction Law (PC). Allowing for some leniency

on notation, the (PC) rule could be formulated as,

¬∆, Γ,¬A ⊢ ⊥
(PC)

¬∆, Γ ⊢ A

Parigot defines a computational mechanism on these new constructs, known as

structural substitution. Whereas in the λ-calculus, one is only permitted to apply

functions to arguments when they sit at the same level of the term syntax tree,

the additional naming constructs pull contexts to named locations, building ap-

plications with subterms at arbitrary depths.

Definition 2.3.16 (Reductions in λµ) The reduction rules for the λµ-calculus, in ad-

dition the usual β-reduction rule, are defined as follows:

(µ-structuralR) : (µα.M)N → µβ.M{[β](P N)/[α]P} β fresh

(µ-renaming) : [β]µα.M → M{β/α}

(µη) : µα.[α]M → M ^ α 6∈ M

There is in fact a second important structural rule, shown below.

(µ-structuralL) : N(µα.M) → µβ.M{[β](N P)/[α]P} β fresh

We assume that this rule was omitted from the design of the system to avoid the critical

pairs (µα.M)(µα.N) and (λx.M)(µα.N) which would result in a non-confluent system.

The omission also leads to a weaker normalisation procedure of proofs in the underlying

logic.

The rule (µ-structuralR) should be understood as follows. There are subterms oc-

curring in M that have been named using the passivate construct; these named

12This construction maintains the simplicity of sets, but allows one to distinguish a particular
element without having to resort to the full overhead of exchange-rules that would be needed if
sequences were used.



subterms are of the shape [α]P. The activate term binding over these named sub-

terms represents a handle to those named subterms, that is, a way for the subterms

to be accessed at some outer-level. The application of an argument N to the ac-

tivate term, µα.M, represents the action of applying the argument N directly to

those named subterms appearing in M, i.e., the application PN for every [α]P.

The resulting subterm is given a new name, hence [β](PN). The outer-level han-

dle to the terms at these named positions is not lost, hence the re-introduction of

the activation term binding over those subterms named with [β].

Intuitively, we can think of the rule in (µ-structuralR) as an application of a named

subterm P (that are ideally functions) in M to the provided argument N. The (µ-

structuralL) represents the symmetric situation where the named subterms P in

M are ideally values, waiting for a function N to be applied to them. But notice

that more than one argument or function can be used in such an application since

the outermost µ-binder persists in the structural reduction rules. For this reason,

an understanding of the renaming and eta rules is equally important. Consider

the symmetrical cases,

(((µα.M)N1)N2) . . . (2.1)

. . . (Q2(Q1(µα.M))) (2.2)

The term of (2.1) is able to consume and apply, to the named subterms of M, an

infinite number of arguments Ni as long as an argument Ni is not of the shape

[α]N′i . Similarly, the term of (2.2) is able to consume and apply an infinite number

of subterms Qi to the named subterms of M, until a term of shape [β](Qi(µα.M))

is encountered. Since the continuations of (µα.M)N1 (or Q1(µα.M) ) are the en-

closing applications (loosely speaking ([ ]Ni . . .) or (. . .Qi[ ])), the passivate terms

can be seen as having a second purpose: they are ‘delimiters’ for contexts specify-

ing howmuch of the entire context consumed during the structural substitutions.

With this understanding of the reduction behaviour, the λµ-calculus can be used

to express the control operators constants A, C and K as follows.

AM
def
= µα.M ^ α 6∈ fv(M)

CM
def
= µα.M(λz.[α]z)

KM
def
= µα.[α](M(λx.µβ.[α]x))

Since there are explicit term representations of the constants, the λµ-terms may

take several rewrite steps (as opposed to a single step), reflecting a finer grained

reduction mechanism.



We also notice that the activate and passivate terms have two separate and quite

disjoint responsibilities: they are used to delimit contexts and also provide a sim-

ple naming mechanism for subterms. This joint responsibility is a direct result

of the merging of the proof by contradiction law (PC) with the ‘structural rules’

that move formulas to and from the stoup position of the derivations in Parigot’s

formalism. We argue that the structural substitution rules are solely due to the

normalisation of the underlying (PC) rule, while the ‘context delimiting’ feature

is due to the portion of the rules concerned with the stoup. This is evident when

we consider the origins of Parigot’s structural substitution mechanism.

In [71, pp. 39-40], where Prawitz is concerned with normalising instances of the

proof by contradiction law (he considers a proof with applications of the rule to

be ‘normal’ if such applications are at the leaves of the derivation). He describes

a proof transformation which builds proofs where the (PC) rule is applied only

to atomic formulas. This transformation essentially describes the same process

as Parigot’s structural substitution mechanism, except Parigot has (necessarily)

combined the instance of the (PC) rule (corresponding to the activate term) with

the elimination rule for logical implication so his reduction mechanismwill work

in an untyped setting as well. Notice that the left-hand side of the structural

reduction rules describe the cases of function application when an activate term is

in the ‘function’ or ‘argument’ positions.

There is no generic method for normalising an instance of (PC) rule; its means of

normalisation depends on the specific logical connective it is applied to. Prawitz

defines the normalising proof transformation individually for the logical connec-

tives: implication, conjunction and disjunction. This transfers over to calculi built

in the style of λµ, where structural reduction rules (that combine the activate term

with the term inhabiting a connective’s inference rules) will be needed for each

logical connective in the calculus.

Curien and Herbelin make an important step in [32] and are able to separate

some of these concerns, essentially by moving to a sequent calculus setting. We

will study their λµµ̃-calculus in the next section.

2.3.5 Curien and Herbelin’s λµµ̃

In [32], Curien and Herbelin develop a term calculus called λµµ̃ which holds

a (restricted) Curry-Howard correspondence with the sequent calculus LKµµ̃: a

variant of Gentzen’s sequent calculus for Classical Logic, LK. The calculus natu-



rally exhibits some of the symmetries of computation, namely the ideas of input

versus output, program versus context and call-by-name versus call-by-value re-

duction.

A key feature of this calculus is that it is derived from a sequent calculus, as

opposed to a natural deduction calculus. In [1], Ariola et al. noticed an interesting

feature when basing notions of computation on sequent calculi: all procedure

calls are naturally tail-calls. Such a transformation would usually require a full

CPS transformation, at the same timemaking all continuations explicit. However,

programs in the λµµ̃-calculus are already in a continuation style.

We will present this calculus first in its purest form, which Herbelin calls the µµ̃-

subsystem. It has no logical connectives and is still capable of expressing some of

the general ideas of computation.

Definition 2.3.17 (µµ̃-syntax) The language of the µµ̃-subsystem is defined by the fol-

lowing syntax, where x, y, z, . . . range over the infinite set term variables, and α, β,γ, . . .

range over the infinite set of evaluation context variables (also called names).

Commands c ::= 〈v ‖ e〉

Terms v ::= µα.c | x

Evaluation Contexts e ::= µ̃x.c | α

The term constructors of this language inhabit sequent calculus style inference

rules for the cut, the axiom and the structural rules (which shift a formula scheme

in/out of the stoup position). The type assignment rules for the calculus are pre-

sented below.

Definition 2.3.18 (Typing rules for the µµ̃-subsystem)

Γ ⊢λµµ̃ v : A | ∆ Γ | e : A ⊢λµµ̃ ∆
(Cut)

〈v ‖ e〉 : Γ ⊢λµµ̃ ∆

(AxR)
Γ, α : A ⊢λµµ̃ α : A | ∆

(AxL)
Γ | α : A ⊢λµµ̃ α : A,∆

c : Γ ⊢λµµ̃ α : A,∆
(µ)

Γ ⊢λµµ̃ µα.c : A | ∆

c : Γ, x : A ⊢λµµ̃ ∆
(µ̃)

Γ | µ̃x.c : A ⊢λµµ̃ ∆

Computational notions are based on the interaction between an evaluation con-

text e and a term v using a construct called a command. The command 〈v ‖ e〉 is



typed with the cut rule, and has been compared to the applicative style construct

E[V], which is also typed with the cut.

Every program has at its leaves either a term variable x or an evaluation context

variable α.

The term µα.c represents a computation (a ‘command’) c which when evaluated

will pass its result to the evaluation context α. Symmetrically, the evaluation

context µ̃x.c is a command c that is waiting for a some value to be passed to it via

x. The reduction behaviour of these expressions is formalised by the following

reduction rules.

Definition 2.3.19 (µµ̃ Reduction Rules) The reduction rules for the µµ̃-subsystem given

below.
(µ): 〈µα.c ‖ e〉 → c{e/α}

(µ̃): 〈v ‖ µ̃x.c〉 → c{v/x}

As can be seen by the rules, the exact behaviour of a command depends on the

shape of its component term and evaluation context. In the (µ)-rule, e is specified

as the continuation of the subterms in c that output on α. In the (µ̃)-rule, a term v

is passed to c which was waiting for an input via x.

The reduction relation is non-deterministic and non-confluent due to the unjoin-

able critical pair 〈µα.c1 ‖ µ̃x.c2〉. Curien and Herbelin show that, by always pre-

ferring a particular rule during a reduction, a confluent reduction subsystem is

obtained. In fact, they show that preferring the (µ)-rule leads to a call-by-name

subsystem while preferring (µ̃) leads to call-by-value. We will discuss reduction

subsystems in more detail in Section 2.3.7.

In [48], Herbelin showed that the µµ̃-subsystem can be extended with a variety

of logical connectives, remarking that Wadler’s Dual Calculus is in fact a vari-

ant of λµµ̃ that simply employs different connectives (i.e., it is an extension of

the µµ̃-subsystem with the logical connectives for conjunction, disjunction and

negation). We will extend the µµ̃-subsystem with logical implication, to obtain

λµµ̃.

Definition 2.3.20 (λµµ̃-syntax) The language of the µµ̃-subsystem given in Definition

2.3.17 is extended with the following constructors.

Terms v ::= . . . | λx.v

Evaluation Contexts e ::= . . . | v · e



The term λx.v can be thought of as the usual function abstraction. The evaluation

context v · e is a list of arguments with the term v at its head. Note that evaluation

contexts associate to the left, i.e., v1 · v2 · v3 · . . . · e = (((v1 · v2) · v3) · . . . · e).

Definition 2.3.21 (Typing rules for λµµ̃-calculus) The constructs introduced in Def-

inition 2.3.20 can be typed with the following rules.

Γ, x : A ⊢λµµ̃ t : B | ∆
(→R)

Γ ⊢λµµ̃ λx.t : A→B | ∆

Γ ⊢λµµ̃ v : A | ∆ Γ | e : B ⊢λµµ̃ ∆
(→L)

Γ | v · e : A→B ⊢λµµ̃ ∆

Extensions of the µµ̃-subsystem with logical connectives follow the pattern that

right-introduction rules build terms (‘expressions that are waiting for continua-

tions to send its output’) while the left-introduction rules build evaluation con-

texts (‘expressions that wait for inputs’). The interaction between the functional

term and evaluation context constructs is defined below.

Definition 2.3.22 (Reduction rules for λµµ̃) The reduction rules fromDefinition 2.3.19

are augmented with the following rule.

(→) : 〈λx.v ‖ v′ · e〉 → 〈v′ ‖ µ̃x.〈v ‖ e〉〉

Unlike the β-rule that deals with functions in the λ-calculus, the reduction rule

above translates (in one step) the interaction between the function and argument

list into a series of interactions expressed only in the language of terms and eval-

uation contexts. The left-hand side reads: “the function λx.v is applied to a list

of functional arguments v · e”. The right-hand side reads “µ̃x.〈v ‖ e〉 is a term

waiting for an input to be passed to it via x. The input passed to x is v′.

Example 2.3.23 (A Reduction in λµµ̃) Using a standard natural deduction to sequent

calculus transformation given in [32] (the translation <), the program of Example 2.3.9

expressed in λµµ̃ is listed below.

add< = λx.λy.(x + y)

divideTwo< = λv.(v/2)

average< → λx.λy.µδ.〈divideTwo< ‖ (µβ.〈add< ‖ y · x · β〉) · δ〉

In the function average<, notice that once add< has consumed the values in the argument

list y · x · β, it will return its result to β. The divideTwo< term will consume the handle

to β, and use the underlying value in its computation, finally sending its result to δ.



Interestingly, an intuitively correct final result cannot be reached without adding the

following η-rule (which is not part of λµµ̃, but is part of λµ).

µα.〈t ‖ α〉 →η t ^ α 6∈ fv(t)

Let us consider the interaction of the average< term with the functional context 2 · 4 · α,

where α is a continuation representing ‘where the final result of the entire computation

should be sent’.

µα.〈average< ‖ 2 · 4 · α〉

= µα.〈λx.λy.µδ.〈divideTwo< ‖ (µβ.〈add< ‖ y · x · β〉) · δ〉 ‖ 2 · 4 · α〉

→∗ µα.〈µδ.〈divideTwo< ‖ (µβ.〈add< ‖ 4 · 2 · β〉) · δ〉 ‖ α〉

→∗ µα.〈µδ.〈divideTwo< ‖ (µβ.〈(4+ 2) ‖ β〉) · δ〉 ‖ α〉

= µα.〈µδ.〈divideTwo< ‖ (µβ.〈6 ‖ β〉) · δ〉 ‖ α〉

→η µα.〈µδ.〈divideTwo< ‖ 6 · δ〉 ‖ α〉

→∗ µα.〈µδ.〈(6/2) ‖ δ〉 ‖ α〉

= µα.〈µδ.〈3 ‖ δ〉 ‖ α〉

→η µα.〈3 ‖ α〉

The reduction steps describe computation at a greater level of verbosity, and as discussed

in [1], the steps are closer to those performed by a stack based abstract machine.

To conclude, wewould like to compare the reduction features of the µµ̃-subsystem

with those of calculi built in the style of Parigot’s λµ. Recall that the reduction

rules of Parigot’s µ operators combine two aspects: (i) they copy contexts upto

any delimeters and (ii) they perform a structural substitution.

In λµµ̃, the delimiting of contexts using continuation variables is also present. A

functional context such as (v1 · v2 · v3 . . . · α) is a list of termswith the end of the list

marked by a continuation variable—the continuation variable α is the delimiter

of the functional context.

The symmetrical structural substitution rules in λµ-calculi can be compared to

the symmetrical µ and µ̃ operators. Recall that in λµ-calculi, the passivate term

[α]M can be used to mark arbitrary subterms, and the activate term µα.N gives a

‘handle’ to those subterms at a higher level.

A function application in the λµ-calculus with the activate term in the function

position (indicated by the rule (µ-structuralR)) represents the action of supplying

an argument to the marked function. This can be achieved in λµµ̃ using the µ

operator. In the simplest case, we have some term t marked with the name α. An



argument E can be supplied to t via α using the (µ)-rule.

〈µα.〈t ‖ α〉 ‖ E〉 →∗ 〈t ‖ E〉

Symmetrically, a function application with the activate term in the argument po-

sition (indicated by the rule (µ-structuralL)) represents the action of applying a

function to the marked subterm argument. This can be achieved in λµµ̃ using the

µ̃ operator. In the simplest case, we have a placeholder x interacting with some

evaluation context e. A function F can be applied to e via x using the (µ̃)-rule.

〈F ‖ µ̃x.〈x ‖ e〉〉 →∗ 〈F ‖ e〉

In spite of these computational insights, there are a few points about the λµµ̃

calculus that makes the Curry-Howard correspondence awkward. Two axiom

rules are needed to type the continuation variables and term variables, not every

cut is a redex, and the structural rules involving the stoup are of a curious form.

The authors remark that a correspondence with Gentzen’s LK could be obtained

by studying a subsyntax of λµµ̃. This subsyntax is studied by Lengrand [61, 62]

in some detail, which we review in the next section.

2.3.6 Lengrand’s λξ-calculus

Lengrand [61] is interested in the Curry-Howard isomorphism for Classical Logic,

and in particular studying reduction and the connection between explicit substi-

tutions and cut elimination in the Sequent Calculus.

It is well known that the (natural deduction) cut-rule can be used to type explicit

substitutions. The symmetry of the cut-rule in Gentzen’s Sequent Calculus, LK,

inspires Lengrand to study a symmetrical notion of explicit substitution. He be-

gins with the subsyntax of λµµ̃ suggested by Curien and Herbelin in [32], shown

below, that corresponds to proofs in Gentzen’s LK13.

M ::= 〈x ‖ α〉 | 〈y ‖ µα.M1 · µ̃x.M2〉 | 〈λx.µα.M ‖ β〉 | 〈µα.M1 ‖ µ̃x.M2〉

Despite each of these constructs being built using commands, they are not ‘com-

putational’ commands in the sense of λµµ̃ reductions. Only the last construct

13In fact, Lengrand reformulates this and defines his own syntax, but this is again later refor-
mulated when λξ is adopted as a basis for the X -calculus. The interested reader can refer to [61,
pp. 24] for Lengrand’s own syntax.



is typed with the cut, the rest are typed (from left-to-right) with the axiom, left

implication introduction and right implication introduction rules.

Lengrand questions the reading of the symmetrical construct 〈µα.M1 ‖ µ̃x.M2〉:

“the input x ofM2 is replaced by the output α ofM1 (or is it the output α ofM1 that

is replaced by the input x of M2?)”. He is able to give an answer to his question

by defining two reduction systems called (respectively) call-by-name and call-by-

value systems. The reduction systems themselves are step-wise cut-elimination

procedures that corresponds to a fine grained explicit substitution mechanism.

In addition to the symmetries exhibited by λµµ̃, Lengrand introduces an ad-

ditional notion to his term calculus, in accordance with Gentzen’s original cut-

elimination procedure. He observes that there are in fact two possible reductions

for the interaction between a function and evaluation context (corresponding to

the two permutations of the cut-elimination rule for implication). These rules cor-

respond to the two versions of the (exp-imp) rule in the X -calculus (see Definition

3.1.4). The important point to note is that one version belongs to a call-by-name

system while the other belongs to a call-by-value.

Summers [83] notices that the λµµ̃ reduction mechanism incorporates only one of

the variants of the cut-elimination rules for implication. According to Lengrand’s

definition of call-by-name and call-by-value, λµµ̃ is therefore biased towards a

call-by-value reduction. Summers proposes the alternative and symmetric for-

mulation of the λµµ̃ rule (→) following a remark of Herbelin [32, 47].

Definition 2.3.24 (Alternative Reduction rules for λµµ̃ [83, 47]) The reduction rules

from Definition 2.3.19 can alternatively be augmented with the following rules.

(→CBV) : 〈λx.µα.c ‖ v · e〉 → 〈v ‖ µ̃x.〈µα.c ‖ e〉〉

(→CBN) : 〈λx.µα.c ‖ v · e〉 → 〈µα.〈v ‖ µ̃x.c〉 ‖ e〉

Notice that (→CBV) gives preference to reducing the argument v of the function

ahead of evaluating the body of the function. In other words, it prefers to provide

any inputs to the function. In contrast, the rule (→CBN) prefers to provide the

output e to the function, before its evaluation.

In [62], Lengrand and Lescanne present an alternative formulation of λξ, using

the strongly normalising cut-elimination procedure of Urban [86]. Urban’s cut-

elimination procedure is the first that jointly satisfies three important criteria: (i)

strong normalisation, (ii) preservation of ‘essential normal forms’ and (iii) cut-

over-cut permutation (necessary to simulate β-reduction).



The λξ calculus restores the ‘cut=redex’ paradigm, eliminates the need for the

stoup and additionally requires only one axiom rule to type variables (which are

of the shape 〈x ‖ α〉). Van Bakel and Lescanne [9] saw this work as a promis-

ing line to follow to obtaining a full Curry-Howard correspondence for Classical

Logic. Together, they designed a more symmetrical syntax which used the hat

notation of Whitehead and Russell [76] to represent binding (i.e. ·̂). Of course,

since this calculus no longer featured the λ binder, it was appropriately renamed;

the X -calculus is studied in Chapter 3.

2.3.7 Reduction Subsystems and Strategies

The pure λ-calculus gives an unrestricted definition of β-reduction (see Definition

2.3.4). This presentation of the calculus is inherently non-deterministic: given a

program not in normal form, there is often a choice of which redex should be

evaluated next. For terminating executions, the confluence of the calculus ensures

the chosen order of these redexes is irrelevant to the outcome of the program.

Plotkin, in [70], defined two subreduction systems for the λ-calculus, namely the

call-by-name (CBN) and call-by-value (CBV) subsystems. A subreduction system

restricts the reduction system of a calculus and redefines the form of reducible

expressions. In the λ-calculus, Plotkin’s subsystems, defined below, impose re-

strictions on the applicability of the β-reduction rule. The restriction requires a

subset of the λ-terms to be readily identifiable; this is achieved by formulating a

modified grammar, given below.

Definition 2.3.25 (λ-calculus Modified Grammar) An equivalent formulation of the

language given in Definition 2.3.1 is given below, making the distinction of a value (de-

noted V) in the λ-calculus.
M,N := (MN) | V

V := x | (λx.M)

Definition 2.3.26 (Call-by-Name to Weak Head Normal Form) The call-by-name sub-

system
cbn
−−→, defined by the following operational rules, imposes the following restrictions

on the applicability of the β-reduction rule for the λ-calculus.

(λx.M)N
cbn
−−→ M{N/x} (2.3)

M
cbn
−−→ N

(MP)
cbn
−−→ (NP)

(2.4)



Definition 2.3.27 (Call-by-Value to Weak Normal Form) The call-by-value
cbv
−−→ sub-

system is defined by the following operational rules.

(λx.M)V
cbv
−−→ M{V/x} (2.5)

M
cbv
−−→ N

(MP)
cbv
−−→ (NP)

(2.6)

M
cbv
−−→ N

(VM)
cbv
−−→ (VN)

(2.7)

The call-by-name system ‘lazily’ applies arguments to abstractions whether or

not those arguments have been normalised first; this has the effect that a substi-

tuted argument may be evaluated more than once if it is copied during the sub-

stitution. In contrast, the ‘eager’ call-by-value system requires that all arguments

are the shape of values V before being applied to an abstraction, i.e., a value may

only be substituted for a formal parameter. This means that in a call-by-name

system, the term λx.((λy.y)(xz)) is reducible, whereas in a call-by-value system

it would be considered to be in normal form.

Despite being defined operationally by Plotkin, there is some disagreement over

the precise definition of the CBN and CBV subsystems. In [79], Sestoft makes the

point that programs of real world programming languages (e.g. Haskell, Scheme

and Standard ML) cannot have free variables and that reductions are not per-

formed under lambda abstractions for reasons of efficiency. This leads to terms

which although being the result of a computation are in a ‘weaker’ kind of normal

formwhen compared to the unrestricted calculus. He argues that in the context of

the λ-calculus, such reductionsmust be performed, for otherwise the ‘addition’ of

Church Numerals would not yield the correct results (“which would disappoint

students”).

A commonly adopted approach is to relax the operational rules and allow re-

duction to continue ‘past’ the weaker normal form—thereby preserving the es-

sential features of the original subsystem. The normal-order and applicative-order

subsystems are (respectively) the counterparts of the call-by-name and call-by-

value subsystems that attempt to fully normalise terms; their essential feature is

to allow reductions under abstractions.

In [78], Selinger gave a categorical semantics to the call-by-name and call-by-



value subsystems of the λµ-calculus, and in this setting he noticed they were

‘dual’ subsystems. This observation is harder to see from the point of view of the

pure λ-calculus—a side effect of its unsymmetrical notions of named input and

anonymous output.

Sequent calculi exhibit these symmetries more naturally, and equivalent notions

of call-by-name and call-by-value have been defined for the corresponding term

calculi. Herbelin describes two confluent strategies for λµµ̃: “giving priority to

(µ) leads to a call-by-value language and giving priority to µ̃ leads to a call-by-

name language: in the critical pair 〈µα.c ‖ µ̃x.c〉 it is a call-by-name evaluation

discipline if the evaluation context binds its argument as it stands to x, it is a call-

by-value evaluation discipline if the evaluation context expects first its argument

to be evaluated before binding it to x, which means yielding its priority to the

term” [48]. Similar definitions of confluent strategies exist in λξ, and therefore

also in the X -calculus.

Although the call-by-name and call-by-value systemswewill study are confluent,

the computations of terms are not necessarily deterministic. Since computers are

inherently deterministic, real-world implementations of programming languages

impose a strategy on reduction in order to make computations deterministic. This

gives a form of consistency: the same program will always run in the same way

under the strategy. For example, viewing a call-by-name λ-calculus as a tree of

subterms, a left-most outermost redex picking traversal of the tree will always

yield the same reduction path. In our implementation of the X -calculus (Chapter

4) we will impose strategies on reduction subsystems to obtain a deterministic

reduction system.

2.4 Rewriting Higher-Order Terms

One of the research goals of this thesis was to study the reduction mechanism

of the X -calculus and its extensions. Our first observation was that if we were

to view such calculi as simple term rewriting systems, several unconventional

features are immediately apparent, the most conspicuous of these being:

1. The presence of binders.

2. Term constructors that bind several variables simultaneously.

3. Side-conditions on rewrite rules.

4. Non-confluent reduction.



5. An unconventional notion of ‘substitution’ (i.e., not ‘term-for-variable’ sub-

stitution).

The presence of binders in term rewriting systems escalates their class from being

first-order to higher-order. We take this definition from van Raamsdonk’s thesis

[73] that defines such higher-order systems “. . . as rewriting systems in which a

binding mechanism for variables is present”.

We will present, in some detail, various approaches different researchers have

taken to define higher-order rewrite systems, focusing on operational aspects.

2.4.1 Higher-Order Terms

In a higher-order calculus, such as the λ-calculus, every variable is either free or

bound. The binding relation that associates the function parameters with its free

occurrences in the function body is usually specified implicitly. In the λ-calculus

for example, the symbol for function abstraction, λ, is always constructed with

a named parameter. Occurrences of variables within the function body are as-

sociated with the binder whose parameter name is the same as that of the vari-

able. This implicity also extends to the variable identity relation that equates two

free variables: two ‘equal’ occurrences of a free variable are represented with the

same name. Using the syntax in this way is intuitive and very readable, and so it

is the preferred method for representing binding structure in terms.

However, implementors of languages with binding constructors must take care

when working with free and bound variables. Implementations will require an

explicit binding and variable identity relation to make the implicit notions ex-

plicit. As we will see, a variable-scoping convention and some form of adminis-

tration to uphold the conventions in place will also be needed. Over-simplifying

the situation, the following example highlights the need for these features.

λy.(λy.yy)

Without a scoping convention in mind, it is impossible to know which y is bound

by which abstraction. Some seemingly ‘obvious’ solutions (which do not work)

might be simply to pick fresh names for each abstraction and/or always read the

terms so that each variable is bound to the closest binder. However, even under

these conventions the example term above can be reached by repeatedly applying



the β-rule to the term (λw.ww)(λxy.xy).

(λw.ww)(λxy.xy) →β ww{(λxy.xy)/w}

= (λxy.xy)(λxy.xy)

→β λy.xy{(λxy.xy)/x}

= λy.(λxy.xy)y

→β λy.((λy.xy){y/x})

= λy.(λy.yy)

Although the starting term of the reduction sequence was unambiguous, the final

result was incorrect because no administration is in place to uphold the scoping

convention during reduction. The parameter names of the binders λx and λy

were duplicated when a copy of the term λxy.xywas made, creating the possibil-

ity of a later conflict.

The solution to the problem in the λ-calculus lies in specifying exactly how one

should evaluate the meta-substitution operation M{N/x}. We remark that this

is often not seen as a problem for mathematicians and many theorists, since the

substitution is usually defined to be ‘capture avoiding’ and is performed instan-

teously; this is a good thing, since the purpose of the λ-calculus is to model func-

tions and so should not be complicated with such mechanical aspects. However,

for anyone wishing to implement these kinds of languages or study the reduc-

tion mechanism in finer detail, the exact substitution operation must be defined

precisely.

A number of methods have been devised and due of the nature of the operation,

they are largely mechanical. The proposals that have been made have striven to-

wards efficiency, which becomes more important as the expression being reduced

becomesmore complicated. Wewill review some of the existing mechanisms that

have been specified to evaluate substitutions and focus specifically on solutions

that ensure the substitutions are ‘capture avoiding’.

2.4.2 Explicit Substitutions

Perhaps the most intuitive mechanism is to consider the substitution as a sepa-

rate syntactic structure, and then define step-wise how the substitution descends

through the term tree. The λx-calculus of Bloo and Rose [18] does exactly this.



Definition 2.4.1 (λx [18]) The set λx is defined as follows:

M,N ::= x | λx.M | MN | M〈x=N〉

A term of the form M〈x=N〉 is called a closure. The definition of free variables is

extended to include,

fv(M〈x=N〉) = fv(M)\{x}∪fv(N)

Definition 2.4.2 (Reduction in λxgc [18]) The following reduction rules on λxgc terms

are identified.

(β′): (λx.M)P → M〈x= P〉

(gc): M〈x= P〉 → M ^ x 6∈fv(M)

(VarI): x〈x= P〉 → P

(VarK): y〈x= P〉 → y ^ y 6=x

(App): (MN) 〈x= P〉 → M〈x= P〉N 〈x= P〉

(Abs): (λy.M) 〈x= P〉 → λy.(M〈x= P〉)

The rule (β′) transforms the function application to the closure construct, which

searchers (in a step-wise manner) for free occurrences of the formal parameter.

The (VarI) rule replaces any free occurrences with the function argument.

With regards to preserving the binding relation (discussed in Section 2.4), the fine

grained rules above make it easier to pinpoint where problematic reduction paths

may arise.

We observe that the only potential conflict is in the rule (Abs), where the subterm

P acquires y as a new binder—causing any free variables named y occurring in P

to be captured. In addition, a variable clash will occur if the parameter names of

the binders ‘λx’ and ‘λy’ are the same—causing the scopes of the two binders to

be exchanged. A replacement rule (Abs′) can be formulated which avoids these

problems.

(Abs′): (λy.M)〈x= P〉 → λz.(M〈y= z〉〈x= P〉) z fresh

An α-conversion is performed on the abstraction whenever a closure is to be

brought into its scope. Since a fresh binder name is used, there is no possibil-

ity that the variables of P will share the same name, and, there can be no name

clash between the abstraction and the closure.



Although correct, this is an expensive operation to perform and will most likely

be unnecessary in the majority of cases. The situation can be improved slightly

if one allows the use of side-conditions on rules, so that α-conversions are done

only when there will be a variable capture or clash, i.e.,

(Abs′′): (λy.M)〈x= P〉 → λz.(M〈y= z〉〈x= P〉) ^ y ∈ fv(P) ∨ y=x

(Abs′′′): (λy.M)〈x= P〉 → λy.(M〈x= P〉) ^ y 6∈ fv(P) ∧ y 6=x

However, we remark that the true cost of the reduction is now hidden, and de-

pendant on the implementation of the free-variable side conditions. Many re-

searchers choose to simply ignore the cost of side-conditions in benchmarks, but

as we will see later the cost of computing this set increases as the size of the sub-

term increases.

2.4.3 De Bruijn Indices

A notable problem of using names to represent the binding and variable identity

relations is in comparing terms for equality. We can intuitively recognise that the

two lambda-terms λx.x and λy.y are equal (i.e., an argument applied to either

function will yield the same result) because we realise the names of the binders

are irrelevant; the important feature is the term structure that has been encoded

using the names. A machine testing the equality of these two terms would not

consider them equal on lexical syntax alone. Some mapping between the implied

structure of the two terms would need to be involved in the equality check.

De Bruijn’s introduced a ‘nameless’ calculus, Cλξφ, in [23]; nowadays it is re-

ferred to simply as ‘de Bruijn Indices’. The calculus uses natural numbers rather

than names to encode term structure and has the advantage that terms are unique

within a particular α-conversion class. For example, both λx.x and λy.y would

be represented by the same term (i.e., λ1). The basic intuition behind the syntax

is that the natural number is an explicit reference to its binder; the magnitude of

the number is a count of the lambda binders traversed upwards through the term

syntax tree to the binder. The language of Cλξφ is presented below.

Definition 2.4.3 (de Bruijn Terms, Cλξφ [23]) We useN to represent the set of pos-

itive natural numbers and define the set Cλξφ as,

M,N ::= N | λM | MN

We will use a, b, . . . to range over the set Cλξφ, and i, j,m, n, . . . to range overN.



The substitution mechanism, that corresponds to β-reduction in the λ-calculus, is

specified by the following rule.

(β′′): (λa)b → a{1←b}

The right-hand side of the rule utilises a meta-operation that replaces any indices

in a referring to the λ with a copy of the term structure specified by b. Each such

reference in a is an index whose value corresponds to the number of binders on

the path from the λ to itself—the point being that indices, with different numbers

may refer to the same λ. For example, in the term λ1(λ2) (corresponding to

λx.x(λy.x)), both indices although different in value, refer to the outermost λ.

The reduction relation is compatible. Therefore, to compute the meta-operation

{i←b} over the term a, the magnitude of any indices in the function’s body a that

point to the enclosing context will need to be decremented, since a binder was de-

stroyed in the contraction of the redex. There may also be references within b to

the surrounding context, and since copies of b substituted into amay acquire any

number of new binders, those references must also be updated to preserve the

structure of the original argument—this operation is known as lifting. The eval-

uation of a{i←b} is therefore split into three parts: (i) locate the references to the

λ-abstraction in the function body, (ii) update the function body to take account

of the contracted redex (iii) substitute the function argument into the relevant

locations, lifting where relevant. Parts (i) and (ii) are computed as follows.

(a1a2){i←b} = (a1{i←b})(a2{i←b})

(λa){i←b} = λ(a{(i+1)←b})

n{i←b} =






n−1 if n>i

↑i0(b) if n=i

n if n<i

The rule (β′′) works as follows. As the construct {1←b} traverses the term struc-

ture of a, a counter (starting from 1) records the number of binders that have been

traversed. When an index is encountered, its value will be less than the counter

if it refers to a binder within the function body, and greater than the counter if

it points to a binder to the surrounding context. Indices equal to the counter are

references to the λ binder of the redex (i.e., the binder being sought). The lift-

ing operation ↑ij(b) ensures any indices in copy of b that refer to a binder in the

surrounding context are updated to account for any new binders acquired. The



lifting operation is defined below.

↑ij(a1 a2) = ↑ij(a1) ↑
i
j(a2)

↑ij(λa) = λ(↑ij+1(a))

↑ij(n) =

{
i i<j

i+n−1 otherwise

Example 2.4.4 (Example Reduction using De Bruijn Indices) The mechanism for

simulating substitutions performed by the evaluation of {i←b} is carried out instanta-

neously. The following example reduction of the term λy.(λxy.xy)y, which is represented

as λ(λλ21)1 in de Bruijn indices notation, is shown in full detail below.

λ(λλ21)1 →β′′ λ((λ21){1←1})

= λ(λ((21){2←1}))

= λ(λ(2{2←1})(1{2←1}))

= λ(λ(2{2←1})(1))

= λ(λ(↑20(1))(1))

= λ(λ(21))

In λ-calculus notation, the result of the computation is the λ-term λy.(λz.yz).

The example shown above is easy to understand, but as terms get larger the com-

plexity quickly increases. The use of de Bruijn indices has its advantages and

disadvantages, which we summarise below.

Advantages of Using de Bruijn Indices

Most notably, all α-equivalent terms are represented by the same syntax, making

a static equality check of two terms trivial. Although during the reduction of a

term, the binding relation (encoded by the indices) will still to be administered,

the use of de Bruijn indices effectively reduces this task to arithmetic operations

which are performed very efficiently by machines. In comparison, generating

fresh variable names as would be required in a named calculus is expensive.

De Bruijn indices are particularly well suited to the substitution of variables by

closed expressions (e.g., used in inlining of functions). In these cases, the lifting

operation is not needed at all, since there will be no references to the enclosing

context.



Each λ effectively declares a new ‘scope’. Since each index is essentially a count

of the enclosing scopes, an implementation can be achieved very intuitively using

stacks. An interpreter can use an ‘environment stack’ besides the usual execution

stack to associate the value with each variable in the current scope. A variable’s

value is found by simply popping the stack the number of times indicated by the

index. Garbage collection of environments is also straightforward: when a new

scope is entered the value for the variable is pushed onto the stack, and when the

scope is exited, the out-of-scope variables are popped.

Disadvantages of Using de Bruijn Indices

Implementations of the λ-calculus using de Bruijn indices are notoriously diffi-

cult to debug due to unhelpful compiler error messages. While a language of

numbers is easily parsable by machines, it is impractical for humans to compre-

hend. Notice at the end of the Example 2.4.4, we chose to represent the outer

variable y with the same name before and after the contraction of the redex; a

computer would not easily make such a choice. Various researches however have

devised more general systems which allow a relation between names and indices

to be maintained during a reduction (see for example [66, 81]).

It is often stated that by employing de Bruijn indices as a method of implementa-

tion, α-conversions are not required and variable capture/clash is automatically

avoided. What is not often stated is that these properties do not come for free. In

a named calculus, α-conversions are performed administratively to uphold the

binding relation. Using de Bruijn indices, this administrative work is still done,

except it takes the form of the arithmetic operations previously discussed—these

operations essentially mimic the α-conversion steps. When the function argu-

ment contains many indices referring to binders in the enclosing context, it is

possible that many more administrative steps may be required using de Bruijn’s

notation. Consider an example in a named calculus where the free variables in

the argument of the redex have names that will not cause any variable capture or

clash. Using de Bruijn indices the lifting will need to be performed regardless.

More importantly, parallel β-reduction is also problematic for non-closed terms,

since one needs to take into account indices within the redex that refers to the

enclosing context.



2.4.4 Wadsworth’s λ-graphs

Wadsworth was the first to use graphs as a means of implementation for the λ-

calculus [92]. Graphs structures allow for the sharing of common sub-expressions

which naturally leads to a space (memory) efficient implementation, and time

efficiency where parallel reductions are permitted.

Instances of Wadsworth’s λ-graphs are built from a universe, U, of objects called

nodes, of which there are three types: those for application (γ), abstraction (λ)

and identifiers (τ). The type is used to associate a finite number of predicates,

selector functions and data components with each node. These associations are

summarized in the table below.

Object Type Predicate Selectors Data Components
U→U Name Nature

Application γ Isγ rator, rand – –
Abstraction λ Isλ body bv identifier
Identifier τ Isτ – var identifier

Definition 2.4.5 (λ-graph [92]) A well formed λ-graph is specified by the quintuple

〈N, s1, s2, s3, z〉 where,

• N is a finite set of nodes in U; we will use numbers to represent elements of U and

for illustrative purposes, we will sometimes annotate elements of U with node types

{γ, λ, τ}. Such annotations will always explicitly specify the data-components of

each node (e.g., the annotated node objects for application, abstraction and identi-

fiers may be written as 1:γ, 2:λx and 3:τx respectively).

• s1 and s2 are functions from N to N defined as the (ope)rator and (ope)rand selectors

for a node if the predicate Isγ holds.

• s3 : N→N is defined as the ‘body’ selector for all nodes in N if the predicate Isλ

holds.

• z ∈ N is the unique root node of the graph.

Example 2.4.6 (λ-graph Structure) The λ-graph, G=〈N, s1, s2, s3, z〉 for the λ-term

(λw.ww)(λxy.xy) is:

N = {1:γ, 2:λw, 3:λx, 4:γ, 5:λy, 6:τw, 7:γ, 8:τx, 9:τy}

s1 = {(1, 2), (4, 6), (7, 8)}

s2 = {(1, 3), (4, 6), (7, 9)}

s3 = {(2, 4), (3, 5), (5, 7)}

z = 1



In diagrammatic form, directed edges are used to represent the selector functions and

circles are used to represent node objects; a square node is used to identify the unique root

node z.

γ 1

λw2 λx 3

γ 4 λy 5

w 6 γ 7

x 8 y 9

An interesting feature of Wadsworth’s graphs is that the binding relation is not

reflected in the structure of the graph. Notice that in the definition of λ-graphs

(Definition 2.4.5), there is no association between the identifier nodes and the

abstraction nodes. To resolve this, Wadsworth defines a series of functions to

compute the binding relation based on the graph’s structure and on the data-

components of the graph nodes.

Definition 2.4.7 (Path [92]) A path is a list of n≥0 selectors. If p=[s1, s2, . . . , sn] is a

path of length>0, then the first selector s1 and the list [s2, . . . , sn] are called the head and

tail of p.

If p′=[s′1, . . . , s
′
m] is a second path, then p • p′ denotes the path [s1, s2, . . . , sn, s

′
1, . . . , s

′
m].

If p and q are two paths, then p is a stem of q if there is a path p′ such that (p • p′)=q.

The application of a path p to a node object o is written p(o) whose result is the composi-

tion of selectors applied to the argument node, i.e., the node object sm(. . . (s2(s1(o))))

Definition 2.4.8 (Binding Relation [92]) Given a graph 〈N, s1, s2, s3, z〉, we first de-

fine the following partitions over the finite set of graph nodes N:

Application Nodes, A = {n ∈ N | Isγ(n)}

Abstraction Nodes, L = {n ∈ N | Isλ(n)}

Identity Nodes, T = {n ∈ N | Isτ(n)}

Following Wadsworth’s original definitions, some auxiliary functions need to be given

before we can define the binding relation. In the following functions defined using set



comprehensions, we use the variables p, q to denote paths, n to denote nodes and G to

denote λ-graphs.

NodesOn(p, n,G) = {n′ ∈ N | q(n)=n′ for some stem q of p}

BvsOn(p, n,G) = {bv(l) | l ∈ (L ∩NodesOn(p, n,G))}

FreeOccs(x, n,G) = {t ∈ T | var(t) 6∈ BvsOn(p, n,G) for some p with p(n)=t}

FreeNodes(n,G) = {t ∈ FreeOccs(var(t), n,G)}

FreeVars(n,G) = {var(t) | some t ∈ FreeNodes(n,G)}

Now we can define the binding relation over the λ-graph G=〈A ∪ L ∪ T, s1, s2, s3, z〉.

BinderRel(G) = {(l, t) | l ∈ L ∧ t ∈ FreeOccs(bv(l), body(l),G)}

∪ {(⋆, t) | t ∈ FreeOccs(z,G)}

The binding relation is a set of tuples where the elements of each tuple refer to a λ node and

an identity node respectively. Each globally free variable node t in the graph is assigned a

unique binder written ⋆.

We recall that the binding relation must always be maintained by some admin-

istrative work during reduction. Wadsworth’s approach is to restrict reduction

to operate on only graphs which are of a special shape—he calls these graphs

R-admissible graphs.

Definition 2.4.9 (Admissible and R-admissible Graphs [92]) A λ-graph is admis-

sible if it is acyclic and each terminal node has a unique binder. An R-admissible graph

is an admissible graph that has a single pointer to the rator node (the abstraction) of a

β-redex.

Admissibility defines a strong ownership property between the abstraction nodes

and the identifier nodes they bind over, while the R-admissibility property re-

stricts the sharing that can take place in the graph. If the rator node of a redex

is shared, a copy of the subgraph at the rator node must be made before reduc-

tion can proceed (thus, turning an admissible graph into an R-admissible one).

The cost of computing this operation can be lowered by identifying regions of

the subgraph which do not need to be copied. To that end, Wadsworth defines

directly abstractable subgraphs.

Definition 2.4.10 (Directly Abstractable) Given a graph G=〈N, s1, s2, s3, z〉, a sub-

graph of G is a graph G′=〈N, s1, s2, s3, z
′〉 where p(z)=z′ for some path p. The subgraph



G′ is said to be directly abstractable from a graph G iff BvsOn(p, z,G)∩FreeVars(z′,G)

is empty for all paths p, with p(z)=z′. Any subgraph of z′ is said to be abstractable from

G′.

The intuition behind this operation is to identify the regions of the graph that do

not depend on the function’s argument. Such regions can essentially be ‘taken

out’ of the function body (by use of an outer λ-type node for example), thus

sharing of these regions can remain intact.

Example 2.4.11 The λ-graph for (λx.(ab)x)(λy.(λv.v)(cy)) is shown below. The sub-

graph at node 6 is directly abstractable from node 2, while subgraphs at nodes 8 and 13

are directly abstractable from node 3.

γ 1
λx2

γ 4

x 7γ 6

b 11a 10

λy 3

γ 5

λv8

v 12

γ 9

c 13 y 14

To obtain an R-admissible graph from a ‘non’-R-admissible graph, a Copy proce-

dure is applied to the rator node of a redex. This copies out regions of the graph

that are not abstractable from the rator of the redex.

Definition 2.4.12 (Copy Algorithm [92]) Let G=〈N, s1, s2, s3, z〉 be an admissible

graph with a redex-node r, involving the abstraction l=s1(r). The algorithm given be-

low describes the steps that copy the parts of the redex that are not directly abstractable,

building an R-admissible copy of r.

1. Construct the set C which identifies the graph nodes that need to be copied.

S = the set of sub-nodes of l.

C = {l} ∪ {n ∈ S | n not abstractable from l}

2. Build a set C′ of copies (identical type and data components but indexed differ-

ently) of nodes in C, and define a function h that maps each node of C to its copy in

C′; the inverse of h will be written h−1.



3. Define functions f : N→((N−C)∪C′) and g : (N∪C′)→N where,

f (n) =

{
h(n) if n ∈ C

n otherwise

g(n) =

{
h−1(n) if n ∈ C′

n otherwise

4. Define G′=Copy(r,G)=〈N ∪ C′, s′1, s
′
2, s
′
3, z〉 as the R-admissible copy of G where,

for all i ∈ {2, 3}, s′i(r) = si(r)

for all i ∈ {1, 2, 3}, s′i(n) =

{
f (si(g(n))) if n ∈ C

′

si(n) if n ∈ N ∧ n 6= r

s′1(r) = f (l)

With these definitions in place, the capture-free contraction operation on λ-graphs

can be defined.

Definition 2.4.13 (Contraction of Redex Nodes [92]) For a redex node r of an ad-

missible graph G=〈N, s1, s2, s3, z〉, the contraction of a redex is computed by the follow-

ing steps.

1. Form an R-admissible graph, G′=Copy(r,G)=〈N′, s′1, s
′
2, s
′
3, z〉.

2. Ensure the bound variables of all λ-nodes are pairwise distinct and all different

from the free variables of the graph; this can be achieved by the following steps.

(a) Let v1, v2, . . . , vn be the λ-nodes of r, and let v′1, v
′
2, . . . , v

′
n be distinct vari-

ables not occurring in the graph.

(b) For j = 1, 2, . . . , n, change bv(vj) to v
′
j.

(c) For each terminal node with b(x) 6= ⋆, change its var-component to the bv of

its binder.

3. Identify the key components of the redex.

the function, f=s′1(r)

the formal parameter, v=bv( f )

the function body, m=s′3( f )

the function argument, a=s′2(r)

4. Construct the following two sets. (The set V corresponds to those identity nodes



that are bound to the abstraction).

F = the set of sub-nodes of f .

V = {t ∈ F | Isτ(t) ∧ var(t)=v}

5. Adjust all pointers to r so they point to m.

6. Adjust all pointers to nodes in V so they point to a.

7. If r was the root of G, and Isτ(m), mark a as the new root; otherwise mark m as the

new root.

We will illustrate this process through an example reduction.

Example 2.4.14 (Reduction using λ-graphs) The λ-term (λxy.xy)(λxy.xy) is rep-

resented by the following λ-graph.

γ 1

λx 2

λy 3

γ 4

x 5 y 6

G =






N = {1, 2, 3, 4, 5, 6}

s1 = {(1, 2), (4, 5)}

s2 = {(1, 2), (4, 6)}

s3 = {(2, 3), (3, 4)}

z = 1

In the following, we will consider the normalisation of the graph G above according the

reduction algorithm outlined in Definition 2.4.13. Observe that the redex r=1 is not an

R-admissible graph. We therefore build the R-admissible graph G′=Copy(r,G) by copy-

ing out the nodes which are not abstractable from r, and also make the bound variables

pairwise distinct (i.e., ensure there are no two abstraction nodes in the graph whose bv

data components are equal).

γ 1

λu12 λx2

λv13 λy 3

γ 14 γ 4

u 15 v 16 x 5 y 6

G′ =






N′ = {1, 2, 3, 4, 5, 6} ∪ {12, 13, 14, 15, 16}

s′1 = {(1, 2), (4, 5), (14, 15)}

s′2 = {(1, 2), (4, 6), (14, 16)}

s′3 = {(2, 3), (3, 4), (12, 13), (13, 14)}

z′ = 1

The graph G′ is R-admissible, and so we may now identify the components of the redex



and compute the set of identity nodes V bound to the abstraction.

f=12, v=u, m=13, a=2

F = {12, 13, 14, 15, 16}

V = {15}

Follow the steps to contract the redex r=1, reassigning the root node of the graph appro-

priately, we obtain a λ-graph G′′ corresponding to the λ-term λv.((λxy.xy)v).

λv 13

γ 14

λx2 v 16

λy 3

γ 4

x 5 y 6

G′′ =






N′′ = {2, 3, 4, 5, 6, 13, 14, 16}

s′′1 = {(14, 2), (4, 5)}

s′′2 = {(14, 16), (4, 6)}

s′′3 = {(13, 14), (2, 3), (3, 4)}

z′′ = 13

This graph is also R-admissible and all bound variables are unique, so we may contract

the final redex r=14, yielding the graph G′′′ corresponding to the λ-term (λvy.vy).

f=2, v=x, m=3, a=16

F = {2, 3, 4, 5, 6}

V = {5}

λv 13

λy 3

γ 4

v 6 y 16

G′′′ =






N′′′ = {3, 4, 6, 13, 16}

s′′′1 = {(4, 6)}

s′′′2 = {(4, 16)}

s′′′3 = {(13, 3), (3, 4)}

z′′′ = 13

WhileWadsworth was interested specifically in the computations concerned with

the λ-calculus, other researchers in the field of term-rewriting noticed they could

adapt the technique of λ-graphs to the be used in rewriting. Barendregt et al.

[14] introduced a formalism that allowed one to implement first-order rewrite

systems using a special kind of graph called ‘term graphs’. We will study these

kinds of graphs in the following section.



2.4.5 Term Graph Rewriting

Term graph rewriting was proposed as an extension of term rewriting to imple-

ment functional programming languages with some degree of efficiency [80, 14,

15]. The general idea is to consider transformations rules, known as productions,

that act on graphs. A production is of the form L→R, where L and R are the left-

and right-hand sides of a map from the elements of a graph L to the elements

of another graph R. A production defines precisely which graph elements must

be preserved, created and destroyed during the application of a particular graph

transformation. Since the terms are represented as graphs rather than trees, com-

mon subexpressions can be shared—leading to memory efficient structures. The

reduction system is optimised since shared expressions need only be evaluated

once.

We will recall here the basic notions and terminology.

Definition 2.4.15 (Term Graph Rewrite System) A Term Graph Rewrite System or

‘TGRS’ is a pair 〈Σ, R〉, where Σ is a signature and R is a set of productions (or reduc-

tion rules) that transform term graph objects.

Definition 2.4.16 (Signature , Σ) The signature consists of:

• A countably infinite set of variables, V .

• A non-empty set F of function symbols, where each function symbol is equipped

with an arity specifying the number of arguments it can take.

In this thesis, the term graph rewrite systems we will study operate on expres-

sions represented as singly rooted ordered directed acyclic graphs. Such term

graphs are defined below.

Definition 2.4.17 (Term Graph) A rooted labelled graph over the signature Σ is a quadru-

ple 〈X, lab, succ, r〉:

• X ⊂ IN is a set of nodes.

• lab is a function of type X→Σ, mapping each node in X to a symbol in Σ.

• succ is a function of type X→[X], specifying an ordered list of arguments for each

node in X. The ith argument of a node n ∈ X with arity k is denoted succ(n)i ,

where 0≤i<k.

• r is the unique root of the graph.



We do not require that every node is reachable from the root of the graph.

Below, we define subgraphs for term graphs which are analogous to subterms for

terms.

Definition 2.4.18 (Path) For a graph 〈X, lab, succ, r〉, an annotated path of length m

(with m≥0) is a sequence [n0, i1, n1, . . . , im, nm] of nodes interleaved with integers, such

that for all 0≤j<(m−1), we have succ(nj)ij=nj+1.

A path of length m from n0 to nm is a sequence of nodes [n0, . . . , nm], such that there

exists an annotated path n0, i1, . . . , im, nm.

Definition 2.4.19 (Subgraph) Given an term graph g=〈X, lab, succ, n〉, a subgraph

g|n of the graph g is the term graph g=〈X′, lab′, succ′, n〉 where

X′=
{
n′ ∈ X | there is a path from n to n′

}

Every subgraph of a term graph is term graph.

With the above structures, we can define the term graph representation of a pro-

duction called a graph rewrite rule.

Definition 2.4.20 (Open Graph) An open graph is the triple 〈X, lab, succ〉 like a

term graph, except no root is specified and the functions lab and succ are only required

to be partial functions on X, with the same domain. A node for which lab and succ are

undefined is referred to as an open node or 0-ary metavariable. When we write open

graphs, we will specify a set of infinite symbols over which open nodes range. We say a

graph is closed when it contains no open nodes.

Definition 2.4.21 (Graph Rewrite Rule) The graph representation of a production is

a bi-rooted graph called a graph rewrite rule, and is denoted by the triple 〈g, l, r〉, where

g is an open graph, and l and r are nodes of g called the left root and right root of the

rule.

The left- and right- hand sides of the rewrite rule are subgraphs, denoted g|l and g|r.

Next we define a structure-preserving map known as a homomorphism. The map

will be used to maintain a relation between the nodes of a graph rewrite rule and

the nodes of a term graph. A homomorphism combined with a graph rewrite

rule and a term graph define a redex.



Definition 2.4.22 (Homomorphism) A homomorphism from a term graph 〈X, lab, succ, r〉

to a term graph 〈X′, lab′, succ′, r′〉 is a map, ∂ : X→X′, where for all nodes in the set

{n ∈ X | there is a path from r to n},

lab′(x(n)) = lab(n)

succ′(x(n)) = x(succ(n))

We extend the definition to open labelled graphs by requiring the conditions specified

above to hold only for nodes that are not open nodes.

Definition 2.4.23 (Redex) A redex in a term graph g0 is a pair 〈R, x〉, where R is a

graph rewrite rule 〈g, l, r〉 and x is a homomorphism from (g|l) to g0. The homomor-

phism x is called an occurrence of R in g0.

With these definitions in mind, we now look at the steps performed during the

graph transformation phases.

Definition 2.4.24 (Term Graph Substitution) Given a term graph g=〈X, lab, succ, r〉,

and two nodes a ∈ X and b ∈ X, the substitution operation g[a:=b] is a term graph

〈Xs, labs, succs, rs〉 defined as follows.

Xs = X

labs(m) = lab(m)

succs(m)i =

{
b if succ(m)i = a

succ(m)i otherwise

rs =

{
b if r = a

r otherwise

Definition 2.4.25 (Graph Rewrite Step) Let 〈〈g, l, r〉, x : (g|l)→g0〉 be a redex in the

term graph g0=〈X0, lab0, succ0, r0〉. A graph rewrite step is an application of a graph

rewrite rule to a term graph, where there is a unique homomorphism x from the nodes of

the graph (g|l) to the nodes of the graph g0.

A rewrite step transforms a term graph in three stages, called building, redirection and

garbage collection; these stages construct the term graphs g1, g2 and g3 respectively.



build : An isomorphic copy of the nodes reachable from (g|r) but not from (g|l) are added

to g0. This set of nodes, C=X(g|r)−X(g|l), is referred to as the ‘copied nodes’. Si-

multaneously, the homomorphism x′ is defined as an extension of x that addition-

ally maps each node reachable from (g|r) but not from (g|l) to the copied nodes in

Xg1 .

We now define g1=〈Xg1 , labg1 , succg1 , rg1〉 where,

Xg1 = Xg0 ∪ C

labg1(m) =

{
labg0(m) if m ∈ Xg0
labg(m) otherwise

succg1(m)i =






succg0(m)i if m∈Xg0
succg(m)i if (m ∈ C) ∧ (succg(m)i ∈ C)

x(succg(m)i) otherwise

rg1 = rg0

redirect : All edges in g0 pointing to x(l) are replaced by edges pointing to x(r). More

formally, g2 = g1[x(l):=x(r)].

garbage collect : All nodes not accessible from the root of g2 are removed. The term

graph g3 = 〈Xg3 , labg3 , succg3 , rg3〉 is defined as follows.

Xg3 =
{
n ∈ Xg2 |there is a path from rg2 to n

}

labg3(m) = labg2(m)

succg3(m)i = succg2(m)i

rg3 = rg2

2.4.6 Related Work

The term graph rewriting technique presented in the previous section expresses

how to implement first-order term rewriting languages using directed acyclic

graphs. As previously noted, first-order languages are unsuitable for implement-

ing higher-order languages since, of course, they cannot express higher-order lan-

guage features such as binding. In studying and implementing languages with

such features, two approaches have been well studied:

1. The encoding of the binding relation in the data portions of nodes (e.g. de



Bruijn notation, Wadsworth’s λ-graphs, conditional and copy term rewrite

systems etc. )

2. Moving to a higher-order formalism that has an explicit representation of

binding structures (e.g. Klop’s combinatory reduction system [60], Khasi-

dashvili’s expression reduction systems [42], Kahl’s second-order term graphs

[52, 54] etc.).

Each of the works in the second approach extend the first-order systems by some

means of variable-binding and term for variable substitution mechanisms. The

substitution mechanisms are of the shape N{M/x}, whereM andN aremetavari-

ables, and x is a bound variable (c.f. the variables used in λ-calculus notation).

As we will see in Chapter 3, this does not correspond to the ‘substitution-like’

mechanism of computation present in the X -calculus. As a result, in Chapter 4,

we present a formalism that combines notions from both approaches. We will

however review some of the features of Kahl’s formalism, since it is a nice sys-

tem to make comparisons with—in particular we will look at the binding structure

encoded by Kahl’s second-order graphs.

Kahl’s Second-Order Term Graphs

Combinatory Reduction Systems (CRS) due to Klop [60] are a generalisation of

first-order term rewrite systemswith an explicit mechanism for bindingmetavari-

ables. Kahl observes that the term graph rewrite systems in literature implement

only conventional TRS’, and so he formalised an implementation of CRS using

term graphs with bound variables [52, 54]. The second-order term graph rewrite

system he develops caters for cycles and provides a solution to the problem of

variable capture.

A second-order term graph in Kahl’s system is defined over an alphabet (c.f., a

signature).

Definition 2.4.26 (Term Graph Alphabet [53]) A second-order term graph is built

from the alphabet (N , arity, C,B,M), with:

N the set of node labels, partitioned into disjoint sets C,B,M

arity the arity function

C the set of labels for ‘constant constructors’ (c.f. function symbols)

B the set of labels for bindable variables

M the set of labels for metavariables



A key feature of Kahl’s formalism, as opposed toWadsworth’s and de Bruijn’s for

example, is the distinction between the structure and content parts of terms. The

variable binding and variable identity relations are made explicit in the definition

of term graphs; an idea first attributed to Bourbaki [21] who investigated closed

λ-terms14. Kahl extends this work additionally including a primitive variable

identity relation that relates unbound variables in a second-order graph setting.

Of course, by making the relation explicit in the structure of the graph, one dis-

penses with the need for variable names (since the purpose of the names was to

imply these relationships).

Definition 2.4.27 (Term Graph [53]) A term graph is the tuple (V , label, succ,D, B,W),

with:

V ⊂ IN the finite node set

label : V → N the node labelling function

succ : V → [V ] the ordered successor function

D : V ↔ V the set of edges (for convenience, but implied from the successor function)

B : V [→ V the binding function

W : V [→ V the variable identity

Roots in term graphs are considered with respect to D. The symbols ↔, → and [→ to

represent homsets, total functions and partial functions respectively.

Example 2.4.28 (λ-calculus structures) The graph alphabet for λ-calculus is given be-

low.
N≥ = {@, λ, x,V0,V1}

arityλ = {(@, 2), (λ, 1)}

C≥ = {@, λ}

B≥ = {x}

M≥ = {V0,V1}

The λ-term (λx.λy.xy)(λx.λy.xy) is represented by the following second-order term

graph shown below, where solid, dashed and dotted lines represent the sets D, B and W

respectively and reflexive relations are omitted.

14In fact, Bourbaki only makes the variable binding relation explicit, since he studies closed
terms.



@1

λ2

λ3

@4

x5 x6

V = {1, 2, 3, 4, 5, 6}

label = {(1, @), (2, λ), (3, λ), (4, @), (5, x), (6, x)}

succ = {(1, [2, 2]), (2, [3]), (3, [4]), (4, [5, 6]), (5, [ ]), (6, [ ])}

D = {(1, 2), (2, 3), (3, 4), (4, 5), (4, 6)}

B = {(5, 2), (6, 3)}

W = {(5, 5), (6, 6)}

Kahl’s formalism fully implements Klop’s CRS, and so when used to implement

the λ-calculus, the usual meta-substitution operation can be dispensed with. Re-

call that the β-substitution rule is:

(β) : (λx.M)N → N{M/x}

When the rule is mapped and applied to a term, the meta-substitution operation

expresses that the occurrences of the image of x in the image of M are replaced

with the image of N. In the second-order syntax of CRS’s, there is no need for

this metasubstitution operation as the rule can be written directly as:

(β2) : (λx.V1(x))V0 → V1(V0)

Notice that the metavariable V1 has direct access to occurrences of the bound

variable x in its body. As a term graph in Kahl’s system, the (β2)-rule is specified

as:

@10 V1
15

λ11 V0
14 V0

16

V1
12

x13

V = {10, 11, 12, 13, 14, 15, 16}

label =

{
(10,@), (11,λ), (12,V1), (13, x), (14,V0),

(15,V1), (16,V0)

}

succ =

{
(10, [11, 14]), (11, [12]), (12, [13]),

(13, [ ]), (15, [16]), (16, [ ])

}

D = {(10, 11), (11, 12), (12, 13), (10, 14), (15, 16)}

B = {(13, 11)}

W =

{
(12, 15), (14, 14), (14, 16), (13, 13), (12, 12),

(15, 15), (16, 16)

}

The rewriting steps of Kahl’s formalism are very involved, and so we will refer

the reader to his original definitions [53, 52, 54]. Essentially the graph rewriting

technique works by mapping each metavariable in the left-hand side of a rule

to portions of the term graphs called encapsulation skeletons. These encapsulation

skeletons are copied out in exactly the same way that Wadsworth copies the parts



of a λ-graphs that are not ‘directly abstractable’, thus maintaining the variable

identity and variable binder relations.

The main observation of this section is that in all of these formalisms, during the

reduction of a term, the binder relation needs to be maintained by some means.

Usually, the capture avoiding substitution mechanism is computed to completion

(i.e., eagerly) in an application of a rewrite rule. Explicit substitutions are an

exception to this, since the propagation of the closure through the term structure

depends on the evaluation strategy adopted.

2.5 Chapter Summary

In this chapter we have studied structural proof theory, computability theory and

higher order rewriting. We summarise the important points made in these sec-

tions below.

Structural Proof Theory : Classical Logics are best implemented by sequent cal-

culi, since these frameworks preserve the natural symmetries of the logic

and natural permutations of proofs. The cut rule can be used to build con-

cise proofs and is admissible in the logical system. The cut-elimination pro-

cedure is also naturally non-confluent and non-deterministic.

Logical connectives can be defined in sequent calculi in a proof-theoretic

sense and/or a model-theoretic sense. For classical logics, entirely mechani-

cal procedures exist that build sequent calculus rules from two-valued truth

functions (represented as truth-tables). A good pair of logical introduction

rules for a connective (in the proof-theoretic sense) has the property that

whenever a logical connective is introduced as the cut-formula, that cut is

eliminable from the proof. Various researchers have used (brute-force) res-

olution techniques to build the key logical cut-elimination rule. Since the per-

mutability of proofs is not semantically important, obtaining more than one

permutation of the logical cut-elimination rule is not important even though

several may exist.

Computability Theory : Formal term calculi that more closely model the mech-

anisms of abstract machines have been incrementally developed. A strong

relationship called the “Curry-Howard Isomorphism” exists between struc-

tural proof theory and computability theory (formulas of minimal implica-

tive logic can be seen as types for λ-calculus terms).



Various researchers sought to extend this correspondence to a classical logic

and sequent calculus setting. It has been found that the left and right intro-

duction rules of a sequent calculus are interpreted as evaluation contexts

and terms respectively, while cut-elimination corresponds to a notion of

symmetric substitution.

The logical cut reduction rule for a connective represents the key computa-

tional rule for the term representation of the connective. (e.g. the logical cut

reduction rule for implication corresponds to the plugging of an evaluation

context with a term).

Lengrand has shown that the different permutations of the logical cut re-

duction rule are important: each permutation belongs to a different reduc-

tion subsystem. For the case of logical implication, there are two such per-

mutations: one rule naturally belongs to a call-by-name subsystem, while

the other belongs to a call-by-value system.

Higher Order Rewriting : Higher order languages feature notions of variable bind-

ing and variable identity that respectively relate a formal parameter to oc-

currences in the subterm and equate free variables. Such binding constructs

give extra structure to a term which must be maintained during reduction

(for reasons of correctness). Typically, the higher order languages also in-

troduce a notion of term for variable substitution.

Various implementation techniques have been proposed that perform ‘cap-

ture avoiding substitutions’ (e.g. de Bruijn notation, Wadsworth’s λ-graphs,

Kahl’s second-order term graphs, explicit substitutions). However, the key

computational mechanism of the X -calculus is not a term for variable sub-

stitution; rather it is a term for ‘named-term’ substitution, thus ruling out

the direct applicability of many existing implementation techniques. We

will introduce a new implementation technique in Section ?? that combines

some features of those studied in the rewriting section.



Chapter 3

The (untyped) X -Calculus

This motivational chapter studies the calculus of circuits X (pronounced “ex”),

as first presented in [62] and studied in detail in [9]. We will present the formal

definitions, and relate the syntax and reduction behaviour to the well-understood

notions of computation studied in the background chapter (Section 2.3).

Although non-confluent, wewill identify and study two confluent reduction sub-

systems that correspond to notions of call-by-name and call-by-value systems,

and compare the non-confluence across the two systems. We will introduce gen-

eralise three aspects of the reduction system, leading to a more optimal reduction

system.

3.1 Syntax and Reduction

In this section we will give the definition of the X -calculus that was proven to

be a fine-grained implementation model for various well-known calculi [9]. It

features two separate categories of ‘names’, similar to the channel names used

in the π-calculus; in X a name is a kind of connector: either a plug or a socket,

which corresponds respectively to notions of output and input channels. In the

following, we will us the words plugs and outputs interchangeably. Similarly, we

will also use the symmetric notions of sockets inputs interchangeably.

Van Bakel, Lengrand and Lescanne [9] study the computational context of Clas-

sical Logic framed in a Sequent Calculus setting. They reformulate Urban’s proof

annotations (given by the syntax below), erase the types then study the corre-

sponding calculus in an untyped setting.
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Definition 3.1.1 (X -Calculus Syntax) The circuits of the X -calculus are defined by

the following grammar, where x, y range over the infinite set of sockets, and α, β over

plugs.

P,Q ::= 〈x·α〉 | ŷPβ̂·α | Pβ̂ [y] x̂Q | Pα̂ † x̂Q

capsule export import cut

The ·̂ symbolises that the socket (plug) underneath is bound in the circuit directly to the

right (left). We will occasionally speak about the cut α̂ † x̂ when speaking about the circuit

Pα̂ † x̂Q where we concentrate on the ‘interface’, rather than on the sub-circuits P and Q.

The novel syntax seeks to preserve the symmetries of computations at the level

of the syntax of the calculus itself. The duality of (the computational notions of)

input and output is reflected by the juxtaposition of the connector in relation to

its sub-circuit: inputs (sockets) appear to the left of a sub-circuit while outputs

(plugs) are on the right. Note that the import is syntactic sugar for x · [Pβ̂, x̂Q].

Unlike the usual term calculi used to model computations, there is no reserved

symbol to represent the binding relation between a formal parameter and its oc-

currences in the subterm that is bound over. Returning full-circle, the authors

re-adopt the original hat notation of Whitehead and Russell [76], where the vari-

able under the hat identifies it as a formal parameter binding over the adjacent

subterm1. (In Whitehead and Russell’s syntax, the subterm was juxtaposed only

to the right of the bound variable).

We give the definitions of free and bound connectors for X -circuits below.

Definition 3.1.2 (Free and Bound Connectors) The set of free sockets and free plugs

in a circuit is defined by:

fs(〈x·α〉) = {x}

fs(ŷPβ̂·α) = fs(P)\{y}

fs(Pb̂ [y] x̂Q) = fs(P) ∪ (fs(Q)\{x}) ∪ {y}

fs(Pα̂ † x̂Q) = fs(P) ∪ (fs(Q)\{x})

fp(〈x·α〉) = {α}

fp(x̂Pα̂·β) = (fp(P) \ {α}) ∪ {β}

fp(Pα̂ [y] x̂Q) = (fp(P) \ {α}) ∪ fp(Q)

fp(Pα̂ † x̂Q) = (fp(P) \ {α}) ∪ fp(Q)

The set of free connectors is defined as fc(P) = fs(P) ∪ fp(P), and we sometimes write,

for example, fs(P,Q) as shorthand for fs(P)∪fs(Q).

1“By the way, why did Church choose the notation ‘λ’? [He] stated clearly that it came from
the notation ‘x̂’ used for class-abstraction byWhitehead and Russell, by first modifying ‘x̂’ to ‘∧x’
to distinguish function-abstraction from class-abstraction, and then changing ‘∧’ to ‘λ’ for ease of
printing .” [25, pp. 7]



The set of bound sockets and bound plugs in a circuit is defined by:

bs(〈x·α〉) = ∅

bs(ŷPβ̂·α) = bs(P) ∪ {y}

bs(Pβ̂ [y] x̂Q) = bs(P) ∪ (bs(Q) ∪ {x})

bs(Pα̂ † x̂Q) = bs(P) ∪ (bs(Q) ∪ {x})

bp(〈x·α〉) = ∅

bp(x̂Pα̂·β) = (bp(P) ∪ {α}

bp(Pα̂ [y] x̂Q) = (bp(P) ∪ {α}) ∪ bp(Q)

bp(Pα̂ † x̂Q) = (bp(P) ∪ {α}) ∪ bp(Q)

We use the notation bc(P) (= bs(P)∪bp(P)) for the bound connectors.

There are some non-standard features regarding the syntax of the X -calculus.

First notice that (with the exception of the capsule) each term constructor has

exactly one free connector. Second, we note that some term constructors operate

on more than one sub-circuit. This is in itself is not unusual; consider a function

application term, or the closure Q〈x= P〉 where x is a binder over Q. What is

unusual in the X -calculus syntax is that:

• There is no notion of abstraction; in particular, Pβ̂ and x̂Q are not circuits;

we will refer to them as blocks.

• Some circuit constructors have several binders over the same sub-circuit.

• There are sometimes several sub-circuits that each have binders.

We will proceed by giving an intuitive description of how each term constructor

can be understood computationally; we will refer to many of the concepts dis-

cussed in the background chapter (Section 2.3). We begin with a description of

the capsule.

Capsule, 〈x·α〉 : Capsules are the most basic term constructors and appear at the

leaves of every X circuit. In X , inputs are seen at the same level as outputs.

This symmetry is reflected in the capsule by considering it to be either the

input x that will send its result to the output named α, or, the output α

expecting some input from x.

Import, Pβ̂ [y] x̂Q : In applicative-style languages, a function consumer2 might

be written as (λx.Q)([ ]P), where the hole ‘[ ]’ in the context is waiting for

the insertion of a function which will consume the argument P; the contin-

uation of this computation is the abstraction λx.Q. Function consumers in

continuation-style languages are able to separate the computational action

of plugging a context from the construction of a function consumer, in the

sense that the term representation of the function consumer is not a redex.

2We borrow terminology from Ariola et al. [1] that describes the computational behaviour of
the term that corresponds to the sequent calculus left introduction rule for implication.



Such function consumers take the form of argument lists (like in λµµ̃, where

it is written P ·Q where P is an argument and Q is the rest of the argument

list).

The import in the X -calculus is also a function consumer and can be thought

of like an argument list in λµµ̃. However, the syntax reflects (in our opin-

ion) more closely whatwill happen during the interaction with theX -circuit

analog of function abstraction (the ‘export’). P is a term from which an ar-

gument will be supplied (via the handle β) to the function consumer named

y. The function supplied via y that takes the output provided by β will pass

its own output (perhaps another function/export) to the rest of the argu-

ment list Q via x. In understanding this, the place of the supplied function

really is in between the first argument and the rest of the argument list.

Export, ŷPβ̂·α : An export is the X -calculus analog of λ-abstraction. In the λµ-

calculus, we could represent this as either [α]λx.µβ.P or [α]µβ.λx.P, but no-

tice that the X construct avoids this syntactic permutation. Familiarly, the

bound socket x is the functional parameter and P is the body of the func-

tion. The bound plug β is a handle to the result of some computation in P.

These two formal parameters work together as follows: when P is supplied

an argument and continuation via the input and output channels, it will use

the argument in its computation and send any result to the output channel

β; this entire process is named α.

Cut, Pα̂ † x̂Q : Recall that the logical cut rule represents the computational notion

of plugging the hole in an evaluation context with a term. In applicative-

style calculi we may (loosely speaking) write the analog (λx.Q)P, though

this displays only part of the functionality. In λµµ̃, we would write 〈P ‖ Q〉.

In the X -calculus, the cut can be thought of as the plugging of the holes

marked with x in Q with the arguments in P that output on α.

In the pure X -calculus, we will identify circuits that differ only in the names of

bound connectors (modulo α-conversion, as usual); in our implementation (of the

tool) this is of course a problem to be dealt with (see Section 4.2).

The reduction rules of the X -calculus describe in detail how cuts are propagated

through circuits to be eventually evaluated at the level of capsules. The reduction

rules are defined in two parts: (i) the logical rules describe the direct action of plug-

ging the hole in an evaluation context with a term, (ii) the propagation rules specify

how to transform the program so that the context and term are next to each other



and can directly interact. This criteria of being in the correct place before a direct

interaction can take place strongly depends on the following notion.

Definition 3.1.3 (Introduction of connectors) We define here what it means for a cir-

cuit to introduce a connector.

P introduces x : Either P = Qβ̂ [x] ŷR and x 6∈ fs(Q, R), or P = 〈x·α〉

P introduces α : Either P = x̂Qβ̂·α and α 6∈ fp(Q), or P = 〈x·α〉

In the following, we may simply write x (α) is introduced when it is clear which sub-

circuit the connector is introduced in.

The direct action of plugging the hole of an evaluation context with a term is only

possible when both connectors involved in the cut are introduced. In this case,

computations are specified by the main reduction rules of the X -calculus, given

below.

Definition 3.1.4 (Logical rules) The logical rules for the X -calculus are presented be-

low.

(cap-rn) : 〈y·α〉α̂ † x̂〈x·β〉 → 〈y·β〉

(exp-rn) : (ŷPβ̂·α)α̂ † x̂〈x·γ〉 → ŷPβ̂·γ ^ α introduced

(imp-rn) : 〈y·α〉α̂ † x̂(Pβ̂ [x] ẑQ) → Pβ̂ [y] ẑQ ^ x introduced

(exp-impcbv) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(Pβ̂ † ẑR) ^ α, x introduced

(exp-impcbn) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR ^ α, x introduced

The first three logical rules above specify a renaming (reconnecting) procedure.

The last two rules are key computational rules describing the direct interaction

between a ‘function producer’ and a ‘function consumer’ (borrowing the termi-

nology of Ariola et al. [1]). The rules translate such an interaction into the lan-

guage of plugging ‘terms’ and ‘evaluation contexts’. We will study this pair of

rules in more detail in Section 2.3.7 when we discuss confluent reduction subsys-

tems in the X -calculus.

These five rules only deal with those cases in which both connectors mentioned

in the cut are introduced in their respective subterms. To define the propagation

mechanism, we extend the syntax of the X -calculus with two additional (and

symmetric) term constructors. This move is motivated by Urban’s strongly nor-

malising cut elimination procedure [86] that annotates logical cuts with directions



that specify in which way the proof should be permuted so to shift the cut up-

wards through the structure of a derivation.

Definition 3.1.5 (Active cuts) The syntax is extended with two flagged or active cuts:

P,Q ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

left-propagating cut right-propagating cut

Terms constructed without these flagged cuts are called pure.

Cut elimination in the sequent calculus corresponds to a symmetrical notion of

explicit substitutions (see Section 2.3.6). The dagger (†) used in the representation

of the cut is tilted to indicate the direction the symmetric explicit substitution is

propagating (this direction corresponds to the stabbing direction of the dagger).

To initiate the propagation mechanism, a cut is activated in a certain direction; the

rules describing this step are given below.

Definition 3.1.6 (Activating) We define two cut activation rules.

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q ^ P does not introduce α

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q ^ Q does not introduce x

In some situations, there is a choice to activate either to the left or to the right.

Notice that then an additional source of non-determinism is created by the crit-

ical pair (act-L) and (act-R) and also leads to a highly non-confluent reduction

mechanism. When we discuss reduction subsystems in Section 3.1.1, we will see

how to recover the confluence of the calculus.

In the X -calculus there are twelve symmetric propagation rules; these are not at

all trivial to comprehend. In essence, the rules perform the task of ‘pushing’ a cut

through the structure of a circuit while seeking out those connectors bound by

the active cut (c.f. explicit substitutions). These rules are presented below.

Definition 3.1.7 (Propagation rules) Right-propagation is reminiscent of substitu-

tion of terms for term-variables; left-propagation Pα̂ † x̂Q then is its dual: it expresses

the connection of the continuations in Q, accessible via the handle x, to all subterms in P

that output on α.



Left propagation:

(† d) : 〈y·α〉α̂ † x̂P → 〈y·α〉α̂ † x̂P

(cap† ) : 〈y·β〉α̂ † x̂P → 〈y·β〉 ^ β 6= α

(exp-outs† ) : (ŷQβ̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P γ fresh

(exp-ins† ) : (ŷQβ̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂·γ ^ γ 6= α

(imp† ) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)

(cut† ) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P)

Right propagation:

(d †) : Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉

( †cap) : Pα̂ † x̂〈y·β〉 → 〈y·β〉 ^ y 6= x

( †exp) : Pα̂ † x̂(ŷQβ̂·γ) → ŷ(Pα̂ † x̂Q) β̂·γ

( †imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)) z fresh

( †imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R) ^ z 6= x

( †cut) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

We write

• → for the (reflexive, transitive, compatible) reduction relation generated by the

logical, propagation and activation rules.

• P→∗ Q if there exists a reduction path from P to Q.

• P ↓Q if P and Q have a common reduct, i.e., if there exists an R such that P→ R

and Q→ R.

• P
X
= Q if P and Q have exactly the same normal forms.

Also, we say an X -circuit is in normal form if it built without using the cut.

We may now give a more detailed description of the propagation mechanism,

referring to the above rules. An activated cut is processed by ‘pushing’ it system-

atically through the syntactic structure of the circuit in the direction indicated by

the tilting of the dagger. The pushing of the active cut continues until the level of

capsules is reached, where that cut is either deactivated or destroyed. Whenever

an active cut meets a circuit exhibiting the connector it is trying to communicate

with, a new (inactive) cut, with that connector made fresh, is ‘deposited’, repre-

senting an attempt to directly interact at this level. Once again, this new inactive

cut can reduce via a logical rule, or pushing can continue in the other direction.



Notice that the rules (exp-outs† ) and ( †imp-outs) exemplify the creation of in-

active cuts during propagation, as described above. For example, in the rule

( †imp-outs), the right-activated cut is pushed within the import, to have the con-

nectors α and x link with each other in the sub-terms Q and R, and the cut ‘α̂ † ẑ’ is

placed outside to interact with the top socket. It is inactive since now the (fresh)

connector z is now introduced, and perhaps a logical cut is applicable, or else

activation in the other direction should take place.

In [9] some basic properties were shown, which essentially show that the calculus

is well behaved.

Lemma 3.1.8 (Garbage Collection and Renaming [9]) The following rules apply, where

in each case the sub-circuit P is pure.

(† gcp) : Pα̂ † x̂Q → P, ^ α 6∈ fp(P)

( †gcp) : Qα̂ † x̂P → P, ^ x 6∈ fs(P)

(ren-Lp) : Pδ̂ † ẑ〈z·α〉, → P{α/δ}

(ren-Rp) : 〈z·α〉α̂ † x̂P, → P{z/x}

NB: in [9], these results were shown for pure P only, a restriction we will drop

here (see Lemma 3.1.21 and 3.1.23).

To end this section, we would like to comment on the overall effect of the reduc-

tion system. In Bloo and Rose’s λx-calculus (reviewed in Section 2.4.2), the over-

all effect of the reduction relation is to perform a ’term for variable’ substitution

operation where a copy of the term is simply slotted in place of each occurrence

of the variable in the subterm ( i.e., of the shape P{Q/x}). In the X -calculus, this

notion only applies to the renaming and garbage collection rules given above. In

the general case, the ‘substitution’ operation (which we recall is also symmetri-

cal) is performed quite differently. Unfortunately, there is no standard notion to

express this, though Urban [86] and Summers [84] have defined their own nota-

tions. For the cut Pα̂ † x̂Q, the shape of Urban’s ‘substitution’ construct is like3:

P[α := (x)Q] and Q[x := 〈α〉P]

And Summers writes:

P{α]x̂Q} and Q{Pα̂]x}

These constructs internalise the explicit propagation rules (Definition 3.1.7). The

3We adopt the two alphabets (Roman and Greek) of the X -calculus to make the comparison
more clear.



left construct attempts to reflect the fact that the block x̂Q will be copied and con-

nected to each of the α’s in P. Symmetrically, the right construct reflects that the

block Pα̂ will be copied to sub-circuits exhibiting x in Q. Unlike the usual notion

of substitution, the terms are not simply slotted into the places marked with x or

α. Rather, a new cut is formed with the respective sub-circuits. Taking Q{Pα̂]x}

as an example, suppose we list (in some deterministic order) all the sub-circuits

of Q,

(x ·Q1), (y ·Q2), 〈x·β〉, . . . ,(Qi · δ), . . . ,Qj, . . . ,(x ·Qn).

Here we allow for some leniency in notation, where the Qk (for 0 < k ≤ n) terms

are lists of blocks; wewrite z ·Qk to represent the sub-circuit that has the connector

z free at its top-level.

Then we can illustrate the ‘substitution-like’ process as follows,

Q{Pα̂]x} =

Q

(x ·Q1)

(y ·Q2)

〈x·β〉

...
Pα̂ (Qi · δ)

...
Qj
...

(x ·Qn)

=

Q′

Pα̂ † x̂(x · Q1)

(y ·Q2)

Pα̂ † x̂〈x·β〉
...

(Qi · δ)

...
Qj
...

Pα̂ † x̂(x ·Qn)

Each of the newly formed cuts in the sub-circuit Q′ introduces the socket x.

3.1.1 Reduction Subsystems for X

The reduction relation of the X -calculus, →, is not confluent; this comes in fact

from the critical pair that activates a cut Pα̂ † x̂Q in two ways if P does not contain

(so does not introduce) α and Q does not contain x. In his case, we have both

Pα̂ † x̂Q→ P and Pα̂ † x̂Q→ Q.

Lengrand in [61, 62] defines two subsystems of his λξ-calculus that correspond

to call-by-name (CBN) and call-by-value (CBV) notions of reduction. These were

carried over to the X -calculus in [9]; the two subsystems of reduction are defined

below.



Definition 3.1.9 (Call-by-Value Subsystem) We place two restrictions on the pure

X -calculus presented in Section 3.1 to obtain a confluent call-by-value subsystem.

First, if a cut can be activated in two ways, the CBV subsystem only allows to activate it

via (act-L). We can reformulate this as the reduction system obtained by replacing rule

(act-R) by:

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q ^ P introduces α and Q does not introduce x

Secondly, we remove the rule (exp-impcbn) from the set of reduction rules, leaving only

the CBV variant.

(exp-impcbv) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(Pβ̂ † ẑR) ^ α, x introduced

We will write P→V Q to represent call-by-value reductions.

Definition 3.1.10 (Call-by-Name Subsystem) To obtain a confluent call-by-name re-

duction subsystem, we place the following two restrictions on the pure X -calculus (as

presented in Section 3.1).

First, if a cut can be activated in two ways, the CBN subsystem only allows to activate it

via (act-R) . We can reformulate this as the reduction system obtained by replacing rule

(act-L) by:

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q ^ Q introduces x and P does not introduce α

In addition, we remove the rule (exp-impcbv) from the reduction relation, leaving only

the CBN variant.

(exp-impcbn) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR^ α, x introduced

We will write P→N Q for reductions done under the call-by-name subsystem.

Observe that the rule (exp-impcbv) is structured so that preference is given to sup-

plying the continuations named z in R to the terms in P that output on β, while

the (exp-impcbn) appears to prefer supplying the arguments that outputs on γ inQ

to the function P via its parameter y. The two systems defined above correspond

to Herbelin’s notions of call-by-name and call-by-value reductions as discussed

in Section 2.3.7.

The two restriction on the reduction relation automatically give confluent sub-

calculi since the all rules are left-linear and non-overlapping.



3.1.2 X as a General Reduction Machine

In [9] the relation between X and many other calculi is studied; as an illustration,

in this section, we will briefly highlight the relation between the λ-calculus and

X . (We reviewed the λ-calculus in Section 2.3.1).

Due to the Curry-Howard correspondence between the λ-calculus and the nat-

ural deduction formulation of minimal implicative logic on the one hand, and

between the X -calculus and the sequent calculus formulation of classical logic on

the other hand, existing encodings that translate natural deduction proofs to se-

quent calculus proofs can be used to obtain an encoding from the λ-calculus to the

X -calculus. There are two different well-studied encodings, defined respectively

by Gentzen [41] and Prawitz [71]. While Gentzen’s version is more straightfor-

ward, Prawitz’s version preserves the status of normal forms in an encoding, that

is, a normalised natural deduction proof translates to a cut-free sequent proof. We

give the two corresponding encodings that translate λ-terms to X -terms below.

Definition 3.1.11 (Interpreting the λ-calculus à la Gentzen [41, 9]) The interpreta-

tion of λ-terms into circuits of X in the context α, ⌊M⌋α, is defined by:

⌊x⌋α = 〈x·α〉

⌊λx.M⌋α = x̂⌊M⌋β β̂·α β fresh

⌊MN⌋α = ⌊M⌋γγ̂ † x̂(⌊N⌋β β̂ [x] ŷ〈y·α〉) x, y, β,γ fresh

We can even represent substitution explicitly (so represent λx, Section 2.4.2), by adding

⌊M〈x=N〉⌋α = ⌊N⌋γγ̂ † x̂⌊M⌋α γ fresh

Definition 3.1.12 (Interpreting the λ-calculus à la Prawitz [71, 82]) There are three

parts to the interpretation. The symbols L are variables ranging over lists of λ-terms, and



the symbols M,N, P to represent arbitrary λ-terms.

a) ⌈x⌉α = 〈x·α〉

⌈λx.M⌉α = x̂⌈M⌉β β̂·α

⌈(MN)⌉α = ⌈(MN), [ ]⌉α

b) ⌈(xN), L⌉α = ⌈N⌉β β̂ [x] ŷ⌈L⌉
y
α

⌈(λx.M)N, L⌉α = ⌈λx.M⌉β β̂ † ŷ(⌈N⌉γγ̂ [y] ẑ⌈L⌉zα)

⌈(MN)P, L⌉α = ⌈(MN), P : L⌉α

c) ⌈[ ]⌉xα = 〈x·α〉

⌈M : L⌉xα = ⌈M⌉β β̂ [x] ŷ⌈L⌉
y
α

Under both interpretations, every interpreted λ-subterm has exactly one free

plug; this is easiest to see in Gentzen’s translation. This observation motivates

the reason why there is no explicit notion of output in the λ-calculus: each term

has exactly one output, and the juxtaposition of terms eliminates the possible

ambiguity of where a term might send its result.

In [9], the following relation is shown between (call-by-name, call-by-value) re-

duction in λ-calculus and X :

Theorem 3.1.13 ([9]) The following reduction properties have been shown to hold for

Gentzen’s interpretation of λ-calculus terms to X .

1. If M→β N then ⌊M⌋α → ⌊N⌋α

2. If M→V N then ⌊M⌋α→V ⌊N⌋α

3. If M→N N then ⌊M⌋α→N ⌊N⌋α

As a matter of fact, the last two results link the concept of ‘name’ and ‘value’ quite

nicely to X : the circuits that can be called a value in X are those that introduce

a plug, and a name is a circuit that introduces a socket. However, notice that,

in contrast to the λ-calculus, in X the CBV reduction is not a sub-subsystem of

the CBN reduction. For the CBV reduction on X , the cut Pα̂ † x̂Q is only right-

activated if Q does not introduce x, and P is a value. So, P is only ‘inserted’ into

Q if it is a value, which makes this reduction justifiably called ‘call-by-value’.

The converse of the results of Theorem 3.1.13 do not hold a-priori: this is mainly

because the reduction relation inX is far more complex than just those reductions



between (interpretations of) λ-terms, and it could be that there exists a path be-

tween ⌊M⌋α and ⌊N⌋α which does not correspond to a λ-calculus-reduction path

between M and N.

It is worthwhile to notice that the image of the set of λ-terms under the interpre-

tation function ⌊·⌋α does not generate a confluent sub-calculus. We illustrate this

by the following:

Example 3.1.14 (Non-confluence across CBV and CBN, [9]) In the following, we

will make use of ⌊xx⌋α → 〈x·β〉β̂ [x] ŷ〈y·α〉.

⌊(λx.xx)(yy)⌋α =∆

⌊λx.xx⌋β β̂ † v̂(⌊yy⌋γγ̂ [v] ŵ〈w·α〉) =∆

(x̂⌊xx⌋δ δ̂·β) β̂ † v̂(⌊yy⌋γ γ̂ [v] ŵ〈w·α〉) → (exp-imp)

⌊yy⌋γγ̂ † x̂(⌊xx⌋δ δ̂ † ŵ〈w·α〉) → (act-L), (ren-R)

⌊yy⌋γγ̂ † x̂⌊xx⌋α →∗

(〈y·σ〉σ̂ [y] ẑ〈z·γ〉)γ̂ † x̂(〈x·τ〉τ̂ [x] û〈u·α〉)

This circuit now has one cut only, that can be activated in two ways (notice that neither

γ nor x is introduced here). Under CBV, this results in:

⌊yy⌋γγ̂ † x̂⌊xx⌋α → (act-L)

⌊yy⌋γγ̂ † x̂⌊xx⌋α →

(〈y·σ〉σ̂ [y] ẑ〈z·γ〉)γ̂ † x̂⌊xx⌋α → (imp† )

(〈y·σ〉γ̂ † x̂⌊xx⌋α)σ̂ [y] ẑ(〈z·γ〉γ̂ † x̂⌊xx⌋α) → (cap† ), († d), (act-R)

〈y·σ〉σ̂ [y] ẑ(〈z·γ〉γ̂ † x̂⌊xx⌋α) → (ren-L)

〈y·σ〉σ̂ [y] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉)

or under CBN:

⌊yy⌋γγ̂ † x̂⌊xx⌋α →

⌊yy⌋γγ̂ † x̂(〈x·τ〉τ̂ [x] û〈u·α〉) → (act-R), ( †imp-outs)

⌊yy⌋γγ̂ † ŵ((⌊yy⌋γ γ̂ † x̂〈x·τ〉)τ̂ [w] û(⌊yy⌋γγ̂ † x̂〈u·α〉)) → (d †), (act-L), ( †cap)

⌊yy⌋γγ̂ † ŵ((⌊yy⌋γ γ̂ † x̂〈x·τ〉)τ̂ [w] û〈u·α〉) → (ren-R)

⌊yy⌋γγ̂ † ŵ(⌊yy⌋τ τ̂ [w] û〈u·α〉) →

(〈y·σ〉σ̂ [y] ẑ〈z·γ〉)γ̂ † ŵ(⌊yy⌋τ τ̂ [w] û〈u·α〉) → (imp† )

(〈y·σ〉γ̂ † ŵ(⌊yy⌋τ τ̂ [w] û〈u·α〉))σ̂ [y]

ẑ(〈z·γ〉γ̂ † ŵ(⌊yy⌋τ τ̂ [w] û〈u·α〉)) → (cap† ), († d),

〈y·σ〉σ̂ [y] ẑ(〈z·γ〉γ̂ † ŵ(⌊yy⌋τ τ̂ [w] û〈u·α〉)) → (imp-rn)

〈y·σ〉σ̂ [y] ẑ((〈y·σ〉σ̂ [y] ẑ〈z·τ〉)τ̂ [z] û〈u·α〉)



Notice that both reductions return different normal forms, so ⌊(λx.xx)(yy)⌋α has

two normal forms. Even though (λx.xx)(yy) also has two different normal forms

with respect to CBV and CBN reduction (respectively (λx.xx)(yy) and (yy)(yy)),

the structures of the normal forms obtained here are of a different nature. We will

illustrate this with another example.

Example 3.1.15 (A comparison of a CBV and CBN reduction) The computational

behaviour of the normal forms obtained in Example 3.1.14 can be compared to computa-

tional machines that behave (respectively) like ‘serial’ and ‘parallel’ function consumers.

First observe that both normal forms are indeed argument lists (or ‘function consumers’).

The difference is, the CBV argument list processes the function using a staggered or step-

by-step approach, while the CBN argument list eagerly processes the function by passing

it through its entire list. We will illustrate this behaviour by considering its ‘application’

to the X -calculus analog of the identity, ⌊λp.p⌋̺ = p̂〈p·◦〉◦̂·̺.

For the CBV reduction, we have:

⌊λp.p⌋̺ ̺̂† ŷ(〈y·σ〉σ̂ [y] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉))

→ ⌊λp.p⌋̺ ̺̂ † ŷ(〈y·σ〉σ̂ [y] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉))

→∗ ⌊λp.p⌋̺ ̺̂† k̂(⌊λp.p⌋σσ̂ [k] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉))

= (p̂〈p·◦〉◦̂·̺) ̺̂† k̂(⌊λp.p⌋σ σ̂ [k] ẑ(〈z·τ〉τ̂ [z] û〈u·α〉))

→∗ ⌊λp.p⌋σ σ̂ † p̂(〈p·◦〉◦̂ † ẑ(〈z·τ〉τ̂ [z] û〈u·α〉))

→∗ ⌊λp.p⌋σ σ̂ † p̂(〈p·τ〉τ̂ [p] û〈u·α〉)

→∗ ⌊λp.p⌋σσ̂ † ĉ(⌊λp.p⌋τ τ̂ [c] û〈u·α〉)

= (p̂〈p·◦〉◦̂·σ)σ̂ † ĉ(⌊λp.p⌋τ τ̂ [c] û〈u·α〉)

→ (⌊λp.p⌋τ τ̂ † p̂〈p·◦〉)◦̂ † û〈u·α〉

→ ⌊λp.p⌋◦ ◦̂ † û〈u·α〉

→ ⌊λp.p⌋α



For the CBN reduction, we have:

⌊λp.p⌋̺ ̺̂† ŷ(〈y·σ〉σ̂ [y] ẑ((〈y·σ〉σ̂ [y] ẑ〈z·τ〉)τ̂ [z] û〈u·α〉))

→ ⌊λp.p⌋̺ ̺̂ † ŷ(〈y·σ〉σ̂ [y] ẑ((〈y·σ〉σ̂ [y] ẑ〈z·τ〉)τ̂ [z] û〈u·α〉))

→∗ ⌊λp.p⌋̺ ̺̂† k̂(⌊λp.p⌋σσ̂ [k] ẑ((⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σσ̂ [h] ẑ〈z·τ〉)) τ̂ [z] û〈u·α〉))

→∗ (⌊λp.p⌋σ σ̂ † p̂〈p·◦〉) ◦̂ † ẑ((⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σ σ̂ [h] ẑ〈z·τ〉)) τ̂ [z] û〈u·α〉)

→∗ ⌊λp.p⌋◦ ◦̂ † ẑ((⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σσ̂ [h] ẑ〈z·τ〉)) τ̂ [z] û〈u·α〉)

→∗ ((⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σ σ̂ [h] ẑ〈z·τ〉))τ̂ † p̂〈p·◦〉)◦̂ † û〈u·α〉

→∗ (⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σ σ̂ [h] ẑ(〈z·τ〉τ̂ † p̂〈p·◦〉)))◦̂ † û〈u·α〉

→∗ (⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σ σ̂ [h] ẑ〈z·◦〉))◦̂ † û〈u·α〉

→∗ ⌊λp.p⌋̺ ̺̂† ĥ(⌊λp.p⌋σ σ̂ [h] ẑ〈z·α〉)

→∗ (⌊λp.p⌋σ σ̂ † p̂〈p·◦〉) ◦̂ † ẑ〈z·α〉

→∗ ⌊λp.p⌋◦ ◦̂ † ẑ〈z·α〉

→ ⌊λp.p⌋α

We appreciate the reader unfamiliar with the X -calculus will find these terms difficult

to parse, but we would like to highlight the copying of the function ⌊λp.p⌋̺ . The CBV

function consumer proceeds by allowing the function to be applied to the first argument,

and only when that argument has been evaluated can the next argument from the list be

supplied.

In contrast, the CBN structure eagerly applies the function to all argument of the argu-

ment list first. This is illustrated by the four identity circuits highlighted in bold.

Aside from structural behaviour of argument lists, we would like to give some

intuition behind how some more practical computations are performed in the X -

calculus. We will therefore study the interpretation of the program Example 2.3.9

from the background section in the context of X .

Example 3.1.16 (A Reduction in X ) In theX -calculus (compared to the λµµ̃-calculus)

the result of every computation is explicitly ‘named’, meaning there is a syntactic repre-

sentation for the continuation of every computation. For example, if we wish to say the

result of computing (x+y) is passed to the output named δ, like δ=(x+y), we can ex-

press this using the capsule, i.e., 〈(x+y)·δ〉.

Using Prawitz’s normal-form preserving translation of Definition 3.1.12, we can inter-

pret the λ-calculus program of Example 2.3.9 to X enriched with natural numbers and

arithmetic operations; this is shown below.

⌈add⌉ϕ = û(v̂〈(u+v)·χ〉χ̂·υ) υ̂·ϕ

⌈divideTwo⌉ν = â〈(a/2)·π〉π̂ ·ν

⌈average⌉δ = . . .

x̂(ŷ(⌈divideTwo⌉νν̂ † ĉ((⌈add⌉ϕ ϕ̂ † î(〈y·◦〉◦̂ [i] t̂(〈x·λ〉λ̂ [t] ŝ〈s·γ〉)))γ̂ [c] p̂〈p·σ〉))σ̂·τ) τ̂ ·δ



The ⌈average⌉δ circuit is structured as an export over an export, reflecting that two ar-

guments are expected. Notice the occurrences of these parameters in the ‘function’-body

of the export are arranged in function consumers. This is because the first part of the

computation of average passes any supplied parameters to the ⌈add⌉ϕ circuit, i.e. those

parameters passed to ⌈average⌉δ will be supplied to ⌈add⌉ϕ. The result of the computed

addition (which is passed to γ), and is the head of another argument-list; this list con-

sumes the ⌈divideTwo⌉ν ‘function’ and sends its result, via some chaining of inputs and

outputs, to δ.

We would like to highlight some differences between the X -calculus reductions, and those

reductions in λµµ̃. We will therefore adopt a CBV reduction strategy as done so in the

λµµ̃ reduction of the same interpreted program (see Example 2.3.23).

The X -term corresponding to the program ⌈(average 2)4⌉α is huge. We do not require

the reader to parse or understand the entire term (shown below) but will highlight the key

features of the term.

(x̂(ŷ(⌈divideTwo⌉νν̂ † ĉ((⌈add⌉ϕ ϕ̂ † î(〈y·◦〉◦̂ [i] t̂(〈x·λ〉λ̂ [t] ŝ〈s·γ〉)))γ̂ [c] p̂〈p·σ〉))σ̂·τ) τ̂ ·δ)

. . . δ̂ † k̂ . . .

(〈2·µ〉µ̂ [k] ĥ(〈4·θ〉θ̂ [h] d̂〈d·α〉))

The term is split into three ‘pieces’. The first part is the interpretation of the ⌈average⌉δ
function that sends its output onto δ (as explained above). The third part is the function

consumer expecting the first function on k; the term corresponds to an argument list con-

taining the arguments in order 2 then 4; these are to be supplied to the ⌈average⌉δ circuit.

In between, the components of the cut are shown, which expresses that the computation

will involve connecting the ⌈average⌉δ export to the function consumer.

Using the reduction rules of the CBV X -calculus, the above term ‘normalises’ in 49

steps. Of course the majority of these steps are applications of the propagation rules. We



will focus on the highlights of the reduction below, followed by an explanation.

⌈(average 2)4⌉α

= ⌈average⌉δ δ̂ † κ̂(〈2·µ〉µ̂ [k] ĥ(〈4·θ〉θ̂ [h] d̂〈d·α〉))
1 →∗ ⌈divideTwo⌉ν ν̂ † ĉ((⌈add⌉ϕ ϕ̂ † î(〈4·◦〉◦̂ [i] t̂(〈2·λ〉λ̂ [t] ŝ〈s·γ〉)))γ̂ [c] p̂〈p·α〉)
2 →∗ ⌈divideTwo⌉ν ν̂ † ĉ((〈4·◦〉◦̂ † û((v̂〈(u+v)·χ〉χ̂·υ) υ̂ † t̂(〈2·λ〉λ̂ [t] ŝ〈s·γ〉)))γ̂ [c] p̂〈p·α〉)
3 →∗ ⌈divideTwo⌉ν ν̂ † ĉ(((v̂〈(4+v)·χ〉χ̂·υ) υ̂ † t̂(〈2·λ〉λ̂ [t] ŝ〈s·γ〉))γ̂ [c] p̂〈p·α〉)
4 →∗ ⌈divideTwo⌉ν ν̂ † ĉ((〈2·λ〉λ̂ † v̂(〈(4+v)·χ〉χ̂ † ŝ〈s·γ〉))γ̂ [c] p̂〈p·α〉)
5 →∗ ⌈divideTwo⌉ν ν̂ † ĉ((〈2·λ〉λ̂ † v̂〈(4+v)·γ〉)γ̂ [c] p̂〈p·α〉)
6 → ⌈divideTwo⌉ν ν̂ † ĉ(〈(4+2)·γ〉γ̂ [c] p̂〈p·α〉)
7 = ⌈divideTwo⌉ν ν̂ † ĉ(〈6·γ〉γ̂ [c] p̂〈p·α〉)
8 = (â〈(a/2)·π〉π̂ ·ν) ν̂ † ĉ(〈6·γ〉γ̂ [c] p̂〈p·α〉)
9 →∗ 〈6·γ〉γ̂ † â(〈(a/2)·π〉π̂ † p̂〈p·α〉)
10 →∗ 〈(6/2)·π〉π̂ † p̂〈p·α〉
11 = 〈3·π〉π̂ † p̂〈p·α〉
12 → 〈3·α〉

We give the following commentary for the above reductions:

1. The first set of reductions pass the argument list containing the numbers 2 and 4 to

the argument list to be supplied to ⌈add⌉ϕ . Notice the order of the parameters are

reversed as in the original example.

2. ⌈add⌉ϕ is expanded to û(v̂〈(u+v)·χ〉χ̂·υ)υ̂·ϕ, and the argument list consumes

the body of the outer export.

3. The first argument, 4, is supplied as input to the outer export ‘function’ of ⌈add⌉ϕ .

4. The output υ of the partially evaluated add function (v̂〈(4+v)·χ〉χ̂·υ) is redirected

to γ.

5. The argument list consumes the partially evaluated function resulting from the

previous step.

6. The second argument, 2, is supplied to the add function.

7. (The meta-addition operation is performed).

8. (⌈divideTwo⌉ν is expanded).

9. The second argument list consumes ⌈divideTwo⌉ν .

10. The body of ⌈divideTwo⌉ν is passed the head of the argument list (the value 6 that

is output on γ).

11. (The meta-division operation is performed).

12. The original output of 3 (i.e., γ) is redirected to α.

The above reductions describe, at a very low level of detail, the mechanical steps involved

in evaluating the function ⌈(average 2)4⌉α.

Unlike the λµµ̃-calculus, no eta-rules are needed for this reduction to return the



expected result4. The additional eta-reduction rules required by Curien and Her-

belin’s λµµ̃-calculus are a result of the artificial construct (the stoup) present in

underlying logical framework, but originally introduced by Parigot to try an ob-

tain a uniqueness property on normal forms. The computational terms that cor-

respond to the stoup are used to (selectively) ‘name’ λµµ̃ terms. However, since

they introduce auxiliary structure to a term, this structure must also be removed

at some point during the computation, hence the need for eta-rules.

The approach in X is quite different; instead of adding special constructors to

name selected terms, every term is named. Two consequences of this are: (i) there

are more proof permutations in the underlying logic and (ii) the syntax is more

verbose. To address the first point, we have already seen that permutations of

term structure can be interesting to study (Example 3.1.15). To address the sec-

ond point, we remind ourselves that we are not seeking the most succinct model

of computation; our goal is to investigate the natural computational content of

Classical Logic (within a sequent calculus framework). While it is true that the

example does not reflect the most efficient method for computing the average of

two numbers, it does in our opinion, reflect the most natural computational be-

haviour that arises from Gentzen’s Sequent Calculus for Classical Logic. We will

see in Chapter 6, how the approach of naming ‘everything’ leads to an entirely

mechanical process for deriving computational terms.

3.1.3 On Strong-Normalisation

We should point out that using the rules of the pure X -calculus, not all typeable

term are strongly normalisable. For example, to propagate cuts over cuts imme-

diately leads to non-termination, since we can always choose the outermost cut

as the one to contract. Although the notion of cut-elimination as proposed here

has no rule that would allow this behaviour, it can be mimicked, which can lead

to non-termination for typeable terms, as already observed by Urban [86].

Take Pα̂ † x̂(〈x·β〉β̂ † ẑQ), and assume x 6∈ fs(Q), β 6∈ fp(P), and P,Q both pure,

4That is not to say that eta-rules should not be investigated within the Sequent Calculus frame-
work



then:
Pα̂ † x̂(〈x·β〉β̂ † ẑQ) → (act-R), ( †cut)

(Pα̂ † x̂〈x·β〉) β̂ † ẑ(Pα̂ † x̂Q) → (d †), ( †gc)

(Pα̂ † x̂〈x·β〉) β̂ † ẑQ → (act-L), (cut† )

(Pβ̂ † ẑQ)α̂ † x̂(〈x·β〉β̂ † ẑQ) → († d), († gc)

Pα̂ † x̂(〈x·β〉β̂ † ẑQ)

(example communicated by Alexander J. Summers)

Cut-elimination involving capsules in this way represent a special case; capsules

are the only term constructors that introduce two connectors. The calculus fea-

tures cut-over-cut propagation (to simulate full β-reduction) and so in the case

above, where two cuts “fight” to connect to the different connectors of the cap-

sule, they will continue propagating over each other forever under an outermost

reduction strategy.

Urban gives a solution for this unwanted reduction behaviour, and shows it suf-

ficient to obtain strong-normalisation of typeable terms. He adds the rules:

(Pα̂ † x̂〈x·β〉) β̂ † ŷQ → (Pβ̂ † ŷQ)α̂ † ŷQ

Pα̂ † x̂(〈x·β〉β̂ † ŷQ) → Pα̂ † ŷ(Pα̂ † x̂Q)

and gives them priority over the rules (cut† ) and ( †cut) by changing those to

(Pα̂ † x̂Q) β̂ † ŷR → (Pβ̂ † ŷR)α̂ † x̂(Qβ̂ † ûR) ^ Q 6= 〈x·β〉

Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R) ^ Q 6= 〈x·β〉

However, notice that the side-condition Q 6= 〈x·β〉 is quite different in character

from the rules for X we presented above, in that now equality between circuits is

tested, rather than just a syntactic property of a circuit.

In our implementation, we have chosen a slightly different approach: we avoid

deactivation of cuts. This implies that we remove the rules († d) and (d †), and

add the following rules (notice that we do not need to check if a circuit matches

another, nor need to give priority to rules):

(flip †) : 〈z·α〉α̂ † x̂P → 〈z·α〉α̂ † x̂P ^ P does not introduce x

(† imp) : 〈y·α〉α̂ † x̂(Pδ̂ [x] ẑQ) → Pδ̂ [y] ẑQ ^ x introduced

(† cap) : 〈z·α〉α̂ † x̂〈x·β〉 → 〈z·β〉



(† flip) : Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉 ^ P does not introduce α

(exp †) : (ŷPδ̂·α)α̂ † x̂〈x·γ〉 → ŷPδ̂·γ ^ α introduced

(cap †) : 〈x·α〉α̂ † ŷ〈y·β〉 → 〈x·β〉

These rules introduce an additional feature we will exploit in Chapter 4: they

allow renamings to be prioritized over other reductions.

3.1.4 Optimising Reduction

The set of rules of the pure X -calculus can be optimised further. For example, the

applicability of the garbage collection rules stated in Lemma 3.1.8 is limited, since

they both involve pure terms. Here we are generalise these results to include

terms with active cuts.

We aim to add more generic rules; in fact, we will show their admissibility below

(Theorem 3.1.21), for which we first need to show a number of results.

Lemma 3.1.17 (Elimination of Active Cuts) Every circuit whose root is an active cut

can be reduced to a pure circuit. i.e.,

1. For all P,Q pure, there exists an R pure such that Pα̂ † x̂Q→ R.

2. For all P,Q pure, there exists an R pure such that Pα̂ † x̂Q→ R.

Proof 3.1.18 By induction on structure of circuits.

1. We highlight one case, where P,Q are pure:

(P = ŷP′ β̂·α) : (ŷP′ β̂·α)α̂ † x̂Q → (exp-outs† )

(ŷ(P′α̂ † x̂Q) β̂·α)α̂ † x̂Q → (IH)

(ŷRβ̂·α)α̂ † x̂Q

Notice that this last term is pure.

2. We highlight again one case, where P,Q1,Q2 are pure:

Q = Q1β̂ [x] ŷQ2 : Pα̂ † x̂(Q1β̂ [x] ŷQ2) → ( †imp-outs)

Pα̂ † v̂((Pα̂ † x̂Q1) β̂ [v] ŷ(Pα̂ † x̂Q2)) → (IH)

Pα̂ † v̂(R1 β̂ [v] ŷR2)

Notice again that this last term is pure.

We can now use this lemma to give a stronger result.



Lemma 3.1.19 (Every circuit is reducible to a pure circuit) For allX -circuits P, there

exists a reduction path P→ P′, with P′ pure.

Proof 3.1.20 For each active cut in a circuit, we define its depth, d, as the distance

(calculated in nodes) from the root of the tree. For any particular depth of the circuit, we

define its group size, g, as the number of active cuts at that depth of the tree. We define

the class, c, of a circuit as the pair of the depth of the innermost cut and its group size:

c = 〈d, g〉.

We finish the proof by lexicographic induction on the class of a circuit.

If P is pure, then P ≡ P′. Otherwise: take the set (of size g) of innermost active cuts at

depth d. There are two cases to consider:

• if g > 1, take any circuit in this set Rα̂ † x̂Q (or Rα̂ † x̂Q). R and Q are known to

be pure; otherwise they would not be the innermost flagged cuts. By Lemma 3.1.17,

we know the circuit reduces to some other circuit S, which is pure. This eliminates

the active cut from the proof, so the group-size of the circuit reduces by one, and the

class of the circuit decreases.

• if g = 1, the active cut is eliminated from the circuit by Lemma 3.1.17. Since there

are no more active cuts at this level, the depth of the innermost cut decreases (to the

next lowest), and the class of the circuit reduces.

We are now ready to justify some more general garbage collection rules, that es-

sentially equates the nets Pα̂ † x̂Q and P, provided α 6∈ fp(P).

Lemma 3.1.21 (Generalised Garbage Collection) We will show the following two

properties, which generalise the garbage collection rules given in Lemma 3.1.8 to non-

pure circuits.

(† gc): Pα̂ † x̂Q
X
= P ^ α 6∈ fp(P) (1)

( †gc): Pα̂ † x̂Q
X
= Q ^ x 6∈ fs(Q) (2)

Recall that P
X
= Q iff the circuits P and Q have the same set of normal forms.

Proof 3.1.22 1. For the second part, that each normal form T of P is a normal form

of Pα̂ † x̂Q, we reduce Pα̂ † x̂Q to Tα̂ † x̂Q, remark that T is pure, and apply rule

(† gc).



For the first, we show that if Pα̂ † x̂Q → T, then P → T, where T is a normal

form. We achieve this by showing that we can run a reduction on P, mimicking a

reduction taking place on Pα̂ † x̂Q by essentially ignoring all reductions inside Q;

the only problem might be when the presence of [ ]α̂ † x̂Q disturbs the reduction

behaviour.

The proof completes by co-induction (we only show some interesting cases):

• P = (P1 β̂ [v] ŷP2)γ̂ † ẑP3. We can run ((P1 β̂ [v] ŷP2)γ̂ † ẑP3)α̂ † x̂Q in a num-

ber of ways. Any reduction inside P1, P2 or P3 is dealt with by induction, so we

can focus on the cuts involved. Assume we apply rule (cut† ) to propagate the

outermost cut and obtain

((P1 β̂ [v] ŷP2)α̂ † x̂Q)γ̂ † ẑ(P3α̂ † x̂Q)

Now the top-most (inactive) cut can be activated in two directions; let’s assume we

decided to go left:

((P1 β̂ [v] ŷP2)α̂ † x̂Q)γ̂ † ẑ(P3α̂ † x̂Q)

This activated cut cannot propagate, since the cut directly underneath it is active;

propagating that first gives

((P1α̂ † x̂Q) β̂ [v] ŷ(P2α̂ † x̂Q))γ̂ † ẑ(P3α̂ † x̂Q)

Now the top-cut can propagate, to give

((P1α̂ † x̂Q)γ̂ † ẑ(P3α̂ † x̂Q)) β̂ [v] ŷ((P2α̂ † x̂Q)γ̂ † ẑ(P3α̂ † x̂Q))

By induction we can mimic Piα̂ † x̂Q by Pi, for i∈ {1, 2, 3}. We can simulate this

particular reduction on P as follows:

(P1β̂ [v] ŷP2)γ̂ † ẑP3 → (act-L), (imp† ) (P1γ̂ † ẑP3) β̂ [v] ŷ(P2γ̂ † ẑP3)

• P = (ŷP1β̂·γ)γ̂ † ẑP2. As above, a reduction inside P1 or P2 creates no problems,

so we can focus on the cuts involved. Assume we decide propagate the top cut, and

get

((ŷP1β̂·γ)α̂ † x̂Q)γ̂ † ẑ(P2α̂ † x̂Q)

If we now left-activate the top cut, similar to above, we can only propagate the



innermost cut, and obtain:

(ŷ(P1α̂ † x̂Q) β̂·γ)γ̂ † ẑ(P2α̂ † x̂Q)

Now applying rule (exp-outs† ) will give:

(ŷ((P1α̂ † x̂Q)γ̂ † ẑ(P2α̂ † x̂Q)) β̂·δ) δ̂ † ẑ(P2α̂ † x̂Q)

Now, if γ is introduced in ŷP1β̂·γ, then γ does not appear free inside P1 nor in Q,

and by induction we can assume both that the term (P1α̂ † x̂Q)γ̂ † ẑ(P2α̂ † x̂Q)

can be simulated by P1, and that P2α̂ † x̂Q can be simulated by P2. We can mimic

this reduction with a reduction path of length zero, performing an α-conversion:

(ŷP1β̂·γ)γ̂ † ẑP2 → (ŷP1β̂·δ) δ̂ † ẑP2

If γ is not introduced, we still can assume that Piα̂ † x̂Q can be simulated by Pi, for

i∈ {1, 2}, and we can simulate this particular reduction on P via a series of steps:

(ŷP1β̂·γ)γ̂ † ẑP2 → (ŷP1β̂·γ)γ̂ † ẑP2 → (ŷ(P1γ̂ † ẑP2) β̂·δ) δ̂ † ẑP2

• All other cases are shown in a similar fashion.

So every reduction to a normal form, starting from Pα̂ † x̂Q, can be mimicked by

reducing P, so every normal form, reachable from Pα̂ † x̂Q, can be reached from P.

2. Similar.

This result now helps to justify more general deactivation rules.

Theorem 3.1.23 (Generalised Deactivation) We will show the following properties.

1. Pα̂ † x̂Q
X
= Pα̂ † x̂Q^ α introduced

2. Pα̂ † x̂Q
X
= Pα̂ † x̂Q^ x introduced

Proof 3.1.24 1. If P introduces α, we have two cases:

P = 〈x·α〉 : By rule († d).

P = x̂P′β̂·α : Then α 6∈ fp(P), and

(x̂P′ β̂·α)α̂ † x̂Q → (exp-outs† )

(x̂(P′α̂ † x̂Q) β̂·γ)γ̂ † x̂Q
X
= (Lemma 3.1.21)

(x̂P′ β̂·γ)γ̂ † x̂Q =α (x̂P′ β̂·α)α̂ † x̂Q



2. If Q introduces x, we have two cases:

Q = 〈x·β〉 : By rule (d †).

Q = Q1β̂ [x] ŷQ2 : Then x 6∈ fs(Q1,Q2), and

P′α̂ † x̂(Q1β̂ [x] ŷQ2) → ( †imp-outs)

P′α̂ † v̂((P′α̂ † x̂Q1) β̂ [v] ŷ(P′α̂ † x̂Q2))
X
= (Lemma 3.1.21)

P′α̂ † v̂(Q1β̂ [v] ŷQ2) =α P
′α̂ † x̂(Q1 β̂ [x] ŷQ2)

Similarly, we can also show:

Lemma 3.1.25 (Generalised Renaming) We can show the following properties, which

generalise the renaming rules given in Lemma 3.1.8 to non-pure circuits.

(ren-L): Pα̂ † x̂〈x·β〉
X
= P[β/α]

(ren-R): 〈y·α〉α̂ † x̂P
X
= P[y/x]

In Section 4.3, we will review the impact on reduction cost when adding these

more generic reduction rules.

3.2 Chapter Summary

In this chapter, we introduced the X -calculus of van Bakel, Lengrand and Les-

canne [9]. We studied its most prominent features, namely its novel symmet-

ric syntax and its reduction mechanism (which does not follow the usual notion

of term-for-variable substitution). We related these features to well-understood

computational notions, and gave some comparisons with the λ-calculus and with

Curien and Herbelin’s λµµ̃-calculus.

The X -calculus is non-confluent. We showed, through examples, that while this

is traditionally seen as an undesired property for computational term-calculi (es-

peciallywhen considering functional programming) its presence in theX -calculus

leads to subject matter worth investigating. In particular, two confluent reduction

subsystems can be defined within the pure X -calculus, namely: the call-by-name

and call-by-value subsystems.



Weproposed amodification to the system to regain strong-normalisation of typed

terms. Finally, we optimised some reduction behaviours of the X -calculus by

giving some general notions of garbage collection, renaming and ‘deactivation’.



Chapter 4

Implementing X

In the background chapter (Section 2.4), we looked at some sound approaches

(w.r.t. reduction) of implementing higher-order rewrite systems. As discussed,

when dealing with systems which have variable bindings, care must be taken

during the transformation of programs to ensure the variable binding and vari-

able identity relationships are preserved1. The most commonly studied system

in which these relationships are present is the λ-calculus. Computation in this

calculus (specified by the β-reduction rule) has the overall effect of performing a

(capture-free) ‘term for variable’ substitution operation. Many higher-order im-

plementations internalise this operation, and deal with the problem of variable-

capture behind the scenes. This is true of all of the systems studied, with the excep-

tion of explicit substitutions.

In Chapter 3, we studied the overall effect of computation in the X -calculus and

observed that it did not correspond to the usual notion of ‘term for variable’ sub-

stitution. This fact eliminated the possibility of directly adopting many existing

implementation techniques, like de Bruijn indices and Wolfram’s second order

term graphs. Of course, each of the approaches we reviewed can be extended (or

modified by some means) to implement X , but now this leaves a choice of which

system to extend.

Notice that the X -calculus is a rewrite system with side conditions on the rewrite

rules. Wadsworth (Section 2.4.4) describes a simple approach to computing free-

variable checks using sets and a notion of paths on his λ-graphs. The X -calculus

requires the additional specification of the introduces side-condition. Whichever

formalism we choose to implement the X -calculus, it will need to be extended to

1Recall that the variable binding relation associates a formal parameter with its occurrences in
the body of the subterm, while the variable identity relation equates free variables.
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express at least these two side-conditions.

We prefer not to work with de Bruijn indices, for many of the disadvantages

listed in Section 2.4.3. De Bruijn indices were traditionally invented to implement

the capture-free ‘term for variable’ substitution, though we are also aware of the

more general system of higher-order rewriting using de Bruijn notation of Bonelli

et al. [19]. The X -calculus is already complicated to unfamiliar eyes, and a de

Bruijn notation would certainly further add to this complexity. In addition, theX -

calculus is (at the time of writing) a fairly young calculus. One of the goals of the

implementation was to better understand its features, in particular the reduction

mechanism; we reported on some of our insights in the previous chapter.

Kahl’s second-order graphs provide a clean implementation for higher-order rewrite

systems, again, internalising a capture-free ‘term for variable’ notion of substitu-

tion. This is true of all implementations of Klop’s CRS that we are aware of. A

particularly nice feature of Kahl’s system is the explicit representation of the vari-

able binding and variable identity relations. While this system is perhaps the best

suited to the implementation of X , we avoid it for practical reasons: the imple-

mentation appears to be closed source, and additionally we will not require the

full power of Klop’s CRS’s formalism.

The approach we take instead is to extend the traditional first order term-graph

rewrite systems due to Barendregt et al. (presented in Section 2.4.5) with binding

constructs and side-conditions. This system has been well-studied, and is (rela-

tively) simple to understand. Moreover, full implementation details are very easy

to get hold of. In this chapter section, we will describe specifically the extensions

we needed to model X -calculi, and detail key design decisions we made in our

implementation.

4.1 Conditional Second-OrderTermGraphRewriting

A conditional second-order term graph rewrite system (CTGRS) is an extension

of the traditional first-order term graph rewrite systems. The extension allows

for: (i) a representation of the variable binding and variable identity relations

and, (ii) the ability to express and check side-conditions.

Definition 4.1.1 (CTGRS) A conditional term graph rewrite system is a pair 〈Σ,R〉,

where Σ is a signature and R is a set of graph rewrite rules.



We first define the alphabet over which term graphs will be built; this is an exten-

sion of the usual signature (see Definition 2.4.16) with two new concepts. We in-

troduce a notion of namewhich corresponds to the formal parameters of a higher-

order function (e.g., the ‘variables’ of the λ-calculus as used in the abstraction,

or the connectors of the X -calculus). We make a second extension of the signa-

ture, introducing a notion of binder specifications on function symbols; these are

intended to relate a formal parameter its occurrences in the subterm it binds over

(recall that in the X -calculus, terms have several subterms and several binders).

Definition 4.1.2 (Signature) The signature, Σ, of a CTGRS is a 5-tuple

〈F ,N ,V , arity,B〉

where:

• F is a non-empty set of function symbols.

• N is a countably infinite set of name symbols.

• V is a countably infinite set of metavariables.

• arity is a function of type F → IN, specifying the number of arguments each func-

tion symbol can take.

• B is a binder specification function of type {F×IN×IN}, relating (the indexes

of) two different arguments of the specified function symbol. (The intended use is

given some 〈 f s, i, j〉 ∈ B, the ith argument of f is a binder over the subterm at

index j).

Note that the sets F ,N and V are disjoint.

Definition 4.1.3 (Term Graph) A rooted labelled graph over the signature Σ is a 6-

tuple

〈X, lab, F,N, succ, z〉

where:

• X ∈ IN is a set of nodes.

• lab is a function of type X→(ΣF∪ΣN ), mapping each node in X to a function

symbol or name symbol.

• F,N are disjoint partitions that cover the set of graph nodes X, where:

F =
{
n ∈ X | Σlab(n) ∈ F

}

N =
{
n ∈ X | Σlab(n) ∈ N

}



• succ is a function of type X→[X], specifying an ordered list of arguments for each

node in X. The ith argument of a node n ∈ X with arity k is denoted succ(n)i ,

where 0≤i<k.

• z ∈ F is the unique root of the graph.

We do not require that every node is reachable from the root of the graph.

Definition 4.1.4 (Open Graph) An open graph is the 6-tuple 〈X, lab, F,N,V, succ〉

like a term graph, except:

• no root is specified.

• V =
{
n ∈ X | Σlab(n) ∈ V

}
and is pairwise disjoint with F and N.

• succ is required to be only a partial function, where ∀v ∈ V.succ(v) is undefined.

Elements of V are 0-ary metavariables or open nodes that will be mapped to elements of

F. When we write open graphs, we will specify a set of infinite symbols over which open

nodes range. We say a graph is closed when it contains no open nodes.

In the following, we will afford ourselves the liberty of treating term graphs as rooted

open graphs according to the following conversion.

〈X, lab, F,N, succ, z〉 = 〈X, lab, F,N,∅, succ, z〉

We use the standard definitions of paths and subgraphs as given in Section 2.4.5,

except that they are defined (where applicable) over our new signature and graph

structures.

Graph rewrite rules may additionally contain side-conditions. We remind our-

selves that these side-conditions apply to instances of left-hand sides of rewrite

rules, rather than on the rewrite rules themselves. With this in mind we define a

specification for a side condition.

Definition 4.1.5 (Side-Condition Specification) A side-condition specification is de-

fined with respect to an open graph, g = 〈X, lab, F,N,V, succ〉. We will use the vari-

ables x, y to range over X and the variables m to range over N. We define the set of



side-condition specifications with the following grammar.

SCS ::= equals(x, y) ‘x = y’

| fv(m, x) ‘m ∈ fv(x)’

| bv(m, x) ‘m ∈ bv(x)’

| introduces(x,m) ‘x introduces m’

| or(SCS,SCS) ‘disjunction’

| and(SCS,SCS) ‘conjunction’

| not(SCS) ‘negation’

| true ‘true’

| f alse ‘false’

We will specify how to evaluate instances of these specifications in Definition 4.1.7.

Definition 4.1.6 (Graph Rewrite Rule) The graph representation of a conditional re-

write rule is a bi-rooted open graph called a graph rewrite rule, and is denoted by the

quadruple 〈g, l, r, sc〉, where g is an open graph (represented as a 6-tuple), and l and r

are nodes in gF called the left root and right root of the rule. A side-condition, sc, is

associated with each rule. If no side-condition is specified, the default side-condition true

is used.

We will also reuse the standard definitions of homomorphisms and term graph sub-

stitutions from Section 2.4.5, adapted to our needs.

We may now specify how to evaluate a side-condition specification with respect

to a term graph and a homomorphism from the left-hand side of a graph rewrite

rule to that term graph.

Definition 4.1.7 (Evaluation of Side-Condition Specifications) We can define a pro-

cedure eval, which evaluates the side-condition specification of the rewrite rule with re-

spect to the following structures:

• a graph rewrite rule, 〈R, l, r, sc〉.

• a term graph, T.

• a homomorphism, ∂ : RX→TX from the nodes in RX reachable from the left root, to

a subset of the nodes in TX.

We will first define the following auxiliary functions, with respect to the signature Σ of

graphs:

• subTerms returns the subterm node indexes of the supplied function symbol node.



subTerms :: F → Open Graph→ {IN}

subTerms n g =
{
i | gsucci(n) ∈ gF ∧ 0≤i<Σarity(n)

}

• names returns the name node indexes of the supplied function symbol node.

names :: F → Open Graph→ {IN}

names n g =
{
i | gsucci(n) ∈ gN ∧ 0≤i<Σarity(n)

}

• binders returns the node id’s of binders over the supplied subterm.

binders :: F → IN→ Open Graph→ {X}

binders f g s =
{
glab(i) | 〈 f , i, s〉 ∈ ΣB

}

• fnSet computes the set of free names in the supplied subgraph g|n.

fnSet :: F → Open Graph→ {N}

fnSet n g = vars ∪ f nSubterms

where

vars =
{
gsucci(n) | i ∈ names n g ∧ ¬∃j.〈glab(n), i, j〉 ∈ ΣB

}

f nSubterms = {x ∈ (fnSet s g \ binders n s g) | s ∈ subterms n g}

• bnSet computes the set of bound names in the supplied subgraph g|n.

bnSet :: F → Open Graph→ {N}

bnSet n g = vars ∪ bnSubterms

where

vars =
{
gsucci(n) | i ∈ names n g ∧ ∃j.〈glab(n), i, j〉 ∈ ΣB

}

bnSubterms =
{
x ∈ bnSet gsuccj(n) g | j ∈ subterms n g

}

• introSet computes the set of introduced names in the supplied subgraph g|n.

introSet :: F → Open Graph→ {N}

introSet n g = vars \ f nSubterms

where

vars =
{
g.succi(n) | i ∈ names n g ∧ ¬∃j.〈glab(n), i, j〉 ∈ ΣB

}

f nSubterms = {x ∈ (fnSet s g \ binders n s g) | s ∈ subterms n g}

Where the variables x, y range over RX , m ranges over RN , and c1, c2 range over SCS,



we define the eval function as,

eval : : SCS→ Open Graph→ (RX→TX)→ boolean

eval equals(x, y) g ∂ = (∂(x) == ∂(y))

eval f v(m, x) g ∂ = ∂(m) ∈ fnSet ∂(x) g

eval bv(m, x) g ∂ = ∂(m) ∈ bnSet ∂(x) g

eval introduces(x,m) g ∂ = ∂(m) ∈ introSet ∂(x) g

eval and(c1, c2) g ∂ = (eval c1 g ∂) ∧ (eval c2 g ∂)

eval or(c1, c2) g ∂ = (eval c1 g ∂) ∨ (eval c2 g ∂)

eval not(c1) g ∂ = ¬(eval c1 g ∂)

eval true g ∂ = true

eval f alse g ∂ = false

The evaluation of side conditions have been formulated to yield correct results on terms

with nested binding.

Definition 4.1.8 (Redex) A redex in a term graph g0 is a pair 〈R, ∂〉, where R is a

graph rewrite rule 〈g, l, r, sc〉, ∂ is a homomorphism from (g|l) to g0, and eval sc g0 ∂

evaluates to true.

The standard graph rewrite step defined in Section 2.4.5 is used to transform

CTGRS graphs, i.e., only the definition of a redex has changed.

4.1.1 A CTGRS specification of the X -calculus

In this section we will define the X -calculus as an example of a CTGRS. Terms of

the X -calculus can, of course, be written using the more traditional prefix syntax

as shown below.
X -syntax Prefix notation

〈x·α〉 Cap(x, α)

x̂Pβ̂·α Exp(x, P, β, α)

Pα̂ [x] ŷQ Imp(P, α, x, y,Q)

Pα̂ † x̂Q Cut(P, α, x,Q)

Pα̂ † x̂Q CutR(P, α, x,Q)

Pα̂ † x̂Q CutL(P, α, x,Q)

This corresponds more closely to standard term graph notation, which we intro-

duce below.



Definition 4.1.9 (Signature for X ) The signature of the X -calculus, is defined by the

5-tuple 〈F ,N ,V , arity,B〉, where:

F = {Cap, Exp, Imp,Cut,CutL,CutR}

N = {x, y, z, . . . , α, β, δ, . . .}

V = {G,H,M,N,O, P,Q, R, S, T}

arity = {(Cap, 2), (Exp, 4), (Imp, 5), (Cut, 4), (CutL, 4), (CutR, 4)}

B =






〈Exp, 0, 1〉, 〈Exp, 2, 1〉,

〈Imp, 1, 0〉, 〈Imp, 3, 4〉,

〈Cut, 1, 0〉, 〈Cut, 2, 3〉,

〈CutL, 1, 0〉, 〈CutL, 2, 3〉,

〈CutR, 1, 0〉, 〈CutR, 2, 3〉






For example, the binder specification 〈Exp, 0, 1〉 implies that the zeroth argument

of the node labelled Exp binds over the first argument.

Using this signature, we can move to define an interpretation from X -circuits to

term graphs for X . First we mention two special features of our term graphs

relating to the variable binding and variable identity relations. Names (formal pa-

rameters) in our term graphs are represented as distinct node objects (rather than

components of data segments of ‘binder’ nodes as in Wadsworth’s λ-graphs, or

as pointers to ‘binder’ nodes as in Kahl’s second-order term graphs). The relation

between a binder and its occurrences in the subterm it binds over is expressed

using sharing: they are the same node object. Equality of free names is also ex-

pressed in this way. This sharing feature introduces an additional complexity to

the interpretation of X -circuits. In the following, we will define a recursive and

one-pass interpretation function that builds a term graph *P+Ln from the X -circuit

P, maintaining a list L of free names to build the sharing into the graph and a

counter n of node id’s.

Definition 4.1.10 (Term Graph Interpretation for X ) For each circuit, P, we define

its term graph interpretation, *P+Ln . The parameter n is a counter representing the next

assignable node id. As the term graph is (inductively) constructed, a list L of sharable

free variables is built up. Every interpretation of a circuit is passed such a list with which

any free variables it introduces can be shared to maintain the variable identity relation.

Anticipating the extension of the term graph interpretation to graph rewrite rules, we will

define our interpretation over open rooted graphs permitting variable nodes; these graphs

are described by the 7-tuple 〈X, lab, F,N,V,≻, z〉. We will also define a function fng,



which will compute the set of free names and variables in a rooted open graph g. (Notice

that there are no nodes labelled as variables in term graphs).

fng =
{
(i, glab(i)) | i ∈ (fnSet gz g)

}
∪
{
(i, glab(i)) | i ∈ gV

}

In addition, we define the auxiliary function getId, which returns a node id for the given

symbol that where possible shares nodes according to the variable binding and variable

identity relations.

getId ::→ [IN×(N∪V)]

getId x [ ] n = n

getId x (i, x):L n = i

getId x (i, y):L n = getId x L n

The interpretation *P+Ln of X -circuits P, given below, returns a pair consisting of (i) a
number to be added to the counter n which will yield the next available node id, i.e., the
number of counter increments made during the interpretation of P plus one, and (ii) the
term graph representation of the P.

*〈x·α〉+Ln = 〈3, 〈 {n, idx, idα},

{(n,Cap), (idx, x), (idα, α)},

{n},

{idx, idα},

∅,

{(n, [idx, idα])},

n 〉

〉 where

idx = getId x L (n+1)

idα = getId α L (n+2)

*x̂Pβ̂·α+Ln = 〈4+m, 〈 X ∪ {n, idx, idβ, idα},

lab∪ {(n,Exp), (idx, x), (idβ, β), (idα, α)},

F ∪ {n},

N ∪ {idx, idβ, idα},

V,

succ∪ {(n, [idx, z, idβ, idα])},

n 〉

〉 where

〈m, PG〉 = *P+
L\( ,x)\( ,β)
n+4

〈X, lab, F,N,V, succ, z〉 = PG

idx = getId x fnPG (n+1)

idβ = getId β fnPG (n+2)

idα = getId α fnPG\(idx, )\(idβ, ):L (n+3)



*Pα̂ [y] x̂Q+Ln = 〈5+m1+m2, 〈 X1 ∪ X2 ∪ {n, idα, idy, idx},

lab1 ∪ lab2 ∪ {(n, Imp), (idα, α), (idy, y), (idx, x)},

F1 ∪ F2 ∪ {n},

N1 ∪ N2 ∪ {idα, idy, idx},

V1 ∪V2,

succ1 ∪ succ2 ∪ {(n, [z1, idα, idy, idx, z2])},

n 〉

〉 where

〈m1, PG〉 = *P+
L\( ,α)
n+4

〈X1, lab1, F1,N1,V1, succ1, z1〉 = PG

L′ = (fnPG\(idα, ):L)\( , x)

〈m2,QG〉 = *Q+L
′

m1+n+4

〈X2, lab2, F2,N2,V2, succ2, z2〉 = QG

idα = getId α fnPG (n+1)

idx = getId x fnQG (n+2)

idy = getId y fnPG\(idα, ):fnQG\(idx, ):L (n+3)

*Pα̂ † x̂Q+Ln = 〈4+m1+m2, 〈 X1 ∪ X2 ∪ {n, idα, idx},

lab1 ∪ lab2 ∪ {(n,Cut), (idα, α), (idx, x)},

F1 ∪ F2 ∪ {n},

N1 ∪ N2 ∪ {idα, idx},

V1 ∪V2,

succ1 ∪ succ2 ∪ {(n, [z1, idα, idx, z2])},

n 〉

〉 where

〈m1, PG〉 = *P+
L\( ,α)
n+4

〈X1, lab1, F1,N1,V1, succ1, z1〉 = PG

L′ = (fnPG\(idα, ):L)\( , x)

〈m2,QG〉 = *Q+L
′

m1+n+4

〈X2, lab2, F2,N2,V2, succ2, z2〉 = QG

idα = getId α fnPG (n+1)

idx = getId x fnQG (n+2)

The interpretations *Pα̂ † x̂Q+Ln and *Pα̂ † x̂Q+Ln are the same as *Pα̂ † x̂Q+Ln except for

the use of the respective function symbols CutL and CutR (instead of Cut) in the specifica-

tion of lab.

We can now define the interpretation of an arbitrary X -circuit P, as:

*P+ = *P+
[ ]
0

We note that once a circuit has been interpreted, the label of that node is not im-

portant. However, we will allow these labels since they improve the readability

of the term graphs, and allow one to make direct comparisons with the original



input circuit to the interpretation.

Example 4.1.11 (An X -circuit Interpretation) We give an example of interpreting an

X -circuit to a CTGRS term graph. *〈x·α〉α̂ † ŷ(〈x·β〉β̂ [y] ẑ〈z·γ〉)+ becomes:

Cut

Cap y Imp

x α Cap Cap

β z γ

〈 {0, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16},

{(0,Cut), (4,Cap), (5, x), (6, α), (7, Imp), (10, y),

(11,Cap), (12, β), (14,Cap), (15, z), (16, γ)},

{0, 4, 7, 11, 14},

{5, 6, 10, 12, 15, 16},

∅,

{(0, [4, 6, 10, 7]), (4, [5, 6]), (7, [11, 12, 10, 15, 14]),

(11, [5, 12]), (14, [15, 16])},

0〉

In diagrammatic representations of term graphs, we will identify root nodes with a square

box as shown above.

Notice the sharing of the free names x expressing the variable identity relation, and the

sharing of the formal parameters with their occurrences (i.e., the connectors y, z and β)

expressing the variable binding relation.

Definition 4.1.12 (Interpretation of Reduction Rules) The lifting of the reduction

rules to graph rewrite rules is expressed by first extending the interpretation of circuits

to open graphs dealing with the case of interpreting an open node (i.e., elements of ΣV ).

For the circuit variable P ∈ ΣV we have,

*P+Ln = 〈1, 〈{idP}, {(idP, P)},∅,∅, {idP},∅, n〉 〉

where idP = getId P L n

We need to introduce three constraints on the specification of any X -calculus reduction

rule that needs to be interpreted as term graphs; these are:

1. The left and right-hand side of the reduction rule obeys Barendregt’s convention.

2. All names and variables which have the same label (i.e., even bound names) are

intended to be shared and will therefore be represented as a single node.

3. Side-conditions on the reduction rules for circuits refer only to the left-hand sides

of the rule.

We can then define the interpretation of a reduction rule as:

*left→ right^ sc+ = 〈g, zl , zr , sc
′〉



and,

g = share 〈 Xl∪Xr, labl∪labr, Fl∪Fr, Nl∪Nr, Vl∪Vr, succl∪succr 〉

where

〈ml, LG〉 = *left+
[ ]
0

〈Xl , labl, Fl,Nl ,Vlsuccl , zl〉 = LG

L =
[
(i, LGlab(i)) | i ∈ (Nl∪Vl)

]

〈mr, 〈Xr, labr, Fr,Nr,Vr, succr, zr〉〉 = *right+Lml

and the share function is defined as:

share :: Open Graph→ Open GraphF → Open GraphF → Open Graph

share g l r = 〈 {n ∈ gX | ( , n) 6∈ redirects} ,

{(n, ) ∈ glab | ( , n) 6∈ redirects} ,

gF,

{n ∈ gN | ( , n) 6∈ redirects} ,

gV ,

{(m, L⇐ \ redirects) | (m, L) ∈ gsucc}

〉 where

redirects =
[
(m, n) | m ∈ bnSet l g ∧ n ∈ bnSet r g ∧ glab(m)=glab(n)

]

The side-conditions sc′ acting on the graph can also be mechanically interpreted by match-

ing the labels used in sc on the X -circuit to the (unique) node id with that label in the

graph. This technique is straightforward and has been implemented in the tool; we will

omit these details here. Alternatively, the conditions can be reformulated by hand to the

language of graphs.

Following [14, 15], these rules induce a notion G→g G′ of term graph rewriting.

Definition 4.1.13 (X -graphs) We define the set of initial X -graphs as the image of

X -circuits under * · +. We can then define the set of X -graphs by closure under graph

rewriting of initial X -graphs.

Example 4.1.14 (Example Graph Rewrite Rules) We give some interpretations of re-

duction rules for the X -calculus (Definitions 3.1.4 and 3.1.7) to CTGRS graph rewrite

rules:

• (exp-rn): (ŷPβ̂·α)α̂ † x̂〈x·γ〉 → ŷPβ̂·γ ^ ŷPβ̂·α introduces α



Cut Exp

Exp α Cap

y β x γ

P

〈〈{0, 4, 5, 6, 7, 8, 9, 10, 11, 12},

{(0,Cut), (4,Exp), (5, y), (6, β), (7, α),

(8, P), (9,Cap), (10, x), (11, γ), (12,Exp)}

{0, 4, 9, 12},

{5, 6, 7, 10, 11},

{8},

{(0, [4, 7, 5, 9]), (4, [5, 6, 7, 8]), (9, [10, 11]),

(12, [5, 8, 6, 7])}

〉 , 0, 12, introduces(4,7) 〉

•
(exp-imp): (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(Pβ̂ † ẑR) ^ (ŷPβ̂·α introduces α ∧

Qγ̂ [x] ẑR introduces x)

Cut Cut

Exp α x Imp Cut

y β Q R

P γ z

• (exp-outs† ): (ŷQβ̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P, γ fresh

CutL Cut

Exp α x Q Exp γ

y β

P CutL

Notice in the above graph, any right-hand side node labelled with a name which is

not the label of a node reachable from left-root is automatically identified as a fresh

name, represented as a unique node.

As can be seen, the amount of nodes added to the graph is small in comparison to

the complexity of the graph generated by the rewriting; notice, for example, that

an application of the third rule (exp-outs† ), although syntactically complicated,

would add only the four nodes labelled Cut, Exp, γ, and CutL (that are accessible

from the right root). Also, all edges coming into the node in the graph that is

matched against the left-root would be redirected into the new node Cut. The

node matched to CutLwould become potential garbage.

In addition to the interpretation of circuits to graphs, we would like an operation

that transforms an X -graph with sharing into one whose structure more closely

resembles an X -circuit. This is achieved by ‘unravelling’ the graph; copying out

the shared function-symbol and metavariable nodes as far down as the connec-

tors (which only appear once in a graph).



Definition 4.1.15 (Unravelling, c.f.,[55]) Unrav(G), the unravelling of an X -graph

G is obtained by traversing the (acyclic) graph top-down, and copying, for all shared

graphs, all nodes in that graph that are not names.

Notice that both the set of initial X -graphs and the image of the set of X -graphs

under Unrav(·) are graphs containing sharing only at the level of connectors.

This setup gives us a method of comparing an X -circuit Pwith an X -graph G, by

comparing *P+ with Unrav(G). This will be useful for formulating results later

in the paper.

Example 4.1.16 (Unravelling of an X -Graph) Take G to be

*(v̂〈v·γ〉γ̂·α)α̂ † ẑ(((v̂〈v·γ〉γ̂·α)α̂ † x̂〈x·β〉) β̂ [z] ŷ((v̂〈v·γ〉γ̂·α)α̂ † x̂〈y·α〉))+

Cut

Exp Imp

α z CutR CutR

Cap Cap Cap

v γ x β y δ

then Unrav(G) is

Cut

Exp Imp

α z CutR CutR

Cap Exp Cap β y Exp Cap

v γ x δ

Cap Cap

v γ v γ

Notice that the bound connectors v and γwithin the shared graph Exp(1:v,Cap(1, 2), 2:γ, α)

are copied out, but α is not, and that the in-degree of α increases.

We now have the following results.

Lemma 4.1.17 If G1→g G2, then there exists G3 such that Unrav(G1)→g G3, as well

as Unrav(G2) = Unrav(G3).

Proof 4.1.18 In each step of G1→g G2 a cut K is contracted. Using colouring, we can

build a reduction sequenceUnrav(G1)→g G3, for some G3, by contracting, for each step



in G1→g G2, always only all copies of K (using the same rule repeatedly). Notice that

this reduction might have introduced sharing, and that G2 and G3 differ only in that G3

contains less sharing than G2, i.e. G3 is a partially unravelled version of G2. Since no

other manipulation has been performed, we get Unrav(G2) = Unrav(G3).

We also have the following adequacy result:

Theorem 4.1.19 (Adequacy) Let G1,G2 be X -graphs, and P1, P2 be X -circuits such

that Unrav(Gi) = *Pi+, for i = 1, 2. If G1→g G2, then P1 → P2. Moreover, if G2 is in

normal form, then so is P2.

Proof 4.1.20 By Lemma 4.1.17, we get that there exists a G3 such that *P1 + →g G3,

as well as *P2+ = Unrav(G3). This reduction induces, similar to Lemma 4.1.17, a

reduction from P1 to P2. If G2 contains no cuts, then neither does *P2+, nor P2.

We can now prove the following result:

Theorem 4.1.21 If P → Q in one step, then there exists a X -graph G such that: *P +

→g G, and Unrav(G) = *Q+.

Proof 4.1.22 Easy; in *P+, redexes are not shared; the only sharing in G is introduced

by the reduction, which gets erased by unravelling.

Notice that, by the non-confluent character forX , we cannot prove a similar result

for many-steps reduction paths, as illustrated by the following example.

Example 4.1.23 (Sharing and Non-confluence) Let P and Q be such that α 6∈ fp(P)

and x 6∈ fp(Q), so P← Pα̂ † x̂Q→ Q. Now (assume z 6= v):

(Pα̂ † x̂Q)γ̂ † ẑ(〈z·β〉β̂ [v] ŵ〈z·δ〉) → ( †imp-ins), (d †), (d †)

((Pα̂ † x̂Q)γ̂ † ẑ〈z·β〉) β̂ [v] ŵ((Pα̂ † x̂Q)γ̂ † ẑ〈z·δ〉) → (act-L), († gc), (act-R), ( †gc)

(Pγ̂ † ẑ〈z·β〉) β̂ [v] ŵ(Qγ̂ † ẑ〈z·δ〉)

Notice that we have explicitly used the non-confluence of the cut Pα̂ † x̂Q, and reduced it

once to P, and once to Q.



We cannot simulate this in the setting of term graph rewriting. Instead, we get the

following graph for the first term,

CutR

Cut γ Imp

P Q Cap Cap

α x z β v w δ

which, by ( †imp-ins), ( †exp), (d †) then (d †) reduces to the graph,

Imp

Cut β v w Cut

Cap Cap

γ δ

z

Cut

P α x Q

Since the cut Cut(P, α, x,Q) is shared, it can only be reduced once, resulting in either P

or Q as the common subterm to the respective parent cuts. This implies the previously

illustrated reduction cannot be simulated.

This is not unexpected, however, since all implementations of reduction systems

will use a reduction strategy, preferring certain redexes over others, and thereby

excluding other reduction paths.

On the other hand, when restricting to either the CBN or CBV-reduction strate-

gies, the above negative result does not hold; in fact, we can show that for con-

fluent reduction, our term-graph rewriting engine models reduction in X .

4.2 Name Capture and Clash in X

So far in this chapter, we have built a system which is expressive enough to de-

scribe the syntax and reduction rules of the X -calculus. We specified how to

formulate side-conditions on the graph rewrite rules, and how to express the

higher-order variable binding and variable identity relations.

As discussed in the background section on rewriting (Section 2.4), simply defin-

ing these higher-order relations is not enough—a means of maintaining them

must also be specified for reductions to be correct. In the following example we

will highlight the problems (specifically incorrect reduction sequences) which are



the result of not maintaining the binding relations. We will illustrate this using

the X -graphs defined in the previous section.

Example 4.2.1 (Name Clash in X ) Wewill highlight portions of circuits (using dashed

lines, bold lines and bold symbols) to guide the reader through an example reduction, il-

lustrating name clash. Take the following circuit,

(ŷ〈y·µ〉µ̂·γ)γ̂ † x̂(〈x·δ〉δ̂ [x] ŵ〈w·α〉)

This circuit corresponds to the λx-term xx 〈x= λy.y〉; notice that reducing this λx-term

poses no name capture problem. The X -graph that represents the above circuit (built

using Definition 4.1.10) is:

Cut

Exp Imp

γ Cap Cap

Cap x δ w α

y µ (4.1)

Applying the term graph rules (act-R), ( †imp-outs), (d †), (exp-rn), then ( †cap) will

generate:

(ŷ〈y·µ〉µ̂·γ)γ̂ † ẑ((ŷ〈y·µ〉µ̂·δ) δ̂ [z] ŵ〈w·α〉)

Cut

Exp Imp

γ z Exp Cap

Cap δ w α

y µ
(4.2)

with z fresh.

As is clear from this graph, the capsule on the left is now shared. Also, there are two

binders to both y and µ, coming from the two export nodes. Continuing the execution of



this graph via (exp-impcbn) yields the graph, ((ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·µ〉)µ̂ † ŵ〈w·α〉

Cut

Cut Cap

Exp w α

δ

Cap

y µ (4.3)

Notice that now there are two nested binders to µ: one coming from Exp, the second

coming from the top-most Cut.

According to Lemma 3.1.25, the outermost cut µ̂ † ŵ should behave as a renaming cut,

renaming all free occurrences of µ in the term by α, resulting in,

(ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·α〉 (⋆)

However, propagating this cut through the left circuit in a stepwise fashion, we are pre-

sented with an incorrect reduction step.

((ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·µ〉)µ̂ † ŵ〈w·α〉 → (act-L), (cut† )

((ŷ〈y·µ〉µ̂·δ)µ̂ † ŵ〈w·α〉) δ̂ † ŷ(〈y·µ〉µ̂ † ŵ〈w·α〉) → († d), (cap-rn), († d)

((ŷ〈y·µ〉µ̂·δ)µ̂ † ŵ〈w·α〉) δ̂ † ŷ〈y·α〉

The X -graph for this last circuit is:

Cut

Cut

Exp Cap Cap

Cap δ w α

y µ (4.4)

The generated graph shares all occurrences of the µ connector in the circuit. The only

rule applicable in this case is (exp-ins† ) (since µ is not introduced in the corresponding

circuit), and as displayed by the graph below, the rule causes the scopes of the two µ

binders (used by the cut and the export) to swap.

(ŷ(〈y·µ〉µ̂ † ŵ〈w·α〉)µ̂·δ) δ̂ † ŷ〈y·α〉



Cut

Exp

Cut δ

Cap Cap Cap

y µ w α (4.5)

The cut now deactivates and incorrectly renames the µ in the capsule to α, which destroys

the relations between the body of the original export, 〈y·µ〉, and its formal parameters y

and µ. The reduced term is,

(ŷ〈y·α〉µ̂·δ) δ̂ † ŷ〈y·α〉

Cut

Exp Cap

Cap µ δ α

y (4.6)

Compare how the above circuit differs from circuit (⋆); notice that the body of the export

now sends it output to α, rather than µ. This differs from the expected term in that the

innermost µ of circuit (⋆) (above), has been renamed as well. The term finally reduces by

(exp-rn) to,

ŷ〈y·α〉µ̂·α

Exp

Cap µ

y α (4.7)

Example 4.2.2 (Name Capture in X ) In this example, we will illustrate the problem

of name capture. We begin with circuit (4.1):

(ŷ〈y·µ〉µ̂·γ)γ̂ † x̂(〈x·δ〉δ̂ [x] ŵ〈w·α〉)

However, instead this time we apply only the rules (act-R), ( †imp-outs), ( †cap), (d †).

This is followed by an application of (exp-impcbn), giving the circuit:

(((ŷ〈y·µ〉µ̂·γ)γ̂ † x̂〈x·δ〉)δ̂ † ŷ〈y·µ〉)µ̂ † ŵ〈w·α〉



Cut

Cut Cap

Cut w α

Exp Cap

γ x δ

Cap

y µ (4.8)

In contrast to Circuit (4.3), there is an extra renaming cut γ̂ † x̂ with an export (high-

lighted). The presence of this cut allows for the left-activation of the cut δ̂ † ŷ, followed by

its propagation through the left sub-circuit. This is done by applying the rules (act-L),

(cut† ), (d †), (cap-rn), giving us the circuit:

(((ŷ〈y·µ〉µ̂·γ) δ̂ † ŷ〈y·µ〉)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉

Cut

Cut Cap

CutL w α

Exp δ Cap

γ x

Cap

y µ (4.9)

Notice that in the redex (ŷ〈y·µ〉µ̂·γ) δ̂ † ŷ〈y·µ〉, the µ connector is both free and bound.

By applying the rule (exp-ins† ), the free µ of the capsule gets captured by the bound µ

of the export. We get the graph:

((ŷ(〈y·µ〉δ̂ † ŷ〈y·µ〉)µ̂·γ)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉

Cut

Cut Cap

Exp w α

CutL γ Cap

δ x

Cap

y µ (4.10)

Notice in the circuit the highlighted µ is now bound by the export, rather than the cut



µ̂ † ŵ.

Although in this case, the capture of the free µ connector does not lead to an incorrect

result (the propagating cut with that connector is destroyed), there are (more complicated

and involved) examples where the result is affected. However, for the purposes of the

example, we have highlighted the situation we will refer to as the name capture.

4.2.1 Lazy Copying of Shared Graphs

The solution to the problem of capture we propose in this section is to avoid, as

for λ-graphs, the sharing of graphs that are involved in a a redex, i.e., forbid the

sharing of binders involved in cuts. Similarly to the case for the λ-calculus [92],

binding of connectors can be considered problematic in the context of sharing.

Sharing an abstraction λx.G in λ-graphs is problematic since the substitution is

implemented via a redirection on G. This can be done only once, blocking a re-

use of a shared abstraction, that therefore has to be copied first. To tackle this

problem within the context of X , a notion of rebinding of sockets and of plugs was

introduced.

The basic idea is the following: suppose we are dealing with the X -graph (which

can be generated by the graph rewrite system as shown in Example 4.2.1),

(ŷPµ̂·γ)γ̂ † ẑ((ŷPµ̂·δ) δ̂ [z] ŵ〈w·α〉)

Cut

Exp Imp

γ z Exp Cap

P δ w α

y µ

The fact that y and µ is bound twice and shared might cause the binders to later

come into a position where they can interact with each other during the reduc-

tions. We avoid that by copying the parts of P that depend on y or µ: we will

‘peel off a copy’ of the graph which might get affected by the double binding of

connectors.

This is similar to Wadsworth’s notion of R-admissibility (Definition 2.4.9), and

differs in that in creating an ‘R-admissible’ graph, we must copy several con-

structors and consider two classes of connectors. Unlike Wadsworth’s technique



however, we noticed that eager copying of graphs will destroy a large amount

of sharing. We will later specify a lazy reduction strategy that avoids much of the

unnecessary copying (see Section 4.3.4).

First we will deal with making X -graphs, or rather X -subgraphs, identified as

redexes ‘R-admissible’. To this end, extend the signature Σ of X -graphs with two

higher-order function symbols.

Σ′ = 〈ΣF ∪ {rp, rs}

ΣN

ΣV

Σarity ∪ {(rp, 3), (rs, 3)}

ΣB ∪ {(rp, 1, 0), (rs, 1, 0)}

〉

The function symbols rp and rs will represent the renaming of a bound (rebind-

ing) plug or socket, respectively. This results in the (term graph) definition of

rebinding a socket (rp) as given in Definition 4.2.3. These will be used to prevent

a connector from being doubly bound by, essentially, copying that structure of a

graph which contains that binder whilst introducing the new connector, thereby

destroying the sharing of the connector via binding edges.

The term rp(P, α, β) as given in Definition 4.2.3 is defined to build a new graph

G′ where the free occurrences of α in G are replaced with β and any binders en-

countered in G are made fresh. Since this is, essentially, a copying function, when

we move the rebinding mechanism under binders, as in the third case below, we

would create double binders for those bound connectors we have just passed.

Therefore, we need to rebind those as well.

Definition 4.2.3 (Rebinding Rewrite Rules) The function rp is defined by the fol-

lowing term graph rewriting rules:

1. (rpGC): rp(P, β,γ) → P ^ β 6∈ fc(P)

rp P

β γ



2. (rpCapRename): rp(〈x·β〉, β,γ) → 〈x·γ〉

rp Cap

Cap γ

x β

3. (rpExp): rp(ŷPα̂·η, β,γ) → k̂ rs(rp(rp(P, β,γ), α, λ), y, k) λ̂·η ^ η 6= β

rp Exp

Exp η β γ rs

y α rp k

P rp λ

4. (rpExpRename): rp(ŷPα̂·β, β,γ) → k̂ rs(rp(rp(P, β,γ), α, λ), y, k) λ̂·γ

rp Exp

Exp β γ rs

y α rp k

P rp λ

5. (rpMed): rp(Pα̂ [x] ŷQ, β,γ) → rp(rp(P, β,γ), α, η) η̂ [x] ẑ rs(rp(Q, β,γ), y, z)

rp Imp

Imp β γ rp rs

P Q rp η z rp

α x y

6. (rpCut): rp(Pα̂ † ŷQ, β,γ) → rp(rp(P, β,γ), α, η) η̂ † ẑ rs(rp(Q, β,γ), y, z)

rp Cut

Cut β γ rp z rs

P α y Q rp η rp



(The function rs is defined similarly.) Notice that the call to the function rp builds an

α-equivalent version of P that uses a fresh socket γ to connect rather than β. Also, all

bound connectors are renamed: evaluating the rebinding rules builds a version of P with

fresh binder names. This ensures there is only ever one pointer to nodes that bind over P

or the local binders in P.

The functions rs and rp are expressed as higher-order term-graph rewriting rules.

Because these higher-order functions may not necessarily be evaluated eagerly,

they may interfere with the reductions of the X -calculus: if the sub-circuit of an

inactive cut is a rebinding term, an activation will be forced even though the sub-

circuit of the rebinding term introduces the appropriate connector of the cut (and

a logical rule should therefore have be applied).

Rather than forcing the evaluation of these rebinding constructs to completion

via an ‘eager’ reduction strategy, we will give define a lazier evaluation strategy

that avoids this mis-activation in Section 4.3.4.

Using the functions rs and rp gives a different formal definition of interpreting

rewrite rules in X as graphs. The term graph representation of each rule needs

to be revised to ensure binders are not shared, resulting in the new rules that are

quite involved. As suggested by the example above (Example 4.2.1), term rewrite

rules which introduce sharing of binders need to copy these out these in order to

avoid capture.

Definition 4.2.4 (Copying TGRS Rewrite Rules) There are six rules of theX -calculus

(incidentally all propagation rules) which need to be modified to ensure binders are not

shared. We give these modified rules below.

Left propagation

(exp-outs† ) : (ŷPβ̂·α)α̂ † x̂Q → (ŷ(Pα̂ † x̂Q) β̂·γ)γ̂ † ẑ rs(Q, x, z)

CutL Cut

Exp α x Q Exp γ z rs

y β CutL

P

(imp† ) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † k̂ rs(P, x, k))

(cut† ) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † k̂ rs(P, x, k))



Right propagation

( †imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) →

Pα̂ † ẑ((rp(P, α, µ) µ̂ † x̂Q) β̂ [z] ŷ(rp(P, α, η) η̂ † x̂R))

CutR Cut

P Imp z Imp

α x Q R CutR CutR

β y rp rp

δ σ

( †imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q) β̂ [z] ŷ(rp(P, α,γ) γ̂ † x̂R)

( †cut) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(rp(P, α,γ) γ̂ † x̂R)

It is perhaps not obvious that this (partial) copy action gives a solution to the

name capture problem. But, since the interpretation of circuits to term graphs

(Definition 4.1.10) ensures binders are not shared, this property is preserved dur-

ing reduction. So it is impossible for names to be captured.

Example 4.2.5 A corrected reduction, using rebinding, for that of Example 4.2.1 be-

comes:

(ŷ〈y·µ〉µ̂ ·γ)γ̂ † x̂(〈x·δ〉δ̂ [x] ŵ〈w·α〉)

→ (ŷ〈y·µ〉µ̂·γ) γ̂ † ẑ ((rp(ŷ〈y·µ〉µ̂·γ,γ, τ)τ̂ † x̂〈x·δ〉)β̂[z]ŷ (rp(ŷ〈y·µ〉µ̂·γ,γ,σ)σ̂ † x̂〈w·α〉))

→ (ŷ〈y·µ〉µ̂ ·γ)γ̂ † ẑ(((v̂〈v·ν〉ν̂·τ)τ̂ † x̂〈x·δ〉) δ̂ [z] ŵ((û〈u·η〉η̂·σ)σ̂ † x̂〈w·α〉))

→ (ŷ〈y·µ〉µ̂ ·γ)γ̂ † ẑ((v̂〈v·ν〉ν̂·δ) δ̂ [z] ŵ〈w·α〉)

→ ((v̂〈v·ν〉ν̂ ·δ) δ̂ † ŷ〈y·µ〉)µ̂ † ŵ〈w·α〉

Notice that this time there is no possibility of variable clash, since there are no shared

binders (the other copy of the µ binder together with the µ in the capsule is renamed

to ν). The highlighted cut µ̂ † ŵ can be activated and safely propagated through the left

sub-circuit, which after an additional renaming results in:

v̂〈v·ν〉ν̂·α

The solution using rebinding is surprisingly easy to formulate, and only the rules

that use explicit replication need to be changed, but comes at the price of having

to extend the signature of the calculus, as well as the set of rewrite rules. More-

over, it turns out to be highly inefficient; this is of course mainly due to the loss of

sharing. The main objection to rebinding is that it creates unnecessary overhead



in that it invokes rebinding for all double bindings of connectors, regardless of

whether or not they created a conflict; as we will see in the benchmarks section

(Section 4.3), the cost of running rebinding is high.

4.2.2 Preserving Barendregt’s convention

Although the solution obtained by rigourous copying of shared graphs is correct

in that it avoids the creation of shared binders, it was noticed that the fact that

a graph can share binders is not necessarily problematic. It can be shown that

some reduction paths which, although allow binders to be shared, do not lead to

incorrect results. In addition, notice that in Example 4.2.1, the sharing of the y

binder was never a problem. The conclusion of this observation was that, unlike

for λ-graphs where the sharing of abstractions in the graphs created the problem,

the problem here is of a different nature.

It is common practice to say that α-conversion is the machinery necessary to up-

hold Barendregt’s convention. Barendregt’s convention states that an identifier

should not appear both free and bound in a context (where a context can be a

term, but also a type statement) [13, Convention 2.1.13]. It is especially the no-

tion of binding that is important; for example, normally x is considered bound in

all λx.M, M〈x=N〉, and Γ, x:A ⊢λ M : B. In this section, we will propose a so-

lution to maintain the variable binding relations during reductions in the X , by

preserving Barendregt’s convention on names, i.e. make sure that names never

occur both free and bound. We will do this by detecting and avoiding it, without

having to extend the signature of the calculus, but by modifying the rules and

their side-conditions.

To tackle it in a formal way, we first introduce the notion of α-safety.

Definition 4.2.6 (α-safety) We call a circuit (X -graph) α-safe if it adheres to Baren-

dregt’s convention, i.e. no connector occurs both free and bound, and no nesting of binders

to the same connector occurs. We call a rewrite rule α-safe if it respects α-safety, that is,

it rewrites an α-safe circuit (graph) to an α-safe circuit (graph). We call a rewrite system

α-safe if all its rules are α-safe.

For example, the circuit (ŷ〈y·µ〉µ̂·µ)µ̂ † ŵ〈w·α〉 is not α-safe (it fails both criteria);

neither is (ŷ〈y·µ〉µ̂·δ)µ̂ † ŵ〈w·α〉, by the second criterion.



In order to obtain an α-safe implementation of X , we need to identify the rewrite

rules that are not α-safe. In Example 4.2.1, the application of (exp-impcbn) in the

third graph violates our α-safety property since µ is both bound and free in the

sub-circuit (ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·µ〉. So the rule (exp-impcbn) is not α-safe. In fact,

neither is the rule (exp-impcbv).

We can systematically check that (exp-impcbv) (which we recall below) is not α-

safe by checking whether the described transformation violates the criteria. We

recall the rule from Definition 3.1.4 below.

(exp-impcbn): (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR^ α, x introduced

If we assume the α-safety criteria holds on an instance of the left-hand side of the

rule (so γ 6∈ bp(ŷPβ̂·α) and x 6∈ bs(Qγ̂ [x] ẑR)), then the application of the rule

should not break the α-safety criterion. That is, we require the right-hand side

of the rule to also be α-safe. Notice that in its current form, the rule does indeed

break the criteria, since β and γ are nested on the right-hand side and the left-

hand side places no constraints on the relation between β and γ. A term graph

on which this rule is applied may have β=γ, in which case the application of the

rule will have created a nested binding.

Since now we do not necessarily need to avoid connectors being bound twice (as

long as they are not nested), we do not need to completely copy circuits. Instead,

in dealing with the necessary renaming of bound connectors we can take advan-

tage of the explicit renaming feature of X , introducing to the rules new cuts such

as 〈v·δ〉δ̂ † ŷP or Pβ̂ † v̂〈v·δ〉 to rename y by v, or β by δ respectively in P, where

v, δ are fresh (see Lemma 3.1.25). By activating the cuts, the intention is to force

the renaming to take place first. Wewill also need to adopt our proposed strongly

normalising rules (Section 3.1.3), which prevent a cut from deactivating, thereby

enforcing priority to the renaming cuts.

Returning to the violation in the (exp-impcbn) rule, in order to ensure the rewrite

will be executed correctly (w.r.t. α-safety), we need to introduce an extra con-

straint to the applicability of the rule (exp-impcbn), namely γ 6∈ bs(ŷPβ̂·α). (This

can be equivalently formulated as γ 6∈ bs(P) ∧ β 6= γ). If the side-condition does

not hold, then applying the rule will create a nested binding of (the image of) γ

in the term graph.

To remedy the situation, renaming should take place. This implies that there are



now two alternatives for this rule:

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → (Qγ̂ † ŷR) β̂ † ẑP ^ γ 6= β 6∈ bp(Q)

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → (Qγ̂ † ŷ(Rβ̂ † v̂〈v·δ〉)) δ̂ † ẑP ^ (β = γ ∨ β ∈ bp(Q))

We will adopt a convention for naming modified rules. If the rule was originally

called rule, then it is called:

• rule, if no renamings are involved in the rule.

• rulern-p, if a plug is renamed.

• rulern-s, if a socket is renamed.

• rulern-ps, if a plug and a socket is renamed.

Under this convention, the two variants of the (exp-impcbn) rule shown above are

called (exp-impcbn) and (exp-imp
rn-p
cbn ) respectively.

Likewise, the rules (exp-impcbv) and (exp-imprn-scbv ) are defined respectively as:

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → Qγ̂ † ŷ(Rβ̂ † ẑP) ^ y 6= z, y 6∈ bs(P)

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → Qγ̂ † v̂((〈v·δ〉δ̂ † ŷR) β̂ † ẑP) ^ y = z ∨ y ∈ bs(P)

Applying this solution to Example 4.2.1, we have, instead of the problematic step

(ŷ〈y·µ〉µ̂·γ)γ̂ † k̂((ŷ〈y·µ〉µ̂·δ) δ̂ [k] ŵ〈w·α〉) → (exp-impcbn)

((ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·µ〉)µ̂ † ŵ〈w·α〉

the correction

(ŷ〈y·µ〉µ̂·γ)γ̂ † k̂((ŷ〈y·µ〉µ̂·δ) δ̂ [k] ŵ〈w·α〉) → (exp-impcbn)

((ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ(〈y·µ〉µ̂ † v̂〈v·β〉)) β̂ † ŵ〈w·α〉 → († cap)

((ŷ〈y·µ〉µ̂·δ) δ̂ † ŷ〈y·β〉) β̂ † ŵ〈w·α〉 → (exp-rn)

(ŷ〈y·µ〉µ̂·β) β̂ † ŵ〈w·α〉 → (exp-rn)

ŷ〈y·µ〉µ̂·α

To guarantee α-safety of the entire rewrite system, we need tomake similar changes

to each rule where a possible conflict is introduced. Take for example the rule that

propagates an active cut over an inactive cut,

( †cut): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

There are two points of concern here: when α=β, and if β or y occurs in bc(P)

(notice that x 6=y as, by assumption, the left-hand side is an α-safe circuit). With

this in mind, the rule ( †cut) is amended with extra side conditions and replaced



by the following variants (where v, δ are fresh):

( †cut): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R) ^ C1

( †cut
rn-p

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † v̂(Pα̂ † x̂(〈v·δ〉δ̂ † ŷR)) ^ C2

( †cut
rn-s

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂(Qβ̂ † v̂〈v·δ〉)) δ̂ † ŷ(Pα̂ † x̂R) ^ C3

( †cut
rn-ps

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂(Qβ̂ † v̂〈v·δ〉)) δ̂ † v̂(Pα̂ † x̂(〈v·δ〉δ̂ † ŷR)) ^ C4

and the side-conditions are:

C1 = β 6∈ bp(P) ∧ β 6= α ∧ y 6∈ bs(P)

C2 = (β ∈ bp(P) ∨ β = α) ∧ y 6∈ bs(P)

C3 = β 6∈ bp(P) ∧ β 6= α ∧ y ∈ bs(P)

C4 = (β ∈ bp(P) ∨ β = α) ∧ y ∈ bs(P)

Almost all propagation rules (exceptions are († flip), (cap† ), (flip †), and ( †cap))

should be treated like this. Of the logical rules, only the two variants of the rule

(exp-imp) needs dealing with as specified above, giving a much more compli-

cated rewriting system with a great many rewrite rules. The advantage of this

approach is that name clash and capture are detected and dealt with, as stated by

the following,

Theorem 4.2.7 Let P→α Q stand for the notion of rewriting onX obtained by changing

the rules as above. Then: if P is α-safe, and P→α Q, then Q is α-safe.

Proof 4.2.8 Straightforward, by inspecting the rules.

The computational cost is low compared to the approach defined in Section 4.2.1

(see also Section 4.3); the price to pay is an increase in the number of rules. Since

the detection of a possible α-safety violation in a rule is straightforward, it is even

possible to, at the user level, allow for the definition of the normal rules, and to

automatically generate the α-safe variants.

4.2.3 Avoiding Clash and Capture

Preserving Barendregt’s convention is a perfectly adequate solution for maintain-

ing the variable binding and variable identity relations: it forbids a term with

nested binders to the same name to be created, and thereby totally avoids any am-

biguity within the system. However, one can justifiably argue that the convention

is restrictive and expensive to uphold at run-time. Amore direct approach would



be to relax on Barendregt’s convention, allowing names to occur both bound and

free, assuming that the innermost binding binds strongest, and try and detect and

avoid exactly the cases when name capture and name clash arise.

In the solution described in the previous section, free and bound connectors are

all different, so capture is impossible. In the solution we propose here, connectors

will be allowed to appear both free and bound. Instead the modification required

on the rules is that, upon its application to a circuit, they should detect possi-

ble captures of and clashes between connectors. For example, referring back to

Circuit (4.9) in Example 4.2.2, the application of the rule (exp-ins† ) to the term

(((ŷ〈y·µ〉µ̂·γ) δ̂ † ŷ〈y·µ〉)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉

should first check if any of the binders of the export on the left occurs free in the

capsule on the right. Specifically, it should ask if y or µ occur free in 〈y·µ〉; such

a test would be positive, indicating, in this instance, the application of the rule

would cause names to be captured.

We will show that we can always detect capturing safely, and perform the nec-

essary α-conversion only then. The solution will, in appearance, be strikingly

similar to that of Section 4.2.2 for the fact that freeness is used rather than bound-

ness. In Section 4.3, this approach will be shown to be much more efficient; this is

mainly because the solution of Section 4.2.2, many circuits which are not ‘α-safe’

(Definition 4.2.6) are left untouched here.

The original idea for the solution presented in this section comes from name clash

and capture can be dealt with in the context of Bloo and Rose’s calculus of explicit

substitutions, λx, as was discussed in Section 2.4.2.

Let us consider the rule (exp-impcbn):

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → (Qγ̂ † ŷR) β̂ † ẑP^ α, x introduced

In order to allow the rewrite to be executed like this, the side condition should

express an extra criterion to avoid the capture of a free β inQ; if β∈fs(Q), then the

rule would bring that β under the binder ŷ on the right-hand side, and renaming

should take place. Also, notice that if β=γ, there would be no capture, since

the order of nested binders are preserved. This implies that there are now two

alternatives for the rule (exp-impcbn). Where v, δ are fresh, we define (exp-impcbn)



and (exp-imp
rn-p
cbn ) respectively as:

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → (Qγ̂ † ŷR) β̂ † ẑP ^ β 6∈ fp(Q) ∨ β = γ

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → (Qγ̂ † ŷ(Rβ̂ † v̂〈v·δ〉)) δ̂ † ẑP ^ β ∈ fp(Q) ∧ β 6= γ

Likewise, there the respective rules (exp-impcbv) and (exp-imprn-scbv ) are, (where v, δ

are fresh):

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → Qγ̂ † ŷ(Rβ̂ † ẑP) ^ y 6∈ fs(P) ∨ y = z

(ŷRβ̂·α)α̂ † x̂(Qγ̂ [x] ẑP) → Qγ̂ † v̂((〈v·δ〉δ̂ † ŷR) β̂ † ẑP) ^ y ∈ fs(P) ∧ y 6= z

Also, since now we explicitly allow for connectors to occur both free and bound

in a circuit, the rules need to check if the connector we try to connect to in a cut is

actually really free. For example, rule ( †cut) now becomes:

( †cut): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R) ^ C1

( †cut
rn-p

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q) β̂ † v̂(Pα̂ † x̂(〈v·δ〉δ̂ † ŷR)) ^ C2

( †cut
rn-s

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂(Qβ̂ † v̂〈v·δ〉)) δ̂ † ŷ(Pα̂ † x̂R) ^ C3

( †cut
rn-ps

): Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂(Qβ̂ † v̂〈v·δ〉)) δ̂ † v̂(Pα̂ † x̂(〈v·δ〉δ̂ † ŷR)) ^ C4

and the side-conditions are,

C1 = y 6∈ fs(P) ∧ y 6= x ∧ β 6∈ fp(P) ∧ β 6= α

C2 = y 6∈ fs(P) ∧ y 6= x ∧ (β ∈ fp(P) ∨ β = α)

C3 = (y ∈ fs(P) ∨ y = x) ∧ β 6∈ fp(P) ∧ β 6= α

C4 = (y ∈ fs(P) ∨ y = x) ∨ (β ∈ fp(P) ∨ β = α)

The reduction of Example 4.2.2, from Circuit (4.9), should have been:

(4.9) = (((ŷ〈y·µ〉µ̂·γ) δ̂ † ŷ〈y·µ〉)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉 → (exp-ins† )

((ŷ((〈y·µ〉µ̂ † k̂〈k·τ〉)δ̂ † ŷ〈y·µ〉)τ̂ ·γ)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉 → († d), (cap-rn)

((ŷ(〈y·τ〉δ̂ † ŷ〈y·µ〉)τ̂ ·γ)γ̂ † x̂〈x·µ〉)µ̂ † ŵ〈w·α〉

As can be seen, the bound µ̂ of the export is forcefully renamed to τ̂, before the

cut δ̂ † ŷ can propagate through its structure. In the last step, we highlight that

there is no conflict between the (previously captured) free µ of the capsule and

the renamed binder of the export, τ.

All the rules need to be modified to check for possible capture of connectors.

Although the structure of these new rules is similar to those in Section 4.2.2, the

improvement in execution speed is impressive, as can be seen in the last section

of this chapter.



4.3 Reduction Strategies for CTGRS

In Section 4.2 we studied different schemes for avoiding name clash and name

capture in the context of the X -calculus. We would like to directly compare the

cost of upholding a particular safety criteria when used to reduce expressions.

To allow for a fair and accurate comparison across the schemes we proposed, it is

important that, aside from the α-conversion steps, the same reduction paths are

chosenwhen evaluating a term. This implies the need for a deterministic reduction

strategy. Furthermore, this strategy should not be affected by any renaming cuts

performing α-conversions. The following example shows how a naı̈ve reduc-

tion strategy (in the call-by-name subsystem) could be affected, and motivates

the need for an extension to the CTGRS implementation to allow for complex

strategies to be defined.

Example 4.3.1 Consider an instance of a graph where the rule exp-imp
rn-p
cbn from the

‘avoiding clash and capture’ solution (Section 4.2.3) is applicable. Let us assume the

subgraphs Q and R are pure and R introduces y. We have the following reduction.

1. (ŷRβ̂·α)α̂ † x̂(〈v·β〉δ̂ [x] ẑQ) → (exp-imp
rn-p
cbn )

2. (〈v·β〉δ̂ † ŷ(Rβ̂ † f̂ 〈 f ·σ〉))σ̂ † ẑQ

If the α-conversion steps had been instantaneous, we would have obtained:

2′. (〈v·β〉δ̂ † ŷR′)υ̂ † ẑQ where R′ = R{σ/β}

In the above circuit (2′), since R′ introduces y, a renaming rule would be directly applica-

ble. However, in step (2), although R still introduces y, we cannot evaluate the cut δ̂ † ŷ

without activating it first; this will cause it to (wastefully) propagate through R′ (once

the renaming cut β̂ † f̂ has been evaluated) searching for sockets named y—even though

there is only one socket named y and it occurs at the topmost level. Each time this effect is

observed, the cost of the α-conversion scheme will be skewed by a factor proportional to the

size of the subgraph R when no optimization is used, and by a constant factor when the

(optimized) garbage collection and renaming rules are used (Lemmas 3.1.21 and 3.1.25).

One way of avoiding the above problem is to ensure the reduction strategy pri-

oritises reduction of the extra cuts which perform α-conversions. How these extra

cuts are identified from renaming cuts that belong to the original circuit is also a

point that needs to be addressed.



In Example 4.3.1, we would need to evaluate the renaming cut β̂ † f̂ in step (2),

before the other cuts in the expression. This action would rightly prevent the cut

δ̂ † ŷ activating, then propagating, to the right.

Although the X -calculus specifies three kinds of cut (inactive, left-activated and

right-activated), an input term will only contain instances of inactive cuts. Recall

that the flagged cuts are internal operations that direct the propagation of a cut

through the term structure.

In our system, we will adopt a convention where upon selection of a redex (i.e., a

cut), the cut should run to completion. That is, when we choose to execute a redex

Pα̂ † x̂Q, we connect all α’s in P with all x’s in Q.

To strengthen the motivation for our choice, the following example illustrates

why a conventional outermost redex selection process is not a favourable strategy

in the setting of the X -calculus.

Example 4.3.2 (An Outermost Reduction Strategy in X ) We begin with a nesting

of cuts between normal circuits P,Q, R. In the call-by-value subsystem, a left-most

outermost reduction strategy is applied to the graph root node, which traverses the graph

structure attempting to match each rewrite rule with the current graph node. After a

successful rewrite, the redex-searching process restarts from the root node of the term

graph. Recall that active cuts cannot propagate over each other.

1. (Pβ̂ † ŷQ)δ̂ † ẑR → (act-L)

2. (Pβ̂ † ŷQ)δ̂ † ẑR → (cut† )

3. (Pδ̂ † ẑR) β̂ † ŷ(Qδ̂ † ẑR) → (act-L)

4. (Pδ̂ † ẑR) β̂ † ŷ(Qδ̂ † ẑR)

In this relatively simple example, we are left in a situation resembling a traffic-jam. By

step (4), the propagation of the outermost cut is blocked by the innermost active cuts.

When the innermost cut propagates down the graph one level, the second innermost cut

is permitted to propagate down one level. This pattern expands to more complicated

examples, where each outer cut follows in the wake of an innermost cut (as would be seen

in a traffic-jam, one car (cut) moves along a place, and each following car shifts along,

filling the empty space).

The overall effect of this is an undesired increase in the cost of searching for the next redex

(which involves graph traversal, structural matching and checking side-conditions).

During a graph rewrite step (Definition 2.4.25, new nodes may be added to the



graph. In step (1) of Example 4.3.2, an inactive cut is activated. Although the

graph nodes Cut and CutL (for the cuts δ̂ † ẑ and δ̂ † ẑ) are represented by two

distinct node objects, our strategy must recognise that they are related in order

to evaluate the cut to completion. To do this, we will define a strategy that upon

selection of a redex, will sequentially apply a number of rules to the term graph

to ensure that any activated cut is propagate through the structure of the term

graph and evaluated to completion.

A generic language for specifying reduction strategies on term graphs has been

proposed by Visser [87]. This language is rich enough to describe the kind of

strategies we seek. The following section introduces the idea of strategy combina-

tors and explains how to implement a reduction strategy for X that can reduce a

cut to completion.

4.3.1 Strategy Combinators for CTGRS

Strategy combinators as defined by Visser [89, 87, 88] can be used to describe a

complex traversal scheme for a term graph, during which the term graph can be

modified, perhaps by applying a rewrite rule at the current node being visited.

Examples of some strategies that may be specified in his language:

• “normalize the graph using a supplied list of rewrite rules, according to an

innermost traversal”

• “repeatedly apply a rewrite rule to a node until failure”

• “visit all nodes at level three of the graph”, and so on. . .

For our purposes, it is sufficient to restrict ourselves to a subset of the Visser’s

language, made up of the following combinators.

Definition 4.3.3 (Strategy Combinator Language, [87]) The set of strategy com-

binators is defined by the set,

s ::= id Identity

| fail Fail

| L→R Rewrite rule

| [L→R] List of Rewrite rules

| seq(s, s) Sequential Composition

| choice(s, s) Left-biased choice

| all(s) all immediate successors

| one(s) one immediate successor



Definition 4.3.4 (Application of a Strategy) The application of a strategy to the term

graph of a CTGRS is a pair consisting of a strategy combinator, s, and a rooted CTGRS

subgraph (g|n). The strategy combinator system has a global fail flag which, when

raised, indicates a fail state; this fail state affects the operational behaviour of some of the

combinators.

We will write s@n, for the application of the strategy combinator s to the CTGRS graph

rooted at n.

The main behaviours result from the application of combinators are either, (i) the

strategy results in another set of strategies being applied to some node(s) of the

graph, (ii) the graph is modified by a rewrite rule, or (iii) the state of the global

fail flag is altered.

Figure 4.1 accompanies the following description of strategy combinators.

• id@n is the identity strategy which simply leaves the supplied node unmod-

ified.

• fail@n raises the fail flag indicating a state of failure.

• The application of a rewrite rule, L→R@n, (assuming the fail flag is not

raised) attempts to match the rule head L with the subgraph rooted at n. If

the match is successful, n will be rewritten to some subgraph rooted at n′

as dictated by the rewrite rule; any further strategies to be applied to n are

updated to refer to n′. If the match is unsuccessful, the fail flag is raised.

• The application of an ordered list of rewrite rules, [L→R]@n, (assuming the

fail flag is not raised) sequentially traverses the list while attempting to ap-

ply each rewrite rule to n. The strategy terminates the traversal of the list

upon the successful application of a rewrite rule. If the list is exhausted and

no rule was applicable, the fail flag is raised.

• Assuming the fail flag is not raised, the application seq(s1, s2)@n sequen-

tially applies its argument strategies, s1 then s2 to n. If either argument

strategy raises the fail flag, the strategy aborts, leaving the system in a fail

state.

• Assuming the fail flag is not raised, the application choice(s1, s2)@n attempts

s1@n, then performs s2@n if and only if s1@n raised the fail flag.



• Assuming the fail flag is not raised, all(s)@n attempts to apply s to each im-

mediate successor (left-to-right) of the node n. Any successive applications

are aborted if at any point the fail flag is raised by the application of s to the

immediate successors of n.

• Assuming the fail flag is not raised, the application one(s)@n attempts to

apply s left-to-right to a single immediate successor of n; if no successful

application is found, the entire strategy fails.

In addition to these basic combinators, the language will allow user-definitions

of more complex combinators. The specification for a user-defined combinator is

given by the following construction (where here C is a variable over an infinite

set of strings),

C(x1, . . . , xk) = s

The arguments x1, . . . , xn of C may occur, and are bound, in the definition body,

s. The set of strategy combinators (Definition 4.3.3) is then extended with a user-

defined combinator:

s ::= . . .

| C(s1, . . . , sk) User-defined combinator

An application of a user-defined combinator to a node n, C(s1, . . . , sk)@n, denotes

the instantiation (s{s1/x1}, . . . , {sk/xk}) of the body of s in the definition of C.

Because this extension allows recursive strategies to be defined, we will dismiss

nonsense definitions such as C(x) = C(x), by forbidding left-recursion.

We will also make use of some helper strategies.

Definition 4.3.5 (Helper Strategy Combinators, [89]) We list below some user-defined

helper combinators, followed by an informal description of the effect of applying the com-

binator to a node of some term graph. We assume before the application of each strategy,

the fail flag is not raised.

try(s) = choice(s, id) : attempt to apply the argument strategy s to the node. If s fails,

clear the fail flag.

repeat(s) = try(seq(s, repeat(s))) : repeatedly apply the strategy s to the node, until no

more applications are possible, leaving the system in an unfail state.
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Figure 4.1: Applications of Basic Strategy Combinators to Arbitrary Graphs



oncetd(s) = choice(s, one(oncetd(s))) : search once top-down from the node and termi-

nate after the first successful application of s. Raise the fail flag if no application

was successful.

outermost(s) = repeat(oncetd(s)) : search depth-first from the node and attempt to ap-

ply s to each node of the term graph; after a successful application restart the search

from the node on which the strategy was first called (modulo rewriting of the sub-

graph rooted at that node).

4.3.2 Reduction Strategies for X

In this section we will define a strategy combinator that when be applied to X -

graphs will evaluate an inactive cut to completion. We will then extend this strat-

egy to work with our proposed solutions to the problems of name clash and cap-

ture.

First, however, we will give a detailed example of the steps involved in applying

a rewrite rule strategy to an X -graph following a simple traversal scheme. The

example is intended to mimic the steps taken by our implementation.

Example 4.3.6 (A reduction using oncetd) In Figure 4.2, we illustrate the steps taken

by our implementation of the strategy language to apply oncetd(cap-rn) to the root of the

term graph:

g = *〈y·γ〉γ̂ [z] k̂(〈k·α〉α̂ † x̂〈x·µ〉)+

During the application of a strategy, we maintain:

• a node stack: a stack of nodes (in gX) that records the path of the strategy through

the term.

• a combinator stack: a stack of combinator states which records the progress of the

strategy.

• a fail flag: to record whether a strategy has resulted in failure.

The stack trace in Figure 4.2(a) begins with the root node of the term graph (Figure 4.2(c))

and the root node of the strategy graph (Figure 4.2(b)) on the node stack and combinator

stack respectively; the fail flag is cleared. We write ch/i to indicate the choice strategy

is applying its ith argument strategy, and one/j to indicate the one strategy is applying

its argument strategy to the jth successor of the node at which it was first applied. We

summarize the interesting steps of the strategy below.



1-2 The zeroth argument of choice (the rule (cap-rn)) is pushed onto the combi-

nator stack.

3-4 The failed match of the rule (cap-rn) with node 1, results in a failure state. The

choice combinator recovers from the failure, expanding its second argument.

5 The one strategy pushes the zeroth successor of node 1 (i.e., node 2) onto

the node stack, and pushes its argument strategy (one) onto the combinator

stack. Notice that one’s argument strategy results in a recursive call being

made to choice.

6-9 The application of the rule (cap-rn) to node 2 fails. The choice combinator

recovers from the failure, pushing the one strategy onto the combinator stack.

Since one is a traversal combinator, it pushes node 2’s zeroth successor onto

the node stack.

10-14 The application of the rule (cap-rn) to node 6 fails, and the choice strategy

once again recovers from the failure. However, notice that this time the one

strategy also fails, since node 6 has no successors.

15 The combinators are popped off the stack until a combinator is found that can

reset the fail flag. The combinator happens to be the one combinator which

was evaluating the zeroth successor of node 2. one clears the fail flag and

proceeds to apply its argument strategy to the first successor of node 2 (i.e.,

node 7).

16-19 A repeat of the steps 10-14 occurs, except with node 7 on the node stack.

20-21 Upon returning to the one combinator which was visiting the first successor

of node 2, it finds node 2 has no more successor. Therefore, the one strategy

fails and propagates the failure state.

22 The one strategy failed to apply its argument strategy to the zeroth successor

of node 1 (i.e., node 2). It recovers from the failure state and attempts to apply

the same argument strategy to the first successor of node 1 (i.e. node 3).

23-34 This application fails, and one applies the argument strategy to the second

successor of node 1 (i.e. node 4), then to the third successor of node 1 (node 5)

when this fails.

35 The application of the rule (cap-rn) is successful and node 5 is rewritten to

node 8 (see Figure 4.2(d)), and the node stack is updated.

36-37 choice does not evaluate its second argument strategy since the failure state

is clear when it is the head of the combinator stack. The remaining combina-

tors are popped off the stack and the strategy finishes.



Our tool incorporates many optimisations that can bypass a significant number

of stack operations. For example, noticing that the Cap nodes have only successor

nodes which are names, steps 9-21 may be skipped.

At the end of Section 4.2.3, we remarked on some features we would require in

an X -calculus reduction strategy—these are summarised below.

Definition 4.3.7 (Criteria for Evaluating a Cut) Given a pureX -circuit, for any sin-

gle inactive cut Pα̂ † x̂Q, a good X -calculus reduction strategy will:

1. Evaluate the inactive cut to completion so that all circuits outputting on α in P

are directly connected to all circuits in Q inputting from x, i.e., the resultant term

should have eliminated the cut α̂ † x̂ from the term.

2. Avoid mis-activating the cut in cases where alpha-conversion constructs block the

direct application of logical rules to the cut.

In the following we will formulate a ‘good’ reduction strategy for the CBN X -

calculus.

Observing the reduction rules of the pure X -calculus (Definitions 3.1.4 and 3.1.7),

we notice that the right hand sides of the rules introduce either (i) new active cuts,

(ii) new inactive cuts or (iii) no new cuts.

We first group the reduction rules of the X -calculus (as ‘ordered list’ strategy

combinators) according to these features (see below).

rename = [(cap), (exp-rn), (med-rn)]

logical = [(exp-impcbn), rename]

activate = [(act-R), (act-L)]

prop a1 = [(exp-ins† ), (imp† ), (cut† ), ( †exp), ( †imp-ins), ( †cut)]

prop a2i0 = [(exp-outs† ), ( †imp-outs)]

gc = [(cap† ), ( †cap)]

deact = [(† d), (d †)]

Using the above combinators, we will describe a user-defined strategy combina-

tor for reducing an inactive cut so that the criteria outlined in Definition 4.3.7 is

obeyed.



step
Node
Stack

Combinator Stack Fail

1 1 -
2 1 ch/0, (cap-rn)
3 1 ch/0 ×
4 1 ch/1
5 1,2 ch/1, one/0
6 1,2 ch/1, one/0, ch/0, (cap-rn)
7 1,2 ch/1, one/0, ch/0 ×
8 1,2 ch/1, one/0, ch/1
9 1,2,6 ch/1, one/0, ch/1, one/0
10 1,2,6 ch/1, one/0, ch/1, one/0, ch/0, (cap-rn)
11 1,2,6 ch/1, one/0, ch/1, one/0, ch/0 ×
12 1,2,6 ch/1, one/0, ch/1, one/0, ch/1
13 1,2,6 ch/1, one/0, ch/1, one/0, ch/1, one/0
14 1,2,6 ch/1, one/0, ch/1, one/0, ch/1 ×
15 1,2,7 ch/1, one/0, ch/1, one/1
16 1,2,7 ch/1, one/0, ch/1, one/1, ch/0, (cap-rn)
17 1,2,7 ch/1, one/0, ch/1, one/1, ch/0 ×
18 1,2,7 ch/1, one/0, ch/1, one/1, ch/1
19 1,2,7 ch/1, one/0, ch/1, one/1, ch/1, one/0
20 1,2,7 ch/1, one/0, ch/1, one/1, ch/1 ×
21 1,2,7 ch/1, one/0, ch/1, one/1 ×
22 1,3 ch/1, one/1
23 1,3 ch/1, one/1, ch/0, (cap-rn)
24 1,3 ch/1, one/1, ch/0 ×
25 1,3 ch/1, one/1, ch/1
26 1,3 ch/1, one/1, ch/1, one/0
27 1,3 ch/1, one/1, ch/1 ×
28 1,4 ch/1, one/2
29 1,4 ch/1, one/2, ch/0, (cap-rn)
30 1,4 ch/1, one/2, ch/0 ×
31 1,4 ch/1, one/2, ch/1
32 1,4 ch/1, one/2, ch/1, one/0
33 1,4 ch/1, one/2, ch/1 ×
34 1,5 ch/1, one/3
35 1,5 ch/1, one/3, ch/0, (cap-rn)
36 1,8 ch/1, one/3, ch/0
37 1 -

(a) Stack Traces

choice

(cap-rn) one

(b) oncetdstrategy

1:Imp

2:Cap 3:z 4:k 5:Cap

6:y 7:γ Cap Cap

α x µ

(c) steps 1–34

1:Imp

2:Cap 3:z 4:k 8:Cap

6:y 7:γ µ

(d) steps 35–36

Figure 4.2: Application of oncetd(cap-rn) to 〈y·γ〉γ̂ [z] k̂(〈k·α〉α̂ † x̂〈x·µ〉)



The first two combinators (rename and logical) completely reduce inactive cuts

in one step. Their application is straightforward since they destroy the inactive

cut being reduced. The next combinator (activate) is the only rule which turns

an inactive cut into an active cut. If a cut is activated, we require that it will be

propagated to completion. For now, we can assume a user defined combinator

propagate() exists which carry out this task; clearly this strategy will make use of

the remaining four strategy combinators, which deal only with inactive cuts. We

can now define a strategy evalcut() which evaluates a cut to completion.

evalcut() = choice( logical, seq( activate, propagate() ) (4.11)

This strategy considers the only two cases of how to evaluate an inactivate cut:

it can either be reduced by a logical rule, or activated then propagated through

the term. The remainder of this section looks at how to define the propagate()

combinator.

We can break down the work that needs to be done by the propagate() combinator

into four cases:

1. propagate an active cut through a circuit that does not mention any connec-

tors involved in the cut.

2. propagate an active cut through a circuit that does mention the connectors

involved in the cut.

3. garbage collect the active cut, since it has reached the level of the capsules.

4. deactivate the cut, and attempt to reduce the deactivated cut.

The first two cases are covered by the following combinators.

seq( prop a1, all( try( propagate() ) ) ) (4.12)

seq( prop a2i0, seq( all( all( try( propagate() ) ) ), evalcut() ) ) (4.13)

These appear complicated, but are fairly straightforward to understand.

First we remark that by nesting several ‘all’ combinators, we can visit all the nodes

at a particular depth of a term graph (relative to the node at which the strategy

was first applied). For instance, all(s)@n will apply s to the nodes at a depth of 1

relative to the node n, while all(all(s))@nwill apply s to the nodes of n at depth=2,

and so on.

For (4.12), all the rules in the list prop a1 have active cuts (that must be further

propagated) at a depth of 1. Therefore, after a rule in prop a1 has been applied,



the propagate() strategy is applied to the nodes at depth of 1 to propagate these

newly introduced cuts.

For (4.13), all the rules of prop a2i0 have active cuts at a depth of 2 in addition

to an inactive at depth 0. The newly introduced active cuts at depth 2 must be

further propagated, so there is a double nesting of the all combinator. The inactive

cut at depth 0 also needs to be evaluated, so the evalcut() strategy is recursively

applied; notice that to avoid the situation shown in Example 4.3.2, the active cuts

are propagated before the inactive cut is evaluated.

The final two cases for the propagate strategy are described by the following com-

binators:

gc (4.14)

seq( deact, evalcut() ) (4.15)

For (4.14), the strategy gc is applicable if the active cut is with a capsule that does

not introduce the connector bound by the active cut. The rewrite rules state that

in this case the active cut should be destroyed. Therefore, following a successful

application of a gc strategy, no further work needs to be done: there is no more

active cut to propagate.

For (4.15), if the strategy deact is applicable, the active cut is deactivated, creat-

ing a new inactive cut which must be evaluated; therefore the evalcut strategy is

recursively applied to that inactive cut.

Combining these four parts, we obtain a definition for the propagate() strategy.

propagate() = choice(gc,

choice( seq( deact, evalcut() ),

choice( seq( prop a1, all( try( propagate() ) )),

seq( prop a2i0, seq( all( all( try( propagate() ) ) ) , evalcut() ) ),

) ) )

(4.16)

The nesting of ‘choice’ combinators ensures each propagation case is considered

at the current node. If no case is successful, the strategy combinator leaves the

system in the fail state.

The above discussion illustrates how to evaluate a cut to completion in the CBN

X -calculus. Wewould like to extend this strategy to the sets of rules that solve the

name clash and name capture problems described in Section 4.2. This involves

working with a larger set of rules, but the same idea of evaluating a cut exists.



We have two sets of rules to consider: the renaming using activated-cuts schemes

and the lazy-copying α-conversion schemes with special rebinding symbols.

4.3.3 Alpha-conversion with Renaming Cuts

The strategy evalcut() is first extended to cater for the case of the exp-imp
rn-p
cbn rule

when a plug needs renaming. In this case, the active cut (at depth 2) is propagated

through the term, i.e., seq(exp-imprn-pcbn , all( all( try( propagate() ) ) ) ).

The propagate() strategy should then be modified to cater for any additional α-

conversion structure. This involves partitioning this larger set of rules into lists

of rules which have cuts (to be further propagated) at common depths. The re-

naming cuts, which will be the innermost active cuts, must then be given priority

over the other cuts in the rule. We will consider the variant of the rule ( †exprn-s)

shown below.

( †exprn-s) : Qα̂ † x̂(ŷPβ̂·δ) → ŵ(Qα̂ † x̂(〈w·µ〉µ̂ † ŷP)) β̂·δ

We omit the side-conditions of the rule, since they do not come into play in the

following discussion.

This rule would have been placed in a ‘list of rewrite rules’ combinator named

prop a1a2, indicating the rule has active cuts at a depth of 1 and also at a depth

of 2; in the rule above these are respectively the cuts α̂ † x̂ and µ̂ † ŷ on right-hand

side of the rule. The propagation of active cuts for this combinator is described

by the combinator:

seq( prop a1a2, seq( seq( all( all( try( propagate() ) ) ), all( try( propagate() ) ) ) ) )

In other words, if a rule from the combinator prop a1a2 is applied, propagate the

inner active cuts at depth 2, and then propagate the remaining inner active cuts

at depth 1. Lists of rules grouped together by the common depth of active and

inactive cuts also need to be modified appropriately.

Now a ‘good’ outermost reduction strategy for the X -calculus can be defined as:

outermost( evalcut() )

This strategy will search for the outermost inactive cut, which, when found, will

apply the evalcut() strategy to that cut, evaluating that cut to completion.



4.3.4 Alpha-conversion with Rebinding Nodes

In this section, we look define a ‘good’ strategy for evaluating an inactive cut for

the solution of lazy copying as defined in Section 4.2.1. We can follow a strategy

similar to that of the previous section, except some extra care must be taken with

regards to the rebinding nodes. The nodes which perform the rebinding (rs and

rp) are not part of the X -calculus and would ideally be transparent.

Barendsen and Smetsers remark in [16]: “mixing copy rules with the reduction

rules in [the set of rewrite rules] may destroy properties of [the set of rewrite

rules] such as confluence, or at least make it very difficult to check whether

known properties of [the TGRS] extend to [the TGRS with copy rules added]”.

This turns out to be true in our case; the rebinding nodes interfere with structural

matching and the ‘introduces’ side conditions of the rewrite rules. For example,

the term rs(〈x·α〉, α, β) does not introduce β, although it evaluates to 〈x·β〉.2 A

naı̈ve solution could force the copying operation to completion, though this may

turn out to be unnecessary.

We propose a lazier solution that hides the existence of rebinding nodes from the

structural matching step of the rewriting procedure. Observing the lazy copying

rewrite rules (Definition 4.2.4), this can be achieved by ensuring all rebinding

nodes are at least two levels from any redex; in other words, a rebinding node

should never be an immediate successor of a cut.

We specify a strategy pushRebind(), which when applied to a rebinding node,

pushes that rebinding node down through the term-graph by one level. There are

two cases to consider—either a rebinding rule (from Definition 4.2.3) is directly

applicable to the current rebinding node, or not—i.e., there is a chain of one or

more successive rebinding nodes prohibiting propagation. When such a chain

exists, the strategy traverses to the lowest rebind node of that chain where a rule

will be applicable. The lowest node is propagated further one level, followed in

turn by each blocked ancestor.

The skeleton definition of this strategy is given below and makes use a group of

all the rebinding evaluation rules (rebind rules) as given in Definition 4.2.3, and a

strategy repeat’(s) which repeatedly applies its argument strategy to the current

2We could alter our definition of introduces so that rs(〈x·α〉, α, β) introduces β, but this will still
not side-step the problem of the rebinding node structure interfering with the graph matching
process.



node or fails.

repeat′() = seq( s, repeat′(s) ) (4.17)

pushRebind() = choice( repeat′( rebind rules),

choice( seq( all( try( pushRebind() ) ), rebind rules),

fail) );

(4.18)

The propagate() strategy can now be extended to make use of pushRebind(). For

each rebinding node introduced by a rewrite rule of the X -calculus, the pushRe-

bind() strategy is applied to that node, guaranteeing it is never the successor of a

cut.

4.3.5 Optimisations

We highlight a simple optimisation to the outermost strategy that will greatly de-

crease the search time for the next redex. Currently, after a successful reduction

of an inactive cut, the search for the next inactive cut restarts from the point at

which the original call to the strategy was made, i.e., the root node of the term

graph. As a general outermost strategy, this is a safe course of action to take since

an outermost redex may have been skipped while an inner redex is evaluated

c.f. call-by-value reduction in the lambda-calculus. The X -terms we evaluate

are pure terms, and according to our evalcut() reduction strategy inactive cuts

are evaluated to completion. Since inactive no cut can block propagating active

cuts, the depth of the subsequent outermost cuts are therefore guaranteed to be

at a depth lower or equal to the current node. Using this observation, we can de-

fine an outermost reduction strategy to continue redex-searching from the current

node pointed to.

outermost′(s) = seq( repeat(s), all( try( outermost′(s) ) ) )

By parametising evalcut with an ordered list of activation rules and a variant of

the (exp-imp) rule, we can define two outermost strategies for call-by-name and

call-by-value as follows.



cbnact = [(act-R), (act-L)]

cbvact = [(act-L), (act-R)]

outermostCBN = outermost′( evalcut( cbnact, (exp-impcbn)) )

outermostCBV = outermost′( evalcut( cbvact, (exp-impcbv)) )

4.3.6 Benchmarks

In this section we present our benchmarks comparing the costs of the solutions

to name clash and capture we proposed in Section 4.2. In the previous section we

described how to extended our CTGRS implementation with ‘strategy combina-

tors’ in order to define a fair reduction strategy that could be used to compare

the proposed solutions. Incorporating the strategy combinator language into our

tool presented us with some problems, which we summarise below.

Visser has provided the community with a Java implementation of the strategy

combinator framework, called JJTraveler. The framework allows modular exten-

sions to the combinator language, allowing one to add user-defined combinators to

the system by inheritance. A full description of this framework can be found in

[89, 35].

Integration of the framework to our CTGRS implementation, also written in Java,

was straightforward. Unfortunately, preliminary testing revealed the implemen-

tation was unable to traverse some of the larger term-graphs generated by our

benchmarks (which can contain in excess of 300,000 nodes) resulting in stack-

overflows. The reason for this was the heavy reliance on recursion due to the use

of a modified Visitor design-pattern3. We chose to re-implement the framework

taking an iterative approach instead. The set of strategy combinators (Definition

4.3.3) extended with ‘user-defined combinators’ allows recursive strategies to be

built. These were implemented as cyclic graphs (following the implementation

of JJTraveller).

To maintain the state of the strategy (i.e., to track how much of the strategy had

been processed during an application), we used two stacks. The working details

of these structures were exemplified in Example 4.3.6. Recall that the ‘combinator

stack’ tracked the current position within the strategy combinator graph, and

3Simply increasing the stack size of the JVM was not seen to be a scalable solution. Although
recent Java implementations do include recursion optimisations, these mainly work on perfor-
mance. Since our benchmarks will count atomic operations rather than measure time, our main
concern is heap usage, which we can manage more efficiently with an iterative approach.



the ‘node stack’ tracked the node of term graph which the current combinator

was being applied to. The approach allowed us to obtain an accurate measure

of the cost of traversing the graph searching for redexes: it was a count of the

number of (constant-time) stack operations, plus the number of node matchings,

plus the cost of checking the side-conditions. We were surprised to find that the

search cost was often ignored in rewriting literature, with some measure of the

cost of ‘manipulating’ the graph usually being quoted instead. Our preliminary

results revealed that when large term-graphs were being traversed, the search

time played a significant role in the cost of reducing the graph.

We chose to measure the running of (interpreted) λ-terms since these are well-

known benchmarks [4, 65], and the efficiency of the various formalisms and ab-

stract machines can be better compared. We can of course not confront their (pub-

lished) run-time measurements because of differences in platforms and processor

architectures.

We use the usual encoding for Church Numerals (n = λxy.xny). In addition,

we use the combinators, Q = (λz.(λx.zxxx)(λy.2(λx.y(xI))n))II, with n replaced

with a chosen Church Numeral and I = λx.x.

Note that we do not wish consider the cost of encoding -terms to X as we are

interested in comparing the efficiency of the α-conversion mechanisms for our

proposed solutions. Because of this, we use Prawitz’s normal form preserving

encoding from natural deduction proofs to sequent calculus proofs as given in

Definition 3.1.12.

Our benchmarking results are listed in Tables 4.2 and 4.3. For each test case we

record the following two measurements:

Search Cost: : a count of atomic operations involved in traversing the graph and

searching for redexes, i.e. the number of push/pop stack operations to eval-

uate the strategy, plus the number of attempted matchings made between

the rule heads and graph nodes, plus the cost of testing the side-condition.

Rewrite Cost: : a count of the (more expensive) graph transforming operations,

i.e. the number of nodes added and deleted plus number of edges added

and deleted.

A straightforward numerical comparison of costs suggests the following relation-

ship of efficiency between α-conversion schemes, under either reduction strategy

(CBN or CBV).



TestCase Rebinding-GC Barendregt-NoGC Barendregt-GC Avoid Capture-GC
Search Rewrite Search Rewrite Search Rewrite Search Rewrite

22I I 0.861 0.163 0.264 0.0765 0.159 0.0421 0.0994 0.0330
222I I 62.0 15.7 3.64 0.942 0.841 0.208 0.495 0.153
2222I I - - - - 4650 715 1690 522

210I I 0.372 0.0682 0.140 0.0401 0.0762 0.0214 0.0548 0.0194
2210I I 2.40 0.471 0.649 0.165 0.269 0.0660 0.173 0.0541
22210I I 225 56.7 10.6 1.84 1.53 0.305 0.805 0.236

P2 32.9 7.85 4.01 0.857 0.999 0.218 0.429 0.145
P3 51.4 12.5 5.54 1.11 1.20 0.256 0.487 0.165
P5 110 27.2 9.94 1.74 1.63 0.331 0.602 0.206
P10 429 109 31.4 4.01 2.98 0.519 0.890 0.309
P20 2240 575 143 11.6 6.71 0.895 1.47 0.514
P50 26100 6780 1550 58.4 26.3 2.02 3.19 1.13

Table 4.2: CBV Results: Cost measured in units of 106 operations (to 3.s.f)

TestCase Rebinding-GC Barendregt-NoGC Barendregt-GC Avoid Capture-GC
Search Rewrite Search Rewrite Search Rewrite Search Rewrite

22I I 0.914 0.156 0.314 0.0908 0.173 0.0439 0.0963 0.0322
222I I 17.0 3.27 3.86 1.01 1.42 0.305 0.551 0.178
2222I I - - 146000 29700 13100 1460 2490 805

210I I 0.458 0.0819 0.164 0.0441 0.0868 0.0227 0.0559 0.0198
2210I I 2.12 0.360 0.726 0.177 0.315 0.0742 0.151 0.0507
22210I I 32.1 6.38 7.29 1.60 2.11 0.441 0.754 0.246

P2 540 138 22.5 3.02 3.51 0.582 0.902 0.308
P3 875 224 30.6 3.67 4.23 0.670 1.04 0.354
P5 2000 515 52.6 5.22 5.85 0.847 1.32 0.447
P10 8670 2240 152 10.5 11.0 1.29 2.02 0.679
P20 49600 12900 624 27.2 25.9 2.17 3.41 1.14
P50 626000 163000 6050 126 107 4.81 7.59 2.54

Table 4.3: CBN Results: Cost measured in units of 106 operations (to 3.s.f)
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Rebinding GC < Barendregt NOGC < Barendregt GC < Avoid Capture GC

Another observable trend is the linear relationship between the redex search cost

and graph rewrite cost. As the size of the graph increases, the search cost in-

creases since more operations are required to traverse the graph structure. Once

a suitable redex (a cut) is found, the cost of reducing that cut is related to the size

of its subterms since it must be propagated through them.

There is a significant difference between the cost of reduction under the rebinding

scheme versus the other schemes tested. In fact, our original attempt at bench-

marking the rebinding solution was not lazy at all, and often resulted in memory

requirements greater than the 2GiB limit. We recorded the size of the graph (num-

ber of node objects) as the reduction progressed for each test-case in order to gain

insight into this vast requirement of system resources. Results from the eager

strategy are shown in Figures 4.4(a) and 4.3(a). As explained in Section 4.2.1, the

rebinding scheme works by destroying the sharing in portions of the term-graph

as so to guarantee that no binder of any redex is shared. This copying-out effect,

seen as peaks in the graphs, shows an increase in the number of nodes whenever

a cut is propagated through varying sizes of subterm causing all sharing to be de-

stroyed. Looking closer at these graphs the cost of searching is also clearly visible.

As the number of nodes in a graph increases, small horizontal ‘platforms’ can be

observed. These regions represent pure search costs consisting only of traversal

stack operations plus unsuccessful rule matches.

Switching to a lazy mechanism as detailed in Section 4.3.4, although still rela-

tively expensive, kept the size of the graph low enough for many previously

failed tests to run to completion. The results of the lazy strategy are shown in

Figures 4.4(b) and 4.3(b). The CBV graph highlights nicely the copying out of

each argument when it is supplied to a function.

We also investigated the variation of graph size under the other α-conversion

schemes; the results are displayed in Figures 4.4(c) and 4.3(c). The shapes of these

graphs appear to be less random than those from the rebinding scheme, and we

see that for a particular reduction strategy (CBN or CBV) the overall shape of

the graphs are similar. This is an expected side effect of the reduction strategy

evalcut(), designed to make α-conversions transparent from the point of view of

the term being reduced. The reductions therefore only diverges at points where

the need for α-conversions differ.



4.4 Chapter Summary

In this chapter we presented details of our implementation of the X -calculus. We

began by defining a conditional higher-order term graph rewrite system (CTGRS)

whichwas expressive enough to express the key features of theX -calculus, namely

the binding relations and the side-conditions on rewrite rules.

Following this, we highlighted the problems of name clash and name capture in

the X -calculus, for which we proposed three different solutions. To compare the

cost of these systems in a fair way, we extend our CTGRS with Visser’s generic

language for describing reduction strategies. Using this extension we described

a complex strategy for the pure X -calculus that is able to reduce a cut to ‘comple-

tion’. We extended this to the three proposed systems that prevent name capture

and name clash, allowing us to directly compare the cost of reductions.

In the final section, we presented some optimisations to our strategy followed by

a quantitative evaluation of the three systems. As expected, the avoiding capture

solution was the least expensive.



Chapter 5

Extending the X -Calculus

In this chapter we study the relationship between the type system of the X -

calculus and Urban’s variant of Kleene’s G3a sequent calculus [86]. We will gen-

eralise the work of van Bakel et al. [9] and detail a generic method for building

‘Curry-Howard’ pairs of calculi (a term calculus whose type system corresponds

to a logical calculus) in the style of X .

It is common for computational calculi to be based on logics built from implica-

tion, since the computational behaviour associated with this connective is well

understood. We will study some simple relationships between different (binary)

logical connectives and computational calculi built from logics employing them

as primitives, with the aim of determining the ‘computational content’ associated

to the connective. In particular, we will investigate the simulation capabilities of

calculi built from ‘functionally complete’ sets of connectives.

Noticing that, to our knowledge, some binary connectives (if-and-only-if and

exclusive-or) have never been studied in a Curry-Howard setting, we will con-

struct a term calculus, X↔, based on the if-and-only-if connective. We will study

its computational properties and show it has unexpected simulation properties.

5.1 Proof Inhabitation and Types for Circuits

The goal of Urban’s Ph.D is to develop a strongly normalising cut-elimination

procedure for sequent calculus proofs of classical logic [86]. He chooses to work

with, and formalises, Kleene’s G3a sequent calculus1 so that he can present his

1Kleene only mentions the calculus without formalising it, [58, pp. 481]
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cut-elimination procedures in a “convenient form”. Kleene’s G3a sequent cal-

culus features implicit rules for contraction and weakening rules, reducing the

number of inference rules Urban needs to work with.

In devising this ‘convenient form’, Urban seeks a linear representation or term

annotation for proof trees. Following conventions in type theory, he treats contexts

as sets of (label, formula) pairs, and “not as multisets”. He introduces two classes

of labels which he calls ‘names’ and ‘co-names’; these couple respectively with

formulas on the left and on the right of the turnstile of a sequent. In calculi built

in the style ofX , the class of labels corresponds to the class of connectors of which

there are two kinds: sockets and plugs respectively. A context is constrained

so that it cannot contain more than one occurrence of a particular label; Urban

calls this the context convention. We will refer to the G3a calculus with the above

modifications as the G3a’ sequent calculus.

Urban argues that λ-term annotations (along with some other existing proposals)

could not capture the full structure of sequent calculus proofs, and would there-

fore lead to an incomplete cut-elimination procedure. Instead, he devises a more

direct set of proof inhabitants that hold an exact correspondence with the proofs

of G3a’; his set of ‘raw terms’ are defined as follows.

Definition 5.1.1 (Urban’s Raw Terms [86]) Let B and C be types, x, y, z names and

a, b, c co-names; the (implicative) set of raw terms is defined by the following grammar.

M,N ::= Ax(x, a) axiom

| Cut(〈a:B〉M, (x:B)N) cut

| ImpR((x:B)〈a:C〉M, b) implication-right

| ImpL(〈a:B〉M, (x:C)N, y) implication-left

Bound labels are identified using juxtaposition and brackets, i.e., (x:A)M indicates x:A

is bound in M, and 〈a:A〉M indicates a:A is bound in M.

Notice that raw terms carry type information at the level of the syntax. Also

notice that if these types were erased, and the syntax revised appropriately, one

could obtain the syntax of the X -calculus.

Inhabitation deals with assigning terms to proofs. The process opposite to in-

habitation attempts to relate logical formulas to terms and builds proofs from

programs. In the context of untyped calculi, such as the X -calculus, the ques-

tion of type assignment becomes relevant, as discussed in Section 2.3.1. (Type



assignment for a typed calculus, such as Urban’s, is trivial). Given an X -circuit,

the question of whether a term is typeable is answered by the construction of (or

failure to construct) a typing derivation according to the following formulations.

Definition 5.1.2 (Types and Contexts for X [9])

1. The set of types ranged over by A, B, is defined over a set of type-variables

{ϕ, ϕ1, ϕ2, ϕ3, . . .} by the grammar:

A, B ::= ϕ | A→B

2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of

statements x:A, such that the subjects of the statements (the sockets) are distinct.

We write Γ, x:A for the context defined by:

Γ, x:A = Γ ∪ {x:A}, if Γ is not defined on x

= Γ, if x:A ∈ Γ

Therefore, when writing a context as Γ, x:A, this implies that x:A ∈ Γ, or Γ is not

defined on x. We write Γ\x for the context from which the statement concerning x,

if any, has been removed.

3. A contexts of plugs ∆, and the notations α:A,∆ and ∆\α are defined in a similar

way.

Definition 5.1.3 (Typing for X [9])

1. Type judgements are expressed via the ternary relation P ··· Γ ⊢ ∆, where Γ is a

context of sockets, ∆ is a context of plugs, and P is an X -circuit. We say that P is

thewitness of this judgement.

2. Type assignment for X is defined by the following sequent calculus:

(Ax)
〈x·α〉 ··· x:A, Γ ⊢ ∆, α:A

P ··· Γ ⊢ ∆, α:A Q ··· x:A, Γ ⊢ ∆
(Cut)

Pα̂ † x̂Q ··· Γ ⊢ ∆

P ··· x:A, Γ ⊢ ∆, β:B
(→R)

x̂Pβ̂·α ··· Γ ⊢ ∆, α:A→B

P ··· Γ ⊢ ∆, α:A Q ··· x:B, Γ ⊢ ∆
(→L)

Pα̂ [y] x̂Q ··· y:A→B, Γ ⊢ ∆



We write P ··· Γ ⊢ ∆ if there exists a derivation that has this judgement in the

bottom line.

Notice that by erasing the witnesses and connectors from the type judgements,

one obtains a formal system of logic.

Also, by the special meaning we associate to the comma in contexts, contraction

is implicit. Since the axiom may contain arbitrary contexts Γ and ∆, weakening is

also implicit.

As mentioned above in P ··· Γ ⊢ ∆, the circuit P acts as a witness of the judgement;

Γ and ∆ carry the types of the free connectors in P, as unordered sets. There

is no notion of type for P itself, instead the derivable statement shows how P

is connectable. In fact, this notion of type assignment on X -circuits has been

compared to that on processes of the π-calculus2. The following result was shown

in [9]:

Theorem 5.1.4 (Witness reduction [9]) If P ··· Γ ⊢ ∆, and P→ Q, then Q ··· Γ ⊢ ∆.

In [85] a notion of principal contexts is defined by providing a sound and complete

algorithmWX that, given a circuit P, returns a pair of contexts 〈Γ,∆〉 typing the

free connectors of P. It was also shown that P is then a witness for Γ ⊢ ∆, and the

pair of contexts is indeed the most general.

5.2 Building Curry-Howard Correspondences

In reviewing existing works of those seeking Curry-Howard correspondences be-

tween formal logics and computational calculi, a general ‘recipe’ for building

such a correspondence can be seen. We outline below only what we consider

to be the key steps involved.

1. Build a propositional language from a set of propositional variables and

propositional formulas built from primitive logical connectives.

2. Decide on a framework to prove the validity of statements in the language,

and formally (i.e., analytically) define each connective in the framework

using inference rules.

2The relation between X and π, and the implication of that relation on the connection between
Classical Logic and π, is the subject of ongoing research; the first results have been reported on in
[8].



3. Determine a syntax of terms, and a method of inhabiting proofs with terms.

4. Decide on the set of ‘normal’ proofs, together with a normalisation proce-

dure and extract the reduction rules of the term calculus from the transfor-

mations prescribed by the normalisation procedure.

5. If desired, erase any type information from the term syntax and study the

computational behaviour of the corresponding term calculus.

The important point to note about the above recipe is that, using this approach,

any reduction behaviour is determined by the logic. The types may be erased,

but the shape of the reduction rules remain the same.

In the following subsections we will motivate and propose the specific design

choices we have taken in our research to obtain computational term calculi which

hold Curry-Howard correspondences with a variant of Gentzen’s formulation of

Classical Logic, while following the above recipe.

We will address the choices of primitive connectives that the propositional lan-

guage is based on (step one of the recipe) in a separate section (Section 5.3) since

it is an open-ended topic. We will address the remaining steps in the following

three subsections, beginning with setting up a logical framework.

5.2.1 A Sequent Calculus Framework

As motivated in the background section (Section 2.2), we will work with sequent

calculus formulations of classical logic that adhere to Gentzen’s notion of logical

consequence (Definition 2.2.3); this framework, which we called G3A-BASIC , was

given in Definition 2.2.6.

When extending the framework with a logical connective, suitable proof rules

need to be defined. We will work with invertible formulations of inference rules

for logical connectives (Definition 2.2.7), i.e., for each connective a single pair of

sequent calculus inference rules will be defined that introduce a formula with

that principal connective on the left and right-hand side of the turnstile of each

rule’s conclusion.

It may not always be the case that a set of suitable sequent proof rules for a par-

ticular connective are obvious. Fortunately, there exist sets of arity-two connec-

tives that are functionally complete, that is, every possible logical connective can be

defined in terms of the members of that set. For example, elements of the func-

tionally complete set of connectives {∨,¬} can be composed in various ways to



define any logical connective, as can the elements of {↑} (corresponding to the set

containing the ‘nand’ connective). Furthermore, some functionally complete sets

of arity two contain connectives whose inference rules are already known (e.g.,

{∧,¬}). Using this result, one can derive suitable sequent rules (which we will

generically call (∁
n
i L) and (∁

n
i R)) for an arbitrary connective ∁

n
i by choosing a for-

mula F logically equivalent to ∁
n
i built up from elements of the functionally com-

plete set (which will have known inference rules). Now, by constructing (partial)

derivation schemes which introduce F on the left and right-hand side of the turn-

stile, we can obtain the inference rules for ∁
n
i by translating all sub-derivations to

be completed to sub-proofs, and replacing the formula F in the endsequent with

the formula ∁
n
i (A1, . . . , An). We illustrate this process in the following example.

Example 5.2.1 (Deriving Sequent rules for Difference) The set {→,¬} is function-

ally complete. Using truth tables, we can express the difference connective ∁
2
00102

(A, B)

(for which we adopt the shorthand A−B), in terms of negation and implication. We find

that,

A−B ≡ ¬A→B

Using the proof rules for → and ¬, we can build two (incomplete) derivations that in-

troduce the formula ¬A→B to the left and right hand sides of a sequent. From this

derivation, we can extract the proof rules (−L) and (−R) as follows:

Γ ⊢ A,∆ Γ, B ⊢ ∆
(→L)

Γ ⊢ A→B,∆
(¬R)

Γ ⊢ ¬(A→B),∆

gives
Γ ⊢ A,∆ Γ, B ⊢ ∆

(−R)
Γ ⊢ A−B,∆

Γ, A ⊢ B,∆
(→R)

Γ ⊢ A→B,∆
(¬L)

Γ,¬(A→B) ⊢ ∆

gives
Γ, A ⊢ B,∆

(−L)
Γ, A−B ⊢ ∆

5.2.2 Generating Term Syntax

Step three of the recipe requires the inhabitation of proof rules with term syntax.

We choose to follow the style of inhabitation used in X , since it best expresses the

structure of the proof, while preserving symmetries of the logic at the level of the

syntax.



When deriving the syntax to represent a particular proof rule, we will reformu-

late the contexts of G3A-BASIC (and extensions of G3A-BASIC) to contexts of

sockets and contexts of plugs, and adhere to Urban’s context convention. For-

mulas which occur on the left of a sequent will be labelled with sockets x, y, z, . . .

while formulas on the right will be labelled with plugs α, β,γ, . . .. Any sub-proofs

present in the rule will be represented as sub-terms of the syntax. Formulas which

disappear from such sub-proofs by application of the proof rule (in a sense they

are ‘bound’ by the rule) will correspond to bound connectors on the sub-terms,

while a new formula which is introduced by the rule corresponds to a free con-

nector of the appropriate kind.

We will adopt a generic naming convention for inference rules for arbitrary con-

nectives, and the circuits that correspond to those rules. For an arbitrary connec-

tive of arity n, ∁
n
i , the left and right inference rules are called (∁

n
i L) and (∁

n
i R),

respectively. The circuit constructors that inhabit these rules called respectively

input circuits and output circuits; these will be written as ∁
n
i I and ∁

n
i O.

The term constructors generated by the above process will be constrained to ad-

here to the following definition.

Definition 5.2.2 (Generic Circuit Grammar) The circuits of the X -style calculi are

defined by the following grammar, where x ranges over the infinite set of sockets, and α

over plugs.

P,Q ::= 〈x·α〉 capsule

| Pα̂ † x̂Q cut

| x·[B] input circuit

| [B]·α output circuit

B ::= empty

| blocks one or more blocks

blocks ::= block one block

| block , blocks more than one block

block ::= S P block with only bound socket(s)

| P P block with only bound plug(s)

| S P P block with both bound socket(s) and bound plug(s)



S ::= x̂ a socket

| x̂S more than one socket

P ::= α̂ a plug

| Pα̂ more than one plug

Where many blocks are used to build a circuit, we will apply an ordering over the blocks

according to the number of sockets and plugs that are bound. The convention applied is

as follows:

1. blocks with no bound sockets are at the front of the list, in decreasing order of the

number of plugs binding over the sub-term, e.g., the sequence: . . ., Pα̂µ̂π̂, Pα̂µ̂,

Pα̂.

2. blocks with no bound plugs are at the end of the list, in increasing order of the

number of sockets binding over the sub-term, e.g., the sequence: x̂P, x̂ŷP, x̂ŷẑP,

. . .

3. blocks with both bound sockets and bound plugs are placed in between the sublists

defined by the first two parts, and are ordered increasingly by the number bound

sockets, and within each group with the same number of sockets but different num-

ber of plugs, ordered decreasingly by the number of bound plugs, e.g., the sequence:

x̂Pα̂, ŷx̂Pα̂µ̂, ŷx̂Pα̂, ẑŷx̂Pα̂µ̂, ẑŷx̂Pα̂, . . .

Under the above construction, the export x̂Pβ̂·α and the import Pα̂ [y] x̂Q are syntactic

sugar for the output and input circuits [x̂Pβ̂]·α and y·[Pα̂, x̂Q] (their generic names are

∁
2
11012
O and ∁

2
11012
I).

Below we give an example of how an X -style circuit can be derived from an

inference rule.

Example 5.2.3 (Annotating the Rule (→L)) In this example, we will extract the in-

put circuit→I from the (→L) proof rule so that the syntax adheres to Definition 5.2.2.

We begin with the logical rule for introducing a formula whose principal connective is

implication to the antecedent part of a sequent.

Γ ⊢ ∆, A B, Γ ⊢ ∆
(→L)

A→B, Γ ⊢ ∆

Each formula in each rule premise is annotated with a connector. We annotate the formula

A with a plug, say α, since it appears on the right of the turnstile, and the formula B with



a socket x since it appears on the left. We also annotate the formula A→B with a socket

y since it appears on the left of the turnstile.

In an application of the proof rule, the premise sequents will map to sub-proofs that derive

(an instantiation of) each premise sequent. We introduce circuit variables (P and Q

respectively) to act as witnesses for each of these sub-proofs.

With regards to binders, each premise of the rule (→L) discharges a formula, which be-

comes bound to the respective sub-proofs. This is mirrored in the term syntax by binding

the appropriate connector to its sub-circuits, i.e., α is bound in P and x is bound in Q.

This gives the rule:

P ··· Γ ⊢ ∆, α:A Q ··· x:B, Γ ⊢ ∆
(→L)

y · [Pα̂, x̂Q] ··· y:A→B, Γ ⊢ ∆

We point out a small subtlety related to the implicit formulation of contraction

rules when moving from a (usual) sequent calculus which whose contexts are

sets of formulas (such as G3A-BASIC) to a sequent calculus whose contexts are

sets of 〈label, formula〉 pairs (such as G3a′). Consider the following derivation in

G3A-BASIC .

A ⊢ A→B, B
(→R)

⊢ A→B

In the above, notice the implicit contraction of the formula A→B when the rule

(→R) is applied. We would represent the above in G3a′ using:

x:A ⊢ α:A→B, β:B
(→R)

⊢ α:A→B

Here, although the application of (→R) introduces a new formula with principal

connective → to the conclusion, we make sure to choose the same label as the

existing A→B formula (i.e., α) in order to represent the contraction.

A slightly more complicated example is the representation the following G3A-BASIC

proof in G3a′:

⊢ B, A A ⊢ B
(Cut)

⊢ B

In the above, the cut formula A is eliminated from the derivation, but addition-

ally the two formulas B in the left and right derivations are contracted. In the



corresponding proof G3a′ proof, if B shares the label across the sub-proofs, there

is no problem and we can simply merge the two contexts. For example,

⊢ α:B,γ:A x:A ⊢ α:B
(Cut)

⊢ α:B

However, if the subproofs are:

⊢ α:B,γ:A and x:A ⊢ δ:B

then applying (Cut), will build the conclusion ⊢ α:B, δ:B, and so the contraction

step is not reproduced. In this case, one should introduce an extra cut with an

appropriate instance of the axiom rule to perform the renaming as needed. There

is in fact a choice of two G3a′ derivations which can be mapped onto; these are

shown below.

⊢ α:B,γ:A
(Ax)

y:B ⊢ δ:B
(Cut)

⊢ δ:B,γ:A x:A ⊢ δ:B
(Cut)

⊢ δ:B

⊢ α:B,γ:A

x:A ⊢ δ:B
(Ax)

y:B ⊢ α:B
(Cut)

x:A ⊢ α:B
(Cut)

⊢ α:B

Essentially we have used an application of the cut and axiom to rename a labelled

formula in one of the sub-proofs.

5.2.3 Normalisation and Reduction Rules

Recall that the normal proofs in sequent calculi are cut-free proofs. In general, a

local cut-elimination procedure for sequent calculus proofs consists of applying

permutations to the proof to shift the cut towards the leaves of the derivation. At

various points, the complexity of the cut-formula may be reduced by applying a

principal logical rule. This process was described in some detail in Section 2.2.3.

The exact choice of permutations to apply is a topic which has been studied in

detail by a great many number of authors (e.g., [86, 34, 61, 41]).

Due to our choice of syntax, and familiarity with the X -calculus, we will choose



to work with a generalisation of the X ’s reduction system (though we could have

equally chosen Urban’s procedure [86] or the colouring annotations of Danos et

al. [34], etc.).

In X -calculi, normal circuits are those built without using the cut circuit (i.e.,

Mα̂ † x̂N). In this section we will outline the key ingredients for a general nor-

malisation of X -style circuits, corresponding to a local cut-elimination procedure

on proofs.

Whichever logical connectives are employed, we will always keep a basic set of

reduction rules which deal with cuts and capsules.

Definition 5.2.4 (Basic Reduction Rules,R) The set of basic reduction rules, R,

consists of the following rules from Definitions 3.1.4 and 3.1.7,

(cap-rn) renaming of a capsule

(act-L), (act-R) activation of a cut

(† d), (d †) deactivation of a cut

(cap† ), ( †cap) garbage-collection of a cut

(cut† ), ( †cut) propagation of an active cut through an inactive cut

The notion of a plug or socket being introduced can be extended to the case of a

generic circuit: the circuit P introduces x (respectively, α) iff x is free in P but not

in any of its proper sub-circuits.

Reduction rules for calculi built in the style of X are either propagation rules

or logical rules. The propagation rules formalise the substitution-like operations

P{α]x̂Q} and Q{Pα̂]x}, which, as discussed in Section 3.1, place copies of cuts

next to sub-circuits introducing the connector involved in the ‘substitution’.

The general approach is to push copies of the cut inside the sub-terms, leaving

a copy on the outside if an occurrence of the desired connector was present at

this level (c.f., †imp-outs). The appropriate rules for propagation over a construct

which introduces a plug may be derived symmetrically. The rules that describe

this process for an arbitrary connective are given in the following definition.

Definition 5.2.5 (Propagation Rules for ∁
n
i I and ∁

n
i O) The input and output circuits

that correspond to an inference rule can, in general, be written as:

x·[−→u1P1
−→π1, . . . ,

−→us Ps
−→πs ] and [−→v1Q1

−→σ1 , . . . ,
−→w1Qt

−→σt ]·α



where, s+t ≤ 2n, Pi,Qi are circuits (with i≤n) and the notation
−→· stands for a sequence

of zero or more bound connectors of a particular kind, such that −→vi Qi
−→σi is a block (see

Definition 5.2.2).

For a pair of generic input and output circuits (shown above), the following six propaga-

tion rules need to be added to the calculus, (where k, δ are fresh),

1. In case the connector of the cut matches the single free connector of the generic

circuit, deposit a fresh inactive cut introducing that connector on the outside,

and build an active cut with each proper sub-circuit. The corresponding rules

( †∁
n
i I-outs) and (∁

n
i O-outs† ) are:

Rγ̂ † ŷ(y·[−→u1P1
−→π1, . . . ,

−→us Ps
−→πs ]) → Rγ̂ † k̂(k·[−→u1 (Rγ̂ † ŷP1)

−→π1, . . . ,
−→us (Rγ̂ † ŷPs)

−→πs ])

([−→v1Q1
−→σ1 , . . . ,

−→w1Qt
−→σt ]·γ)γ̂ † ŷR → ([−→v1 (Q1γ̂ † ŷR)−→σ1 , . . . ,

−→vt (Qtγ̂ † ŷR)−→σt ]·δ)δ̂ † ŷR

2. If there is no match between the connector of the cut and the outer connector of the

generic circuit, place active cuts ‘inside’ the generic circuit (i.e., build a cut with

each proper sub-circuit). The corresponding rules ( †∁
n
i I-ins) and (∁

n
i O-ins† ) are:

Rγ̂ † ŷ(x·[−→u1P1
−→π1, . . . ,

−→us Ps
−→πs)] → x·[

−→u1(Rγ̂ † ŷP1)
−→π1, . . . ,

−→us (Rγ̂ † ŷPs)
−→πs ] ^ x 6=y

([−→v1Q1
−→σ1 , . . . ,

−→w1Qt
−→σt ]·α)γ̂ † ŷR → [−→v1 (Q1γ̂ † ŷR)−→σ1 , . . . ,

−→vt (Qtγ̂ † ŷR)−→σt ]·α ^ γ 6=α

3. If the free connector of the generic circuit is of the opposite ‘kind’ to the active cut,

simply build active cuts with the proper sub-circuits of the generic circuit. The

corresponding rules (∁
n
i I† ) and ( †∁

n
i O) are:

(x·[−→u1P1
−→π1, . . . ,

−→us Ps
−→πs ])γ̂ † ŷR → x·[−→u1(P1γ̂ † ŷR)−→π1, . . . ,

−→us (Psγ̂ † ŷR)−→πs ]

Rγ̂ † ŷ([−→v1Q1
−→σ1 , . . . ,

−→w1Qt
−→σt ]·α) → [−→v1 (Rγ̂ † ŷQ1)

−→σ1 , . . . ,
−→vt (Rγ̂ † ŷQt)

−→σt ]·α

Of course rule names can be changed; the rule names we presented above ensures no

conflict with rule names of other logical connectives.

This leaves us with having to define the appropriate logical reduction rules for

the connective. These logical rules can be grouped into two sets: (i) those which

perform a renaming on an introduced connector, and (ii) the ‘principal’ reduction

rule(s) which define(s) the main computational behaviour of the connective. The

first can be defined as follows.

Definition 5.2.6 (Renaming Rules for ∁
n
i I and ∁

n
i O) The circuits ∁

n
i I and ∁

n
i O can,

in general, be written as x·[I1, . . . , Is] and [O1, . . . ,Ot]·α, where I,O ranges over blocks,

and s+t≤2n. The extension of the syntax with these circuits requires that the following

renaming logical rules need to be added to the term calculus.

(∁
n
i I-rn): 〈x·γ〉γ̂ † ŷ(y·[I1, . . . , Is]) → x·[I1, . . . , Is] ^ y introduced

(∁
n
i O-rn): ([O1, . . . ,Ot]·γ)γ̂ † ŷ〈y·α〉 → [O1, . . . ,Ot]·α ^ γ introduced



A logical rule must also be defined to show how a cut whose cut formula is in-

troduced by a connective’s left and right logical rules can be eliminated from a

proof. We call the corresponding proof transformation the principal reduction rule

for the connective (with generic rule name (∁
n
i )).

Perhaps the most straightforward way of building a principal reduction rule for

a arbitrary logical connective ∁
n
i would be to first express the connective as an

equivalent formula built using a combination of some well studied connectives

that form a functionally complete set (e.g., the set containing the connectives

negation and disjunction). By building derivation schemes of the equivalent for-

mulation on the left and right of a sequent scheme, one can obtain the inference

rules for that connective. Now by considering the cut-elimination of the deriva-

tion scheme built by applying (Cut) to the right and left premises respectively,

one can obtain a derivation scheme whose structure corresponds to the right-

hand side of the principal reduction rule for ∁
n
i . We use this approach in Section

5.5 where we construct a calculus X↔ with a Curry-Howard correspondence

with a sequent calculus employing the if-and-only-if connective as a primitive

(since the principal reduction rule for the connective turns out to be non-trivial to

derive directly).

Finally, we remark that if one employs more than one logical connective in the

logic, the cut rule is not applicable between different connectives. In the corre-

sponding untyped term calculus, it is permitted for cuts to be formed between

circuits corresponding to different logical rules. In this work, we will consider

such cuts to be irreducible. Therefore, when more than one logical connective is

employed, the notion of normal form is extended; in particular it will be possible

to have untypeable normal forms which contain cuts.

We will say that a term calculus extracted from a sequent calculus following the

methods described in this section are built in the style of X .

5.3 Relating Binary Logical Connectives

In the previous section we outlined a general ‘recipe’ which can be followed to

construct a Curry-Howard pair of calculi. In this section we will address the first

step of the ‘recipe’: deciding on which connectives to consider as primitives in a

logic.

It is interesting to ask why different authors have based their logics on partic-



ular choices of primitive connectives. Implication is the most popular choice

of connective, presumably because it is well understood that its computational

behaviour is related to function abstraction and application. More adventurous

authors have sought to define Curry-Howard pairs of calculi starting from log-

ics which feature other logical connectives as primitives. For example, Wadler’s

Dual Calculus [91] features primitive conjunction, disjunction and negation, while

Crolard uses the ‘difference’ connective in his formulae-as-types notion of sub-

tractive logic [31].

It is rare to find investigations into Curry-Howard correspondences that employ

logics built from connectives of arity greater than two (although for an example,

see [64]). The likely reason for this is the existence of functionally complete sets

of connectives. However, we note that it is also common practice to augment

functionally complete sets of connectives with additional primitive connectives.

The reason for this is that a certain amount of clarity is gained from using a larger

set of primitives; consider the extreme case of basing a computational calculus

solely on the ‘nand’ connective.

We notice curious biases in the field towards particular logical connectives (i.e.,

and, or, implication, negation), which naturally prompts us to ask why the re-

maining twelve connectives of arity two are rarely studied. In joint work with

Summers [74], we investigated all of the arity-two classical logical connectives

and focused on relationships that existed between. This section is a summary of

our work.

We began our investigations with the following questions:

(a) How many logical connectives are there of arity n (n ≥ 0)?

(b) How many of these depend on all n inputs (we say these have true arity n,

Definition 2.2.13)?

(c) How many of these always depend on all n inputs?

Following some routine counting exercises, we determined the following result.

Theorem 5.3.1 (Enumerating Logical Connectives [74]) For any integer n ≥ 0:

1. There are 22
n
logical connectives of arity n.

2. The number of these which depend on all n inputs (those of true arity n), t(n) is

given by the following formula: t(n) = 22
n
−
n−1

∑
i=0

(
n

i

)
t(i).



3. There are exactly two connectives of arity n which always depend on all n inputs;

these are the parity function (which returns true exactly when an even number of

its arguments are), and its negation.

Regarding the connectives whose arity corresponds to their true arity (part (b)

above), we can observe that for the case:

t(0) = 2 : The two connectives are the logical constants ⊤ and ⊥, which can be

seen as connectives of arity 0.

t(1) = 2 : The connectives are the identity connective (which returns its input ar-

gument unchanged) and the negation connective (which returns the negation

of its input argument).

t(2) = 10 : Considering there are 16 arity-two connectives, we subtract from this

set the following six connectives (whose true arity is not 2):

• the connective that ignores both inputs, always returning true.

• the connective that ignores both inputs, always returning false.

• the two connectives which always return the value of one of the two

inputs (ignoring the other input).

• the two connectives which always returns the negation of value of one

of the two inputs (ignoring the other input).

Using the generic notation for describing arbitrary classical logical connectives

introduced in Definition 2.2.11, we list the 22
2
logical connectives of arity two in

Figure 5.1(a). We also mention the standard name and symbol associated with

each connective where it exists. Taking this set of arity two connectives, we at-

tempted to determine which of them could be ‘obtained’ from others by applying

some simple translations involving negation. We defined a notion of ‘obtainabil-

ity’ as follows.

Definition 5.3.2 (Obtainability) For any two binary connectives ∁
2
i ,∁
2
j , and for all as-

signments of truth values to the propositional variables A, B:

Reversal : We say ∁
2
i is the reverse of ∁

2
j iff ∁

2
i (A, B) ≡ ∁

2
j (B, A).

Duality : We say ∁
2
i is the dual of ∁

2
j iff ∁

2
i (A, B) ≡ ¬∁

2
j (¬A,¬B).

Negation : We say ∁
2
i is the negation of ∁

2
j iff ∁

2
i (A, B) ≡ ¬∁

2
j (A, B).

Flipping inputs : We say ∁
2
i is obtained from ∁

2
j by flipping an input if either

∁
2
i (A, B) ≡ ∁

2
i (¬A, B) or ∁

2
i (A, B) ≡ ∁

2
i (A,¬B)



We say we can obtain ∁
2
i from ∁

2
j iff ∁

2
j can be defined in terms of ∁

2
i by applying one or

more of the above relations.

The above relations are illustrated in Figure 5.1(b) as intuitively labelled arrows.

Notice that the relations partition the connectives into five groups, where each

connective in a particular group is logically expressible using another connective

in that group.

This observation led us to believe that it should be possible to determine the

pair of inference rules for each connective in a group by applying some basic

transformations to the inference rules of another connective. We give a summary

of our findings below.

Reversal : The reversal operation, which simply swaps the order of the supplied

arguments, has no effect on the shape of the inference rules for the con-

nective. Consider the reverse of the implication connective, which we shall

write←, whose pair of sequent rules are shown below.

Γ ⊢ ∆, B A, Γ ⊢ ∆
(←L)

A←B, Γ ⊢ ∆

B, Γ ⊢ ∆, A
(←R)

Γ ⊢ ∆, A←B

Using the method of generating term annotations detailed in Section 5.2.2,

we find that the inhabitants of these rules are exactly the same as those for

implication. This is because the same inputs and outputs are bound and

introduced by the inference rules, the only difference being the positioning

of A and B, which is irrelevant since types are not part of our term syntax.

The associated cut-elimination rules will also be exactly the same as those

for implication, and therefore so will the computational content obtained.

As a result of this observation, we choose to examine the connectives in

question modulo reversals. Since most of the connectives in Figure 5.1(b)

are symmetrical (remain the same when reversed), this actually only re-

duces the number of connectives in question by four. Our notation becomes

rather less cumbersome, in that we need not write formulas to define any of

the connectives (e.g., B−A was used to write the reverse of A−B); we can

now write an unambiguous symbol for each. This is shown in Figure 5.1(c).

Negation : Given the inference rules for an arbitrary connective, it is straight-

forward to derive suitable rules for the negation of that connective. For

example, the negation of implication (→) is the ‘difference’ connective (−),

and by seeking suitable derivations for the formula ¬(A→B) on both the
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left and the right of a sequent, one can derive the appropriate rules for ‘dif-

ference’ as shown below.

A, Γ ⊢ ∆, B
(−L)

A−B, Γ ⊢ ∆

Γ ⊢ ∆, A B, Γ ⊢ ∆
(−R)

Γ ⊢ ∆, A−B

The input and output circuits that inhabit the above rules are x·[ŷRβ̂] and

[Pβ̂, x̂Q]·α respectively3. Notice that these terms have the same lists of

blocks in common with the terms for implication; the only difference is that

the free connector introduced appears on the opposite side of the sequent

(due to the negation). This generalises to any connective and its negation;

the term representations will be identical for each, but with the left and right

free connectors exchanged. Furthermore, in defining a cut-elimination rule,

one can see that the reduct of the key logical rule will be the same in the

cases of→ and −, and in general for a connective and its negation. These

ideas also generalise to any connective and its negation.

Duality : The duality operation has the effect of ‘swapping the side’ of every for-

mula in the proof, since both the arguments and the connective itself are

negated. For example, compare the rules for the pair of ‘dual’ connectives

conjunction ∧ and disjunction ∨:

A, B, Γ ⊢ ∆
(∧L)

A∧B, Γ ⊢ ∆

Γ ⊢ ∆, A Γ ⊢ ∆, B
(∧R)

Γ ⊢ ∆, A∧B

Γ ⊢ ∆, A, B
(∨R)

Γ ⊢ ∆, A∨B

A, Γ ⊢ ∆ B, Γ ⊢ ∆
(∨L)

A∨B, Γ ⊢ ∆

Flipping of an Input : The effect of flipping an input is to negate only one of the

inputs to a connective, which in turn corresponds to the bound occurrences

of one of the formulas swapping sides in the rules. For example, implica-

tion can be obtained from disjunction by flipping the first input (A→B ≡

¬A∨B). One can see this also by comparing the sequent rules of implication

(below) to those for disjunction (above).

A, Γ ⊢ ∆, B
(→R)

Γ ⊢ ∆, A→B

Γ ⊢ ∆, A B, Γ ⊢ ∆
(→L)

A→B, Γ ⊢ ∆

As can be seen from Figure 5.1(c), the above transformations can be used to relate

six of the arity two connectives. In Section 5.4, we will see that the computa-

3The sugared syntax would be x·ŷRβ̂ and Pβ̂ [α] x̂Q.



tional behaviour of each of these connectives can be associated with some kind of

‘pairing’ functionality.

The remaining connectives come in related groups of two. The negation and

identity connectives (which are really of true arity one) have a computational be-

haviour very different from the group of six connectives. The negation connective

is traditionally associated with behaviour relating to the manipulation of contin-

uations. The identity connective can be seen to have a very trivial computational

content (at best it provides a kind of aliasing, where a connector is bound within

a subterm and then immediately exported again with a new name).

The ⊤ and ⊥ connectives are rather unusual, since it turns out they each have no

sensible proof rule for introducing the connective on one side of the sequent (in

fact a rule can be added but it amounts to a special case of weakening). In the case

of⊤, there is only a sensible rule for introduction on the right, and symmetrically

⊥ only has an introduction rule on the left. These rules are given below:

(⊤R)
Γ, ⊢ ⊤,∆

(⊥L)
Γ,⊥ ⊢ ∆

Since these rules introduce a new formula without binding any existing ones,

they can be seen to be inhabited by terms which make available an output (re-

spectively input) which isn’t connected to anything. As far as reduction rules are

concerned, it is impossible to add the usual principal logical rule, since there is no

pair of left and right terms to connect. When one considers a cut between (for ex-

ample) a (⊤R) rule on the left and some other term in the right, it is clear that the

connector bound on the other side of the cut must be introduced by weakening

(if the cut is typeable). In this way the terms to represent ⊤ and ⊥ can be used to

provide ‘dead-end’ cuts, which when evaluated simply disappear (c.f., garbage

collection, Lemma 3.1.21).

There remain only two binary connectives to discuss, being ↔ (‘if-and-only-if’)

and ⊗ (‘exclusive or’). As can be seen from Figure 5.1(c), these two are obtainable

only from each other. The (similar) operations they describe are difficult to relate

directly to any of the other connectives since there are no ‘simple’ equivalent

formulas which express these connectives in terms of the others. We showed in

[74, Thm. 5.3] that any formula equivalent to↔ or⊗ (not constructed using↔ or

⊗) must duplicate at least one of the supplied arguments. The result suggested

that the two connectives↔ and ⊗ may have some interesting complexity which

the other binary connectives do not. Subsequently, we decided to investigate

the computational content of these two connectives, which appears not to have



been attempted so far in the literature. In particular, no cut-elimination rule (or

analogously, proof reduction rule in a Natural Deduction setting) seems to have

been defined for these connectives. Our investigations into this connective were

substantial, and so we dedicate an entire section to it (Section 5.5).

5.4 The ‘Pairing’ Connectives

In this section we will study the group of six connectives (Figure 5.1(c)) that are

obtainable from each other.

The computational behaviour of logical conjunction is traditionally associated

with a pairing operation. In the (generic) style of X , the output and input circuits

for conjunction are respectively [Pα̂,Qβ̂]·γ and y·[x̂ẑR]. The output circuit builds

the components of the pair, while the input circuit decomposes it. It is common

practice to split the left introduction rule for conjunction into two rules as follows,

A, Γ ⊢ ∆
(∧L1)

A∧B, Γ ⊢ ∆

B, Γ ⊢ ∆
(∧L2)

A∧B, Γ ⊢ ∆

From these, one can derive two computational structures that behave like the

traditional projection functions fst and snd. In an X -style calculus, these rules

would yield the two input circuits y·[x̂R] and y·[ẑR], which when placed in an

interaction with the pair (the ‘and output’ circuit), can be used to ‘select’ one of its

two components. This functionality is seen in the following principal reduction

rules (which are derived from the cut-elimination for conjunction).

(∧1): ([Pα̂,Qβ̂]·γ)γ̂ † ŷ(y·[x̂R]) → Pα̂ † x̂R^ γ, y introduced

(∧2): ([Pα̂,Qβ̂]·γ)γ̂ † ŷ(y·[ẑR]) → Qβ̂ † ẑR^ γ, y introduced

This ‘selection’ behaviour can still be achieved using the invertible left intro-

duction rule, except that a pattern-matching approach of decomposing the pair

should be adopted. The reduction rules for an X -style calculus built on invertible

rules for conjunction are as follows:

(∧3): ([Pα̂,Qβ̂]·γ)γ̂ † ŷ(y·[x̂ẑR]) → Pα̂ † x̂(Qβ̂ † ẑR) ^ γ, y introduced

(∧4): ([Pα̂,Qβ̂]·γ)γ̂ † ŷ(y·[x̂ẑR]) → Qβ̂ † ẑ(Pα̂ † x̂R) ^ γ, y introduced

The difference between the two variants of the rule is whether preference is given

to ‘selecting’ the first or the second component of the pair. Kesner and Cerrito

studied the above pattern matching interpretation in a single conclusion ‘sequent



calculus’ [26], but only considered the (∧3) variant of the conjunction rule (using

their own syntax, of course).

The group of six connectives in Figure 5.1(c) each have computational behaviour

which can, in a sense, be associated with some pairing functionality. The X -style

term constructors that can be extracted from each connective, together with the

right-hand sides of the principal reduction rule are shown in Table 5.1.

First notice the similarities between each of the ‘pairing’ connectives: for each

connective, one of the circuits has two blocks, representing the pair itself, while

the opposite circuit has a single block. The circuit with the single block provides

the functionality to ‘select’ the components of that pair, and in each case, that cir-

cuit can be split into two components (whichwould be derived from a ‘projection’

style inference rule). Consider the circuits for the projection style representation

of implication. The (generic) implication input circuit y·[Pβ̂, ẑQ] can be seen as a

pair of two terms P and Q, the first binds and output the second binds an input.

The output circuits [x̂R]·γ and [Rα̂]·γ can be seen as ‘selectors’ for the compo-

nents of the pair created by the input circuit, in much the same way as the fst and

snd operators work on the traditional representation of pairs built using conjunc-

tion. Observe the pair of principal reduction rules for this style of representing

the circuit,

(→1): ([x̂R]·γ)γ̂ † x̂(y·[Pβ̂, ẑQ]) → Pβ̂ † x̂R^ γ, y introduced

(→2): ([Rα̂]·γ)γ̂ † x̂(y·[Pβ̂, ẑQ]) → Rα̂ † ẑQ^ γ, y introduced

Some of the similarities between these connectives can be explained if one con-

siders the truth table definitions of the connectives. The six connectives have

a feature in common: the truth-value of each connective can be determined (in

certain cases) without knowing the value of both of its arguments; we say such

connectives can be ‘shortcut’. In Figure 5.2, we give the truth table definitions

for the six connectives, and in each case give the cases when a connective can be

shortcut.

In Section 6.1.2, we will describe a mechanical algorithm for deriving sequent

calculus style inference rules from a truth function. We will show the single block

circuit for each pairing connective is a direct result of the possibility to shortcut

the connective.



Input Circuit Output Circuit ‘Pattern Matching’ RHS

∧ y·[x̂ẑR] or

{
y·[x̂R]
y·[ẑR]

}
[Pα̂,Qβ̂]·γ

Pα̂ † x̂(Qβ̂ † ẑR)
or

Qβ̂ † ẑ(Pα̂ † x̂R)

∨ y·[x̂P, ẑQ] [Rα̂µ̂]·γ or

{
[Rα̂]·γ
[Rµ̂]·γ

} (Rα̂ † x̂P)µ̂ † ẑQ
or

(Rµ̂ † ẑQ)α̂ † x̂P

→ y·[Pβ̂, ẑQ] [x̂Rα̂]·γ or

{
[x̂R]·γ
[Rα̂]·γ

}

(Pβ̂ † x̂R)α̂ † ẑQ
or

Pβ̂ † x̂(Rα̂ † ẑQ)
− y·[x̂Rα̂] or

{
y·[x̂R]
y·[Rα̂]

}
[Pβ̂, ẑQ]·γ

↑ y·[Pβ̂,Qµ̂] [x̂ẑR]·γ or

{
[x̂R]·γ
[ẑR]·γ

} Pβ̂ † x̂(Qµ̂ † ẑR)
or

Qµ̂ † ẑ(Pβ̂ † x̂R)

↓ y·[Rα̂β̂] or

{
y·[Rα̂]

y·[Rβ̂]

}
[xP̂, ẑQ]·γ

(Rα̂ † x̂P) β̂ † ẑQ
or

(Rβ̂ † ẑQ)α̂ † x̂P

Table 5.1: Circuits and Reduction Rules for the Six ‘Pairing’ Connectives

A B A∧B A∨B A→B A−B A↑B A↓B
0 0 0 0 1 0 0 0
0 1 0 1 1 1 1 0
1 0 0 1 0 0 1 0
1 1 1 1 1 0 1 1

shortcuts
A=0
or
B=0

A=1
or
B=1

A=0
or
B=1

A=1
or
B=0

A=1
or
B=1

A=0
or
B=0

Figure 5.2: Truth Tables and ‘Shortcuts’ for the Six ‘pairing’ Connectives



Definition 5.4.1 (X ↑-Syntax) The circuits of the X ↑-calculus are defined by the follow-
ing grammar, where x, y range over the infinite set of sockets, and α, β over plugs.

P,Q ::= 〈x·α〉 | x·[Pα̂,Qβ̂] | [x̂ŷP]·α | Pα̂ † x̂Q
capsule nand output nand input cut

Definition 5.4.2 (Typing Rules for X↑) The axiom and cut are typed as usual (Defi-
nition 5.1.3). The ‘nand’ input and output circuits are typed as follows.

P ··· Γ ⊢ ∆, α:A Q ··· Γ ⊢ ∆, β:B
(↑L)

x·[Pα̂,Qβ̂] ··· x:A↑B, Γ ⊢ ∆

P ··· x:A, y:B, Γ ⊢ ∆
(↑R)

[x̂ŷP]·α ··· Γ ⊢ ∆, α:A↑B

Definition 5.4.3 (X ↑ Reduction Rules) We extend the set of basic reduction rules,
R, (Definition 5.2.4), with the following reduction rules.

Left Propagation Rules : (↑O-outs† ), (↑O-ins† ) and (↑I† )

([x̂ẑP]·γ)γ̂ † ŷR → ([x̂ẑ(Pγ̂ † ŷR)]·δ)δ̂ † ŷR
([x̂ẑP]·α)γ̂ † ŷR → [x̂ẑ(Pγ̂ † ŷR)]·α ^ γ 6=α

(x·[Pα̂,Qβ̂])γ̂ † ŷR → x·[(Pγ̂ † ŷR)α̂, (Qγ̂ † ŷR)β̂]

Right Propagation Rules : ( †↑I-outs), ( †↑I-ins) and ( †↑O)

Rγ̂ † ŷ(y·[Pα̂,Qβ̂]) → Rγ̂ † k̂(k·[(Rγ̂ † ŷP)α̂, (Rγ̂ † ŷQ) β̂])

Rγ̂ † ŷ(x·[Pα̂,Qβ̂]) → x·[(Rγ̂ † ŷP)α̂, (Rγ̂ † ŷQ)β̂]) ^ x 6=y
Rγ̂ † ŷ([x̂ẑP]·α) → [x̂ẑ(Rγ̂ † ŷP)]·α)

Renaming Rules : (↑I-rn) and (↑O-rn),

([x̂ẑP]·γ)γ̂ † ŷ〈y·α〉 → [x̂ẑP]·α ^ γ, y introduced

〈z·γ〉γ̂ † ŷ(y·[Pα̂,Qβ̂]) → z·[Pα̂,Qβ̂] ^ γ, y introduced

Principal Reduction Rules : (↑1) and (↑2),

([x̂ẑR]·γ)γ̂ † ŷ(y·[Pα̂,Qβ̂]) → Pα̂ † x̂(Qβ̂ † ẑR) ^ γ, y introduced

([x̂ẑR]·γ)γ̂ † ŷ(y·[Pα̂,Qβ̂]) → Qβ̂ † ẑ(Pα̂ † x̂R) ^ γ, y introduced

Figure 5.3: The X ↑-Calculus



5.4.1 Simulations of X

As an experiment, we sought to encode the X -calculus into a calculus which

could logically express implication, with the aim of studying simulations.

In this section, we will introduce two target calculi for simulating X . The first

is perhaps an obvious choice: the calculus X ↑ is based on the functionally com-

plete ‘nand’ connective. The second, which we call the X ¬∨-calculus is based on

negation and disjunction. Our goal is to see whether each of these calculi (which

employ sets of functionally complete connectives as primitives) can encode the

syntax of the X -calculus in such a way that reductions are preserved. In the pos-

itive case, we shall say the former calculus can computationally express the latter.

The X ↑-calculus

We give the full Definition of the X ↑ calculus in Figure 5.3 following the (mechan-

ical) procedure for deriving Curry-Howard pairs of calculi detailed in Section

5.2.3. Using these definition, we can seek an encoding of X into X ↑ using the log-

ical equivalence A→B ≡ A↑(A↑B). We first construct two (partial) derivations

that introduce the formula A↑(A↑B) on the left and right hand sides of a sequent,

i.e.,

Γ ⊢ ∆, A

A, B, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, A↑B
(↑L)

A↑(A↑B), Γ ⊢ ∆

(Ax)
A, Γ ⊢ ∆, A A, Γ ⊢ ∆, B

(↑L)
A, A↑B, Γ ⊢ ∆

(↑R)
Γ ⊢ ∆, A↑(A↑B)

From the structure of these derivations, we can extract an interpretation of the

X -calculus import and export circuits in X ↑: (i) the import is encoded as a ‘nand’

input circuit whose second sub-circuit is a ‘nand’ output circuit, and (ii) the ex-

port is encoded as a ‘nand’ output circuit over a ‘nand’ input circuit whose first

sub-circuit is a capsule. Note the implicit contraction (highlighted) in the second

derivation.



Definition 5.4.4 (Interpretation of X into X ↑)

〈x·α〉
↑

= 〈x·α〉

Pα̂ † x̂Q
↑

= P
↑
α̂ † x̂Q

↑

x̂Pα̂·γ
↑

= [x̂ẑ(z·[〈x·π〉π̂, P
↑
α̂])]·γ z,π fresh

Pα̂ [y] x̂Q
↑

= y·[P
↑
α̂, ([ẑx̂Q

↑
]·π)π̂] z,π fresh

Now we must check that reductions of X (Definitions 3.1.4 and 3.1.7) can be sim-

ulated by those of X ↑ (Definition 5.4.3). As discussed in Section 5.2, the propa-

gation and renaming rules are generic to any X -style term calculus and perform

the same basic task of (i) pushing cuts through the structure of sub-circuits and,

(ii) renaming an outermost free connector. We therefore only concern ourselves

with the simulation of the X -calculus rules (exp-impcbn) and (exp-impcbv). We also

note that X ↑ can be extended with generalised rules for garbage collection and

renaming (c.f., Lemmas 3.1.21 and 3.1.25 respectively).

Lemma 5.4.5 (Simulation of X in X ↑) Recall the principal reduction rules of the X -

calculus (built on the implication connective) are,

(exp-impcbv) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(Pβ̂ † ẑR) ^ α, x introduced

(exp-impcbn) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR^ α, x introduced

Interpreting the left-hand side of the rules,

(ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR)
↑

= (ŷPβ̂·α)
↑
α̂ † x̂(Qγ̂ [x] ẑR)

↑

= ([ŷv̂(v·[〈y·π〉π̂, P
↑
β̂])]·α)α̂ † x̂(x·[Q

↑
γ̂, ([ŵẑR

↑
]·σ)σ̂]) (5.1)

Where π, σ,w, v are fresh in Circuit (5.1).

Applying the first variant of the principal reduction rule for X ↑ called (↑1) from Defini-

tion 5.4.3 to the cut α̂ † x̂ (highlighted above), we get:

Q
↑
γ̂ † ŷ(([ŵẑR

↑
]·σ)σ̂ † v̂(v·[〈y·π〉π̂, P

↑
β̂])) → (↑1)

Q
↑
γ̂ † ŷ(〈y·π〉π̂ † ŵ(P

↑
β̂ † ẑR

↑
)) → (ren-R)

Q
↑
γ̂ † ŷ(P

↑
β̂ † ẑR

↑
) =

Qγ̂ † ŷ(Pβ̂ † ẑR)
↑



The above is the interpretation of the right-hand side of the (exp-impcbv) rule in X
↑.

We cannot exactly simulate the other rule (exp-impcbn) in X
↑. Instead, by first applying

the second variant of the principal reduction rule for X ↑ called (↑2), to Circuit (5.1), we

get:

([ŵẑR
↑
]·σ)σ̂ † v̂(Q

↑
γ̂ † ŷ(v·[〈y·π〉π̂, P

↑
β̂])) →

([ŵẑR
↑
]·σ)σ̂ † v̂(v·[(Q

↑
γ̂ † ŷ〈y·π〉)π̂, (Q

↑
γ̂ † ŷP

↑
) β̂]) → (ren-L)

([ŵẑR
↑
]·σ)σ̂ † v̂(v·[Q{π/γ}

↑
π̂, (Q

↑
γ̂ † ŷP

↑
) β̂]) =α

([ŵẑR
↑
]·σ)σ̂ † v̂(v·[Q

↑
γ̂, (Q

↑
γ̂ † ŷP

↑
) β̂])

Again we have a choice of whether to apply (↑1) or (↑2).

(i) Applying (↑1), we get:

Q
↑
γ̂ † ŵ((Q

↑
γ̂ † ŷP

↑
) β̂ † ẑR

↑
) (5.2)

Which reduces by (act-R) and ( †gc) to,

(Q
↑
γ̂ † ŷP

↑
) β̂ † ẑR

↑

This almostmatches the right-hand side of (exp-impcbn), but in general, we cannot

deactivate the right-propagating cut at this point since P
↑
may not introduce y.

Also, in Circuit (5.2), since w was freshly introduced by the interpretation, it can

reduce to Q
↑
in the case where Q

↑
does not introduce γ.

(ii) The alternative choice is to apply (↑2), giving:

(Q
↑
γ̂ † ŷP

↑
) β̂ † ẑ(Q

↑
γ̂ † ŵR

↑
) → (act-R), ( †gc)

(Q
↑
γ̂ † ŷP

↑
) β̂ † ẑR

↑

Which again features the same problem as part (i). We also note that where Q
↑
does

not introduce γ, the reduct (Q
↑
γ̂ † ŷP

↑
) β̂ † ẑQ

↑
is also obtainable.

The problems encountered simulatingX inX ↑ were unexpected. In fact, wewere

able to show that an encoding of X into a X ↓-calculus (a Curry-Howard calculus

in the style of X that employed the nor connective as a primitive) could only fully

simulate the (exp-impcbn) variant of the principal reduction rule for X .

With this negative result, we sought a calculus which might be able to fully sim-

ulate X : a ‘computational equivalent’ of X . We built a Curry-Howard pair of

calculi based on the functionally complete set of connectives {¬,∨}.



The Calculus, X ¬∨

The full definition of the X ¬∨-calculus is given in Figure 5.4. Examining truth

tables, we find that the formula ¬A∨B is logically equivalent A→B.

Following the same procedure we did to interpret X into X ↑, we build (partial)

derivations of Γ ⊢ ∆,¬A∨B and ¬A∨B, Γ ⊢ ∆. These are shown below.

A, Γ ⊢ ∆, B
(¬R)

Γ ⊢ ∆,¬A, B
(∨R)

Γ ⊢ ∆,¬A∨B

Γ ⊢ ∆, A
(¬L)

¬A, Γ ⊢ ∆ Γ ⊢ ∆, B
(∨L)

¬A∨B, Γ ⊢ ∆

Notice that in this case, the larger sets of connectives leads to simpler encodings

compared to the X ↑-calculus where only a single connective was considered. We

give the corresponding interpretation of X into X ¬∨ below.

Definition 5.4.6 (Interpretation of X into X ¬∨)

〈x·α〉
∨¬

= 〈x·α〉

Pα̂ † x̂Q
∨¬

= P
∨¬

α̂ † x̂Q
∨¬

x̂Pα̂·γ
∨¬

= [([x̂P
∨¬

]·β)β̂α̂]·γ β fresh

Pα̂ [y] x̂Q
∨¬

= y·[ẑ(z·[P
∨¬

α̂]), x̂Q] z fresh

Now we must check X ¬∨ can simulate X . We again restrict attention to the sim-

ulation of the rules (exp-impcbn) and (exp-impcbv), and make use of generalised

garbage collection and renaming rules for convenience.

Lemma 5.4.7 (Simulation of X in X ¬∨) We begin with interpretation of the left-hand

of an (exp-imp) rule,

(ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR)
∨¬

= (ŷPβ̂·α)
∨¬

α̂ † x̂(Qγ̂ [x] ẑR)
∨¬

= ([([ŷP
∨¬

]·µ)µ̂β̂]·α)α̂ † x̂(x·[ŵ(w·[Q
∨¬

γ̂]), ẑR
∨¬

]) (5.3)

There are two cases to consider: (i) reducing the cut α̂ † x̂ by (∨1) or, (ii) by (∨2),

(i) Applying (∨1), we obtain,

(([ŷP
∨¬

]·γ)γ̂ † ŵ([ŵQ
∨¬

]·γ)) β̂ † ẑR
∨¬
→ (¬) (5.4)



(Q
∨¬

γ̂ † ŷP
∨¬

) β̂ † ẑR
∨¬

=

(Qγ̂ † ŷP) β̂ † ẑR
∨¬

=

Where u, v, s, t are fresh.

Which is the interpretation of the right-hand side of (exp-impcbn).

(ii) Applying (∨2) to Circuit (5.3), we obtain,

(([ŷP
∨¬

]·µ)β̂ † ẑR
∨¬

)µ̂ † ŵ(w·[Q
∨¬

γ̂])

If we evaluate the outermost cut by applying the rules (act-L), (cut† ), († gc), († d),

we get back to Circuit (5.4).

Instead, we propagate the innermost cut through the structure of the not output

circuit by applying the rules (act-L) then (¬O-ins† ), giving:

([ŷ(P
∨¬

β̂ † ẑR
∨¬

)]·µ)µ̂ † ŵ(w·[Q
∨¬

γ̂]) → (¬)

Q
∨¬

γ̂ † ŷ(P
∨¬

β̂ † ẑR
∨¬

)

Notice that this is almost the interpretation of the right-hand side of the rule

(exp-impcbv), except the innermost cut is activated to the left.

The negative results in simulating the X -calculus suggests a bias can be intro-

duced to computational calculi depending on the choice of logical connective. It

would be interesting to determine the exact cause of the bias.

In Table 5.1), notice how the permutations of each of the circuits in the ‘Pattern

Matching RHS’ differ from each other. The implication and difference connec-

tives stand out from the other connectives in that they share the same right-hand

sides. Since the single block of the pair ‘selecting’ circuit for these two connectives

bind an input and an output, as opposed to two connectors of the same kind, the

permutation of right-hand sides differ only on how the cuts are bracketed.

Our first intuitions led us to believe that the way in which the rule’s right-hand

side was bracketed was the cause of the bias: notice in the simulation results, the

target calculus could only fully simulate the variant of X ’s principal reduction

rule which it was bracketed towards. For example, the right-hand sides of the

‘nand’ rule are bracketed to the right, and the encoding of X into X ↑ could only

fully simulate the rule (exp-impcbv) which is also bracketed to the right.

Since the right-hand side of the rules (∨1) and (∨2) are bracketed to the left and

the rule (↑1) and (↑2) are bracketed to the right, we sought to simulate the dis-



junctive fragment of X ¬∨ (i.e., X ∨) in X ↑. Had our intuition been correct a sim-

ulation would not have been possible. Fortunately, the intuition was incorrect.

In the following, we will give an encoding of X ∨ into X ↑ and show that we can

simulate the rule (∨1). We will also show that with a second (different) encoding,

we can simulate the rule (∨2).

Encoding X ∨ into X ↑

We will consider the disjunctive-fragment of the X ¬∨-calculus given in Figure

5.4. Using the equivalence A∨B ≡ (A↑A)↑(B↑B), we can build the following

derivations of (A↑A)↑(B↑B), Γ ⊢ ∆ and Γ ⊢ ∆, (A↑A)↑(B↑B):

A, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, A↑A

B, B, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, B↑B
(↑L)

(A↑A)↑(B↑B), Γ ⊢ ∆

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

A↑A, Γ ⊢ ∆, B

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

A↑A, Γ ⊢ ∆, B
(↑L)

A↑A, B↑B, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, (A↑A)↑(B↑B)

This gives the following interpretation of X ∨ into X ↑.

Definition 5.4.11 (Interpretation of X ∨ into X ↑)

〈x·α〉 = 〈x·α〉

Pα̂ † x̂Q = Pα̂ † x̂Q

z·[x̂P, ŷQ] = z·[([x̂ûP]·α)α̂, ([ŷv̂Q]·β)β̂]

[Rα̂β̂]·γ = [ûv̂(v·[(u·[Rα̂, Rα̂])β̂, (u·[Rα̂, Rα̂])β̂])]·γ

Where u, v, α, β are fresh.

The interpretation of the ‘or output’ circuit is unusual: notice the duplication of

the sub-circuit R four times, and the contraction of the socket u. Again, allowing

generalised renaming and garbage collection rules, we attempt to simulate X ∨ in

X ↑.



Definition 5.4.8 (X ¬∨-Syntax) The circuits of X ¬∨ are defined by the following gram-
mar, where x, y, z range over the infinite set of sockets, and α, β,γ over plugs.

P,Q ::= 〈x·α〉 | x·[Pα̂] | [x̂P]·α | z·[x̂P, ŷQ] | [Pα̂β̂]·γ | Pα̂ † x̂Q
capsule not input not output or input or output cut

Definition 5.4.9 (Typing Rules for X ¬∨) The axiom and cut are typed as usual (Def-
inition 5.1.3). The input and output circuits for ‘not’ and ‘and’ are typed as follows.

P ··· Γ ⊢ ∆, α:A
(¬L)

x·[Pα̂] ··· x:¬A, Γ ⊢ ∆

P ··· x:A, Γ ⊢ ∆
(¬R)

[x̂P]·α ··· Γ ⊢ ∆, α:¬A

P ··· x:A, Γ ⊢ ∆ Q ··· y:B, Γ ⊢ ∆
(∨L)

z·[x̂P, ŷQ] ··· z:A∨B, Γ ⊢ ∆

P ··· Γ ⊢ ∆, α:A, β:B
(∨R)

[Pα̂β̂]·γ ··· Γ ⊢ ∆,γ:A∨B

Definition 5.4.10 (X ¬∨ Reduction Rules) We extend Definition 5.2.4 with,

Left Propagation Rules :

(¬O-outs† ): ([x̂P]·γ)γ̂ † ŷR → ([x̂(Pγ̂ † ŷR)]·δ)δ̂ † ŷR
(¬O-ins† ): ([x̂P]·α)γ̂ † ŷR → [x̂(Pγ̂ † ŷR)]·α ^ γ 6=α

(¬I† ): (x·[Pα̂])γ̂ † ŷR → x·[(Pγ̂ † ŷR)α̂]

(∨O-outs† ): ([Pα̂β̂]·γ)γ̂ † ŷR → ([(Pγ̂ † ŷR)α̂β̂]·γ)γ̂ † ŷR

(∨O-ins† ): ([Pα̂β̂]·δ)γ̂ † ŷR → [(Pγ̂ † ŷR)α̂β̂]·δ ^ γ 6=δ
(∨I† ): (z·[x̂P, ŵQ])γ̂ † ŷR → z·[x̂(Pγ̂ † ŷR), ŵ(Qγ̂ † ŷR)]

Right Propagation Rules :

( †¬I-outs): Rγ̂ † ŷ(y·[Pα̂]) → Rγ̂ † ŷ(y·[(Rγ̂ † ŷP)α̂])
( †¬I-ins): Rγ̂ † ŷ(x·[Pα̂]) → x·[(Rγ̂ † ŷP)α̂] ^ y 6=x

( †¬O): Rγ̂ † ŷ([x̂P]·α) → [x̂(Rγ̂ † ŷP)]·α

( †∨I-outs): Rγ̂ † ŷ(y·[x̂P, ẑQ]) → Rγ̂ † k̂(k·[x̂(Rγ̂ † ŷP), ẑ(Rγ̂ † ŷQ)])
( †∨I-ins): Rγ̂ † ŷ(w·[x̂P, ẑQ]) → w·[x̂(Rγ̂ † ŷP), ẑ(Rγ̂ † ŷQ)] ^ w 6=y

( †∨O): Rγ̂ † ŷ([Pα̂β̂]·δ) → [(Rγ̂ † ŷP)α̂β̂]·δ

Renaming Rules :

(¬I-rn): ([x̂P]·γ)γ̂ † ŷ〈y·α〉 → [x̂P]·α ^ γ introduced
(¬O-rn): 〈z·γ〉γ̂ † ŷ(y·[Pα̂]) → z·[Pα̂] ^ y introduced

(∨I-rn): ([Rα̂β̂]·γ)γ̂ † ŷ〈y·δ〉 → [Rα̂β̂]·δ ^ γ introduced
(∨O-rn): 〈w·γ〉γ̂ † ŷ(y·[x̂P, ẑQ]) → w·[x̂P, ẑQ] ^ y introduced

Principal Reduction Rules :

(¬): ([x̂Q]·γ)γ̂ † ŷ(y·[Pβ̂]) → Pβ̂ † x̂Q ^ γ, y introduced

(∨1): ([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ]) → (Rα̂ † x̂P) β̂ † ẑQ ^ γ, y introduced

(∨2): ([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ]) → (Rβ̂ † ẑQ)α̂ † x̂P ^ γ, y introduced

Figure 5.4: The X ¬∨-Calculus



Lemma 5.4.12 (Simulation of X ∨ in X ↑) We begin with interpretation of the left-hand

side of a (∨) rule (see Figure 5.4),

([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ])

= ([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ])

= ([ûv̂(v·[(u·[Rα̂, Rα̂])β̂, (u·[Rα̂, Rα̂])β̂])]·γ)γ̂ † ŷ(y·[([x̂ŝP]·µ)µ̂, ([ẑt̂Q]·δ)δ̂]) (5.5)

Where u, v, s, t, δ, µ are fresh. There are two cases to consider: (i) reducing the cut α̂ † x̂ by

(↑1) or, (ii) by (↑2) (see Figure 5.3),

(i) By (↑1),

([x̂ŝP]·µ)µ̂ † û(([ẑt̂Q]·δ)δ̂ † v̂(v·[(u·[Rα̂, Rα̂])β̂, (u·[Rα̂, Rα̂])β̂])) → (↑1)

([x̂ŝP]·µ)µ̂ † û((u·[Rα̂, Rα̂])β̂ † ẑ((u·[Rα̂, Rα̂])β̂ † t̂Q))

Propagating the outermost cut through the structure by applying (act-R), ( †cut),

( †↑I-outs), ( †cut), ( †↑I-outs) then, applying (Lem. 3.1.21) four times, we get:

(([x̂ŝP]·µ)µ̂ † û(u·[Rα̂, Rα̂])) β̂ † ẑ((([x̂ŝP]·µ)µ̂ † û(u·[Rα̂, Rα̂])) β̂ † t̂Q) → (↑1)

(Rα̂ † x̂(Rα̂ † ŝP)) β̂ † ẑ((([x̂ŝP]·µ)µ̂ † û(u·[Rα̂, Rα̂])) β̂ † t̂Q) → (↑1)

(Rα̂ † x̂(Rα̂ † ŝP)) β̂ † ẑ((Rα̂ † x̂(Rα̂ † ŝP)) β̂ † t̂Q)

Now we will choose to eliminate the cuts formed with the fresh connectors. Ap-

plying (act-R) then ( †gc), we get:

(Rα̂ † x̂P) β̂ † ẑ((Rα̂ † x̂(Rα̂ † ŝP)) β̂ † t̂Q) → (act-R), ( †gc)

(Rα̂ † x̂P) β̂ † ẑQ =

(Rα̂ † x̂P) β̂ † ẑQ

(∨1) nor the interpretation of (∨2).

(ii) By (↑2),

([ẑt̂Q]·β)β̂ † v̂(([x̂ŝP]·α)α̂ † û(v·[(u·[Rα̂, Rα̂])β̂, (u·[Rα̂, Rα̂])β̂]))

Reducing the outermost cut leads back to the first circuits shown in Part (i). We

therefore activate and propagate the innermost cut α̂ † û by applying the rules (act-R),

( †↑I-ins), ( †↑I-outs), ( †↑I-outs) then (Lem. 3.1.21) four times, giving:

([ẑt̂Q]·β)β̂ † v̂(v·[(([x̂ŝP]·α)α̂ † û(u·[Rα̂, Rα̂])) β̂, (([x̂ŝP]·α)α̂ † û(u·[Rα̂, Rα̂])) β̂]) → (↑2)

([ẑt̂Q]·β)β̂ † v̂(v·[(Rα̂ † ŝ(Rα̂ † x̂P)) β̂, (([x̂ŝP]·α)α̂ † û(u·[Rα̂, Rα̂])) β̂]) → (↑2)

([ẑt̂Q]·β)β̂ † v̂(v·[(Rα̂ † ŝ(Rα̂ † x̂P)) β̂, (Rα̂ † ŝ(Rα̂ † x̂P)) β̂]) → (↑2)

(Rα̂ † ŝ(Rα̂ † x̂P)) β̂ † t̂((Rα̂ † ŝ(Rα̂ † x̂P)) β̂ † ẑQ)



Again, we eliminate the cuts made with fresh connectors that were introduced by

the interpretation. Applying (act-R), ( †gc), we get:

(Rα̂ † ŝ(Rα̂ † x̂P)) β̂ † ẑQ → (act-R), ( †gc)

(Rα̂ † x̂P) β̂ † ẑQ =

(Rα̂ † x̂P) β̂ † ẑQ

By exhausting all possible applications of (↑1) and (↑2) during a reduction, we find only

the right-hand side of (∨1) is attainable under our encoding.

Observe that a choice was madewhen we derived Γ ⊢ ∆, (A↑A)↑(B↑B). For com-

parison, we give our first encoding, plus the alternative, below.

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

A↑A, Γ ⊢ ∆, B

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

A↑A, Γ ⊢ ∆, B
(↑L)

A↑A, B↑B, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, (A↑A)↑(B↑B)

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

B↑B, Γ ⊢ ∆, A

Γ ⊢ ∆, A, B Γ ⊢ ∆, A, B
(↑L)

B↑B, Γ ⊢ ∆, A
(↑L)

A↑A, B↑B, Γ ⊢ ∆
(↑R)

Γ ⊢ ∆, (A↑A)↑(B↑B)

The derivations differ by the order in which the formulas (A↑A) and (B↑B) are

built. In the first derivation, the formula (A↑A) is constructed first, where (B↑B)

is constructed first in the second. In the corresponding circuits, this permutation

is seen by the order in which the two plugs (whose types would correspond to

those formulas) bind over the (duplicated) sub-circuit. Compare the two encod-

ings below:

[Rα̂β̂]·γ = [ûv̂(v·[(u·[Rα̂, Rα̂])β̂, (u·[Rα̂, Rα̂])β̂])]·γ

or

[Rα̂β̂]·γ = [ûv̂(v·[(u·[Rβ̂, Rβ̂])α̂, (u·[Rβ̂, Rβ̂])α̂])]·γ

We find that we can simulate the rule (∨2) if we use the alternative interpretation

of the ‘or output’ circuit. This result is shown below.

Lemma 5.4.13 (Simulation of X ∨ in X ↑ using alternative encoding) Using an al-

ternative encoding

([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ])

= ([Rα̂β̂]·γ)γ̂ † ŷ(y·[x̂P, ẑQ])

= ([ûv̂(u·[(v·[Rβ̂, Rβ̂])α̂, (v·[Rβ̂, Rβ̂])α̂])]·γ)γ̂ † ŷ(y·[([x̂ŝP]·µ)µ̂, ([ẑt̂Q]·δ)δ̂]) (5.6)



Where u, v, s, t, δ, µ are fresh.

([ûv̂(u·[(v·[Rβ̂, Rβ̂])α̂, (v·[Rβ̂, Rβ̂])α̂])]·γ)γ̂ † ŷ(y·[([x̂ŝP]·µ)µ̂, ([ẑt̂Q]·δ)δ̂])

([x̂ŝP]·µ)µ̂ † û(([ẑt̂Q]·δ)δ̂ † v̂(u·[(v·[Rβ̂, Rβ̂])α̂, (v·[Rβ̂, Rβ̂])α̂]))

([x̂ŝP]·µ)µ̂ † û(u·[(([ẑt̂Q]·δ)δ̂ † v̂(v·[Rβ̂, Rβ̂]))α̂, (([ẑt̂Q]·δ)δ̂ † v̂(v·[Rβ̂, Rβ̂]))α̂])

([x̂ŝP]·µ)µ̂ † û(u·[(Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂, (([ẑt̂Q]·δ)δ̂ † v̂(v·[Rβ̂, Rβ̂]))α̂])

([x̂ŝP]·µ)µ̂ † û(u·[(Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂, (Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂])

(Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂ † x̂((Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂ † ŝP)

(Rβ̂ † ẑQ)α̂ † x̂((Rβ̂ † ẑ(Rβ̂ † t̂Q))α̂ † ŝP)

(Rβ̂ † ẑQ)α̂ † x̂((Rβ̂ † ẑQ)α̂ † ŝP)

(Rβ̂ † ẑQ)α̂ † x̂P

(Rβ̂ † ẑQ)α̂ † x̂P

This is the interpretation of the right-hand side of the rule (∨2).

The main result of this section is that logical expressivity does not necessarily

imply computational expressivity. That is, the ability of a set of connectives to

logically express another set of connectives does not imply that a term calculus

built from the former set will be able to simulate all of the reductions in the term

calculus built from the latter set. This has been shown by counter examples.

5.5 Interpreting ‘if-and-only-if’

Part of the work presented in this section was completed in collaboration with

Alexander J. Summers [74].

In this section we study the computational behaviour of the logical connective ‘if-

and-only-if’ (‘iff’ for short) that evaluates to true exactly when its two arguments

have the same truth value. We could equally have chosen to study the negation of

this connective ‘exclusive-or’, whose X -style term representations will be almost

the same except that the free connector that is introduced in each term will be of

the opposite kind (input versus output).

We will follow the steps of the recipe outlined in Section 5.2 and build a Curry-

Howard pair of calculi based on the ‘iff’ connective. We first extract the introduc-

tion rules for the connective (written A↔B), by building partial derivations of

a logically equivalent formula, say ¬(A∨B)∨(A∧B). The pair of rules obtained

are:

Γ ⊢ ∆, A, B A, B, Γ ⊢ ∆
(↔L)

A↔B, Γ ⊢ ∆

A, Γ ⊢ ∆, B B, Γ ⊢ ∆, A
(↔R)

Γ ⊢ ∆, A↔B



Comparing these rules to those discussed in the previous sections, we observe

that the rules each bind two inputs and two outputs, and each rule has two sub-

proofs. This yields the following (relatively complex) input and output circuits:

y·[Mµ̂σ̂, î ĵN] and [x̂Pα̂, ẑQδ̂]·γ.

The propagation and renaming rules for a Curry-Howard pair of calculi built on

this connective are straightforward to define. The challenge is in defining the

principal reduction rule.

The principal reduction rule for ‘iff’ should transform a proof that cuts together

an (↔R) formula with an (↔L) formula, or using the terminology of circuits, the

rule should eliminate the ‘iff’ circuit constructors from the following, (where γ, y

are introduced),

([x̂Pα̂, ẑQδ̂]·γ)γ̂ † ŷ(y·[Mµ̂σ̂, î ĵN])

The right-hand side of the rule is not straightforward to determine. In the fol-

lowing discussion, we will reason about what a suitable right-hand side of the

principal reduction rule for ‘iff’ might look like.

First we remark on the striking resemblance between these terms and the X -

calculus syntax used to represent the implication connective. The output circuit

is reminiscent of the export, except two ‘functions’ are available over the same

output rather than one (n.b., A↔B≡(A→B)∧(B→A)). The input circuit is remi-

niscent of an import with two binders over each of its proper sub-circuits instead

of one.

In the case of an import, say Rψ̂ [l] k̂S, a connection between the sub-circuits R

and S is sought via the bound connectors. In general, connecting ψ to k directly

would result in the restriction that ‘implications’ must typed with A→A. It is

the body of an export which must be inserted in between the subterms of the ‘iff’

input circuit that allows the more general type of A→B. If we think of the input

circuit for ‘iff’ as a kind of import, the problem we must solve is again that of

connecting outputs and inputs between the terms M and N.

Recall that formulas in the antecedent part of a sequent are read conjunctively,

while formulas in the succedent part are read disjunctively. This interpretation

carries over to the circuits. In the input circuit y·[Mµ̂σ̂, î ĵN], M offers a value

of type A or a value of type B (loosely a value of type A∨B), while N requires

both a value of type A and a value of type B (loosely, requires a value of type

A∧B). Therefore, the problem we must solve in trying to join these two proofs

is essentially that of determining how we can convert from a value of type A∨B

to a value of type A∧B. That is, we intuitively need to construct a circuit of type



(A∨B)→(A∧B). Note that this ‘intuitive’ formula is actually logically equivalent

to A↔B, which is the kind of functionality provided on γ by the ‘iff’ output

circuit.

We return to the previous method of determining the principal reduction rule as

detailed in Section 5.2, i.e., that of considering how one would reduce a cut be-

tween derivations that introduce a formula logically equivalent to A↔B. We cut

together the proofs that derive ¬(A∨B)∨(A∧B) on the left and right of the se-

quent, then reduce them using the cut-elimination rules for negation, disjunction

and conjunction. The process allows us to extract the following right-hand side,

(with k,w fresh),

((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ĵ(((Mσ̂ † ẑQ)µ̂ † ŵ〈w·δ〉) δ̂ † îN)

This is better understood in a diagrammatic form where the types of the reduct

can be seen (see Figure 5.5). The twisting of wires represents an (implicit) con-

traction in the proof, which ‘merges’ two connections (occurrences of the same

formula) into one. The circuit P is used to convert the type of one of the outputs

of M, so that both of M’s outputs end up with the same type. The cut with a cap-

sule is used to rename the other output of M to α (the same name as the output

of P) so that they can be contracted into one. In this way, we can connect the two

outputs ofM to a single input of N via a cut. Making a copy of the termM allows

us to simultaneously connect to both inputs of N. Without the two copies, it is

difficult to construct cuts that make all of these connections.

An alternative and symmetrical right-hand side that could be built using the same

process is shown below, (with π, τ fresh),

(Mµ̂ † x̂(〈x·π〉π̂ † î(Pα̂ † ĵN)))σ̂ † ẑ(〈z·τ〉τ̂ † ĵ(Qδ̂ † îN))

With this alternative, two copies of N (rather than M) are made and inputs are

renamed rather than outputs. We are able to condense the connection diagram of

Figure 5.5 into a form which focuses on the direct connections made via each cut

(see Figure 5.6). We give a more formal definition of the principal reduction rules

below.

Definition 5.5.1 (Principal iff-reduction rule with copying) The term

([x̂Pα̂, ẑQδ̂]·γ)γ̂ † ŷ(y·[Mµ̂σ̂, î ĵN])

where, γ, y are introduced, reduces to one of the following variants (with k,w,π, τ
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((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ĵ(((Mσ̂ † ẑQ)µ̂ † ŵ〈w·δ〉) δ̂ † îN)

Figure 5.5: A Possible Right-Hand Side for the ‘iff’ Principal Reduction Rule.
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Figure 5.6: Simplified Connection Diagrams for Definition 5.5.1
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Figure 5.7: Simplified Connection Diagrams for the Reducts of Definition 5.5.2



fresh).

(↔c1): ((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ĵ(((Mσ̂ † ẑQ)µ̂ † ŵ〈w·δ〉) δ̂ † îN)

(↔c2): (Mµ̂ † x̂(〈x·π〉π̂ † î(Pα̂ † ĵN)))σ̂ † ẑ(〈z·τ〉τ̂ † ĵ(Qδ̂ † îN))

As mentioned previously, a copy of either M or N is used to facilitate the connec-

tion of each output of M to each input of N. The question arises of whether this

copying is necessary. One of the graphs of Figure 5.6 renames both outputs of M

while the other renames both inputs of N.

In exploring other ways in which M and N could be connected we were partic-

ularly interested in determining whether it would be possible to obtain a right-

hand side which did not require copying. We sought to distribute the connec-

tions in a more symmetrical fashion because we believed that the copying was

only necessary due to the large number of connections being made with one term

or the other. We discovered a solution where we rename one output in M and

one input in N. This leads to the connection diagrams shown in Figure 5.7. The

reader can verify that a path exists from each output of M to each input of N.

This leads us to a simpler definition for the principal logical rule.

Definition 5.5.2 (Simplified Principal iff-reduction Rule) The term

([x̂Pα̂, ẑQδ̂]·γ)γ̂ † ŷ(y·[Mµ̂σ̂, î ĵN])

where, γ, y introduced and k,π fresh, reduces to one of the following variants.

(↔1): ((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ẑ(〈z·π〉π̂ † ĵ(Qδ̂ † îN))

(↔2): ((Mσ̂ † ẑQ)µ̂ † k̂〈k·δ〉) δ̂ † x̂(〈x·π〉π̂ † î(Pα̂ † ĵN))

These reducts will be significantly cheaper to evaluate than those given in Def-

inition 5.5.1 since an extra copy of M (or N) is not required and fewer cuts are

needed to represent all the necessary connections. In the following, we will use

the simplified principal reduction rules for ‘iff’. We give the full definition of the

X↔ calculus in Figure 5.8.



Definition 5.5.3 (X↔-Syntax) The circuits of the X↔-calculus are defined by the fol-
lowing grammar, where x, y, z, i, j range over the infinite set of sockets, and α, β, δ,γ, σ
over plugs.

M,N ::= 〈x·α〉 | z·[Mµ̂σ̂, î ĵN] | [x̂Mα̂, ẑNδ̂]·γ | Mα̂ † x̂N
axiom ‘iff’ input circuit ‘iff’ output circuit cut

Definition 5.5.4 (Typing Rules for X↔) The axiom and cut are typed as usual (Def-
inition 5.1.3). The input and output circuits for ‘iff’ are typed as follows.

M ··· Γ ⊢ µ:A, α:B,∆ N ··· Γ, i:A, j:B ⊢ ∆
(↔L)

z·[Mµ̂σ̂, î ĵN] ··· Γ, z:(A↔B) ⊢ ∆

M ··· Γ, x:A ⊢ α:B,∆ N ··· Γ, z:B ⊢ δ:A,∆
(↔R)

[x̂Mα̂, ẑNδ̂]·γ ··· Γ ⊢ γ:(A↔B),∆

Definition 5.5.5 (X↔ Reduction Rules) We extend Definition 5.2.4 with,

Left Propagation Rules :

(↔O-outs† ): ([x̂Mα̂, ẑNδ̂]·γ)γ̂ † ŷR → ([x̂(Mγ̂ † ŷR)α̂, ẑ(Nγ̂ † ŷR)δ̂]·µ)µ̂ † ŷR

(↔O-ins† ): ([x̂Mα̂, ẑNδ̂]·π)γ̂ † ŷR → [x̂(Mγ̂ † ŷR)α̂, ẑ(Nγ̂ † ŷR)δ̂]·π ^ γ 6=π

(↔I† ): (z·[Mµ̂σ̂, î ĵN])γ̂ † ŷR → z·[(Mγ̂ † ŷR)µ̂σ̂, î ĵ(Nγ̂ † ŷR)]

Right Propagation Rules :

( †↔I-outs): Rγ̂ † ŷ(y·[Mµ̂σ̂, î ĵN]) → Rγ̂ † ŷ(y·[(Rγ̂ † ŷM)µ̂σ̂, î ĵ(Rγ̂ † ŷN)])

( †↔I-ins): Rγ̂ † ŷ(z·[Mµ̂σ̂, î ĵN]) → z·[(Rγ̂ † ŷM)µ̂σ̂, î ĵ(Rγ̂ † ŷN)] ^ y 6=z

( †↔O): Rγ̂ † ŷ([x̂Pα̂, ẑQδ̂]·µ) → [x̂(Rγ̂ † ŷP)α̂, ẑ(Rγ̂ † ŷQ)δ̂]·µ

Renaming Rules :

(↔I-rn): ([x̂Pα̂, ẑQδ̂]·γ)γ̂ † ŷ〈y·µ〉 → [x̂Pα̂, ẑQδ̂]·µ ^ γ, y introduced

(↔O-rn): 〈z·γ〉γ̂ † ŷ(y·[Mµ̂σ̂, î ĵN]) → z·[Mµ̂σ̂, î ĵN] ^ γ, y introduced

Principal Reduction Rules :

(↔1): ((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ĵ(((Mσ̂ † ẑQ)µ̂ † ŵ〈w·δ〉) δ̂ † îN) ^ γ, y introduced

(↔2): (Mµ̂ † x̂(〈x·π〉π̂ † î(Pα̂ † ĵN)))σ̂ † ẑ(〈z·τ〉τ̂ † ĵ(Qδ̂ † îN)) ^ γ, y introduced

Figure 5.8: The X↔-Calculus



5.5.1 Simulating other connectives with ‘iff’

In Section 5.4.1, we demonstrated that the logical expressivity of a connective

does not imply its computational expressivity (i.e., a calculus may not be able to

simulate the reductions of calculi built from connectives which it can logically

express). The only logical connectives expressible by ‘iff’ are ⊤ and id. Since ‘iff’

does not have a great amount of logical expressivity, this might (with the result

of the previous section) lead us to believe its simulation capabilities are limited.

However, we find this is not the case; in fact we are able to simulate the reductions

associated with several other connectives, i.e., we can encode the syntax for these

other connectives in such a way that reductions are preserved.

If we look at the ‘iff’ circuits themselves, we find they provide a wealth of in-

put and output connectors arranged in different combinations over a number of

subterms. We also observe that the principal reduction rules offer a number of in-

teractions between these different subterms, giving scope for modelling a variety

of computational behaviour, some of which may be new.

As an example of a connective which can be computationally expressed (but not

logically expressed) by ‘iff’, we show how to express the syntax and reduction

behaviour of the X -calculus (based on the implication connective) in the X↔-

calculus.

As remarked earlier, the ‘iff’ input circuit is reminiscent of an import with two

binders over each of its subterms rather than one, and the ‘iff’ output circuit is

reminiscent of an export, except that two ‘functions’ are available over the same

interface rather than one. With this observation in mind, we move towards an

encoding of the X -calculus into X↔.

We can sensibly assume that when encoding the export x̂Pα̂·γ into the ‘iff’ output

circuit [x̂Pα̂, ẑQδ̂]·γ, we require only one of the two subterms, say P. This leaves

the question of what we should do with Q. By making Q the capsule 〈y·δ〉, with

y 6=z, we can give an encoding that is sound (no undesired reductions are possi-

ble) providing that we restrict the reduction to always use the principal logical

rule (↔1) given in Figure 5.8. One might view this as a strategy on the reduction

(one always has the choice of which variant of the principal ‘iff’ rule to use). Our

encoding is as follows.



Definition 5.5.6 (Interpretation of X into X↔)

←−→
〈x·α〉 = 〈x·α〉
←−−→
x̂Pα̂·γ = [x̂

←→
P α̂, ẑ〈y·δ〉δ̂]·γ z, y, δ fresh

←−−−−−→
Mα̂ [y] x̂N = y·[

←→
M α̂β̂, ẑx̂

←→
N ] β, z fresh

←−−−→
Mα̂ † x̂N =

←→
M α̂ † x̂

←→
N

Notice that in the interpretation of x̂Pα̂·γ, had we chosen Q (the right-hand sub-

term) to be 〈z·δ〉, this would have forced the types for z and δ, and therefore x

and α to be the same. As a result, our encoding would not preserve typeability,

since in the original term x and α need not have had the same type.

In fact, the type derivations in the two systems are closely related; one can de-

fine a further encoding from a type-derivation for P in the X -calculus to a type-

derivation for
←→
P in the corresponding X↔ system. This encoding is given below.

Definition 5.5.7 (Encoding of Contexts)

←→
φ = φ
←−−−→
A1→A2 →

←→
A1→

←→
A2

←−−−→
A1↔A2 →

←→
A1→

←→
A2

We extend the above encoding to work on contexts as follows,

←→
Γ →

{
x:
←→
A | x:A ∈ Γ

}

←→
∆ →

{
α:
←→
A | α:A ∈ ∆

}

We have the following result for our encoding.

Theorem 5.5.8 (Preservation of typeability) For any X -term P, P is typeable ‘iff’
←→
P is typeable.

Proof 5.5.9 In the following, we will use the symbols ⊢ and ⊢↔ to distinguish between

the type systems of the X -calculus and the X↔-calculus respectively.

The proof is in two parts: (a) left-to right and (b) right-to-left.

(a). First we show, by the induction on the structure of X -circuits P, that if P ··· Γ ⊢ ∆,

then for some Γ′,
←→
P ···

←→
Γ′ ⊢↔

←→
∆



P ≡ 〈x·α〉 : This can only be typed in ⊢ using the rule (Ax), i.e., for some types

A, B and contexts Γ,∆:

(Ax)
〈x·α〉 ··· x:A, Γ ⊢ ∆, α:A

Our encoding gives us
←→
P = 〈x·α〉, which can only be typed in ⊢↔ with

(Ax)
〈x·α〉 ··· x:

←→
A ,
←→
Γ ⊢↔

←→
∆ , α:

←→
A

P ≡ x̂Qα̂·β : The export can only be typed in ⊢ using (→R), i.e., for some types

A, B and contexts Γ,∆,

Q ··· x:A, Γ ⊢ ∆, α:B
(→R)

x̂Qα̂·β ··· Γ ⊢ ∆, β:A→B

By induction, for some Γ′,
←→
Q ··· x:

←→
A ,
←→
Γ ∪Γ′ ⊢↔

←→
∆ , α:

←→
B . By weak-

ening as appropriate and letting Γ′′=
←→
Γ ∪Γ′, we can construct the following

typing derivation for
←→
P .

←→
Q ··· x:

←→
A , Γ′′ ⊢↔

←→
∆ , α:

←→
B

(Ax)
〈y·δ〉 ··· y:

←→
A , z:

←→
B , Γ′′ ⊢↔

←→
∆ , δ:

←→
A

(↔R)
[x̂
←→
Q α̂, ẑ〈y·δ〉δ̂]·γ ··· y:

←→
A , Γ′′ ⊢↔

←→
∆ ,γ:

←→
A↔

←→
B

i.e., there exists some Γ′′′ such that P ··· Γ′′′∪
←→
Γ ⊢↔

←→
∆ ,γ:

←→
A↔

←→
B and

Γ′′′ = Γ′∪y:
←→
A .

P ≡ Mα̂ [z] x̂N : The import can only be typed using (→L), i.e.,

M ··· Γ ⊢ ∆, α:A N ··· x:B, Γ ⊢ ∆
(→L)

Mα̂ [z] x̂N ··· z:A→B, Γ ⊢ ∆

By induction twice, and for some Γ′, Γ′′, we have:

M ··· Γ′∪
←→
Γ ⊢↔

←→
∆ , α:

←→
A

N ··· x:
←→
A , Γ′′∪

←→
Γ ⊢↔

←→
∆

P ≡ Mα̂ † x̂N : The import can only be typed using (Cut), i.e.,

M ··· Γ ⊢↔ ∆, α:A N ··· x:B, Γ ⊢↔ ∆
(→L)

Mα̂ † x̂N ··· Γ ⊢↔ ∆



By induction twice, and for some Γ′, Γ′′, we have:

M ··· Γ′∪
←→
Γ ⊢↔

←→
∆ , α:

←→
A

N ··· x:
←→
A , Γ′′∪

←→
Γ ⊢↔

←→
∆

And letting Γ′′′ = Γ′∪Γ′′∪
←→
Γ , we can construct a typing derivation for

←→
P :

M ··· α:
←→
A , Γ′′′ ⊢↔

←→
∆ N ··· x:

←→
A , Γ′′′ ⊢↔

←→
∆

(Cut)←→
M α̂ † x̂

←→
N ··· Γ′′′ ⊢↔

←→
∆

(b). Nowwe show, by induction on the structure ofX -circuits P, that if
←→
P ··· Γ ⊢↔ ∆,

then P ···
←→
Γ ⊢

←→
∆ .

P ≡ 〈x·α〉 : By our encoding, we have
←→
P = 〈x·α〉. The capsule can only be typed

with the rule (Ax), i.e.,

(Ax)
〈x·α〉 ··· x:A, Γ ⊢↔ ∆, α:A

By encoding contexts, we can type P with:

(Ax)
〈x·α〉 ··· x:

←→
A ,
←→
Γ ⊢

←→
∆ , α:

←→
A

P ≡ x̂Qα̂·β :
←→
P = [x̂

←→
Q α̂, ẑ〈y·δ〉δ̂]·γ. The ‘iff’ output circuit can only be typed

with (↔R), i.e.,

Q ··· x:A, Γ ⊢↔ ∆, α:B 〈y·δ〉 ··· y:A, z:B, Γ ⊢↔ ∆, δ:A
(↔R)

[x̂
←→
Q α̂, ẑ〈y·δ〉δ̂]·γ ··· y:A, Γ ⊢↔ ∆,γ:A↔B

By induction we have, Q ··· x:
←→
A ,
←→
Γ ⊢

←→
∆ , α:

←→
B , and we can construct the

following derivation for P:

Q ··· x:
←→
A ,
←→
Γ ⊢

←→
∆ , α:

←→
B

(→R)
x̂Qα̂·β ··· y:

←→
A ,
←→
Γ ⊢

←→
∆ , β:

←→
A→

←→
B

Note that the y:A is not used in the construction of the type
←→
A→

←→
B (nor

any type in ⊢), and can therefore be regarded as a weakened formula that is

redundant in the proof.

P ≡ Mα̂ [z] x̂N :
←→
P = y·[

←→
M α̂β̂, ẑx̂

←→
N ] can only be typed with the rule (↔L),



i.e.,

←→
M ··· Γ ⊢↔ ∆, α:A, β:B

←→
N ··· z:A, x:B, Γ ⊢↔ ∆

(↔L)
y·[
←→
M α̂β̂, ẑx̂

←→
N ] ··· y:A↔B, Γ ⊢↔ ∆

By induction twice, we have,

M ···
←→
Γ ⊢

←→
∆ , α:

←→
A , β:

←→
B

N ··· x:
←→
A , y:

←→
B ,
←→
Γ ⊢

←→
∆

Now we can construct the following derivation for P:

M ···
←→
Γ ⊢

←→
∆ , α:

←→
A , β:

←→
B N ··· x:

←→
A , y:

←→
B ⊢

←→
∆

(→L)
Mα̂ [z] x̂N ··· z:

←→
A→

←→
B , y:

←→
B ,
←→
Γ ⊢

←→
∆ , β:

←→
B

P ≡ Mα̂ † x̂N :
←→
P =

←→
M α̂ † x̂

←→
N can only be typed with the rule (Cut), i.e.,

←→
M ··· Γ ⊢↔ ∆, α:A

←→
N ··· x:A, Γ ⊢↔ ∆

(Cut)←→
M α̂ † x̂

←→
N ··· Γ ⊢↔ ∆

By induction twice, we have,

M ···
←→
Γ ⊢

←→
∆ , α:

←→
A

N ··· x:
←→
A ,
←→
Γ ⊢

←→
∆

So we can construct the following derivation for P:

M ···
←→
Γ ⊢

←→
∆ , α:

←→
A N ··· x:

←→
A ,
←→
Γ ⊢

←→
∆

(Cut)
Mα̂ † x̂N ···

←→
Γ ⊢

←→
∆

To show that our encoding is sensible, we must also check that we can simulate

the reductions of X . As pointed out in Section 5.2.3, the mechanism provided

by the propagation and renaming rules is generic to any X -style term calculus;

it performs the same basic task of pushing cuts through subterms and renam-

ing connectors regardless of the syntax employed. To show that such rules are

simulated is straightforward, and we therefore only concern ourselves with the

X -calculus rules (exp-impcbn) and (exp-impcbv).

The following reduction confirms that we can simulate the rule (exp-impcbv). The

X↔ calculus can be extended with rules for garbage collection and renaming



similar to those of Lemma 3.1.25.

←−−−−−−−−−−−−−−−→
(x̂Pα̂·γ)γ̂ † ŷ(Mµ̂ [y] ĵN)

=
←−−−→
(x̂Pα̂·γ)γ̂ † ŷ

←−−−−−−→
(Mµ̂ [y] ĵN)

= ([x̂
←→
P α̂, ẑ〈c·δ〉δ̂]·γ)γ̂ † ŷ(y·[

←→
M µ̂σ̂, î ĵ

←→
N ]) z, c, δ, σ, i fresh

Applying the rule (↔1) gives,

((
←→
M µ̂ † x̂

←→
P )σ̂ † k̂〈k·α〉)α̂ † ẑ(〈z·π〉π̂ † ĵ(〈c·δ〉δ̂ † î

←→
N ))

Since σ, i are fresh, we can garbage collect the cuts σ̂ † k̂ and δ̂ † î, by applying the

rules (act-L), († gc), (act-R), ( †gc), giving:

(
←→
M µ̂ † x̂

←→
P )α̂ † ẑ(〈z·π〉π̂ † ĵ

←→
N ) → (ren-R)

(
←→
M µ̂ † x̂

←→
P )α̂ † ẑ

←−−−−→
(N{z/j}) =α

(
←→
M µ̂ † x̂

←→
P )α̂ † ĵ

←→
N =

←−−−−−−−−−→
Mµ̂ † x̂(Pα̂ † ĵN)

In fact, our encoding is only able to simulate the (exp-impcbv) rule; the differently-

bracketed alternatives of this rule may not reduce to each other and also do not

always share the same set of normal forms.

The principal reduction rule for ‘iff’ manipulates four sub-circuits, while the prin-

cipal reduction rule for any pairing connective involves three. We encoded im-

plication by choosing one of the four sub-circuits to be a suitable capsule. Since

the ‘iff’-terms bind many combinations of inputs and outputs, we can suitably

restrict them to computationally express other pairing connectives in a similar

way. We are able to do this for the logical connectives ∧ and ↑ up to the same

limitations as discussed above for implication. Additionally, this can be achieved

for the negation connective without limitations.

While the ‘iff’ connective is unable to logically express the connectives→, ∧, ↑, ¬,

we are able to simulate some significant computational behaviour (i.e., a reduc-

tion subsystem) of their corresponding term calculi. In a symmetrical manner, the

⊗ connective is able to simulate the computational behaviour for the dual pairing

connectives −, ∨, ↓ and again for the connective ¬.



5.6 Chapter Summary

In this chapter, we reviewed and presented the sequent calculus origins of the

type system for the X -calculus. The X -calculus is built from a classical logic

whose sole primitive connective is implication. We gave a general ‘recipe’ for

building other interesting ‘Curry-Howard pairs’ of calculi based on other logical

connectives. In particular, we detailed how to mechanically derive term anno-

tations for sequent calculus proofs and extract a term calculus with a reduction

mechanism based on a local cut-elimination procedure. We remark that the X -

calculus can be derived in this way.

One of the key choices in building Curry-Howard pairs of calculi is deciding on

which connectives one should base their logic. We studied the class of sixteen

arity-two connectives, and related them based on equivalences that employed

simple negation operations. We found the sixteen connectives formed five groups

of related connectives. We then studied the effect of these negation operations on

the inference rules and cut-elimination rules for the logical connectives. We con-

cluded that once the inference rules and cut-elimination rules are known for a

connective of a particular group, one can apply the negation operations to deter-

mine the form and cut-elimination rules for the other connectives.

We studied one of these five groups of connectives in detail: the group of con-

nectives which exhibited ‘pairing’ like functionality. For the connectives in this

group, we showed that the ‘logical expressibility’ of a connective did correspond

to its ‘computational expressibility’.

We noticed that another of the five groups of connectives (consisting of the if-

and-only-if and exclusive-or connectives) were largely unexplored in the litera-

ture. We gave a first definition for the sequent-calculus style inference rules and

cut-elimination rules for this connective, then extracted a Curry-Howard pair of

calculi using our ‘recipe’. We showed that the iff connective could computation-

ally express connectives which it could not logically express.

Finally, throughout the chapter, we motivated our view that when studying com-

putational calculi (derived from logical calculi in the Curry-Howard sense), it is

necessary to consider permutations of the principal reduction rule.



Chapter 6

Generalising the X -calculus

In Section 5.2, we detailed amechanical procedure for constructing Curry-Howard

pairs of calculi from logical connectives. When we applied the procedure to con-

struct a pair of calculi based on the if-and-only-if connective, we found the right-

hand side of the principal reduction rules were not presented in their simplest

form. In fact, we showed that the simplest presentation of the connective could

not be derived by considering equivalent formulations using well studied con-

nectives. We remarked in [74] that perhaps the simplest presentation of a term

calculus based on if-and-only-if could not be derived in a automatic fashion. In

this section we will show our original remark was misguided.

In Section 2.2.5, we reviewed some works which automatically generated princi-

pal logical rules, but noted that they used brute-force techniques. In some pre-

liminary experiments we found that the brute-force technique did not scale to

connectives of higher arities (e.g., greater than 5).

In this chapter, we will study principal reduction rules in detail. We will for-

malise an exact relationship between truth tables and sequent calculus inference

rules for classical logical connectives, then using this relationship, present an al-

gorithm which can intelligently (i.e., not using brute-force techniques) enumerate

all ‘good’ principal reduction rules, enabling us to build an X -style term calculus

built from any classical logical connective.

6.1 Relating Truth-Tables and Inference Rules

In [24], Call informally describes a mechanical procedure that constructs a pair

of invertible sequent calculus inference rules for a logical connective defined by
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a truth table. In the following subsection we will formalise Call’s work and give

some intuitions we found that relate truth tables to sequent calculus rules. De-

veloping on these intuitions, we are able to construct a reverse algorithm which

constructs a truth table from a pair of inference rules (for a classical logical con-

nective). This reverse algorithm is actually based on a 3-valued logic and gives

some insight into how the cut rule operates on truth tables. Recall that our aim is

to build a right-hand side of a principal logical rule; the structure of this deriva-

tion scheme is built using only applications of the cut rule, so a good understand-

ing of its exact operation is important.

Since we aim to be as general as possible (within the scope of Classical Logic), we

will first define the general shape or ‘scheme’ of a classical logical connective’s

inference rules. Recall that a scheme is an abstraction over inference rules (see

Definition 2.2.4).

For each connective of true arity n there is an associated pair of invertible infer-

ence rules that introduce a formula with principal connective ∁
n
i (for 0 ≤ i < n)

and components A1, . . . , An on the left- and right- hand sides of the rule conclu-

sion.

We generalise the logical inference rules for classical propositional connectives by

defining a notion of logical rule-scheme whose instances define a concrete pair of

invertible inference rules for a particular connective.

Definition 6.1.1 (Inference Rule Schema) A left and right logical rule scheme for

an arbitrary connective ∁
n
i has s and t many schemes for rule premises respectively (for

s≥0 and t≥0). These ‘sequent scheme’ schemes serve to identify the formula and con-

text variable parts of each premise that vary across the inference rules for each unique

connective. A ‘rule premise’ scheme is then of the form Σ,Ξ ⊢ Θ,Λ where:

• Σ,Λ are sets of formula schemes.

• Ξ,Θ are context metavariables.

A ‘rule conclusion’ scheme is either of the form >,Ξ ⊢ Θ or of the form Ξ ⊢ Θ,>, where

the symbol > is a placeholder for a principal formula.

All rule-scheme variables for formula and context variables will be annotated with a su-

perscript symbol either L or R to associate the variable with a left or right rule scheme

respectively. The pair of left and right of rule schemes are then of the form:



ΣL1 ,Ξ
L
1 ⊢ ΘL1 ,Λ

L
1 ΣL2 ,Ξ

L
2 ⊢ ΘL2 ,Λ

L
2 . . . ΣLs ,Ξ

L
s ⊢ ΘLs ,Λ

L
s

(∁
n
i L)

>,
s

⊔
k=1

ΞLk ⊢
s

⊔
k=1

ΘLk

ΣR1 ,Ξ
R
1 ⊢ ΘR1 ,Λ

R
1 ΣR2 ,Ξ

R
2 ⊢ ΘR2 ,Λ

R
2 . . . ΣRt ,Ξ

R
t ⊢ ΘRt ,Λ

R
t

(∁
n
i R)

t

⊔
k=1

ΞRk ⊢
t

⊔
k=1

ΘRk ,>

An inference rule is then an instantiation of a rule scheme, with the following parameters

supplied:

• n, the arity of the connective.

• i, the unique connective (see Definition 2.2.11).

• s, the number of premises in the left rule.

• t, the number of premises in the right rule.

• ΣLi and ΛLi (for 0 < i ≤ s), the set of formula schemes for each left rule premise.

• ΣRi and ΛRi (for 0 < i ≤ t), the set of formula schemes for each right rule premise.

Additionally, the scheme variables Ξ and Θ are promoted to context variables Γ and ∆.

Example 6.1.2 (An Instantiation of the Rule Scheme) The inference rules for the con-

nective ∁
2
11012

(corresponding to implication) is obtained from the rule-scheme via the

following instantiation.

• n = 2, i = 11012, s = 2, t = 1,

• ΣL1 = ∅, ΛL2 = {A1}

• ΣL2 = ∅, ΛL2 = {A2}

• ΣR1 = {A1}, Λ
R
1 = {A2}

• All scheme variables Ξ,Θ are promoted to context variables Γ,∆.

Then, the pair of invertible inference rules are:

ΓL1 ⊢ ∆L1 , A1 A2, Γ
L
2 ⊢ ∆L2

(∁
2
11012
L)

∁
2
11012

(A1, A2), Γ
L
1 , Γ

L
2 ⊢ ∆L1 ,∆

L
2

A1, Γ
R
1 ⊢ ∆R1 , A2

(∁
2
11012
R)

ΓL1 , Γ
L
2 ⊢ ∆L1 ,∆

L
2 , ∁
2
11012

(A1, A2)

An algorithm to mechanically compute the sets Σ,Λ from the appropriate truth table will

be given in Definition 6.1.6.



We place some constraints on the form of the inference rules described by the

scheme so that only inference rules for classical logical connectives can be con-

structed; this introduces a notion of well-formedness.

Definition 6.1.3 (Well-Formed Logical Inference Rule) We will place two restric-

tions on inference rule schemes in order to ensure the well-formedness of the left- and

right- introduction rules for each arbitrary logical connective ∁
n
i (A1, . . . , A1). The re-

strictions are as follows:

1. No sub-component of the connective may appear on both sides of any particular

rule premise, but each premise mentions at least one sub-component.

• For each i ∈ {1, . . . , s}: (ΣLi ∩ΛLi =∅) and (ΣLi ∪ΛLi 6= ∅)

• For each i ∈ {1, . . . , t}: (ΣRi ∩ΛRi =∅) and (ΣRi ∪ΛRi 6= ∅).

2. Every argument or ‘component’ of the connective appears on the left of the turn-

stile of some rule premise and on the right of the turnstile of some (other) sequent

scheme.
(
s

∪
i=1

ΣLi

)
∪

(
t

∪
j=1

ΣRj

)
={A1, . . . , An} and

(
s

∪
i=1

ΛLi

)
∪

(
t

∪
j=1

ΛRj

)
={A1, . . . , An}

Observe that these restrictions capture the law of non-contradiction and the law

of excluded middle for Classical Logic.

Definition 6.1.4 (Linear representation of Well-Formed Inference Rules) An in-

ference rule formalises the definition of a connective (as discussed in Section 2.2). By

taking the classical interpretation of a sequent Γ ⊢ ∆, interpreting the comma’s on the left

and right of the sequent as conjunction and disjunction respectively, we can express an in-

ference rule in a (linear) propositional language built from propositional variables x, x, x

and propositional connectives (in descending order of binding strength) !, &&, ||,⇒,

|=

, |= .

These symbols denote the usual notions of negation, conjunction, disjunction, implica-

tion, truth and falsehood. In this language, the general form of a left inference rule (i.e.,

the left rule scheme) can be written as:

s

&&
i=1

(
ΞLi &&ΣLi ⇒ΛLi ||Θ

L
i

)
⇒

(( s

&&
i=1

ΞLi &&∁
n
i (A1, . . . , An)

)
⇒

s

||
i=1

ΘLi

)
(6.1)

and the general form of a right inference rule (the right rule scheme) can be written as:

t

&&
i=1

(
ΞRi &&ΣRi ⇒ΛRi ||Θ

R
i

)
⇒

((
t

&&
i=1

ΞRi

)
⇒

(
t

||
i=1

ΘRi ||∁
n
i (A1, . . . , An)

))
(6.2)



Note that this ‘flattening’ of the rule scheme is a purely syntactic transformation which

can be reversed (i.e, the syntax used in the above representations can be rearranged and

the previous notation adopted).

We introduce a notion of principal reduction rule on sequent calculus proofs that

exactly follows cut-elimination.

6.1.1 The Principal Reduction Rule Scheme

We will adopt terminology from rewriting when speaking about cut-elimination

transformations. A cut-elimination transformation is a rewrite rule defined on a

set of proofs. We shall write left-hand side and right-hand side when we mean to

refer to the left and right-hand sides of a cut-elimination rule respectively. An

instantiation of a left-hand side and right-hand side will be referred to as a redex

and contractum respectively.

The application of a principal reduction rule to a proof will eliminate an instance

of a connective ∁
n
i (A1, . . . , An) from the proof when it has been immediately in-

troduced as the cut-formula by the inference rules (∁
n
i R) (with t premises) and

(∁
n
i L) (with s premises). The general form or scheme of the rule’s left-hand side is

shown below, with 0<(s+t)≤2n, 0<p≤s and 0<q≤t.

. . .

DRq

ΣRq , Γ
R
q ⊢ ∆Rq ,Λ

R
q . . .

(∁
n
i R)t

∪
k=1

ΓRk ⊢
t

∪
k=1

∆Rk , ∁
n
i (A1, . . . , An)

. . .

DLp

ΣLp , Γ
L
p ⊢ ∆Lp ,Λ

L
p . . .

(∁
n
i L)

∁
n
i (A1, . . . , An),

s

∪
k=1

ΓLk ⊢
s

∪
k=1

∆Lk
(Cut)

s

∪
k=1

ΓLk

t

∪
k=1

ΓRk ⊢
s

∪
k=1

∆Lk

t

∪
k=1

∆Rk

Where DLp and DRq are variables over derivation schemes ending in the sequent

scheme ΣLp , Γ
L
p ⊢ ∆Lp ,Λ

L
p and ΣRq , Γ

R
q ⊢ ∆Rq ,Λ

R
q respectively called proof variables.

These proof variables are reminiscent of the metavariables used in term rewriting.

The right-hand side of the principal reduction rule represents the proof scheme

that is the result of removing the above cut from the derivation. The form of

the right-hand side is a derivation scheme of the same endsequent, except it is

derived from only one or more applications of the cut rule and the leaves of the

derivation schemes are proof variables.



Wewill use the term principal reduction rule to refer to an instantiation of a princi-

pal reduction rule scheme.

6.1.2 Formalising Call’s Algorithm

Call’s algorithm, which builds a pair of sequent calculus inference rules for a

classical logical connective from a truth table, has two steps:

Step One : the extraction of the premises of the inference rule from the truth ta-

ble.

Step Two : the simplification of the extracted set of premises.

We will illustrate the relationship between truth tables and sequent calculus in-

ference rules with an example, before giving the formal definition.

Example 6.1.5 (Extracting Inference Rules for Implication via equivalences) The

truth function for logical implication is given by the following truth table.

A1 A2 A1→A2

0 0 0 1

1 0 1 1

2 1 0 0

3 1 1 1

We can extract semantics for the above truth table using the language given in Definition

6.1.4. We obtain the following pair of expressions from the above truth table.

!(A1→A2) ⇒ A1&&!A2 (6.3)

A1→A2 ⇒ (!A1&&!A2) || (!A1&&A2) || (A1&&A2) (6.4)

The above equations can be rewritten in the form of equations (6.1) and (6.2) from Def-

inition 6.1.4 using the classical equivalences (A1||A2 ≡ !(!A1&&!A2), !(A1&&A2) ≡

(A1⇒!A2), A1⇒A2 ≡ (!A2⇒!A1), A1 ≡

|=

⇒A1 and !A1 ≡ |= ⇒A1) as shown



below.

(6.3) = !(A1→A2)⇒ A1&&!A2
≡ !(A1→A2)⇒!(A1⇒A2)

≡ (A1⇒A2)⇒ A1→A2

(6.4) = A1→A2 ⇒ (!A1&&!A2) || (!A1&&A2) || (A1&&A2)

≡ A1→A2 ⇒ !( !(!A1&&!A2) && !(!A1&&A2) && !(A1&&A2) )

≡ A1→A2 ⇒ !( (!A1⇒A2) && (!A1⇒!A2) && (A1⇒!A2) )

≡ ( (!A1⇒A2) && (!A1⇒!A2) && (A1⇒!A2) )⇒ !(A1→A2)

≡ ( (

|=

⇒A1||A2) && (A2⇒A1) && (A1&&A2⇒ |= ) )⇒ (A1→A2)⇒ |=

The equivalences above translate the propositional formulas extracted from the

truth table to a form comparable to the linear representation of rule schemes (Def-

inition 6.1.4). This process is optimised by the following algorithm.

Definition 6.1.6 (Extracting Inference Rules) A connective ∁
n
i (A1, . . . , An) is defined

by a truth function. Recall (from Definition 2.2.11) that we defined the truth function

as Cni :: [T ] → T . We associate with each row indexed r of the truth table either the

sequent ΣLr ,Ξ
L
r ⊢ ΘLr ,Λ

L
r or the sequent ΣRr ,Ξ

R
r ⊢ ΘRr ,Λ

R
r as follows:

ΣLr =
[
Ac | C

n
i (
....
n r) = 1 ∧ 0<c≤n ∧C

n
i [r][c] = 1

]

ΛLr =
[
Ac | Cni (

....
n r) = 1 ∧ 0<c≤n ∧Cni [r][c] = 0

]

ΣRr =
[
Ac | Cni (

....
n r) = 0 ∧ 0<c≤n ∧Cni [r][c] = 1

]

ΛRr =
[
Ac | Cni (

....
n r) = 0 ∧ 0<c≤n ∧Cni [r][c] = 0

]

The above sets can be used to instantiate a rule scheme. The parameters n and i are

available from the truth table itself, while the parameters s and t are a count of the number

of 1’s and 0’s respectively in the defining column of the truth table.

We give an example illustrating the use of the above algorithm.

Example 6.1.7 (Extracting Inference Rules for Implication via algorithm) Applying

the algorithm of Definition 6.1.6 to the truth table for implication in Example 6.1.5, we



obtain the following inference rules (with some renumbering of indexes),

ΓL1 ⊢ ∆L1 , A1, A2 A2, Γ
L
2 ⊢ ∆L2 , A1 A1, A2, Γ

L
3 ⊢ ∆L3

(∁
2
11012
L)

∁
2
11012

(A1, A2), Γ
L
1 , Γ

L
2 , Γ

L
3 ⊢ ∆L1 ,∆

L
2 ,∆

L
3

A1, Γ
R
1 ⊢ ∆R1 , A2

(∁
2
11012
R)

ΓR1 ⊢ ∆R1 , ∁
2
11012

(A1, A2)

The left introduction rule above does not correspond to the usual left introduction rule,

which employs only two premises, since it is not yet in its ‘simplest form’.

Call noticed that step one of the algorithm did not always build the simplest form

of inference rules. In fact, the rules generated by step one will only be in their sim-

plest form when the connective is a parity connective (i.e., a connective that cannot

be shortcut like for example exclusive-or or if-and-only-if); such connectives re-

quire the values for all of their arguments to be known before computation.

In the example above, there are redundancies within the set of premises belong-

ing to the left introduction rule. Specifically, the cut rule can be applied to some

pairs of premises. Step two of Call’s algorithm exhaustively applies the cut rule

to pairs of premises within a particular rule. The result is a simplified set of

premises, which Call uses to build the simplest form of a rule. In addition to

the data structures defined in the notation section (Section 2.1), in this chapter

we add the following, which will be used to model inference rules and principal

reduction rules.

Definition 6.1.8 (Formulas, Sequent Schemes and Derivation Schemes) The al-

gorithms we will specify in this chapter work on inference rules (rather than proofs).

We define the following three datatypes for use in our algorithms.

Formula Variable : An element of type formula corresponds to a ‘formula variable’

that appears in an inference rule.

Sequent Scheme : Making the distinction between proof sequents and the sequent schemes

used in inference rules, we introduce the datatype sscheme (which represents a se-

quent scheme). Elements of sscheme are pairs (similar to sequents), and each com-

ponent of the pair is a set of formulas. However, in our discussions we may use

the words sequent and sequent scheme interchangeably when there is no possibility

of confusion.



Derivation Scheme : An element of dscheme (pronounced ‘derivation scheme’) is a

scheme for building a concrete proof, and has the structure of a tree. Derivation

schemes are recursively defined as:

dscheme ::= sscheme× [dscheme]

(where of course the empty-list is used to construct the base case). In the following,

we will abbreviate a derivation scheme 〈(Σ ⊢ Λ),Di〉 to Di.

Using the above structures, we formally define step two of Call’s algorithm be-

low.

Definition 6.1.9 (Simplification of Rule Premises) The simplification procedure ap-

plies the cut rule to pairs of premises that mention the same set of formulas in their se-

quents, and share a unique cut-formula. We specify the simplify procedure as,

cancut :: dscheme→ dscheme→ boolean

cancut 〈(Θ1 ⊢ Θ2), L〉 〈(Θ3 ⊢ Θ4), R〉 = (Θ2∩Θ3={A}) ∧ (Θ1∪Θ2=Θ3∪Θ4)

cut :: dscheme→ dscheme→ formula→ dscheme

cut 〈(Θ1 ⊢ Θ2), L〉 〈(Θ3 ⊢ Θ4), R〉 cf = 〈 (Θ1∪(Θ3\cf) ⊢ (Θ2\cf)∪Θ4),

[〈(Θ1 ⊢ Θ2), L〉, 〈(Θ3 ⊢ Θ4), R〉] 〉

simplify :: {dscheme} → {dscheme}

simplify P | (P=P′) = P

| otherwise = simplify P′

where P′ = (P ∪ new) \ old

new = {〈z,D〉 | L, R ∈ P

∧ cancut L R

∧ 〈(Θ1 ⊢ Θ2),X〉 = L

∧ 〈(Θ3 ⊢ Θ4),Y〉 = R

∧ 〈z,Z〉 = cut L R (Θ2∩Θ3)

∧ D is a fresh proof variable }

old = {L, R | L, R ∈ P ∧ cancut L R}

We will apply the above definition to the inference rules generated in Example

6.1.7.

Example 6.1.10 (Minimisation of Premises for Implication) We apply simplify

to (i) the set of left premises, then (ii) to the set of right premises of the inference rules



for implication that were generated in Example 6.1.7. We will at times omit the context

variables Γ,∆ to improve readability.

(i) simplify {〈( ⊢ A1, A2),DL1〉, 〈(A2 ⊢ A1),DL2〉, 〈(A1, A2 ⊢ ),DL3〉}

= ({〈( ⊢ A1, A2),DL1〉, 〈(A2 ⊢ A1),DL2〉, 〈(A1, A2 ⊢ ),DL3〉} ∪

{〈( ⊢ A1),D
′
L1〉, 〈(A2 ⊢ ),D′L2〉}) \

{〈( ⊢ A1, A2),DL1〉, 〈(A2 ⊢ A1),DL2〉, 〈(A1, A2 ⊢ ),DL3〉}

= {〈( ⊢ A1),D
′
L1〉, 〈(A2 ⊢ ),D′L2〉}

(ii) simplify {〈(A1 ⊢ A2),DR1〉} = {〈(A1 ⊢ A2),DR1〉}

Using these reduced premises, we can instantiate the rule scheme with n = 2, i = 11012,

s = 2, t = 1, giving:

ΓL1 ⊢ ∆L1 , A1 A2, Γ
L
2 ⊢ ∆L2

(∁
2
11012
L)

∁
2
11012

(A1, A2), Γ
L
1 , Γ

L
2 ⊢ ∆L1 ,∆

L
2

A1, Γ
R
1 ⊢ ∆R1 , A2

(∁
2
11012
R)

ΓR1 ⊢ ∆R1 , ∁
2
11012

(A1, A2)

Notice that these are exactly the pair of inference rules for implication.

6.1.3 Truth Tables from Inference Rules

In this section, we will design an algorithm buildmask, which computes the re-

verse process of Call’s algorithm, i.e., one which associates rows of a truth table

with a sequent.

We will begin by examining the effect of applying the cut procedure to the rule

premises for the implication connective (as used by simplify in Example 6.1.10).

In the following discussion, we will omit context variables Γ,∆ to improve read-

ability.

Looking back at Example 6.1.10, step one of Call’s Algorithmmakes the following

associations between the rows of a truth table and the premises of the inference

rules for implication.

A1 A2 ∁
2
11012

(A1, A2) Corresponding Sequent

0 0 0 1 ≈ ⊢ A1, A2
1 0 1 1 ≈ A2 ⊢ A1
2 1 0 0 ≈ A1 ⊢ A2
3 1 1 1 ≈ A1, A2 ⊢



Step two involved applying the procedure cut to the of the left implication rule,

which produced the simplified sequent schemes ( ⊢ A1) and (A2 ⊢ ), i.e.,

cut 〈( ⊢ A1, A2),DL1〉 〈(A2 ⊢ A1),DL2〉 A2 = 〈( ⊢ A1),D
′
L1〉 (6.5)

cut 〈(A2 ⊢ A1),DL2〉 〈(A1, A2 ⊢ ),DL3〉 A1 = 〈(A2 ⊢ ),D′L2〉 (6.6)

In sequent calculus form, we would write:

⊢ A1, A2 A2 ⊢ A1
(Cut)

⊢ A1

A1 ⊢ A2 A1, A2 ⊢
(Cut)

A2 ⊢

Recall that the truth value of a formula ∁
n
i (A1, . . . , An) is determined by its inputs

(i.e., the truth values of its arguments), and also, that the truth table definition of

a connective enumerates all possible inputs for the connective. For a truth table

Cni , the first n elements of row r (represented as the length-n list
....
n r) uniquely

describes one possible input, i.e., the list
....
n r describes the case when connective’s

arguments A1, . . . , An has truth values
....
n r[0], . . . ,

....
n r[n−1].

Since each premise of a left rule is associated with a row where the connective is

assigned a truth value of 1, applying the (Cut) rule to a pair of left premises can

be seen as removing information not required to compute that value of 1. Take the

first application of (Cut) shown above; its two premises are extracted from rows

0 and 1 of the above truth table. In both rows, the truth value of A1 is 0 (A2 has

different truth values). This means that whenever A1 has value 0, the value of the

connective is 1, regardless of the value of A2. Allowing for some rearrangement

of the corresponding sequent scheme, this observation can be seen by considering

the equivalence: (A1 ∨ A2) ∧ (A1 ∨ ¬A2) ≡ A1.

The same argument can be applied to the second application of (Cut) shown

above. The two premises of this cut are extracted from rows 1 and 3 of the truth

table. Both rows describe inputs where A2 has a truth value of 1 (and different

truth values for A1). This means that whenever A2 has the truth value 1, the value

of the connective is immediately known to be 1 (again, regardless of the value of

A1).

With these observations inmind, it is reasonable to associate the sequent ( ⊢ A1)

with two rows of the truth table: rows 0 and 1: these two rows correspond to all

the cases where A1 has truth value 0, and A2 has different truth values. In this

case we will say that we don’t care about the truth value given to A2. Similarly,

it is reasonable to associate (A2 ⊢ ) with two rows 1 and 3, since these rows

correspond to inputs where A2 has the truth value 1. In this case, we don’t care



about the truth value of A1. We associate the premise (A1 ⊢ A2) with only row 2,

since this was the original association, and the procedure cut was not applied to

this premise.

We can make some generalisations of the above associations. Suppose, start-

ing from the truth table definition of ∁
n
i (A1, . . . , An), we extract two sets of rule

premises (to build the left and right rules) using Call’s algorithm. We can asso-

ciate a set of rows with each rule premise according to the following specification,

where each row is represented as a length-n list (denoting a binary number).

• If the formula Ai appears on the left of the turnstile, each input in the set of

associated rows has truth value 1 at position i of the list.

• If the formula Ai appears on the right of the turnstile, each input in the set

of associated rows has the truth value 0 at position i of the list.

• If the formula Ai does not appear on either side of the sequent, then we

‘didn’t care’ about the truth value of Ai when computing the truth value of

the connective. In this case, we enumerate all possible assignments of truth

values to Ai, and include these in the set of inputs to correspond to the se-

quent. For example, notice for the set of inputs {
....
2 0,
....
2 1} = {[0, 0], [0, 1]}

associated with the sequent ( ⊢ A1), all possible truth values for the ar-

gument A2 are considered.

We remark that no formula will appear on both sides of the sequent, since such

an inference rule would not be well-formed (according to Definition 6.1.3).

We formalise the above notions in Definition 6.1.12, but first we will define a

convenient structure which we call a bitmask (and is related to three-valued truth

assignments) that we will use to relate sequent schemes to sets of truth function

inputs.

Definition 6.1.11 (Bitmask) An input is an element in the domain of a truth function.

A bitmask is a set of inputs. Each input in the bitmask is represented as a list of length n

consisting of elements from T X = T ∪ {X}, where X denotes the don’t care state, i.e,

bitmask = [T X]

We can explicitly represent set of row indices of the bitmask by expanding it as follows:

expand :: bitmask→ {int}

expand mask =
{
i | (0 ≤ i < 2|mask|) ∧ fit mask (

....

|mask|i)
}



Notice that if b is a length-n bitmask with has k ‘don’t care’ elements, expand b is a set

of 2k integers.

We will say an input is in a bitmask if it fits the bitmask, where fit is a predicate defined

as follows:

fit :: [T ]→ [T X]→ boolean

fit [ ] [ ] = true

fit r:row m:mask = ((r=m) ∨ (m=X)) ∧ fit row mask

In the following we will write bitmasks simply as b1b2 . . . bn (instead of [b1, b2, . . . , bn]),

where bi ∈ T
X and 0<i≤n.

Using bitmasks, we canmore easily specify an algorithm to compute a set of truth

table rows that corresponds to a sequent.

Definition 6.1.12 (Build Mask, buildmask) Given a sequent scheme S (generated by

applying Call’s algorithm to a truth table Cni ), the procedure call buildmask S n com-

putes a set of inputs with which S can be associates. The procedure buildmask is defined

below.

buildmask :: sscheme→ int→ bitmask

buildmask S i | (i = 0) = [ ]

| otherwise = (buildmask S (i−1))++ [valueof S i]

where valueof (Θ1 ⊢ Θ2) k | (Ak ∈ Θ1 ∧ Ak 6∈ Θ2) = 0

| (Ak 6∈ Θ1 ∧ Ak ∈ Θ2) = 1

| (Ak 6∈ Θ1 ∧ Ak 6∈ Θ2) = X

Example 6.1.13 (Bitmasks for the Rules of the Implication Connective) Take the

simplified inference rules for implication generated in Example 6.1.10. We apply the

procedure buildmask to each premise of the left and right inference rule (also passing the

arity of the connective) as follows.

buildmask ( ⊢ A1) 2 = 0X

buildmask (A2 ⊢ ) 2 = X1

buildmask (A1 ⊢ A2) 2 = 10

Notice that,

expand 0X = {002, 012} = {0, 1}

expand X1 = {012, 112} = {1, 3}

expand 10 = {102} = {2}



Also,

fit
....
2 0 0X = fit [0, 0] 0X = true

fit
....
2 1 0X = fit [0, 1] 0X = true

fit
....
2 2 0X = fit [1, 0] 0X = false

fit
....
2 3 0X = fit [1, 1] 0X = false

fit
....
2 0 X1 = fit [0, 0] X1 = false

fit
....
2 1 X1 = fit [0, 1] X1 = true

fit
....
2 2 X1 = fit [1, 0] X1 = false

fit
....
2 3 X1 = fit [1, 1] X1 = true

In fact, we can also rebuild the sequent scheme from the bitmask by supplying

the bitmask to the following procedure.

Definition 6.1.14 (Build Sequent, buildsequent) We can (re)construct a sequent from

a bitmask by applying the procedure buildsequent to the bitmask, where:

buildsequent :: bitmask→ sscheme

buildsequent m = bs′ m 1 (∅ ⊢ ∅)

where,

bs′ :: bitmask→ int→ sscheme→ sscheme

bs′ [ ] k (Θ1 ⊢ Θ2) = Θ1 ⊢ Θ2

bs′ m:mask k (Θ1 ⊢ Θ2) | (m = 0) = bs′ mask (k+1) (Θ1 ⊢ Θ2∪{Ak})

| (m = 1) = bs′ mask (k+1) ({Ak}∪Θ1 ⊢ Θ2)

| (m = X) = bs′ mask (k+1) (Θ1 ⊢ Θ2)

For convenience, we will introduce some terminology which directly relates rows

of the truth table with a sequent scheme generated by Call’s algorithm.

Definition 6.1.15 (Covers) We will say a sequent scheme S (generated by applying

Call’s algorithm to the truth table C
n
i ) covers the set of rows R of the truth table, where:

R = expand (buildmask S n)

Wewill sometimes overload our use of the term covers by applying it directly to bitmasks,

(as in a bitmask covers the rows R).

6.2 Applying the Cut Rule to Truth Tables

In this section, we will overload the procedure cut to operate directly on bit-

masks. This is actually straightforward, since in the previous section, we speci-



fied how to obtain a bitmask from a sequent (using the procedure buildmask) and

also how to obtain a sequent from a bitmask (using the procedure buildsequent).

However, we will leave the formal definition to the end of this section, since a

deeper analysis of the operation will reveal more insight into the cut rule.

Ultimately, our goal is to automate the construction of the principal reduction rule

for a logical connective. As we observed in Section 5.5 when studying the X↔-

calculus, there may be several ways of building the rule—some being more com-

plicated than others. Initially, we considered constructing an algorithm which

would find all principal reduction rules for the connective. This algorithm used

a brute force search as would be adopted by the resolution based algorithms of

Ciabattoni and Leitsch [30] and Baaz et al. [5] (except their algorithms sought a

single principal reduction rule, for their motives for seeking the rule were differ-

ent). Our brute force algorithm resembled the following:

bruteforce :: {dscheme} → {dscheme}

bruteforce P | (P = P′) = P

| otherwise = bruteforce P′

where P′ = P ∪ {cut x y | x, y ∈ P}

Even with considerable pruning of the search space (while still attempting to

compute the set of ‘all’ principal reduction rules), the above algorithm spent

much time building duplicate results, and, more worryingly building sequent

schemes of the form A1, . . . , An ⊢ A1, . . . , An. Wewill show later that such schemes,

where a formula appears on both sides of the turnstile, are undesired. Addition-

ally, for certain connectives, the brute-force procedure attempted the construction

of a set of infinitely many derivations schemes, and therefore failed to terminate.

Considering the simplest example of this case, we can see that the conclusion of

a cut whose premises are A ⊢ B and B ⊢ A is again applicable to one of those

premises ad infinitum. The existence of such arbitrary rules led us to formulate

the notion of a ‘good’ principal reduction rule. Recall that when we studied prin-

cipal reduction rules for the X↔-calculus, we were able to formulate two pairs of

rules: a pair that involved making copies of some rule premises (Definition 5.5.1),

and a ‘simplified’ pair without copying (Definition 5.5.2). We will say a principal

reduction rule is good if the right-hand side does not duplicate any proof variable

(i.e., rule premises). In term rewriting terminology, we would say that we require

that the principal reduction rule to be right linear. ‘Good’ rules will of course

exclude infinite derivations.

When seeking right-hand sides of principal reduction rules, we will not want to



take a brute-force approach. This means we require a notion of progress when

building a right-hand side (by applying the cut rule to various combinations of

derivation schemes built from proof variables). A vague notion can already be

formulated by examining an instance of a reduction rule. Consider the proof

transformation that was used to derive the principal reduction rule (↔1) of the

X↔-calculus (see Definition 5.5.2).

DR1
ΓL1 ⊢ ∆L1 , A1, A2

DR2
A2, A1, Γ

L
2 ⊢ ∆L2 (↔R)

ΓL1 , Γ
L
2 ⊢ ∆L1 ,∆

L
2 , A1↔A2

DL1
A1, Γ

R
1 ⊢ ∆R1 , A2

DL2
A2, Γ

R
2 ⊢ ∆R2 , A1 (↔L)

A1↔A2, Γ
R
1 , Γ

R
2 ⊢ ∆R1 ,∆

R
2

(Cut)
ΓL1 , Γ

L
2 , Γ

R
1 , Γ

R
2 ⊢ ∆L1 ,∆

L
2 ,∆

R
1 ,∆

R
2

↓

DR1
ΓL1 ⊢ ∆L1 , A1, A2

DL1
A1, Γ

R
1 ⊢ ∆R1 , A2 (Cut)

ΓL1 , Γ
R
1 ⊢ ∆L1 ,∆

R
1 , A2

DL2
A2, Γ

R
2 ⊢ ∆R2 , A1

DR2
A2, A1, Γ

L
2 ⊢ ∆L2 (Cut)

A2, Γ
L
2 , Γ

R
2 ⊢ ∆L2 ,∆

R
2

(Cut)
ΓL1 , Γ

L
2 , Γ

R
1 , Γ

R
2 ⊢ ∆L1 ,∆

L
2 ,∆

R
1 ,∆

R
2

The sequent schemes at the leaves of a principal reduction rule have the most for-

mula variables. In the reduction rule above, A1 and A2 both appear in every leaf.

The sequent scheme at the root of the derivation mentions no formula variable.

The cut rule reduces the number of formula variables in each sequent scheme

at successive levels of the derivation (remember our rules have implicit contrac-

tion). The constructed right-hand side use the cut to eliminate all components of

the connective from the sequent schemes (leaving only the context variables).

Using bitmasks rather than sequent schemes gives an alternate (and simpler) no-

tion of progress. Consider the above right-hand side constructed from bitmask

representations of sequent schemes:

DR1

00

DL1

10
(Cut)

X0

DL2

01

DR2

11
(Cut)

X1
(Cut)

XX

Notice that the bitmask XX covers every row of the truth table. This makes sense

since the right-hand side of the principal reduction rule should be a complete

encoding of the truth function denoted by the connective. Notice that each appli-

cation of the cut rule sets the truth value of one element of the bitmask to ‘don’t

care’, and, by the time the derivation scheme is constructed, the truth values of

all elements of the bitmask are ‘don’t care’.



The principal reduction rules for X↔ are based on a fairly simple connective of

only arity two. We will apply our findings to the more complicated connective,

∁
3
000010012

(abbreviated to ∁
3
9), which is defined by the following truth function.

Example 6.2.1 (The Connective ∁
3
9) The connective ∁

3
9 behaves like the bottom con-

nective whenever the truth value of the first argument is false, and otherwise behaves as

the if-and-only-if connective.

The truth table C39 (defining the connective) is shown below, together with the inference

rules (∁
3
9L) and (∁

3
9R) generated by applying Call’s algorithm to the truth table. (We

have annotated each sequent scheme with the corresponding bitmask).

A1 A2 A3 ∁
3
9(A1, A2, A3)

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 1

DL1
100

A1 ⊢ A2, A3

DL2
111

A1, A2, A3 ⊢ (∁
3
9L)

∁
3
9(A1, A2, A3) ⊢

DR1
0XX
⊢ A1

DR2
X01
A3 ⊢ A2

DR3
X10
A2 ⊢ A3 (∁

3
9R)

⊢ ∁
3
9(A1, A2, A3)

Like theX↔ case, it is not immediately obvious how to begin building a principal

reduction rule for the above connective (not to mention trying to build the set of

all ‘good’ principal reduction rules). Wewill give a case analysis of applications of

the cut rule to the premises of the rules (∁
3
9L) and (∁

3
9R), and focus on bitmasks in

our discussions rather than sequent schemes. The interesting cases are illustrated

in Figure 6.1.

Remember that the procedure we aim to define in this section is,

cut :: bitmask→ bitmask→ bitmask

In Figure 6.1(a), the cut rule is not applicable to the pair of premises, i.e., there

is no suitable cut formula. Comparing the bitmasks, the truth value of every for-

mula is ‘don’t care’ in at least one of the two premises (i.e., the premises have no

formulas in common). There is a second (trivial) case when the cut rule cannot

be applied to a pair of bitmasks; consider a cut between DR1 and itself: the two

bitmasks will have the same truth value for each formula.



DR1
0XX = {0, 1, 2, 3}

⊢ A1

DR2
X01 = {1, 5}
A3 ⊢ A2

(a) No Cut-Formula

cut DR1 DL1 A1
X00 = {0, 4}
⊢ A2, A3

DR3
X10 = {2, 6}
A2 ⊢ A3

XX0 = {0, 2, 4, 6}
⊢ A3

(b) Equal Contexts

DR1
0XX = {0, 1, 2, 3}

⊢ A1

DL1
100 = {4}
A1 ⊢ A2, A3

X00 = {0, 4}
⊢ A2, A3

(c) Differing Contexts

DR2
X01 = {1, 5}
A3 ⊢ A2

DR3
X10 = {2, 6}
A2 ⊢ A3

undefined
A3 ⊢ A3

(d) Undefined Case

Figure 6.1: Applications of (Cut) to premises of the rules (∁
3
9L) and (∁

3
9R).

In Figure 6.1(b), the bitmasks agree on the formulas they ‘don’t care’ about, and

disagree on the truth value of exactly one formula. This case highlights an ideal

application of the cut rule. Note that the ordering of premises is important in the

cut rule: the cut formula should be in the succedent of the left premise and in the

antecedent of the right premise. Analogously, the truth value of the ‘cut formula

element’ in the left and right bitmasks are 1 and 0 respectively. Notice that in this

ideal case, the conclusion of the cut covers all the rows covered by its premises

(i.e., the cut performs a union of the sets of rows covered by the premises).

In Figure 6.1(c), the cut rule is applicable where the cut formula is A1 (i.e., the

first element of the left and right bitmasks are 0 and 1 respectively). In this case,

notice that the rows covered by the conclusion of the cut are only a selective

union of the rows covered its premises. This can be explained by first noticing

that the contexts of the premises differ. We are working with a multiplicative

formulation of the cut rule, and so the contexts are merged in the conclusion

of the cut (hence the formulas A2 and A3 being in the conclusion’s succedent

despite not being in the left premise’s succedent). With bitmasks, disagreeing

contexts are identified where one bitmask ‘doesn’t care’ about the truth value of

a particular formula, while the other ‘does’ (i.e., has truth value from T ). The

context merging operation is encoded in the conclusion’s bitmask by inheriting

the known truth value for the ‘don’t care’ formula from the opposite premise. It

is this context merging which determines which rows are ‘selected’ when the cut

takes the union of the rows covered by its premises. This is seen much easier

using an additive formulation of the cut rule (where the respective contexts of

the two premises of the cut must agree on all formulas, with the exception of the

cut formula). Using an explicit weakening rule, we could successively add the



relevant formulas to the cut’s left premise as follows:

DR1
0XX = {0, 1, 2, 3}

⊢ A1 (WeakeningR)
00X = {0, 1}
⊢ A2, A1

(WeakeningR)000 = {0}
⊢ A2, A3, A1

DL1
100 = {4}
A1 ⊢ A2, A3 (Cut)

X00 = {0, 4}
⊢ A2, A3

This shows that the left premise, when placed in a cut with the right premise,

in fact only covered one row of the truth table. An additive formulation of the

cut rule always performs a direct union of rows covered by a sequent scheme.

Also notice that after weakening, the bitmasks for the premises of the cut are of

the ideal form as illustrated in Figure 6.1(b): they agree on the truth values of all

formulas except for the truth value of the formula which is 0 in the left bitmask

and 1 in the right bitmask. Observe that the weakened formula is chosen from the

right premise, or, the truth value of each ‘don’t care’ is inherited from the bitmask

on the right.

In Figure 6.1(d), the bitmasks disagree on the truth value of a formula which is

not the cut formula (i.e., A3). Since only the cut formula can be eliminated from

the pair of sequent schemes, the multiplicative cut rule will copy the formula A3

to both sides of the turnstile in the conclusion. Recall that we associate formulas

on the left (right) of the sequent scheme with truth table rows where the input to

the connective has truth value 1 (0). A formula cannot have two truth values (by

the classical law of non-contradiction), and so there is no corresponding bitmask

for this case.

Finally, we summarise the above discussion in the following definition.

Definition 6.2.2 (Cut Applied to Bitmasks) Given two bitmasks b1, b2 of equal length,

we define a procedure cut, which computes the bitmask corresponding to the conclusion

of a cut with premises buildsequent b1 and buildsequent b2 respectively.

cut :: bitmask→ bitmask→ bitmask

cut [ ] [ ] = [ ]

cut l:lmask r:rmask = (resolve l r) : cut lmask rmask

where resolve 0 1 = X

resolve X t = t

resolve t X = t



In order to ensure the resulting bitmask is not ‘undefined’, we need a precondition on the

rule which ensures the two bitmasks disagree on the truth value of exactly one formula.

That is, we require disagreecount = 1, where the function disagreecount is defined

as:

disagreecount :: bitmask→ bitmask→ int

disagreecount [ ] [ ] = 0

disagreecount l:lmask r:rmask = (disagree l r) + disagreecount lmask rmask

where disagree t t = 0

disagree X t = 0

disagree t X = 0

disagree 1 0 = 1

Now we can see that our task of building a right-hand side can be equated to

building a bitmask where every element has been set to ‘don’t care’ (by succes-

sively applying the cut procedure to pairs of bitmasks that correspond to the

premises of a pair of inference rules).

6.3 On the Geometry of Principal Reduction Rules

In this section we will take a slight digression and (informally) present a geomet-

rical analogy for a pair of sequent calculus inference rules for a logical connective.

This view is not essential to the understanding of our main algorithm, but we

discuss it here since it may give the reader some extra insight into the operations

performed by bitmasks.

If we enumerate the inputs of an arbitrary truth function Cni and represent each

input as a length-n bitmask (with zero ‘don’t care’ elements), we can apply the

cut procedure (from Definition 6.2.2) to a pair of those bitmasks exactly when

they differ in a single truth value (i.e., have disagreecount = 1). In the field of

information theory, a metric called the Hamming distance is calculated as a count

of the number of positions that differ between two strings of symbols of equal

length. Applying this metric to our context, the ‘strings’ are bitmasks, and the

symbols are elements of T X. We can apply cut to any pair of bitmasks that have

a Hamming distance of 1.

There is a convenient geometrical structure called a hypercube graph that is often

used to calculate the Hamming distance between two strings. As an example, we
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Figure 6.2: The Hamming 2-Cube and 3-Cube

show the 2-dimensional and 3-dimensional hypercubes (more commonly called

‘square’ and ‘cube’) in Figure 6.2. We have labelled each node of the hypercube

with a unique input to the truth function, and arranged the node labels so that a

line joins pairs of bitmasks that have a Hamming distance of 1. (Note that we will

use the word line exclusively to refer to the skeleton of the n-cube which joins pairs

of nodes having Hamming distances equal to 1). Under this configuration, the

lines represent all possible applications of cut to those sets of bitmasks. To encode

a connective’s truth function, we must graphically associate (a representation for)

a truth value with each input. We can do this by assigning a colour to each vertex.

We colour the nodes of the n-cube for the truth function C
n
i as follows.

• A node is coloured white if the label of the node corresponds to an input of

the truth function where the connective evaluates to false.

• A node is coloured black if the label of the node corresponds to an input of

the truth function where the connective evaluates to true.

It follows directly that the unsimplified inference rules for a logical connective are

also encoded within the coloured hypercube (i.e., the pair of inference rules ob-

tained by applying only step one of Call’s algorithm to Cni ). One can observe

this explicitly by (i) replacing every node label b, with the sequent scheme ob-

tained by applying Definition 6.1.6 to b, (ii) assigning every node coloured black

as a premise of the left introduction rule and (iii) assigning every node coloured

white as a premise of the right introduction rule.

We give some examples below.

Example 6.3.1 (Hypercube for C211012
) The truth functionC211012

is encoded in the fol-

lowing 2-cube.



A1 A2 ∁
2
11012

(A1, A2)

0 0 0 1

1 0 1 1

2 1 0 0

3 1 1 1
b

00

b

01

b
11

bc
10

b

⊢ A1, A2

b

A2 ⊢ A1

b
A1, A2 ⊢

bc
A1 ⊢ A2

Example 6.3.2 (Hypercube for C39) The truth function C39 is encoded in the following

3-cube.

A1 A2 A3 ∁
3
9(A1, A2, A3)

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 1

000
bc 001

bc

010 bc
011bc

101bc

110bc

100
b

111b

⊢ A1, A2, A3

bc A3 ⊢ A1, A2

bc

A2 ⊢ A1, A3
bc

A2, A3 ⊢ A1bc

A1, A3 ⊢ A2bc

A1, A2 ⊢ A3
bc

A1 ⊢ A2, A3

b

A1, A2, A3 ⊢
b

Each row of the truth table is represented as a labelled coloured node. The colour of the

node labelled with the bitmask b is black if C39(r) = 1, otherwise it is white.

Having constructed an representation of the truth function for a connective as

a hypercube (and also a representation of the unsimplified inference rules for a

connective), we asked whether it was possible to encode the simplified represen-

tation of an inference rule within a hypercube. Such an encoding would give

some insight into the cut operation when viewed as a geometrical operation on

hypercubes.

Recalling that a simplified rule premise corresponds to a bitmask with a number

of ‘don’t care’ elements, we began by generalising our representation of bitmasks

to include those with any number of ‘don’t care’ elements.

Our investigations revealed that we could encode a length-n bitmaskwith k ‘don’t

care’ elements (0≤k≤n) as a k-dimensional hypercube in an n-dimensional space.

We illustrate this encoding for the arity three connectives below.

Example 6.3.3 (Encoding Bitmasks of Arity 3) Take an arbitrary connective of arity

3. The bitmasks corresponding to sets of rows of the truth table C
3
i (with 0≤i<2

33) will

be of length 3. Also, recall that if b is a bitmask with k ‘don’t care’ elements, expand b is a

set of 2k bitmasks with zero ‘don’t care’ elements. Now, considering all possible bitmasks

of length three, we can make the following associations.



• We can map each bitmask with zero ‘don’t care’ elements to a unique 0-dimensional

hypercube (i.e., a vertex) on the 3-cube as follows:

000
b 001

b

010 b
011b

100
b

101b

111b
110b

• We can map each bitmask with one ‘don’t care’ element (representing a set of 21

bitmasks with zero ‘don’t care’ elements) to a unique 1-dimensional hypercube (i.e.,

an edge) on the 3-cube as follows:

00X

01X

11X

10X

0X0

0X1
1X0

1X1

X00

X11

X01

X10

• We can map each bitmask with two ‘don’t care’ elements (representing a set of 22

bitmasks with zero ‘don’t care’ elements) to a unique 2-dimensional hypercube (i.e.,

a face) on the 3-cube as follows:

1XX

0XX

XX1
XX0

X0X

X1X

• We can map the bitmask with three ‘don’t care’ elements (representing a set of 23

bitmasks with zero ‘don’t care’ elements) to a 3-dimensional hypercube as follows:

XXX

Now we will consider the effect of the procedure cut on a pair of hypercubes.

Applying cut to a pair of ‘appropriate’ bitmasks (i.e., a pair bitmasks that have a

disagreecount = 1 and k ‘don’t care’ elements at common indexes) produces a



bitmask with (k+1) ‘don’t care’ elements. Recall that the task of building a right-

hand side can be expressed in the language of bitmasks: a right-hand side is built

by applying cut to pairs of bitmasks in some order so that the final application

builds the bitmask with all elements set to ‘don’t care’.

In our geometrical setting, we observe that applying cut to an ‘appropriate’ pair

of k-cubes builds a (k + 1)-cube. The task of building a right-hand side (for the

connective ∁
n
i ) is that of building an n-cube in an n-dimensional space by suc-

cessively applying cut to ‘merge’ appropriate pairs of k-cubes until the n-cube is

produced. We illustrate this notion with a simple example.

Example 6.3.4 (Building the Right-hand Side For Implication) The set of simpli-

fied premises for implication are:

{( ⊢ A1), (A2 ⊢ ), (A1 ⊢ A2)}

Expressed as bitmasks, this is equal to:

{0X,X1, 10}

Projecting the hypercubes onto the ‘skeleton’ of a 2-cube, we have:





0X

X1

bc10





The principal reduction rules for implication are well-known and are straightforward

to build. We could build the bitmask XX from the above set of premise bitmasks (or

corresponding sequent schemes) with the following applications of cut:

cut (cut 0X 10) X1

= cut (cut 00 10) X1

= cut X0 X1

= XX

or

cut (cut ( ⊢ A1) (A1 ⊢ A2) ) (A2 ⊢ )

= cut (cut ( ⊢ A1, A2) (A1 ⊢ A2) ) (A2 ⊢ )

= cut ( ⊢ A2) (A2 ⊢ )

= ( ⊢ )

We can mirror this process on the set of corresponding hypercubes. In the following, we

superimpose the hypercubes that represent the arguments of the cut procedure onto a

single 2-cube.

cut 0X 10 = cut 00 10 = X0

0X

bc10

b
00

bc10

X0



Followed by,

cut X0 X1 = XX

X0 X1

Notice that in the first application of cut, the 1-cube labelled 0X was first resolved

(Definition 6.2.2) to the 0-cube labelled 00. (This corresponds to the resolving of contexts

we discussed in Section 6.2).

The application of cut to the two edges X0 and X1 produces the 2-cube. Observe that in

this case, every point on one edge is within a Hamming distance of 1 with some point on

the other edge.

The general case of applying the cut to a pair of hypercubes is slightly compli-

cated. Suppose we have two hypercubes: (i) an i-cube cube1 and (ii) a j-cube cube2

(with 0≤i≤j≤n). The application,

cut cube1 cube2

proceeds as follows:

1. cube1 is replaced with a p-cube cube
′
1 with (0≤p≤i) such that every point on

cube′1 is within a Hamming distance of 1 of some point on cube2.

2. cube2 is replaced with a q-cube cube
′
2 with (0≤q≤j) such that every point on

cube′2 is within a Hamming distance of 1 of some point on cube1.

3. If every point on cube′1 is within a Hamming distance of 1 of some point on

cube′2, then the precondition disagreecount = 1 held; notice in this case

p = q. Otherwise cut is not applicable to cube1 and cube2.

4. The result cube3 is the (p+q)-cube consisting of all points on cube′1 and cube
′
2.

We will look at a more involved example that illustrates the above steps at the

end of the next section.

6.4 Enumerating Principal Reduction Rules

Let us recap the progress we have made so far in this chapter and review our

main goal. Our aim is to automate the building of Curry-Howard calculi for

Classical Logic. The difficulty in automating a local cut-elimination procedure

lies in building the ‘good’ principal logical rule for a logical connective. Using



them method of considering logical equivalences does not always build the sim-

plest form of the rule (as we observed in Section 5.5), and so another method is

needed. We have spent the first sections of this chapter formulating precisely a

criteria for ‘progress’ when building a right-hand side of a principal logical rule

(for an arbitrary connective ∁
n
i ). This criteria has in fact been specified using three

different analogies, which we reiterate below.

1. To build a derivation scheme from applications of (Cut) whose endsequent

or ‘root’ contains only context variables and whose leaves are premises of

the rules (∁
n
i L) and (∁

n
i R).

2. To build a bitmask X1. . .Xn from applications of cut to pairs of bitmasks

corresponding to the premises of the rules (∁
n
i L) and (∁

n
i R).

3. To build an n-cube in an n-dimensional space by successively ‘merging’ i-

and j-cubes (0≤i≤j≤n).

In this section we will address the order in which the bitmasks should be cut, and

therefore the order in which the (Cut) rule should be applied to premises to build

the right-hand side of a principal reduction rule.

Working backwards, we could construct the right-hand side of a principal reduc-

tion rule for a connective ∁
n
i from the root of the derivation scheme rather than

from the leaves. First observe that the root is built by an application of some

topmost cut (since only applications of the cut rule are allowed to build the right-

hand side). This topmost cut will eliminate the final component of the connective

from the derivation scheme, and will therefore be of the following shape (omit-

ting context variables):

D1
X1 . . .Xi−10Xi+1 . . .Xn

⊢ Ai

D2
X1 . . .Xi−11Xi+1 . . .Xn

Ai ⊢ (Cut)
X1 . . .Xn
⊢

Where 0<i≤n.

That is, the topmost cut must be made between two bitmasks that disagree on

the value of exactly one formula and the truth value of all other formulas is ‘don’t

care’. Observe that the left and right bitmasks in a topmost cut will each cover

2n−1 rows of the truth table. Essentially, we have split the problem of building the

root bitmask into two sub-problems. Since the cut rule performs only a selective1

1Recall that the sets represented by the two bitmasks are first resolved on ‘don’t care’ states
corresponding to weakening steps that merge contexts in the conclusion of the derivation scheme.



union operation on rows covered by bitmasks (i.e., the conclusion cannot cover

any rows which were not covered by the premises), we can split the rule premises

into two sets: those which cover the rows covered by ( ⊢ Ai) and those which

cover the rows covered by (Ai ⊢ ). The following example illustrates this first

step.

Example 6.4.1 (Topmost Cut for ∁
3
9) The choices of the topmost cut of the right-hand

side of a principal reduction rule for the ∁
3
9 connective are:

DR1
0XX = {0, 1, 2, 3}

⊢ A1

D1
1XX = {4, 5, 6, 7}

A1 ⊢ (Cut)
XXX = {0, 1, 2, 3, 4, 5, 6, 7}

⊢

D2
X0X = {0, 1, 4, 5}

⊢ A2

D3
X1X = {2, 3, 6, 7}

A2 ⊢ (Cut)
XXX = {0, 1, 2, 3, 4, 5, 6, 7}

⊢

D4
XX0 = {0, 2, 4, 6}

⊢ A3

D5
1XX = {1, 3, 5, 7}

A3 ⊢ (Cut)
XXX = {0, 1, 2, 3, 4, 5, 6, 7}

⊢

Taking the first variant, we can group the premises of the rules (∁
3
9L) and (∁

3
9R) into two

sets: those which will be used to build the sequent scheme ( ⊢ A1), and those which

will build (A1 ⊢ ). Notice that the premise DR1 is already of the required form (i.e.,

its endsequent is ( ⊢ A1)). The remaining premises (i.e., {DL1,DR2,DR3,DL2}) can be

used to build a sequent scheme which covers the rows {4, 5, 6, 7} (since those premises

cover those rows). This is can be seen directly if we build a map from each row of the truth

table to the rule premises which cover that row.

Row Rule Premise covering Row

0 {DR1}

1 {DR1,DR2}

2 {DR1,DR3}

3 {DR1}

4 {DL1}

5 {DR2}

6 {DR3}

7 {DL2}

We will define a refinement of the above structure which we call a base map in the

definition following this example (see Definition 6.4.2).



Now we can see that the set of premises {DL1,DR2,DR3,DL2} will construct the rows

which cover (A1 ⊢ ) since only those premises cover the rows 4, 5, 6 and 7.

To complete the example, we observe that the left and right premises of the second vari-

ant of the topmost cut can be constructed from the respective sets {DR1,DR2,DL1} and

{DR1,DR3,DL2}. Similarly, the third variant can be constructed from {DR1,DR3,DL1}

and {DR1,DR2,DL2}. We briefly point out here that in both of these cases, the premise

DR1 might appear on both sides of the derivation (scheme) tree since it appears in the sets

that will be used to build both the left and right premises.

Definition 6.4.2 (Base Map) Given a pair of inference rules (∁
n
i L) and (∁

n
i R) gener-

ated by applying Call’s algorithm to the truth table Cni , we define a base map as a map-

ping from each row of the truth table to a single rule premise. Since there may exist

more than one such mapping (consider the case when more than one rule premise covers a

particular row), we define a procedure baseMaps that computes the set of all such unique

base maps.

Starting from the set S of all rule premises of the rules (∁
n
i L) and (∁

n
i R), we construct the

set of all pairs of ‘rows and rule premises that cover the row’ with the following function.

allbasepairs :: {dscheme} → int→ {int× dscheme}

allbasepairs S n = {〈i, d〉 | d ∈ S ∧ i ∈ expand (buildmask d n)}

We group the ‘base pairs’ into n sets, so that each set contains only base pairs for a

particular row. The generic group function is defined below.

group :: {a× b} → {{a× b}}

group S = { {〈i, 〉 | 〈i, 〉 ∈ S} | i ∈ {j | 〈j, 〉 ∈ S}}

The cartesian product of these grouped sets of base pairs will construct all unique base

maps.

baseMaps :: {dscheme} → int→ {int× dscheme}

baseMaps S n = ∏ group (allbasepairs S n)

We give some intuition behind the above structure with an example.

Example 6.4.3 (Base Map for ∁
3
9) We combine the rule premises of the rules (∁

3
9L) and



(∁
3
9R) (see Example 6.2.1), and build the set of all premises S for the connective ∁

3
9:

S = { 〈(A1 ⊢ A2, A3),DL1〉,

〈(A1, A2, A3 ⊢ ),DL2〉,

〈( ⊢ A1),DR1〉,

〈(A3 ⊢ A2),DR2〉,

〈(A2 ⊢ A3),DR3〉 }

We first build the set of all base pairs,

allbasepairs S 3 = { 〈0,DR1〉, 〈1,DR1〉, 〈1,DR2〉, 〈2,DR1〉, 〈2,DR3〉,

〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉 }

The above set tells us row 0 is covered by the premise DR1, row 1 is covered by the DR1
and DR2, row 2 is covered by DR1 and DR3, and so on. Grouping these base pairs on the

row index, we get,

group (allbasepairs S 3) = { {〈0,DR1〉}, {〈1,DR1〉, 〈1,DR2〉},

{〈2,DR1〉, 〈2,DR3〉}, {〈3,DR1〉},

{〈4,DL1〉}, {〈5,DR2〉}, {〈6,DR3〉},

{〈7,DL2〉} }

The cartesian product of the above set generates all possible base maps as follows,

∏ group (allbasepairs S 3)

= { {〈0,DR1〉, 〈1,DR1〉, 〈2,DR1〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR2〉, 〈2,DR1〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR1〉, 〈2,DR3〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR2〉, 〈2,DR3〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉} }

Observe that each of the above mappings associate each input of the truth function with a

rule premise.

Having formed the topmost cut, the task now is to build the two cuts which will

construct its left and right premise. For the first variant of the topmost cut given

in Example 6.4.1 (with cut formula A1), we would seek a cut that would build the

bitmask 1XX from the premises DL1,DR1,DR2,DL2 (which cover the rows 4,5,6

and 7). The choice of cut formula for the topmost cut freezes the truth value of

the first formula, and so the problem to be solved now can be compared to that

of finding the topmost cut of an arity-two connective (i.e., finding the cut that



would build a bitmask with two ‘don’t care’ elements ignoring the truth value

of the element at index 0 of the bitmask). There are two variants since there are

only two choices of cut formula from which to build the cut. The left and right

pair of bitmasks for the two variants are: 〈10X, 11X〉 and 〈1X0, 1X1〉. Notice

that applying cut to the components of either of these pairs of bitmasks would

build the bitmask 1XX. Now the sub-problems that need to be solved is building

the bitmasks that are the components of one of the pairs, i.e., building a bitmask

with exactly one truth value set to ‘don’t care’. We can solve this immediately by

observing that it is the conclusion of a cut between two row inputs. For example,

in the 10X case, the pair of left and right bitmasks would be 〈100, 101〉. Now we

can look up rows 1002 and 1012 (i.e., rows 4 and 5) in the base map and obtain

a pair of premises. Retracting the steps taken, we can apply the cut rule to the

pair of corresponding rule premises and build a right-hand side. The following

procedure split formally specifies how we can split a ‘root’ bitmask and obtain

all pair of bitmasks which, when cut together, rebuild that root bitmask. (In a

sense, the procedure split is the reverse of the cut procedure).

Definition 6.4.4 (Splitting Bitmasks, split) Given a length-n bitmask b which has

k ‘don’t care’ truth values at the set of positions P, i.e.,

P = {p | 0≤p<n ∧ b[p] = ‘don’t care’}

we define a function split which builds the set of all pairs of bitmasks that have (k−1)

truth values set to ‘don’t care’. The function returns a 3-tuple consisting of: (1) the index

on which the pair was split, (2) a modified bitmask bL which has the truth value at that

index equal to 0, and (3) a modified bitmask bR which has the truth value at that index

equal to 1.

split :: bitmask→ {int} → (int× bitmask× bitmask)

split b P = {〈i, (setelem b i 0), (setelem b i 1)〉 | i ∈ P}

The auxiliary function setelem sets the element at the specified position of the bitmask

to the supplied truth value, and is defined as follows:

setelem :: bitmask→ int→ T X → bitmask

setelem [ ] i t = [ ]

setelem m:mask 0 t = t:mask

setelem m:mask i t = setelem mask (i−1) t



The split procedure can be used to build (all permutations of) trees of length-n

bitmasks that are rooted at X1 . . .Xn, and have ‘leaf’ bitmasks with zero ‘don’t

care’ elements. A base map for an arity n connective would associate each leaf

of this tree with a single rule premise. By working upwards from the leaves

(applying the cut procedure) the right-hand side of the principal reduction rule

can be constructed.

There are two problems with the above (outline of an) algorithm. Recall the

set of base maps for the connective ∁
3
9 in Example 6.4.3. The rule premise DR1

(with bitmask 0XX) covers the rows 0, 1, 2 and 3. In the case where the bitmask

0XX is a node of the tree generated by repeatedly applying split, and the base

map associates the rows 0, 1, 2, 3 with the rule premise DR1, it would be incor-

rect to apply the split procedure to the bitmask 0XX. The generated tree would

have rows 0, 1, 2 and 3 as leaves and each leaf would be associated with the same

rule premise. A cut cannot be formed between two identical bitmasks since their

disagreecountwill be 0, so before applying split to a bitmask, we need to check

whether the set of rows covered by that bitmask is covered completely by any

single rule premise in the base map. In the running example, this check would

ensure the bitmask 0XX is not split since the premise DR1 already covers all of

the rows of expand 0XX. We define the function getPremiseForBitmask below

which performs this test.

Definition 6.4.5 (The procedure getPremiseForBitmask) Given a bitmask b and a

base map M, the function getPremiseForBitmask tests whether a derivation scheme in

M covers all the rows covered by the bitmask b. The function returns the (possibly empty)

set of derivation schemes which cover the rows covered by b. Note that the returned set

will either contain a single derivation scheme, or be empty.

getPremiseForBitmask :: bitmask→ {int× dscheme} → {dscheme}

getPremiseForBitmask b M = {s | ∃ds.(∀r ∈ expand b.(〈r, s〉 ∈ M ∧ s = ds))}

Finally, we will address the problem of generating only right-linear rules. This is

in fact fairly straightforward.

The application of the procedure split to an n-length bitmask builds a treewhere:

the root is the supplied bitmask, the left branch of the tree is the bitmask with the

‘don’t care’ element at index i (for 0≤i<n) set to 0, and the right branch of the

tree is the bitmask with the ‘don’t care’ element at index i set to 1. (In the cor-

responding derivation scheme, this structure would correspond to an instance

of the cut rule with the cut formula Ai+1). The constructed tree will duplicate a



rule premise (and therefore not be right-linear) if the base map associates some

common premise with the rows covered by both the left and right bitmasks. The

following predicate tests for this case.

Definition 6.4.6 (A Predicate to Test for ‘Good’ Rules, willDuplicate) A base map

M for a connective ∁
n
i associates each of the n rows of the truth table Cni with a rule

premise of (∁
n
i L) and (∁

n
i R). Given a pair of bitmasks bL and bR that cover the set of

rows RL and RR respectively, the predicate willDuplicate returns true if the base map

associates some rule premise with both a row in RL and a row in RR. More formally,

willDuplicate :: bitmask→ bitmask→ {int× dscheme} → boolean

willDuplicate bL bR M = ∀l ∈ expand bL.

∀r ∈ expand bR.

∃ds.(〈l, ds〉 ∈ M ∧ 〈r, ds〉 ∈ M)

Now we can combine the above procedures and build the algorithm which con-

structs the ‘good’ right-hand sides of principal reduction rules. We do this in two

steps: first we define a procedure build which builds ‘good’ right-hand sides

using a single base map. We then define the procedure solutions which enu-

merates over the set of unique base maps and applies the procedure build.

Definition 6.4.7 (Right-hand Sides for a Single Base Map) We first generalise the

procedure cut (from Definition 6.1.9) to operate on sets of derivation schemes as follows:

cutSet :: {dscheme} → {dscheme} → formula→ {dscheme}

cutSet L R f = {cut l r f | l ∈ L ∧ r ∈ R}

Given a length-n bitmask b which has non-‘don’t care’ truth values at indexes in F (c.f.,

a set of indexes for ‘frozen’ truth values of the bitmask), and a base map M mapping the

rows of a truth table Cni to the premises of the associated inference rules (∁
n
i L) and (∁

n
i R),

we define the function buildwhich constructs a set of ‘good’ right-hand sides of principal



reduction rules as follows.

build :: bitmask→ {int} → {int×dscheme} → {dscheme}

build b F M | (CoversBitmask 6= ∅) = CoversBitmask

| otherwise =
⋃

〈i,L,R〉∈split b F
¬willDuplicate L R M

cutSet TreesForL TreesForR Ai+1

where CoversBitmask = getPremiseForBitmask b M

TreesForL = build L (F ∪ {i}) M

TreesForR = build R (F ∪ {i}) M

Definition 6.4.8 (Solutions) Given a pair of inference rules (∁
n
i L) and (∁

n
i R) for the

logical connective ∁
n
i , we enumerate the set of all right-hand sides of principal reduction

rules by applying the build algorithm to each unique base map B associating each row of

the truth table Cni to a single premise from the set of rule premises S.

solutions :: {dscheme} → int→ {dscheme}

solutions S n =
⋃

B∈baseMaps S n

build X1 . . .Xn ∅ B

We will illustrate a use of the above algorithm in the following example.

Example 6.4.9 (Constructing the solutions of ∁
3
9) We apply the solutions proce-

dure to the premises of the inference rules (∁
3
9L) and (∁

3
9R) for the arity three connective

∁
3
9. This example is accompanied by Figures 6.3, 6.4, 6.5 and 6.6, which illustrate how

a base-map is partitioned when the splitting steps of the algorithm are applied. Re-

call from Example 6.4.3 that the set S of rule premises for the connective ∁
3
9 (using the

abbreviated form of writing derivation schemes) is,

S = {DL1,DL2,DR1,DR2,DR3}

We also computed the set of all base maps for S. Recall that these were:

baseMaps S 3

= {{M1}, {M2}, {M3}, {M4}}

= { {〈0,DR1〉, 〈1,DR1〉, 〈2,DR1〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR2〉, 〈2,DR1〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR1〉, 〈2,DR3〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉}

{〈0,DR1〉, 〈1,DR2〉, 〈2,DR3〉, 〈3,DR1〉, 〈4,DL1〉, 〈5,DR2〉, 〈6,DR3〉, 〈7,DL2〉} }
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Figure 6.3: ‘Splittings’ for Building Right-Hand Sides of (∁39) using Base-Map M1
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Figure 6.4: ‘Splittings’ for Building Right-Hand Sides of (∁39) using Base-Map M2
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Figure 6.5: ‘Splittings’ for Building Right-Hand Sides of (∁39) using Base-Map M3
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Figure 6.6: ‘Splittings’ for Building Right-Hand Sides of (∁39) using Base-Map M4



Now we compute the set of all ‘good’ right-hand side of principal reduction rules as fol-

lows,

solutions S 3 = (build XXX ∅ M1) ∪

(build XXX ∅ M2) ∪

(build XXX ∅ M3) ∪

(build XXX ∅ M4)

Where the four applications of build are computed as follows,

1. For the call build XXX ∅ M1, no single premise in the base map M1 covers all

the rows of XXX, i.e.,

CoversBitmask = getPremiseForBitmask XXX M1 = ∅

We apply split to XXX and obtain a bitmask covering fewer rows. (Notice that

the set of ‘frozen’ indexes of the bitmask is empty, and all indexes of the bitmask are

set to ‘don’t care’).

split XXX ∅ = {〈0, 0XX, 1XX〉, 〈1,X0X,X1X〉, 〈2,XX0,XX1〉}

To ensure the generated right-hand side is ‘good’, we must prune the above set to

ensure no rule premise is copied as a result of the split. Observe that there is only

one ‘good’ choice.

willDuplicate 0XX 1XX M1 = false

willDuplicate X0X X1X M1 = true

willDuplicate XX0 XX1 M1 = true

Calculating expand X0X = {0, 1, 4, 5} and expand X1X = {2, 3, 6, 7}, notice

that M1 maps both rows 0 and 2 to the rule premise DR1, so splitting on index 1

would cause the rule premise DR1 to be copied. Also, expand XX0 = {0, 2, 4, 6},

expand XX1 = {1, 3, 5, 7} and M1 maps both rows 0 and 1 to the rule premise

DR1, causing it to be copied in the solution. Therefore, using the base map M1,

there is only one ‘good’ choice for the topmost cut of the right-hand side: it must

be built with the cut formula A1. This is illustrated in Figure 6.3(a); the square

boxes show which rule premise(s) would be copied if the derivation scheme was

built accordingly.

Now we compute the left and right premises which correspond to the bitmasks 0XX



and 1XX respectively. Computing the left premise is easy. Observe that,

TreesForL = build 0XX {0} M1
= CoversBitmask

= getPremiseForBitmask 0XX M1

= {DR1}

In other words, the set of rule premises {DR1} already covers all of the rows covered

by the bitmask 0XX. This means that there is no need to apply split to try and

obtain simpler bitmasks.

Computing the right premise for the cut with conclusion 1XX, we have:

TreesForR = build 1XX {0} M1 (6.7)

This time getPremiseForBitmask 1XX M1 = ∅, i.e., there is no single rule

premise in the base map that covers all the rows covered by 1XX. We apply split,

but notice this time that the truth value at index 0 of the bitmask has been frozen;

recall that this is because the the cut formula of the topmost cut was chosen to be

A1.

split 1XX {0} = {〈1, 10X, 11X〉, 〈2, 1X0, 1X1〉}

Both of the above ‘splittings’ will produce ‘good’ right-hand sides, i.e.,

willDuplicate 10X 11X M1 = false

willDuplicate 1X0 1X1 M1 = false

This is shown in Figure 6.3(b); notice that no rule premise is duplicated. We recur-

sively call the build procedure on each bitmask while freezing the relevant index of

the bitmask. There are two cases to consider: splitting on index 1 and splitting on

index 2.

First splitting on index 1 of the bitmask (and subsequently freezing the truth value

at index 1), we have two procedure calls:

(a) Call build 10X {0, 1} M1. Here CoversBitmask = ∅, indicating that the

rows covered by 10X are covered by more than one rule premise, so we must

again apply split to the bitmask. There is only one way to split this bitmask,

since there is only one ‘don’t care’ state and therefore only one choice of cut

formula:

split 10X {0, 1} = {〈2, 100, 101〉}

Notice also that willDuplicate will return false, since the base-map M1



maps rows 1002 and 1012 to the different rule premises (see top-left illustra-

tion of Figure 6.3(c)). A final pair of recursive calls to build returns two sets

of derivations schemes which cover the rows covered by 1002 and 1012. i.e.,

build 100 {0, 1, 2}M1 = CoversBitmask

= getPremiseForBitmask 100 M1

= {DL1}

build 101 {0, 1, 2}M1 = CoversBitmask

= getPremiseForBitmask 101 M1

= {DR2}

So the result of the initial call to build for the bitmask 10X is computed as:

build 10X {0, 1} M1
= cutSet {DL1} {DR2} A3
= {〈(A1 ⊢ A2), [DL1,DR2]〉}

Where the cut formula is chosen to be A3, since this corresponds to the formula

whose truth value is disagreed upon by the two bitmasks.

(b) Call build 11X {0, 1} M1. Again CoversBitmask = ∅ indicating there is

no premise in the bitmask that covers all of the rows in the set expand 11X.

We apply split to obtain bitmasks which cover fewer rows, i.e.,

split 11X {0, 1} = {〈2, 110, 111〉}

The splitting will build a ‘good’ right-hand side, since applying willDuplicate

to each bitmask returns false (see the right-hand illustration of Figure 6.3(b)).

Applying build to these bitmasks one last time, we have (as shown in top-

right illustration of Figure 6.3(c)):

build 110 {0, 1, 2} M1 = CoversBitmask

= getPremiseForBitmask 110 M1

= {DR3}

build 111 {0, 1, 2} M1 = CoversBitmask

= getPremiseForBitmask 111 M1

= {DL2}



So the result of the initial call to build is computed as:

build 11X {0, 1} M1
= cutSet {DR3} {DL2} A3
= {〈(A1, A2 ⊢ ), [DR3,DL2]〉}

We also have two procedure calls to deal with for the second case of splitting the

bitmask 1XX on the index 2.

(a) Call build 1X0 {0, 2}M1. Following the same steps as described in parts (a)

and (b) above, we have,

build 1X0 {0, 2} M1
= cutSet {DL1} {DR3} A2
= {〈(A1 ⊢ A3), [DL1,DR3]〉}

(b) Call build 1X1 {0, 2} M1. Similarly, we have,

build 1X1 {0, 2} M1
= cutSet {DR2} {DL2} A2
= {〈(A1, A3 ⊢ ), [DR2,DL2]〉}

The above are shown in the bottom two illustrations of Figure 6.3(c).

Tracing back to Equation (6.7), we combine the above recursive calls to build, as

follows:

TreesForR

= build 1XX {0} M1
= cutSet {〈(A1 ⊢ A2), [DL1,DR2]〉} {〈(A1, A2 ⊢ ), [DR3,DL2]〉} A2 ∪

cutSet {〈(A1 ⊢ A3), [DL1,DR3]〉} {〈(A1, A3 ⊢ ), [DR2,DL2]〉} A3

= {〈(A1 ⊢ ), [〈(A1 ⊢ A2), [DL1,DR2]〉, 〈(A1, A2 ⊢ ), [DR3,DL2]〉]〉} ∪

{〈(A1 ⊢ ), [〈(A1 ⊢ A3), [DL1,DR3]〉, 〈(A1, A3 ⊢ ), [DR2,DL2]〉]〉}

= {〈(A1 ⊢ ), [〈(A1 ⊢ A2), [DL1,DR2]〉, 〈(A1, A2 ⊢ ), [DR3,DL2]〉]〉

〈(A1 ⊢ ), [〈(A1 ⊢ A3), [DL1,DR3]〉, 〈(A1, A3 ⊢ ), [DR2,DL2]〉]〉}

= {DTMR1 ,DTMR2}

The above set gives two derivation (scheme) trees for constructing the right premise

of the topmost cut. Now that we have successfully computed the left and right sets

of premises which, when cut together, produce the topmost cut split in A1, we can



combine the results and build right-hand sides as follows:

= cutSet {DR1} {DTMR1 ,DTMR2} A1
= {〈( ⊢ ), [DR1,DTMR1 ]〉, 〈( ⊢ ), [DR1,DTMR2 ]〉}

2. Call build XXX ∅ M2: The base map M2 does not produce any ‘good’ solutions.

See Figure 6.4(a).

3. Call build XXX ∅ M3: The base map M3 does not produce any ‘good’ solutions.

See Figure 6.5(a).

4. Call build XXX ∅ M4: The base map M4 does not produce any ‘good’ solutions.

See Figure 6.6(a).

So, in sequent calculus form, the ‘good’ right-hand sides of the principal reduction rules

for the logical connective are:

DR1
Γ ⊢ ∆, A1

DL1
A1, Γ ⊢ ∆, A2, A3

DR2
A3, Γ ⊢ ∆, A2

(Cut)
A1, Γ ⊢ ∆, A2

DR3
A2, Γ ⊢ ∆, A3

DL2
A1, A2, A3, Γ ⊢ ∆

(Cut)
A1, A2, Γ ⊢ ∆

(Cut)
A1, Γ ⊢ ∆

(Cut)
Γ ⊢ ∆

DR1
Γ ⊢ ∆, A1

DL1
A1, Γ ⊢ ∆, A2, A3

DR3
A2, Γ ⊢ Γ, A3

(Cut)
A1, Γ ⊢ ∆, A3

DR2
A3, Γ ⊢ ∆, A2

DL2
A1, A2, A3, Γ ⊢ ∆

(Cut)
A1, A3, Γ ⊢ ∆

(Cut)
A1, Γ ⊢ ∆

(Cut)
Γ ⊢ ∆

Example 6.4.10 (Merging of ∁
3
9 Hypercubes) As a final (and interesting example),

we show how to generate the right-hand side of a principal reduction rule for ∁
3
9 (from the

previous example) by ‘merging’ together hypercubes. We begin with by representing each

premise of the rules (∁
3
9L) and (∁

3
9R) (see Example 6.2.1) as a hypercube (mapped onto

the skeleton 3-cube we gave in Figure 6.2).

DL1

100
b

DL2111
b

DR1

0XX

DR2

X01

DR3

X10

Now we proceed by taking pairs of hypercubes and ‘merging’ them according to the spec-

ification we described at the end of Section 6.3.



DL2111
b

111
b

101
b

1X1

DR2

X01 1XX

DR3

X10

XXX

100
b

110b

1X0

DL1

100
b

DR1

0XX

We conclude this section with the definition of the term calculus X ∁
3
9-calculus,

since after all our main goal was to show that we could automate the construction

of Curry-Howard pairs of logical and (corresponding) computational calculi. The

full definition of the calculus is given in Figure 6.7.

6.5 Chapter Summary

In this chapter we gave a formal specification for Call’s algorithm, also describing

our own intuitions behind his mechanical process (which builds a pair of sequent

calculus style inference rules from the truth table of a logical connective). We

were able to construct a reverse process which associated the rule premises of

an inference rule for a connective to a set of rows from the truth table for that

connective. This gave us important insight into the operation of the (Cut) rule,

and also allowed us to make a relation between the cut and geometry.

Using results from the reverse algorithm, we described an intelligent and system-

atic algorithmwhich built the principal reduction rules (or ‘cut elimination rules’)

for that logical connective. We focused on building only good principal reduction

rules, i.e., those which did not copy any rule premise.



Definition 6.4.11 (X ∁
3
9-Syntax) The circuits of the X ∁

3
9-calculus are defined by the fol-

lowing grammar, where x, y range over the infinite set of sockets, and α, β over plugs.

P,Q ::= 〈x·α〉 | y·[x̂Mα̂β̂, ûv̂ŵN] | [Pσ̂, t̂Qπ̂, ŝRδ̂]·γ | Pα̂ † x̂Q
capsule ∁

3
9 input circuit ∁

3
9 output circuit cut

Definition 6.4.12 (Typing Rules for X ∁
3
9) The axiom and cut are typed as usual (Def-

inition 5.1.3). The ∁
3
9 input and output circuits are typed as follows.

M ··· x:A1, Γ ⊢ ∆, α:A2, β:A3 N ··· u:A1, v:A2,w:A3, Γ ⊢ ∆
(∁
3
9L)

y·[x̂Mα̂β̂, ûv̂ŵN] ··· ∁
3
9(A1, A2, A3), Γ ⊢ ∆

P ··· Γ ⊢ ∆, σ:A1 Q ··· t:A2, Γ ⊢ ∆,π:A3 R ··· s:A3, Γ ⊢ ∆, δ:A2
(∁
3
9R)

[Pσ̂, t̂Qπ̂, ŝRδ̂]·γ ··· Γ ⊢ ∆, ∁
3
9(A1, A2, A3)

Definition 6.4.13 (X ∁
3
9 Reduction Rules) We extend the set of basic reduction

rules, R, (Definition 5.2.4), with the following reduction rules.

Left Propagation Rules : (∁
3
9O-outs† ), (∁

3
9O-ins† ) and (∁

3
9 I† )

([Pσ̂, t̂Qπ̂, ŝRδ̂]·γ)γ̂ † ŷS → ([(Pγ̂ † ŷS)σ̂, t̂(Qγ̂ † ŷS)π̂, ŝ(Rγ̂ † ŷS) δ̂]·β)β̂ † ŷS

([Pσ̂, t̂Qπ̂, ŝRδ̂]·α)γ̂ † ŷS → [(Pγ̂ † ŷS)σ̂, t̂(Qγ̂ † ŷS)π̂, ŝ(Rγ̂ † ŷS) δ̂]·γ ^ γ 6= α

(z·[x̂Mα̂β̂, ûv̂ŵN])γ̂ † ŷS → z·[x̂(Mγ̂ † ŷS)α̂β̂, ûv̂ŵ(Nγ̂ † ŷS)]

Right Propagation Rules : ( †∁
3
9I-outs), ( †∁

3
9I-ins) and ( †∁

3
9O)

Sγ̂ † ŷ(y·[x̂Mα̂β̂, ûv̂ŵN]) → Sγ̂ † k̂(k·[x̂(Sγ̂ † ŷM)α̂β̂, ûv̂ŵ(Sγ̂ † ŷN)])

Sγ̂ † ŷ(z·[x̂Mα̂β̂, ûv̂ŵN]) → z·[x̂(Sγ̂ † ŷM)α̂β̂, ûv̂ŵ(Sγ̂ † ŷN)] ^ y 6= z
Sγ̂ † ŷ([Pσ̂, t̂Qπ̂, ŝRδ̂]·γ) → [(Sγ̂ † ŷP)σ̂, t̂(Sγ̂ † ŷQ)π̂, ŝ(Sγ̂ † ŷR) δ̂]·γ

Renaming Rules : (∁
3
9 I-rn) and (∁

3
9O-rn):

〈z·γ〉γ̂ † ŷ(y·[x̂Mα̂β̂, ûv̂ŵN]) → z·[x̂Mα̂β̂, ûv̂ŵN] ^ y introduced

([Pσ̂, t̂Qπ̂, ŝRδ̂]·γ)γ̂ † ŷ〈y·α〉 → [Pσ̂, t̂Qπ̂, ŝRδ̂]·α ^ γ introduced

Principal Reduction Rules : (∁
3
91) and (∁

3
92), where γ, y are introduced,

([Pσ̂, t̂Qπ̂, ŝRδ̂]·γ)γ̂ † ŷ(y·[x̂Mα̂β̂, ûv̂ŵN])→

Pσ̂ † x̂(〈x·ǫ〉ǫ̂ † û(((Mα̂ † t̂Q) β̂ † ĉ〈c·π〉)π̂ † ŵ(〈w·µ〉µ̂ † ŝ(Rδ̂ † v̂N))))

([Pσ̂, t̂Qπ̂, ŝRδ̂]·γ)γ̂ † ŷ(y·[x̂Mα̂β̂, ûv̂ŵN])→
Pσ̂ † x̂(〈x·ǫ〉ǫ̂ † û(((Mβ̂ † ŝR)δ̂ † ĉ〈c·α〉)α̂ † t̂(〈t·µ〉µ̂ † v̂(Qπ̂ † ŵN))))

Figure 6.7: The X ∁
3
9-Calculus



Chapter 7

Conclusion

The work we have presented in thesis combines three distinct fields of comput-

ing: proof theory, computability theory and term rewriting. We related these

three fields in our study of Curry-Howard correspondences.

We were interested mainly in studying the computational content of Classical

Logics. Recently, a computational term calculus called X was introduced by van

Bakel, Lengrand and Lescanne and shown to hold a close correspondence with

a variant of (Kleene’s refinement of) Gentzen’s Sequent Calculus for Classical

Logic.

We began our investigations with a review of the works that were related to

the X -calculus. On the proof theory side, we found out that the most natural

presentations of classical logic were formulated in a (symmetric) sequent calcu-

lus. The most important property of the sequent calculus is unarguably its cut-

elimination, which has a number of uses. For example, various authors have

shown the preservation of the property could be used to guarantee extensions

of logics are conservative. Next we looked at common ways in which classical

logics were extended. A typical approach taken is to extend the logic with any

number of primitive classical logical connectives (such connectives are seman-

tically defined by two-valued truth functions). We found some works that pre-

sented mechanical methods for building sequent calculus style inference rules for

logical connectives directly from truth functions. Two of these works (by Ciabat-

toni and Leitsch, and Baaz et al.) also presented algorithms to mechanically build

local cut-elimination procedures and therefore ensured the extension was conser-

vative. Both works noticed that the main difficulty was in defining the ‘principal

reduction rule’. The solutions proposed for building this rule were similar and

were based on techniques which searched for the rule using a brute-force ap-
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proach. We also observed that each algorithm built only one permutation of the

main cut-elimination rule for the connective in question, even though several per-

mutations could have existed. We remarked that in the specific context of proof

theory, there was no obvious reason to consider multiple permutations.

On the computability side of the X -calculus, we began with a review of the λ-

calculus and two of its type systems as defined by Curry and by Church. Curry,

Howard and de Bruijn discovered a correspondence (in fact, an isomorphism)

between the λ-calculus and the Natural Deduction presentation of intuitionistic

logic. It was implied by some of Griffin’s work that some model of computation

existed that held a similar kind of correspondence with classical logic.

The first studies into this model of computation were based on Natural Deduc-

tion formulations of Classical Logic, though Curien and Herbelin later developed

a more ‘natural’ sequent calculus formulation. However, Curien and Herbelin’s

λµµ̃-calculus did not hold a perfect correspondence with their sequent calculus

for classical logic: some λµµ̃-terms were not redexes, even though they were

typed with (eliminable) the cut rule. Lengrand studied a subsystem of λµµ̃which

restored this ‘cut=redex’ correspondence. The calculus he designed, called the

λξ-calculus, preserved the symmetries of the classical sequent calculus. Studying

the reduction properties of his calculus, Lengrand formulated two dual symmet-

ric reduction subsystems which corresponded to the call-by-name and call-by-

value notions of computation. The most interesting feature of these subsystems

(in our opinion) was that they relied on different permutations of the principal

reduction rule. The syntax of λξ was later reformulated and became known as

X . Urban’s work also contributed to the development of the X -calculus.

In order to achieve a full ‘Curry-Howard’ style correspondence with a classical

sequent calculus, the X -calculus employs a verbose syntax. Additionally, the six-

teen reduction rules (at first glance) are not immediately intuitive. The first part

of our research involved studying this reduction mechanism in great detail. To

this end, we sought an implementation of X (this was presented in Chapter 4).

We based our implementation on term graph rewriting techniques, but noticing

that the X -calculus was not a simple rewrite system (most prominently it fea-

tured higher-order term constructors plus side conditions on rewrite rules), we

extended the standard formulation of first order graph rewriting with features to

express binding and check side conditions. Observing that a naı̈ve implementa-

tion of X suffered from name clash and name capture problems, we investigated

and then proposed a number of solutions. Each solution essentially performed a

series of α-conversions during a reduction to maintain the variable identity and



variable binding relations encoded in the structure of the term. We quantitatively

compared the operating cost of each solution using a suite a suite of benchmark

terms. To ensure our results were fair, we needed to ensure the α-conversion

steps introduced by each solution did not affect the reduction paths chosen. Sub-

sequently, we extended our higher-order conditional term graph rewrite system

with a strategy language (due to Visser). This language enabled us to specify

a reduction strategy that essentially hid the α-conversion steps introduced by

each solution from the reduction path taken by the term. The solution we called

‘avoiding capture’ was the most efficient, and so we internalised a generic formu-

lation of this solution using copy nodes in the implementation of our CTGRS.

We used the tool to understand the reduction mechanism of X . We noticed some

optimisations that could be made, and presented these in Chapter 3. We also re-

lated the X -calculus to well-understood notions of computation that employed

control features, and compared its reduction mechanism to that of the λµµ̃ calcu-

lus.

Having gained familiarity with theX -calculus, i.e., its syntax and reductionmech-

anism, we turned to study the type assignment system that gave the calculus its

logical foundations. The calculus is actually built on only the implicative frag-

ment of (a variant of) the G3a calculus. From our investigations into other calculi

with Curry-Howard correspondences for classical logic, we observed that a spe-

cific set of primitive connectives was often favoured (namely implication, con-

junction, disjunction and negation). As a result, we decided to explore some of

the other less well known connectives. We began with a study of the sixteen clas-

sical logical connectives of arity two. By formulating a notion of ‘obtainability’,

we were able to group the sixteen connectives into five groups, where each con-

nective in a group could be ‘obtained’ from any another connective in that group.

We studied two of these groups in detail.

The first group contained what we called ‘pairing’ connectives, since the compu-

tational content of each of these could be related to the traditional kind of pairing

functionality associated with logical conjunction. We also looked at simulating

the X -calculus in X -style calculi built from functionally complete sets of connec-

tives. We introduced two calculi X ↑ and X ¬∨ based on the logical nand connec-

tive and the negation plus disjunction connectives respectively. We showed that

even though each of these sets of connectives were functionally complete (and

could therefore logically express implication), they could not (fully) computa-

tionally express the X -calculus. In particular, each encoding could only simulate

one of the principal reduction rules for X . In other words, we showed our notion



of computational expressivity (essentially simulation) did not follow from logical

expressivity.

The second group of arity two connectives we explored contained only the if-

and-only-if and the exclusive or connectives. The computational content of these

connectives were largely unexplored in the literate, and so we designed a calculus

X↔ to investigate. When building the principal reduction rules for the calculus,

we encountered some difficulties. First we extracted a pair of principal reduc-

tion rules by considering the cut-elimination for a sequent calculus employing

logically equivalent formulation of the if-and-only-if connective. However, the

right-hand side of the reduction rules copied some rule premises (the rules were

not right-linear). Unsatisfied with this result, we were able to successfully con-

struct another, simpler, set of principal reduction rules which were right-linear

by considering a formulation of the rule using an intuitive diagrammatic repre-

sentation. Next we looked at encoding other computational calculi in X↔. The

if-and-only-if connective can only logically express the top connective and the

identity connective, but noticing the complex structure of the ‘iff input’ and ‘iff

output’ circuits, we attempted an encoding of the X -calculus. Surprisingly, we

were able to simulate one of the principal reduction rules for X in our chosen en-

coding, showing that computational expressivity was possible even though logi-

cal expressivity was not.

We were also able to present a general ‘recipe’ for building Curry-Howard corre-

spondences between extensions of a specific sequent calculus with a connective,

and a term calculus constructed in the style of X . However, our first formulation

of this ‘recipe’ did not always built the simplest form of the principal reduction

rules for a logical connective. We were interested in seeing whether we could

formulate an algorithm which would build the simplest principal reduction rules

(i.e., the right-linear formulation). Recall that existing works might be able to do

this, but only by modifying an unscalable brute-force searching procedure.

In Chapter 6, we studied the relationship between two-valued truth tables and

sequent calculus style inference rules. Specifically, we found a piece of work by

Call that (informally) outlined an algorithm to build a pair of invertible inference

rules for a logical connective from its truth table. We spent some time formalising

the exact relationship between the two structures, and gave new insight into the

algorithm by relating it to the cut rule. In fact, we were able to describe a reverse

algorithm which would relate the premises of the connective’s inference rules

with a set of rows belonging to the connective’s truth tables. We introduced a

structure which we called a ‘bitmask’ (based on a notion of three-valued truth as-



signments) that served as a succinct notation for these sets of rows. By observing

the effect of applying the cut to premises of the inference rules, then relating this

to the bitmasks representations of rule premises, we were able to reformulate the

cut rule as an operation that worked on rows of truth tables. We were also able

to give an additional geometric formulation of the cut that worked on ‘hyper-

cubes’. With this understanding, we built right-hand sides of principal reduction

rules using bitmasks rather than derivation schemes. The final algorithm we pre-

sented solved this task, and in fact we were able to also specify the construction

of only right-linear rules.

7.1 Future Directions

Unfortunately, due to the time requirements of the Ph.D programme, we did not

have a chance to investigate all of the areas we found captivating. This section

details what we consider to be the most interesting directions we would have

liked to follow. Some of the work we describe in this section is currently under

further investigation.

7.1.1 Investigations into Unsimplified Inference Rules

In 6.1.2, we broke down Call’s algorithm into two steps: building a pair of in-

ference rules, followed by the simplification of the rules. The unsimplified rules

built for the implication rule were given in Example 6.1.7. We could quite easily

define principal reduction rules for connectives based on the unsimplified rules;

the right-hand sides would be:

ΓL1 ⊢ ∆L1 , A1, A2 A2, Γ
L
2 ⊢ ∆L2 , A1 (Cut)

ΓL1 , Γ
L
2 ⊢ ∆L1 ,∆

L
2 , A1

A1, Γ
R
1 ⊢ ∆R1 , A2 A1, A2, Γ

L
3 ⊢ ∆L3 (Cut)

A1, Γ
R
1 , Γ

L
3 ⊢ ∆R1 ,∆

L
3

(Cut)
ΓL1 , Γ

L
2 , Γ

L
3 , Γ

R
1 ⊢ ∆L1 ,∆

L
2 ,∆

L
3 ,∆

R
1

ΓL1 ⊢ ∆L1 , A1, A2 A1, Γ
R
1 ⊢ ∆R1 , A2 (Cut)

ΓL1 , Γ
R
1 ⊢ ∆L1 ,∆

R
1 , A2

A2, Γ
L
2 ⊢ ∆L2 , A1 A1, A2, Γ

L
3 ⊢ ∆L3 (Cut)

A2, Γ
L
2 , Γ

L
3 ⊢ ∆L2 ,∆

L
3

(Cut)
ΓL1 , Γ

L
2 , Γ

L
3 , Γ

R
1 ⊢ ∆L1 ,∆

L
2 ,∆

L
3 ,∆

R
1

TheX -style circuit corresponding to the unsimplified left introduction rule (∁
2
11012
L)



would be

k·[Pα̂β̂, ẑQµ̂, x̂ŷR]

We could even extract the following pair of principal reduction rules from the

above proof transformations (which are sound w.r.t. types).

(ŵMδ̂·γ)γ̂ † k̂(k·[Pα̂β̂, ẑQµ̂, x̂ŷR]) → ((Pβ̂ † ẑQ)α̂ † ĵ〈j·µ〉)µ̂ † ŵ(〈w·π〉π̂ † x̂(Mδ̂ † ŷR))

(ŵMδ̂·γ)γ̂ † k̂(k·[Pα̂β̂, ẑQµ̂, x̂ŷR]) → ((Pβ̂ † ŵM) δ̂ † ĵ〈j·α〉)α̂ † ŷ(〈y·π〉π̂ † ẑ(Qµ̂ † x̂R))

Where γ, k are introduced.

Where the contraction steps have been made explicit as cuts with capsules (as

discussed in Section 5.2.3). Wewould have liked to study the reduction behaviour

of such a computational counterparts for the logical implication connective and

determine precisely the effect of simplification.

7.1.2 On the Geometry of Classical Logical Connectives

In Section 6.3, we (informally) described some relationships between the sequent

calculus inference rules for a logical connective and hypercube graphs. We sug-

gest some directions in which this work could be taken.

First, we would have liked to spent time formalising the precise relationship be-

tween the inference rules for a connective and its geometrical representation.

Having rediscovered the relationship between Boolean functions of n logical vari-

ables and 2-colourings of the n-cube, we were made aware (by [12]) that consid-

ering equivalence classes of logical connectives (as we did in Section 5.3 with our

notion of ‘obtainability’) was studied as far back as the 1800s. Jevons mapped the

problem onto 2-colourings of 2-cubes and 3-cubes [51]. Other methods employ

Burnside-P‘olya Counting theory and computational group theory to count the

unique equivalence classes of logical connectives of a particular arity.

In some preliminary investigations, we enumerated the class of arity-three con-

nectives (which has 256 connectives). We grouped these connectives based on the

structure of the right-hand sides of cut-elimination rules and discovered there

were 14 unique groups (based on our grouping criteria). We remark that there

are also 14 (or 15) equivalence classes of 3-cubes, depending on which relations

are used to build the equivalence class. Whether a relationship between the two

exists is a topic we are currently researching.

We would have also liked to extend our main algorithm solutions to full gener-

ality to work on k-colourings of n-cubes, rather than just 2-colourings; this is also



a problem studied in [12]. We hope that this would generalise our algorithm to

the setting of many-valued logics.

7.1.3 On the Computation Content of the Cross-Cut

In theX -style calculi we studied in this thesis, contractions are encodedwith a cut

and a capsule (see Section 5.2). It is fairly straightforward to extend our sequent

calculus with explicit rules for contraction and corresponding X -style circuits. In

fact, Lescanne and Žunic̀ studied X -style calculi with explicit circuit represen-

tations for contraction in their investigations into the computational content of

linear logic [90, 63]. Borrowing their term annotations, we could extend the set

of circuits with the following circuit-constructors which inhabit the left and right

inference rules for contraction:

P,Q ::= . . . | [P〉α̂
β̂
>γ | z<

ŷ
x̂〈Q]

Contraction Output Contraction Input

Observe that we can encode these circuits for explicit contraction rules into the

X -style calculi we formulated in this thesis:

⌈⌈[P〉α̂
β̂
>γ⌋⌋ = (Pα̂ † î〈j·γ〉) β̂ † ĵ〈j·γ〉 i, j fresh

⌈⌈z<ŷx̂〈Q]⌋⌋ = 〈z·π〉π̂ † x̂(〈z·σ〉σ̂ † ŷQ) π, σ fresh

In determining how to reduce a cut built using the above circuits, we first remind

ourselves that the sequent calculus rules for contraction are ‘structural rules’ and

not logical rules. One very important difference is we can build a cut whose cut

formula is introduced by different inference rules, for example,

(Ax)
a ⊢ a

(→R)
⊢ a→a

(Ax)
a→a, a ⊢ a

(Ax)
a ⊢ a

(→L)
a→a, a→a ⊢ a

(ContractionL)
a→a ⊢ a

(Cut)
⊢ a

A witness for the above proof is:

(ŵ〈w·β〉β̂·α)α̂ † ẑ(z<
ŷ
x̂〈(〈u·π〉π̂ [y] v̂〈v·σ〉)])

In the above, the cut formula is introduced by the right premise of the cut; the cor-

responding socket z is also introduced. In X -style calculi, when both connectors



of the cut are introduced by the respective rules, a logical rule would be applied.

When logical connectives are concerned, usually the ‘principal reduction rule’

we studied is applicable, which upon application would reduce the complexity

of the associated cut formula.

Where contractions are concerned, the notion of ‘principal reduction rule’ in gen-

eral does not make sense, since there is no requirement to introduce the cut for-

mula using both a left and a right contraction rule. Keeping this in mind when

formulating an appropriate proof transformation rule, the right-hand side actu-

ally becomes quite simple. We could add the following reduction rules, which

simply copy the sub-circuit of the cut that is in interaction with the contraction

circuit:

(ContractR1): Pα̂ † ẑ(z<
ŷ
x̂〈Q]) → Pα̂ † x̂(Pα̂ † ŷQ) ^ z introduced

(ContractR2): Pα̂ † ẑ(z<
ŷ
x̂〈Q]) → Pα̂ † ŷ(Pα̂ † x̂Q) ^ z introduced

(ContractL1): ([P〉α̂
β̂
>γ)γ̂ † ẑQ → (Pα̂ † ẑQ) β̂ † ẑQ ^ γ introduced

(ContractL2): ([P〉α̂
β̂
>γ)γ̂ † ẑQ → (Pβ̂ † ẑQ)α̂ † ẑQ ^ γ introduced

Notice that in the above, we would expect the appropriate connector to be intro-

duced since, after all, the sequent calculus now features explicit rules for contrac-

tion. By inspection, one can easily verify that the addition of the above reduction

rules will preserve the ‘cut=redex’ paradigm inX -style calculi, and (by extending

the cut-elimination with the corresponding proof transformation rules) also pre-

serve the cut-elimination property of an extension of our sequent calculus with

explicit rules for contraction.

In the (very specific) case where both connectors of a cut are introduced by con-

traction circuits, the reduction becomes very complex, i.e.,

([P〉α̂
β̂
>γ)γ̂ † ẑ(z<

ŷ
x̂〈Q]) (7.1)

This reduces as follows,

Circuit (7.1) = ([P〉α̂
β̂
>γ)γ̂ † ẑ(z<

ŷ
x̂〈Q]) → (ContractR1)

([P〉α̂
β̂
>γ)γ̂ † x̂(([P〉α̂

β̂
>γ)γ̂ † ŷQ) → (ContractL1)

([P〉α̂
β̂
>γ)γ̂ † x̂((Pα̂ † ŷQ) β̂ † ŷQ) → (ContractL1)

(Pα̂ † x̂((Pα̂ † ŷQ) β̂ † ŷQ)) β̂ † x̂((Pα̂ † ŷQ) β̂ † ŷQ)

The decomposition of the contraction circuits creates a circuit with six cuts, copy-

ing one sub-circuit three times, and the other four times.

Gentzen defined an additional proof transformation that acted on contractions



in the very specific case described above shown in Circuit (7.1); he called this

transformation cross-cut. We slightly modify his formulation in our presentation

of the rule shown below.

DR
Γ ⊢ ∆, A, A

(ContractionR)
Γ ⊢ ∆, A

DL
A, A, Γ ⊢ ∆

(ContractionL)
A, Γ ⊢ ∆

(Cut)
Γ ⊢ ∆

reduces to:

DR
Γ ⊢ ∆, A, A

DL
A, A, Γ ⊢ ∆

(ContractionL)
A, Γ ⊢ ∆

(Cut)
Γ ⊢ ∆, A

DR
Γ ⊢ ∆, A, A

(ContractionR)
Γ ⊢ ∆, A

DL
A, A, Γ ⊢ ∆

(Cut)
A, Γ ⊢ ∆

(Cut)
Γ ⊢ ∆

In this case, the cut is formed where the cut formula is introduced by both a

right and left contraction rule. We remark that this is reminiscent of a ‘principal

reduction rule’.

We could extract an X -style reduction rule based on the above ‘cross-cut’ trans-

formation; this is shown below.

(cross-cut1): ([P〉α̂
β̂
>γ)γ̂ † ẑ(z<

ŷ
x̂〈Q]) → (Pα̂ † ẑ(z<

ŷ
x̂〈Q])) β̂ † x̂(([P〉α̂

β̂
>γ)γ̂ † ŷQ)

Note that there are three other permutations of the above right-hand side.

Now we could reduce Circuit (7.1) by first applying this rule then proceeding

using the previously defined rules for contraction, i.e.:

Circuit (7.1) = ([P〉α̂
β̂
>γ)γ̂ † ẑ(z<

ŷ
x̂〈Q]) → (cross-cut1)

(Pα̂ † ẑ(z<
ŷ
x̂〈Q])) β̂ † x̂(([P〉α̂

β̂
>γ)γ̂ † ŷQ) → (ContractR1)

(Pα̂ † x̂(Pα̂ † ŷQ)) β̂ † x̂(([P〉α̂
β̂
>γ)γ̂ † ŷQ) → (ContractL1)

(Pα̂ † x̂(Pα̂ † ŷQ)) β̂ † x̂((Pα̂ † ẑQ) β̂ † ẑQ)

Using the (cross-cut1) rule appears to be a kind of optimisation. Notice that the

above circuit has one less cut than using the separate contraction rules. Also, the

reduct makes one less copy of a sub-circuit.

We spent some time looking at reductions involving contraction circuits inX , and

in particular, observing if the possibility to apply the cross-cut rule arose during

the reduction of a ‘typical’ circuit (i.e., one which was not formulated especially



so that the cross-cut rule would be applicable). With the arity two connectives we

studied, we did not encounter any such instances in our investigations. However,

we did notice that in some situations a ‘hybrid’ cross-cut rule would be applica-

ble. In our sequent calculus (which has sets of labelled formulas), we would

usually formulate contraction as:

x:A, y:A, Γ ⊢ ∆
(ContractL)

z:A, Γ ⊢ ∆

Γ ⊢ ∆, α:A, β:A
(ContractR)

Γ ⊢ ∆,γ:A

However, by suitably choosing the label of the introduced formula (in the con-

clusion of the rule), we could have instead used the following formulation:

x:A, y:A, Γ ⊢ ∆
(HybridContractL)

x:A, Γ ⊢ ∆

Γ ⊢ ∆, α:A, β:A
(HybridContractR)

Γ ⊢ ∆, α:A

The term annotations for these circuits would be Pβ̂�α and x�ŷQ respectively. We

noticed we could add the following reduction rule, in the spirit of the cross-cut.

(HybridCC1): (Pβ̂�α)α̂ † x̂(x�ŷQ) → (Pβ̂ † x̂(x�ŷQ))α̂ † x̂((Pβ̂�α)α̂ † ŷQ)

Note that in the above reduction, α and x might not be introduced.

Now, using the following encoding,

⌈⌈x�ŷQ⌋⌋ = 〈x·π〉π̂ † ŷQ

⌈⌈Pβ̂�α⌋⌋ = Pβ̂ † k̂〈k·α〉

we could build a reduction rule (HybridCC′1):

(Pβ̂ † k̂〈k·α〉)α̂ † x̂(〈x·π〉π̂ † ŷQ) → (Pβ̂ † x̂(〈x·π〉π̂ † ŷQ))α̂ † x̂((Pβ̂ † k̂〈k·α〉)α̂ † ŷQ)

The above rule uses the cut with a capsule to simulate contraction. One should

bear in mind that there may be occurrences of α in P, and occurrences of x in Q.

The above rule is applicable to the right-hand side of both principal reduction

rules in the X↔-calculus1. We recall the rule, (↔1) below (from Figure 5.8).

(↔1): ((Mµ̂ † x̂P)σ̂ † k̂〈k·α〉)α̂ † ẑ(〈z·π〉π̂ † ĵ(Qδ̂ † îN))

The highlighted cut, α̂ † ẑ by applying either (act-L) or (act-R) as usual then prop-

agating appropriately, but also by the rule (HybridCC′1). An investigation into the

exact gains from this optimisation is left open as a possibility for future work.

1We would like to thank Herbelin who first brought the cross-cut proof transformation to our
attention. In fact, at a workshop in Vienna (DCM 2006), he even remarked our calculus X↔ might
be related to Gentzen’s cross-cut.



Work on the cross-cut in the literature is sparse; we only managed to find a few

citations (of which we found [40] particularly readable). It appears to us that

the main reason the cross-cut has not been studied in a Curry-Howard setting is

mainly because it has been difficult to formulate a suitable term calculus whose

syntax can express contraction, and reduction rules can embody the cross-cut

transformation itself. Since X is a straightforward annotation for sequent calcu-

lus proofs, we consider it to be an ideal setting for further investigations.

We also note that (in unpublished work) Herbelin has also considered extending

the λµµ̃-calculus with a cross-cut reduction rule. He hints it could lead to another

reduction paradigm (i.e., call-by-name vs. call-by-value vs. cross-cut).
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