
Completeness and Partial Soundness Results for

Intersection & Union Typing for λµµ̃*

(Annals of Pure and Applied Logic 161, pp 1400-1430, 2010)

Steffen van Bakel

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

svb@doc.ic.ac.uk

Abstract

This paper studies intersection and union type assignment for the calculus λµµ̃ [16], a proof-
term syntax for Gentzen’s classical sequent calculus, with the aim of defining a type-based
semantics, via setting up a system that is closed under conversion.
We will start by investigating what the minimal requirements are for a system for λµµ̃ to
be complete (closed under redex expansion); this coincides with System M∩∪, the notion
defined in [18]; however, we show that this system is not sound (closed under subject re-
duction), so our goal cannot be achieved. We will then show that System M∩∪ is also
not complete, but can recover from this by presenting System Mc as an extension of M∩∪

(by adding typing rules) and showing that it satisfies completeness; it still lacks soundness.
We show how to restrict M∩∪ so that it satisfies soundness as well by limiting the appli-
cability of certain type assignment rules, but only when limiting reduction to (confluent)
call-by-name or call-by-value reduction; in restricting the system this way, we sacrifice com-
pleteness. These results combined show that, with respect to full reduction, it is not possible
to define a sound and complete intersection and union type assignment system for λµµ̃.

keywords: classical logic, sequent calculus, intersection and union types, soundness, com-

pleteness.

Introduction

The role of and the attention to Classical Logic in computer science are changing drastically

over the last few years. Given the direct relation between the (typed) λ-calculus [14, 10] and

intuitionistic logic, for many years it was believed that only the constructive logics had any

real computational content, and only after Griffin’s discovery of the relation between double-

negation elimination [25] and Felleisen’s control operators [22] did the research community

become aware of the computational advantages of Classical Logic.

There are two main directions in doing proof theory: sequent calculi and natural deduction

systems, both introduced by Gentzen in [23, 24]. On the one hand, the Sequent Calculus lk

is a logical system in which the rules only introduce connectives (but on either side of a

sequent); on the other hand, Natural Deduction uses rules that introduce or eliminate con-

nectives in the logical formulae. Natural deduction normally derives statements with a sin-

gle conclusion, whereas lk allows for multiple conclusions, deriving sequents of the form

A1, . . . , An ⊢ B1, . . . , Bm, where A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to

be understood as B1∨ . . .∨Bm.

* Small mistakes have been corrected here, as well as the proof of Theorem 9.8.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 2

Exploring Classical Logic for Computation, research has focussed on different calculi, trying

to exploit the Curry-Howard isomorphism (correspondence) for various classical logics, both

in sequent style and in natural deduction. In this paper we contribute to that line of research

by studying Curien and Herbelin’s calculus λµµ̃-calculus [16], which enjoys a Curry-Howard

isomorphism for a variant (with focus, or active formulae à la Parigot’s λµ [38, 39]) of the

implicative variant of Kleene’s G3 [33], itself a variant of Gentzen’s lk.

The research that forms the context of this paper is vast; we mention the λµ-calculus intro-

duced by Parigot, a confluent, natural deduction-based system; to achieve confluence, it has

a limited use of negation and does not allow all possible reductions. λµ has been studied

in depth by various authors, like Ong & Stewart who studied call-by-value reduction [37],

Bierman who defined an abstract machine for λµ [12], de Groote who studied how to express

control structures in λµ [26], just to mention a few. On the other hand, more recently attention

has moved to sequent calculi. Using λµ’s notion of active formula, Herbelin [28] and Curien

[16, 29] developed the sequent calculus λµµ̃; Wadler defined the Dual Calculus [46]. Urban

defined a calculus that manipulates proofs in Gentzen’s lk [44, 45], using a notion of activated

cut to accomplish strong normalisation; this later led to the definition of the calculus X by

Lengrand [35], and van Bakel and Lescanne [7, 8]; principal types for implicative X and its

relation with an ml-like polymorphic extension of the λ-calculus are studied in [42, 43].

One of the great advantages of using classical logic is the capture of not only parameter

passing, but also context management: for programs based on full classical logic, a parameter

call (fetching an operand for a procedure) is truly dual to a context call (exiting from / aborting

a computation), and a program and its context are treated on equal footing. This gives rise to

far richer fully typed programming paradigms than the normal functional one, which need

to be fully investigated and exploited. This paper tries to contribute to this line of research,

by attempting to set up filter semantics through the definition a notion of intersection-union

typing for λµµ̃ and to study its properties. We will see that this attempt fails: our system

does not fulfil the semantic requirement, in that we cannot define a notion that is both sound

(i.e. closed under reduction) and complete (i.e. closed under redex expansion, the reverse of

reduction).

Filter semantics and a filter model were first defined for the λ-calculus by Barendregt,

Coppo and Dezani-Ciancaglini in [11]; they defined a notion of intersection type assignment

(introduced by Coppo and Dezani-Ciancaglini [15] and Sallé [41]), and showed that a model

can be created through the interpretation of terms by their assignable types. Intersection type

assignment for the λ-calculus adds a new type constructor ∩ and a type constant ⊤ 1; using

intersection it is possible to express that a term can have a number of different (perhaps even

incompatible, non-unifiable) types, and ⊤ is the universal type, i.e. all terms have type ⊤.

Although this extension is conceptually simple, it is, in fact, a very powerful characterisation

and semantic tool, since all the following properties have been shown to hold for a number of

different systems:

• If Γ ⊢ M : A and M =β N, then Γ ⊢ N : A.

• Γ ⊢ M : A and A =/ ⊤, iff M has a head-normal form.

• Γ ⊢ M : A and ⊤ does not occur in Γ and A, iff M has a normal form.

• Γ ⊢ M : A and ⊤ is not used at all in this derivation, iff M is strongly normalising.

• Intersection type systems have the principal type property.

• JMK = {A | ∃Γ [Γ ⊢ M : A]} gives a (filter) λ-model.

• If Γ ⊢ M : A and M →η N, then Γ ⊢ N : A (this property needs a contra-variant ≤-relation,

1 Normally called ω; here we reserve Greek characters for context variables.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 3

which is not present in all systems).

A natural question to ask now is: “Can we achieve the same for λµµ̃?”; to answer this

question, this paper studies the addition of intersection types to the system for λµµ̃; union

types are added for reasons of symmetry.

The system we define in this paper is set up to be a conservative extension of Krivine’s

Système Dω of intersection type assignment for the λ-calculus [34], in that λ-terms typeable

in that system translate to λµµ̃-terms, while preserving the type. There are many different

notions of intersection type assignment in existence (see also [11, 1, 2, 5]), that, in the context of

the λ-calculus more or less coincide; the most important difference is normally the language of

types (full BCD [11, 34], or strict types [1, 2]) and the availability of a contra-variant ≤-relation

(as in [11, 2], or not [34, 1]). Surprisingly, this is no longer true when bringing intersection

types (and union) to the context of sequent calculi; BCD-types are needed, as will be shown

in this paper.

Perhaps the strongest of the above results is the characterisation of strong normalisation,

which states that, in a system without the type constant ⊤, the typeable terms are exactly

the strongly normalisable ones [40, 1]. This has since then been achieved in many ways for

different calculi, and in order to come to a similar characterisation for the (untyped) sequent

calculus λµµ̃, Dougherty, Ghilezan and Lescanne presented System M∩∪ [18], that defines

a notion of intersection and union typing for that calculus. With our eye on the definition

of semantics, in this paper we revisit System M∩∪, adding ⊤ as the maximal and ⊥ as the

minimal type, and extending the set of derivation rules for the purpose of completeness (the

property that types are preserved also going backwards with respect to reduction).

The notion of typing (i.e. environment assignment) we present here will be shown to be the

natural system, in that intersection, ⊤, union, and ⊥ play their expected roles for complete-

ness, our first step towards the construction of a filter model. However, we will show that

completeness does not hold directly for M∩∪, and that the system needs to be generalised

first. As was already mentioned in [19], also soundness does not hold for M∩∪, and we will

argue that this is mainly caused by the non-logical foundation (i.e. typeable terms no longer

correspond to proofs) of both intersection and union; this was also observed for intersection

type assignment for the λ-calculus by Hindley [31]. This failure was the motivation for the

restriction made to come to System M∩ as presented in [19]; as we will show in Section 8, this

was not enough; also, the completeness problem was not picked up on, as we will show as

well. Since M∩∪ is built using the minimal requirements for completeness, this implies that a

sound and complete system with respect to λµµ̃’s full reduction cannot be defined.

We will show that we can partially recover from these failures by restricting to either call-

by-name or call-by-value reduction, but that we also need to restrict the applicability of either

union or intersection assignment. Since these restrictions regard System M∩∪, which does

not satisfy the completeness result, the resulting systems are not suitable to define semantics.

In this paper we will show that the –at the time– surprising loss of soundness for the system

with intersection and union types for the λ-calculus in [9] is, in fact, natural and inevitable.

Also, working with intersection and union in the context of these highly symmetric sequent

calculi makes clear that these are truly dual; we will show that it is not union alone that causes

problems, but that the problem is much more profound, and also arises when dealing with

intersection. Although the idea behind both intersection and union might be (the logical) and

and or, the fact that they are both not logical destroys the soundness, both for a system based

on intersection, as for a system based on union. This also explains why, for ml with side-

effects [27, 47, 36], quantification is no longer sound: also the (∀I) and (∀E) rules of ml are

not logical (see Example 10.1). This problem also appears when using intersection and union

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 4

types in an operational setting [17, 21].

A number of variants exist for Gentzen’s calculus for classical logic lk; the variant of lk we

will consider in this paper, and that lies at the basis of the calculus λµµ̃, is the system known

as Kleene’s G3, which is defined by:

(Ax) :
Γ, A ⊢ A,∆

(cut) :
Γ ⊢ A,∆ Γ, A ⊢ ∆

Γ ⊢ ∆

(→R) :
Γ, A ⊢ B,∆

Γ ⊢ A→B,∆
(→L) :

Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A→B ⊢ ∆

It has no structural rules, i.e. has implicit weakening and contraction. The rules only intro-

duce connectives (but on both sides of a sequent), in contrast to natural deduction which uses

introduction and elimination rules. The only way to eliminate a connective is to eliminate the

whole formula in which it appears, via an application of the (cut)-rule.

In this paper we will treat λµµ̃ as a pure, untyped calculus, and ignore its origin as a proof

calculus in that we study various notions of sequent-style intersection-union typing (M∩∪,

Mc, Mn, and Mv) for it, that are natural extensions of the system considered for λµµ̃ in [16],

i.e. the basic implicative system for Classical Logic.

The main result of this paper is that it presents a notion of type assignment Mc that is

closed under redex expansion, and two restrictions or sub-sytems, Mn and Mv, that are

closed under either cbn or cbv-reduction; for cbv we limit (∩R) to values, and for cbn limit

(∪L) to slots (see Definition 1.4). Our solutions are crucially different from any other published

in the past (in, for example, [32, 9, 17]), in that we do not limit the syntax of types at all

(as in [20, 19]), and pose completely different side-conditions on rules (with respect to [29])

in fact generalising the there claimed result. As far as we know, these are the first correct

presentations of sound restrictions of a fully expressive system with intersection and union

types for λµµ̃.

However, our findings show that it is not possible to define a notion of typing that is closed

under conversion; we have not reached a conclusion yet for the restriction to cbv or cbn. So

we cannot construct a filter model using types for full λµµ̃ using this system.

Outline of this paper

This paper is constructed as follows: in Section 1 we present the λµµ̃-calculus, and encode the

λ-calculus into it. In Section 3, we will see what are the minimal requirements for a complete

extension of the basic type assignment system for λµµ̃, and see in Section 4 that it coincides

with System M, a slight variant of the intersection-union typing system M∩∪ of [18]. We

show that this is not a conservative extension of Krivine’s Système Dω for the λ-calculus that

we present in Section 2. In Section 5, for System M, we show soundness for reduction rule ,

and will show that contraction via rules →µ and →µ̃ is only sound in certain circumstances.

In Section 6 we will give a counter example for completeness, and formulate the missing rules

to fix this problem. In Section 7 we will show that also soundness fails in general; we will

show that these failures are fundamental, and cannot be resolved by adding rules, but only by

restricting rules: since the failure of soundness means that reduction brings us from a typeable

term to an untypeable one, we fix this by forcing untypeability also for the first term. This

will be followed in Section 8 by a discussion of System M∩ of [19]; we will show also here

both soundness and completeness fail, albeit for different reasons.

We will present a modified system Mc – an extension of M∩∪ – for which we can show

completeness in Section 9, and show also that types assignable in Dω are preserved by the

interpretation of λ-terms; because Mc is an extension of M∩∪, soundness will still fail. In

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 5

Section 10, we will define two restrictions of M∩∪, being Mn and Mv, and will show that

call-by-name and call-by-value, respectively, are sound for these notions; completeness will

fail.

1 The calculus λµµ̃

In its typed version, λµµ̃ is a proof-term syntax for a classical sequent calculus. As in λµ,

for λµµ̃ there are two sets of variables: x,y,z, etc., label the types of the hypotheses and

α, β,γ, etc., label the types of the conclusions. Moreover, the syntax of λµµ̃ has three different

categories: commands, terms, and contexts (or co-terms); we use expressions as a generic term

for these three categories. Correspondingly, they are typed by three kinds of sequents: the

usual sequents Γ ⊢ ∆ type commands, while the sequents typing terms (resp. contexts) are of

the form Γ ⊢ A | ∆ (resp. Γ | A ⊢ ∆), marking the conclusion (resp. hypothesis) A as active.

Definition 1.1 (Commands, Terms, and Contexts [16]) There are three categories of expres-

sions in λµµ̃, defined by:

c ::= 〈v|e〉 (commands)

v ::= x | λx.v | µβ.c (terms)

e ::= α | v·e | µ̃x.c (contexts)

Here λ, µ, and µ̃are binders, and the notion of free or bound term and context variables is

defined as usual.

With conventional notations about contexts (i.e. seeing contexts as terms with a hole), v·e

can be thought of as e[[] v], and the context v1·(· · ·(vn·α)· · ·) (we can omit these brackets and

write v1·· · ·vn·α) as a stack (see Example 2.5); µα.c is inherited from λµ, as is 〈v|α〉 which

corresponds to λµ’s naming construct [α]v, giving name α to the implicit output name of v;

the construct µ̃x.c can be thought of as let x = [] in c.

Commands can be computed (thus eliminating the cut in the corresponding proof):

Definition 1.2 (Reduction in λµµ̃ [16, 29]) Let c{e/β} stand for the implicit substitution of

the free occurrences of the context variable β by the context e, and c{v/x} for that of x by the

term v. The reduction rules are defined by:

logical rules

(→) : 〈λx.v1 |v2·e〉 → 〈v2 | µ̃x.〈v1 |e〉〉

(µ) : 〈µβ.c |e〉 → c{e/β}

(µ̃) : 〈v|µ̃x.c〉 → c{v/x}

extensional rules

(η) : λx.µβ.〈v|x·β〉 → v x, β ∈/ fv(v)

(ηµ) : µα.〈v|α〉 → v α ∈/ fv(v)

(ηµ̃) : µ̃x.〈x|e〉 → e x ∈/ fv(e)

Notice that rules (→), (µ), and (µ̃) reduce commands to commands, rules (η) and (ηµ)

reduce a term to a term, and rule (ηµ̃) reduces a context to a context. Apart from Lemma 2.3,

the extensional rules play no role in this paper. Not all commands can be reduced: e.g., 〈x|α〉,

〈λx.v|α〉 and 〈x|v·e〉 are irreducible cuts; this is one of the differences between lk and λµµ̃.

(Implicative) Typing for λµµ̃ is defined by:

Definition 1.3 (Typing for λµµ̃ [16]) Let V be a countable (infinite) set of type-variables,

ranged over by ϕ. Types are defined by the grammar

A, B ::= ϕ | (A→B)

As usual, we omit right-most, outer-most parentheses.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 6

Type assignment is defined via the rules:

(cut) :
Γ ⊢ t : A | ∆ Γ | e : A ⊢ ∆

〈t|e〉 : Γ ⊢ ∆

(Ax-R) :
Γ, x:A ⊢ x : A | ∆

(Ax-L) :
Γ | α : A ⊢ α:A,∆

(→R) :
Γ, x:A ⊢ t : B | ∆

Γ ⊢ Λx.t : A→B | ∆
(→L) :

Γ ⊢ t : A | ∆ Γ | e : B ⊢ ∆

Γ | t·e : A→B ⊢ ∆

(µ) :
c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A | ∆
(µ̃) :

c : Γ, x:A ⊢ ∆

Γ | µ̃x.c : A ⊢ ∆

We write c : Γ ⊢λ ∆ (Γ ⊢λ v : A | ∆ , or Γ | e : A ⊢λ ∆) if there exists a derivation built using these

rules that has this judgement in the bottom line, and write D :: c : Γ ⊢λ ∆ etc. if we want to

name the derivation.

We will write, for example, Γ ⊢λ v : A | for Γ ⊢λ v : A | ∅ .

λµµ̃ has a critical pair in the command 〈µα.c1 |µ̃x.c2〉, which reduces to both c1{µ̃x.c2/α} and

c2{µα.c1/x}; since cut-elimination of the classical sequent calculus G3 is not confluent, neither

is reduction in λµµ̃. For example, in lk the proof (where (W) is the admissible weakening

rule)

D1

Γ ⊢ ∆
(W)

Γ ⊢ A,∆

D2

Γ ⊢ ∆
(W)

Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

reduces to both D1 and D2, different proofs, albeit for the same sequence; likewise, in ⊢λ we

can derive (where α does not appear in c1, and x does not appear in c2):

c1 : Γ ⊢ ∆
(W)

c1 : Γ ⊢ α:A,∆
(µ)

Γ ⊢ µα.c1 : A | ∆

c2 : Γ ⊢ ∆
(W)

c2 : Γ, x:A ⊢ ∆
(µ̃)

Γ | µ̃x.c2 : A ⊢ ∆
(cut)

〈µα.c1 |µ̃x.c2〉 : Γ ⊢ ∆

and 〈µα.c1 |µ̃x.c2〉 reduces to both c1 and c2.

Notice that, although λµµ̃ has abstraction, it does not have application, which is natural

since lk lacks elimination rules. In fact, abstraction’s counterpart is that of context construction

v·e, where a term with a hole is built, offering the operand v and the continuation e. The main

operators are µ and µ̃abstraction, which, in a sense, respectively, correspond to (delayed)

substitution (parameter call) and to context call.

Notice that λµµ̃ has both explicit and implicit variables: the implicit variables are for ex-

ample in v·e, where the hole (·, which acts as input) does not have an identity, and in λx.v

where the context (output) is anonymous. We can make these variables explicit by naming,

respectively, µ̃y.〈y|v·e〉 and µα.〈λx.v|α〉; in case the variable y (α) does not occur in v·e (λx.v),

these terms are η redexes, but, in general, the implicit variable can be made to correspond to

one that already occurs. The type assignment system below (Definition 4.5) is designed to be

indifferent to these steps.

Herbelin’s λµµ̃-calculus expresses the duality of lk’s left and right introduction in a very

symmetric syntax. But the duality goes beyond that: for instance, the symmetry of the reduc-

tion rules display syntactically the duality between the call-by-value (cbv) and call-by-name

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 7

(cbn) evaluations (see also [46]). Indeed, the cbv reduction →v is obtained by forbidding

a µ̃-reduction when the redex is also a µ-redex, whereas the cbn reduction →n forbids a

µ-reduction when the redex is also a µ̃-redex.

Definition 1.4 (cbv and cbn [16, 29]) i) Values V are defined by V ::= x | λx.v, and slots2 E

are defined by E ::= α | v·e.

ii) cbv-reduction is defined by replacing rule (µ̃) by: (µ̃v) : 〈V |µ̃x.c〉 → c{V/x} ;

iii) cbn-reduction is defined by replacing rule (µ) by: (µn) : 〈µβ.c |E〉 → c{E/β} .

2 Système Dω of Intersection Type Assignment for the λ-calculus

The remainder of this paper will be dedicated to the study of a notion of intersection typing

on λµµ̃. This will be defined as a natural extension of Krivine’s Système Dω [34] of intersection

type assignment for the λ-calculus.

Definition 2.1 (Lambda terms and β-contraction [10]) i) The set Λ of λ-terms is defined

by the syntax:

M, N ::= x | (λx.M) | (MN)

ii) The reduction relation →β is defined as the contextual closure of the rule:

(λx.M)N →β M{N/x}

→→β is the reflexive and transitive closure of →β, and =β is the equivalence relation gener-

ated by →→β.

iii) Call-by-value reduction is defined by limiting the reduction rule →β to contract only if

the right-hand term is a value, i.e. is either a variable or an abstraction.

(λx.M)V →β M{V/x}

Essentially following [16], an interpretation · µ̃ of the λ-calculus into λµµ̃ can be defined

as follows:

Definition 2.2 Interpretation of the λ-calculus into λµµ̃ via · µ̃ :

x µ̃ =
∆ x

λx.M µ̃ =
∆ λx. M µ̃

MN µ̃ =
∆ µα.〈 M µ̃ | N µ̃ ·α〉

We can even represent substitution explicitly (so interpret Bloo and Rose’s λx [13]), by adding

M 〈x :=N〉 µ̃ = µα.〈 N µ̃ | µ̃x.〈 M µ̃ |α〉〉

Notice that λ-values are interpreted by λµµ̃-values.

Correctness of this encoding is easy to prove:

Lemma 2.3 (λx.M)N µ̃ → M µ̃ { N µ̃/x}.

2 In [29], slots are called linear evaluation contexts.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 8

Proof : (λx.M)N µ̃ = µα.〈 λx.M µ̃ | N µ̃ ·α〉 = µα.〈λx. M µ̃ | N µ̃ ·α〉

→ µα.〈 N µ̃ | µ̃x.〈 M µ̃ |α〉〉 →µ̃ µα.〈 M µ̃ { N µ̃/x} |α〉

→ηµ M µ̃ { N µ̃/x}.

Notice that we need ηµ-reduction to achieve this, and that (λx.M)N µ̃ runs past the term

M 〈x :=N〉 µ̃ .

Using this lemma, we can prove the following relation between the λ-calculus and λµµ̃:

Theorem 2.4 i) If M →β N, then M µ̃ → N µ̃ .

ii) If M →v N, then M µ̃ →v N µ̃ .

Proof : Both parts follow by induction on the definition of →β, using Lemma 2.3. For part (ii),

we also need to check that (λx.M)N µ̃ →v M µ̃ { N µ̃/x} only if N is a value. Well, then

either N ≡ x or N ≡ λy.N′ , and for both cases N µ̃ is a value. Then the µ̃-reduction in the

proof of Lemma 2.3 is permitted, making the reduction cbv.

Example 2.5 In λµµ̃ we express the interaction between a program (term) and its context via

commands. Although there is no notion of application, λµµ̃ sees MN1 · · ·Nn µ̃ as running

M µ̃ in the context that offers the terms N1 µ̃ , . . . , Nn µ̃ in sequence. To understand this,

first notice that

MN1N2 µ̃ = µα.〈 MN1 µ̃ | N2 µ̃ ·α〉 =

µα.〈µβ.〈 M µ̃ | N1 µ̃ ·β〉 | N2 µ̃ ·α〉 →µ µα.〈 M µ̃ | N1 µ̃ · N2 µ̃ ·α〉

so it is easy to verify that

MN1 · · ·Nn µ̃ →∗
µ µα.〈 M µ̃ | N1 µ̃ · . . . · Nn µ̃ ·α〉

which puts into evidence that, for λ-terms, the only contexts that are needed are stacks. No-

tice that the context N1 µ̃ ·(N1 µ̃ · . . . · Nn µ̃ ·α) represents the λ-context for M, so stands for

C[[]N1], where C[] = []N2 · · ·Nn.

Since we can add the rule

〈λx.v1 |v2·γ〉 →β 〈v1{v2/x} |γ〉

it is fair to say that it is the presence of the construct µ̃x.c that makes λµµ̃ suitable for repre-

senting Classical Logic (see also [30]).

The standard reference for intersection type assignment for the λ-calculus is [11], which

presented what has become known as the BCD-system. This in itself is based on earlier notions

of intersection type assignment (for an overview, see [2, 5]), that all add the intersection type

constructor ‘∩’ next to the standard type constructor ‘→’. The BCD system differs from others

in that it treats these two type constructors the same, allowing, in particular, intersection to

occur at the right of arrow types; this general treatment is not necessary within the context of

the λ-calculus (see [2]), but for λµµ̃, as we will see in Example 7.1, to type all normal forms it

is natural to have an intersection type occur on the right-hand side of an arrow type. We will,

in this section, not consider a relation on types that is contra-variant on the arrow, since we

are not now interested in modelling extensionality.

One of the many notions of intersection type assignment, and the one that is at the basis

of the notion of intersection-union type assignment for λµµ̃ as defined in the next section, is

Krivine’s Système Dω, which constitutes a restricted version of the BCD-system, i.e. not closed

under η-reduction. We will show that our notion is a conservative extension of Système Dω in

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 9

that we can translate λ-terms typeable in that system to λµµ̃-terms whilst preserving types.

We will, however, only achieve that after changing the system to Mc, allowing all types in

both left and right contexts, in Section 9; we cannot prove this for the original system defined

M∩∪ in Section 4, as first presented in [18] (see Example 5.6), and neither can it be achieved

for the system presented in Section 8, as first presented in [19].

We first define Système Dω; from hereon, we will write n for the set {1, . . . ,n}.

Definition 2.6 i) The set T of intersection types, ranged over by A, B . . ., is defined through the

grammar:

A, B ::= ϕ | ⊤ | (A→B) | (A∩B)

ii) A statement is an expression of the form M : A, with M∈Λ and A∈T . M is the subject

and A the predicate of M : A.

iii) A type-environment Γ is a partial mapping from term variables to intersection types, and

we write x:A∈Γ if Γ (x) = A. We will write x ∈/ Γ if Γ is not defined on x, and Γ x when

we remove x from the domain of Γ.

In the notation of types, as above, right-most outer-most parentheses in arrow types will be

omitted, and we assume ∩ to bind stronger than →. We will consider a pre-order on types

which takes into account the idem-potence, commutativity and associativity of the intersection

type constructor, and defines ⊤ to be the maximal element.

Definition 2.7 The relation ≤ is defined as the least pre-order (i.e. reflexive and transitive

relation) on T such that:

A∩B ≤ A A∩B ≤ B A ≤⊤ C ≤ A ∧ C ≤ B ⇒ C ≤ A∩B

and the relation ∼ is defined by:

A ≤ B ≤ A ⇒ A ∼ B A ∼ C ∧ B ∼ D ⇒ A→B ∼ C→D

T can be considered modulo ∼; then ≤ becomes a partial order. It is easy to show that

both (A∩B)∩C ∼ B ∩ (A∩C) and A∩B ∼ B∩ A, so the type constructor ∩ is associative

and commutative, and we will write ∩n Ai for A1∩ · · ·∩ An, and consider ⊤ to be the empty

intersection: ⊤ = ∩0 Ai. Moreover, we will assume, unless stated explicitly otherwise, that in

∩n Ai each Ai is not an intersection type.

The inspiration for the rules that define how to assign intersection types come directly from

the way the logical and (∧) is treated in a natural deduction system.

(∧I) :
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧E) :

Γ ⊢ A ∧ B

Γ ⊢ A

As type assignment rules, these become:

(∩I) :
Γ ⊢λ M : A Γ ⊢λ M : B

Γ ⊢λ M : A∩ B
(∩E) :

Γ ⊢λ M : A∩ B

Γ ⊢λ M : A

(generalised to dealing with an arbitrary number of types below). Notice that the Curry-

Howard relation between typeable terms and proofs is lost: the introduction of the intersection

is not represented by syntax, and neither is its elimination. In fact, seen as al, rule, rule (∩I)

states that A ∧ B can only be proven if A and B are proven using two proofs with the exact

same structure; since it does not represent a proof construction step, we call it non-logical.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 10

Definition 2.8 Intersection type assignment and derivations are defined by the following natural

deduction system.

(Ax) :
Γ, x:A ⊢ x : A

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

(∩I) :
Γ ⊢ M : Ai (∀i∈n)

(n ≥ 0,n =/ 1)
Γ ⊢ M : ∩n Ai

(∩E) :
Γ ⊢ M : ∩n Ai

(∀j∈n,n ≥ 2)
Γ ⊢ M : Aj

We will write Γ ⊢D M : A for statements that are derived using these rules.

Notice that Γ ⊢D M : ⊤ for all Γ, M by rule (∩I).

3 Some initial observations

As mentioned above, our aim is to come to a notion of type assignment that is a natural

extension of Curien and Herbelin’s system but closed under conversion, i.e. closed both under

redex contraction and redex expansion. Since we can map the λ-calculus into λµµ̃, we also

want this encoding to preserve the assignable intersection types. The evident approach for

this is to add intersection and union types together with the appropriate rules. Before we

look at the various systems that have appeared in the past, we will investigate the minimal

requirements a system should satisfy by looking at completeness. We choose to be not too

formal in this section, but focus on intuition; formal definitions will follow when we prove

our results.

It is well known that it is possible to show that intersection type assignment for the λ-

calculus is closed under =β. We will not show the formal proof of this result here (it’s out of

scope and published in various papers), but rather give an informal reasoning, highlighting

the precise role of the type constructor ‘∩’ and the type constant ⊤. First we look at reduction.

Example 3.1 Suppose first that Γ ⊢D (λx.M)N : A is derived by (→E), so there exists B such

that Γ ⊢D λx.M : B→A and Γ ⊢D N : B. If (→I) is the last step performed for the first result, also

Γ, x:B ⊢D M : A and Γ ⊢D N : B. Then a derivation for Γ ⊢D M{N/x} : A can be obtained by re-

placing in the derivation for Γ, x:B ⊢D M : A, all occurrences of the sub-derivation Γ, x:B ⊢D x : B

by the derivation for Γ ⊢D N : B.

In fact, this reasoning is applicable to many notions of type assignment, and does not

depend at all on the presence of either ∩ or ⊤.

The second problem to solve in a proof for closure under β-equality is that of β-expansion:

Example 3.2 In order to show ‘if Γ ⊢D M{N/x} : A, then Γ ⊢D (λx.M)N : A’, we consider two

cases:

• Assume that the term-variable x occurs in M and so the term N is a sub-term of M{N/x};

then N is typed in the derivation for D :: Γ ⊢D M{N/x} : A, probably with several different

types B1, . . . , Bn.

Γ ⊢ N : Bi (∀i∈n)

Γ ⊢ M{N/x} : A

A derivation for Γ, x:∩n Bi ⊢D M : A can be obtained by replacing, in D, all sub-derivations

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 11

for Γ ⊢D N : Bj by the derivation for

(Ax)
Γ, x:∩n Bi ⊢ x : ∩n Bi

(∩E)
Γ, x:∩n Bi ⊢ x : Bj

Then, using (→I), we can derive Γ ⊢D λx.M : (∩n Bi)→A, and, using (∩I) on the collection

of removed sub-derivations, derive Γ ⊢D N : ∩n Bi. Then, using (→E), the redex can be

typed; in short:

(Ax)
Γ, x:∩n Bi ⊢ x : ∩nBi

(∩E)
Γ, x:∩n Bi ⊢ x : Bj (∀j∈n)

Γ, x:∩n Bi ⊢ M : A
(→I)

Γ ⊢ λx.M : (∩n Bi)→A

Γ ⊢ N : Bi (∀i∈n)
(∩I)

Γ ⊢ N : ∩nBi
(→E)

Γ ⊢ (λx.M)N : A

• When the term-variable x does not occur in M, the term N is a not a subterm of M{N/x}

and Γ ⊢D M{N/x} : A stands for Γ ⊢D M : A. In this case, the type ⊤ is used: since x does

not occur in M, by weakening x:⊤ can be assumed to appear in Γ, and applying rule (→I)

gives Γ ⊢D λx.M : ⊤→A. By (∩I), Γ ⊢D N : ⊤, so, using (→E), the redex can be typed.

Γ ⊢ M : A
(Wk)

Γ, x:⊤ ⊢ M : A
(→I)

Γ ⊢ λx.M : ⊤→A
(∩I)

Γ ⊢ N : ⊤
(→E)

Γ ⊢ (λx.M)N : A

So it is fair to say that intersection is mainly added for reasons of expansion.

We would like to come to the definition of a notion of type assignment for λµµ̃ that is both

a conservative extension of Herbelin and Curien’s system ⊢λ, and (using the embedding · µ̃)

of ⊢D, and could serve as a basis for semantics using types. A minimal requirement then is

that, as above for ⊢D, the system should be both sound and complete.

When considering reduction in λµµ̃, we need to deal with the three reduction rules:

(→) : 〈λx.v1 |v2·e〉 → 〈v2 | µ̃x.〈v1 |e〉〉

(µ) : 〈µβ.c |e〉 → c{e/β}

(µ̃) : 〈v|µ̃x.c〉 → c{v/x}

Let us look at the last two (substitution) rules; following the above line of thought, we can

say:

Example 3.3 Let 〈µβ.c |e〉 → c{e/β}, and assume the latter is typeable, so we have a derivation

D :: c{e/β} : Γ ⊢ ∆ . Now, if e occurs more than once in c{e/β}, it might be typed with different

types B1, . . . , Bn.

Di

Γ | e : Bi ⊢ ∆ (∀i∈n)

D

c{e/β} : Γ ⊢ ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 12

Collecting the sub-derivations Di :: Γ | e : Bi ⊢ ∆ , as above, we need to collect these types using

union, say, into the type B1 ∪ · · · ∪Bn, with which we can construct

Γ | β : ∪nBi ⊢ β:∪nBi,∆
(∪v)

Γ | β : Bi ⊢ β:∪nBi,∆ (∀i∈n)

D

c : Γ ⊢ β:∪nBi,∆
(µ)

Γ ⊢ µβ.c : ∪nBi | ∆

Di

Γ | e : Bi ⊢ ∆ (∀i∈n)
(∪L)

Γ | e : ∪nBi ⊢ ∆
(cut)

〈µβ.c|e〉 : Γ ⊢ ∆

which implies that, at least, the right-hand environment contains union types and that we

need the type assignment rules (∪ v) for context variables and (∪L) for contexts; in case e does

not occur in c{e/β}, we add the rule (⊥).

D

c : Γ ⊢ ∆
(W)

c : Γ ⊢ β:⊥,∆
(µ)

Γ ⊢ µβ.c : ⊥ | ∆
(⊥)

Γ | e : ⊥ ⊢ ∆
(cut)

〈µβ.c|e〉 : Γ ⊢ ∆

Similarly, we can deduce:

Example 3.4 Let 〈v|µ̃x.c〉→ c{v/x}, and assume the latter is typeable, then, reasoning as above,

we need to collect these types using intersection into the type B1∩ · · ·∩Bn, with which we can

construct

Di

Γ ⊢ v : Bi | ∆ (∀i∈n)
(∩R)

Γ ⊢ v : ∩n Bi | ∆

Γ, x:∩n Bi ⊢ x : ∩n Bi | ∆
(∩v)

Γ, x:∩n Bi ⊢ x : Bi | ∆ (∀i∈n)

D

c : Γ, x:∩n Bi ⊢ ∆
(µ̃)

Γ ⊢ µ̃x.c : ∩n Bi | ∆
(cut)

〈v|µ̃x.c〉 : Γ ⊢ ∆

so the left-hand environment should contain intersection types and we need the type assign-

ment rules (∩v) for term variables and (∩R) for terms; in case v does not occur in c{v/x}, we

add the rule ⊤.

(⊤)
Γ ⊢ v : ⊤ | ∆

D

c : Γ ⊢ ∆
(W)

c : Γ, x:⊤ ⊢ ∆
(µ̃)

Γ ⊢ µ̃x.c : ⊤ | ∆
(cut)

〈v|µ̃x.c〉 : Γ ⊢ ∆

Combining these observations, we have some minimal requirements:

Example 3.5 (The minimal system) The set of types we consider for the intersection-union

type assignment system for λµµ̃ is:

A, B ::= ϕ | ⊤ | ⊥ | (A→B) | (A∩B) | (A ∪B)

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 13

We allow intersection types in left-hand environments Γ, and union in right-hand environ-

ments ∆ (see Definition 4.4), and add the derivation rules:

(cut) :
Γ ⊢ v : A | ∆ Γ | e : A ⊢ ∆

〈v|e〉 : Γ ⊢ ∆

(∩v) :
Γ, x:∩n Ai ⊢ x : Ai | ∆

(∪v) :
Γ | α : Ai ⊢ α:∪n Ai,∆

(→R) :
Γ, x:A ⊢ v : B | ∆

Γ ⊢ λx.v : A→B | ∆
(→L) :

Γ ⊢ v : A | ∆ Γ | e : B ⊢ ∆

Γ | v·e : A→B ⊢ ∆

(µ) :
c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A | ∆
(µ̃) :

c : Γ, x:A ⊢ ∆

Γ | µ̃x.c : A ⊢ ∆

(∩R) :
Γ ⊢ v : Ai | ∆ (∀i∈n)

Γ ⊢ v : ∩n Ai | ∆
(∪L) :

Γ | e : Ai ⊢ ∆ (∀i∈n)

Γ | e : ∪n Ai ⊢ ∆

(⊤) :
Γ ⊢ v : ⊤ | ∆

(⊥) :
Γ | e : ⊥ ⊢ ∆

Notice that the rules (Ax-R) and (Ax-L) of Definition 1.3 are special cases of the rules (∩v)

and (∪v) we constructed above. Moreover, we can derive

(∩v)
Γ, x:∩n Ai ⊢ x : A1 | ∆ · · ·

(∩v)
Γ, x:∩n Ai ⊢ x : An | ∆

(∩R)
Γ, x:∩n Ai ⊢ x : ∩n Ai | ∆

and
(∪v)

Γ | α : A1 ⊢ α:∪n Ai,∆ · · ·
(∪v)

Γ | α : An ⊢ α:∪n Ai,∆
(∪L)

Γ | α : ∪n Ai ⊢ α:∪nAi,∆

so can model the rules (Ax-R) and (Ax-L) for intersection and union types.

We will, over the next sections, see a number of approaches towards defining a sound and

complete notion of intersection-union type assignment for λµµ̃ that have at least the rules of

this minimal system. Unfortunately, as we will see in Section 7, soundness already fails for this

system; since we reasoned above that this system is the minimal one to satisfy completeness,

this puts into evidence that a sound and complete system for λµµ̃ cannot be defined.

Notice that we have not considered rule (→) in our analysis above, but just looked at the

substitution rules (µ) and (µ̃); in fact, rule (→) in the context of union types forces some

additional measures, as can be seen in Example 6.1. In Section 9 we will look at how to extend

the above system and fix this flaw; see the proof of Theorem 9.9.

4 The system M of intersection and union typing for λµµ̃

The first notion of intersection and union typing for λµµ̃, System M∩∪, was presented in

[18]. System M∩∪ is set up using the minimal rules we established above in Example 3.5;

since the aim of [18] is to characterise strong normalisation, it does not consider ⊤ or ⊥. This

was followed by [19], which presented improvements/variants of the original system. In this

paper, we will revisit these systems, in order, albeit in a presentation that is adapted to our

approach, and discuss their results and shortcomings.

We start with the definition of intersection/union types.

Definition 4.1 (Intersection and Union Types) i) Let ϕ be a type variable, as before. The

set T∩∪ of intersection-union types (we will write T for short), ranged over by A, B, . . . is

inductively defined by:

A, B ::= ϕ | ⊤ | ⊥ | (A→B) | (A∩B) | (A ∪B)

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 14

ii) Tp is the set of proper types, defined by: Tp ::= ϕ | (T → T).

iii) T∩ is the set of intersection types, defined by: T∩ ::= Tp | ⊤ | (T∩ ∩ T∩).

iv) T∪ is the set of union types, defined by: T∪ ::= Tp | ⊥ | (T∪ ∪ T∪).

As above, we will omit unnecessary parentheses in types: the type constructors ‘∩’ and ‘∪’

will bind more strongly than ‘→’, so A∩B→C∩D is used for ((A∩B)→(C∩D)), A→B∩C→D

for (A→((B∩C)→D)), and (A→B)∩C→D for (((A→B)∩C)→D). We will sometimes write

the omissible parentheses to enhance readability. We will consider pre-orders on types which

take into account the idem-potence, commutativity and associativity of the intersection and

union type constructors.

Definition 4.2 (Relations on types) i) The relation ≤∩ is defined as the least pre-order on

T∩ such that:

A ≤∩⊤ A∩B ≤∩ A A∩B ≤∩ B A ≤∩ C ∧ A ≤∩ B ⇒ A ≤∩ B∩C

ii) The relation ≤∪ is defined as the least pre-order on T∪ such that:

⊥≤∪ A A ≤∪ A ∪B B ≤∪ A ∪B A ≤∪ C ∧ B ≤∪ C ⇒ A ∪B ≤∪ C

iii) We define A ≤ B by: there exists a C∈Tp such that A ≤∩ C ≤∪ B.

iv) The equivalence relation ∼∩ on T∩ is defined by:

A ≤∩ B ≤∩ A ⇒ A ∼∩ B A ∼∩ C ∧ B ∼∩ D ⇒ A→B ∼∩ C→D

The relation ∼∪ on T∪ is defined similarly.

The set T∩ and T∪ will be considered modulo their respective equivalence relations gener-

ated by the pre-orders. As before, intersection and union are associative and commutative,

and we will write ∩n Ai for the type A1∩ · · ·∩ An, as well as ∪n Ai for A1 ∪ · · · ∪ An, and will

only allow permutations of types within an intersection or within a union.

Remark 4.3 As was the case for intersection types for the Lambda Calculus, the inspiration for

the rules that define below how to assign intersection and union come directly from the way

and (∧) and or (∨) are treated in lk.

(∧R) :
Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A∧B,∆
(∧L) :

Γ, A ⊢ ∆

Γ, A∧B ⊢ ∆

(∨R) :
Γ ⊢ A,∆

Γ ⊢ A∨B,∆
(∨L) :

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A∨B ⊢ ∆

If we view the explicitly mentioned formulae as under focus, this becomes:

(∧R) :
Γ ⊢ A | ∆ Γ ⊢ B | ∆

Γ ⊢ A∧B | ∆
(∧L) :

Γ | A ⊢ ∆

Γ | A∧B ⊢ ∆

(∨R) :
Γ ⊢ A | ∆

Γ ⊢ A∨B | ∆
(∨L) :

Γ | A ⊢ ∆ Γ | B ⊢ ∆

Γ | A∨B ⊢ ∆

This naturally leads to the definition of the following rules for intersection and union:

(∩R) :
Γ ⊢ v : A | ∆ Γ ⊢ v : B | ∆

Γ ⊢ v : A∩B | ∆
(∩L) :

Γ | e : A ⊢ ∆

Γ | e : A∩B ⊢ ∆

(∪R) :
Γ ⊢ v : A | ∆

Γ ⊢ v : A∪B | ∆
(∪L) :

Γ | e : A ⊢ ∆ Γ | e : B ⊢ ∆

Γ | e : A∪B ⊢ ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 15

This is, essentially, the approach of [18, 29]; unfortunately, as we will show below, this

approach does not lead to the correct system, in the sense that not all desired properties can

be shown to hold. In fact, as we will argue below (Theorem 9.9), there is no reason to treat

the formulae exclusively as activated; also the variants that view the explicitly mentioned

formulae as just appearing in the environment, i.e. as when the sequent is witnessed by a

command

() :
c : Γ ⊢ α:A,∆ c : Γ ⊢ α:B,∆

c : Γ ⊢ α:A∩B,∆
(∩L-v) :

c : Γ, x:A ⊢ ∆

c : Γ, x:A∩B ⊢ ∆

() :
c : Γ ⊢ α:A,∆

c : Γ ⊢ α:A∪B,∆
() :

c : Γ, x:A ⊢ ∆ c : Γ, x:B ⊢ ∆

c : Γ, x:A∪B ⊢ ∆

should be added; notice that now a left-hand environment can contain union types and a

right-hand environment intersection types.

Definition 4.4 (Environments) i) A left-hand environment Γ is a partial mapping from term

variables to intersection types, represented as a set of statements with only distinct vari-

ables as subjects.

ii) We write Γ∩ x:A for the left-hand environment Γ ∪{x:A} if x does not occur in Γ, and for

Γ x ∪{x:A∩B} if x:B∈Γ, and will write Γ, x:A for Γ∩ x:A when x ∈/ Γ.

iii) We write Γ1 ∩Γ2 for the left-hand environment Γ defined by: if x:A∈Γ then either:

a) x:A∈Γ1 and x does not occur in Γ2, or

b) x:A∈Γ2 and x does not occur in Γ1, or

c) x:B∈Γ1 and x:C∈Γ2, and A = B∩C,

and write ∩nΓi for Γ1∩ · · · ∩Γn.

iv) A right-hand environment ∆ is a partial mapping from environment variables to union

types, represented as a set of statements with only distinct variables as subjects; the no-

tions α:A,∆, as well as ∆1 ∪∆2 and ∪n∆i are defined as above.

Notice that the restriction to intersection types for left-hand environments and union types for

right-hand environments clearly is inspired by the logical reading of A1, . . . , An ⊢ B1, . . . , Bm,

where the left-hand formulae are joined by the logical and, and the right-hand formulae are

joined by or. As was remarked in [18], left-hand environments are limited to intersection

types (and right-hand environment to union types) for reasons of soundness, since otherwise

the substitution lemmae (see Lemma 5.8 and 5.9) would no longer hold; we will see that this

restriction is too strong in that it blocks completeness, and too weak in that it does not solve

the soundness problem.

We will now present the notion of intersection-union typing (or better, environment assign-

ment) for λµµ̃, System M, a slight variant of System M∩∪ as defined in [18] in a notation

adapted to our purposes.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 16

Definition 4.5 (System M) System M is defined using the following sequent system:

(cut) :
Γ1 ⊢ v : A | ∆1 Γ2 | e : A ⊢ ∆2

〈v|e〉 : Γ1∩Γ2 ⊢ ∆1 ∪∆2

(Ax-R) : (A ≤∩ B, B∈Tp)
Γ, x:A ⊢ x : B | ∆

(Ax-L) : (A ≤∪ B, A∈Tp)
Γ | α : A ⊢ α:B,∆

(→R) :
Γ, x:A ⊢ v : B | ∆

Γ ⊢ λx.v : A→B | ∆
(→L) :

Γ1 ⊢ v : A | ∆1 Γ2 | e : B ⊢ ∆2

Γ1 ∩Γ2 | v·e : A→B ⊢ ∆1 ∪∆2

(µ) :
c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A | ∆
(µ̃) :

c : Γ, x:A ⊢ ∆

Γ | µ̃x.c : A ⊢ ∆

(∩R) :
Γi ⊢ v : Ai | ∆i (∀i∈n)

(n ≥ 2)
∩nΓi ⊢ v : ∩n Ai | ∪n∆i

(∩L) :
Γ | e : Ai ⊢ ∆ (∀i∈n)

(n ≥ 2)
Γ | e : ∩n Ai ⊢ ∆

(∪R) :
Γ ⊢ v : Ai | ∆ (∀i∈n)

(n ≥ 2)
Γ ⊢ v : ∪nAi | ∆

(∪L) :
Γi | e : Ai ⊢ ∆i (∀i∈n)

(n ≥ 2)
∩nΓi | e : ∪n Ai ⊢ ∪n∆i

We call a derivation constructed via these rules proper if it does not end with one of the bottom

four rules.

Notice that this system contains the minimal one of Example 3.5, but for the absence of rules

(⊤) and (⊥); it adds the rules (∪R) and (∪L).

This system is a variant of system M∩∪ of [18] in that we use a multiplicative style (combine

environments in rules via ∩ and ∪) rather than assuming the same environment is used in the

sub-derivations; this is done mainly for convenience when drawing derivations. Notice that,

since we allow any Γ and ∆ in our rules, the normal style of rules, as in

(→L) :
Γ ⊢ v : A | ∆ Γ | e : B ⊢ ∆

Γ | v·e : A→B ⊢ ∆

now is a special case; this also follows from Lemma 5.1. Notice also that, in rule (Ax-R) (and

(Ax-L)), a type is selected from within an intersection (a union) for a term (context) variable;

since the extracted types are in Tp, these rules actually are (∩v) and (∪v). In aim to obtain

some of the same functionality for the implicit variables, the system adds rules (∪R) and (∩L).

Other than for being inspired by the logical right-rule for ‘or’ and the logical left-rule for

‘and’, there seems to be no reason why the rules (∪R) and (∩L) are added; since intersection

types are limited to left-hand environments, and union types to right-hand environments,

these rules add no operational power, as the behaviour they model is already sufficiently ex-

pressed via rules (Ax-R) and (Ax-L). In fact, we only see a use for these rules in a system that

would allow all types in both left and right-hand environments, as illustrated in Example 9.10.

In Section 10 we will consider two restrictions of this system, defined as follows:

Definition 4.6 (cbv and cbn intersection and union typing for λµµ̃) i) The notion of typ-

ing ⊢v is defined as ⊢M, by changing rule (∩R):

(∩Rv) :
Γi ⊢ V : Ai | ∆i (∀i ∈ n)

(n ≥ 2)
∩nΓi ⊢ V : ∩n Ai | ∪n∆i

ii) The notion of typing ⊢n is defined as ⊢M, by changing rule (∪L):

(∪Ln) :
Γi | E : Ai ⊢ ∆i (∀i∈n)

(n ≥ 2)
∩nΓi | E : ∪n Ai ⊢ ∪n∆i

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 17

For these system we will be able to show a soundness result; we cannot achieve that for any

of the other systems we study here. Since ⊤ and ⊥ only play a role for completeness, we need

not consider those types for these two systems.

System M is defined in [18] without any relation on types, it is just stated that types are

considered to be defined modulo commutativity and associativity for ∩ and ∪; this corre-

sponds to the type inclusion relations we use here. Notice we do not have a contra-variant

type inclusion relation (which would state that C ≤ A ∧ B ≤ D ⇒ A→B ≤ C→D); this com-

bined with the full BCD-intersection types gives a notion of typing that is closest to Krivine’s

Système Dω (see Theorem 9.5).

This system does not have choice, i.e. we cannot show that, if Γ ⊢M v : A ∪B | ∆ , then either

Γ ⊢M v : A | ∆ or Γ ⊢M v : B | ∆ , as would hold in an intuitionistic system.

Example 4.7 Take the term µδ.〈λxµβ.〈x|δ〉 |δ〉; we can type this term as follows:

x:A ⊢ x : A | | δ : A ⊢ β:B,δ:A
(cut)

〈x |δ〉 : x:A ⊢ β:B,δ:A
(µ)

x:A ⊢ µβ.〈x |δ〉 : B | δ:A
(→R)

⊢ λxµβ.〈x |δ〉 : A→B | δ:A | δ : A→B ⊢ δ:A→B
(cut)

〈λxµβ.〈x |δ〉 |δ〉 : ⊢ δ:A ∪ (A→B)
(µ)

⊢ µδ.〈λxµβ.〈x |δ〉 |δ〉 : A ∪ (A→B) |

Notice that we need both types for δ to type the whole term µδ.〈λxµβ.〈x|δ〉 |δ〉. It is there-

fore impossible to derive either ⊢M µδ.〈λxµβ.〈x|δ〉 |δ〉 : A | or ⊢M µδ.〈λxµβ.〈x|δ〉 |δ〉 : A→B | .

A similar observation can be made with respect to the necessity of intersection in order to

type µ̃y.〈y|y·β〉,

y:C→D ⊢ y : C→D |

y:C ⊢ y : C | | β : D ⊢ β:D
(→L)

y:C | y·β : C→D ⊢ β:D
(cut)

〈y|y·β〉 : y:(C→D)∩C ⊢ β:D
(µ̃)

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D

5 Basic properties of System M

We start our investigation of System M by showing some basic properties. As is usual, we

can restrict the environment to just those statements that are relevant, or generalise them by

adding statements.

Lemma 5.1 (Thinning and weakening) i) If c : Γ ⊢M ∆ and Γ′ = {x:B∈Γ | x∈ fv(c)} and ∆′ =

{α:B∈Γ | α∈ fv(c)}, then also c : Γ′ ⊢M ∆′ . Similar for Γ | e : A ⊢M ∆ and Γ ⊢M v : A | ∆ .

ii) If c : Γ ⊢M ∆ , Γ′ ≤∩ Γ and ∆ ≤∪ ∆′, then c : Γ′ ⊢M ∆′ . Similar for Γ | e : A ⊢M ∆ and Γ ⊢M v : A | ∆ .

Proof : Both parts are shown by simultaneous induction.

We can show that we can type all terms in normal form.

Definition 5.2 Normal forms are defined by the grammar

vnf ::= x | λx.vnf | µα.cnf

enf ::= α | vnf·enf | µ̃x.cnf

cnf ::= 〈x|α〉 | 〈x |vnf·enf〉 | 〈λx.vnf |α〉

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 18

Theorem 5.3 i) If v is in normal form, then there exist Γ, A, and ∆ such that Γ ⊢M v : A | ∆ .

ii) If e is in normal form, then there exist Γ, A, and ∆ such that Γ | e : A ⊢M ∆ .

iii) If c is in normal form, then there exist Γ and ∆ such that c : Γ ⊢M ∆ .

Proof : By simultaneous induction; we show only some of the cases.

(x) : Take Γ = x:A, and ∆ = ∅.

(λx.vnf) : By induction, there are Γ, B, and ∆ such that Γ ⊢M vnf : B | ∆ . If x occurs free in vnf,

it has a type C in Γ, and by applying rule (→R) we can derive Γ x:C ⊢M λx.vnf : C→B | ∆ .

If x is not free in vnf, we can add x:C by weakening, and conclude the same way.

(vnf·enf) : By induction, there are Γ1, B, ∆1, and Γ2, C, and ∆2 such that Γ1 ⊢M vnf : B | ∆1 and

Γ2 | enf : C ⊢M ∆2 . By applying rule (→L) we derive Γ1 ∩Γ2 | vnf·enf : B→C ⊢M ∆1 ∪∆2 .

(〈x|α〉) : Take Γ = x:A, and ∆ = α:A; the result follows by rules (Ax-R), (Ax-L), and (cut).

(〈x |vnf·enf〉) : By induction, there are Γ1, B, ∆1, and Γ2, C, and ∆2 such that Γ1 ⊢M vnf : B | ∆1

and Γ2 | enf : C ⊢M ∆2 . By applying rule (→L) we derive Γ1∩Γ2 | vnf·enf : B→C ⊢M ∆1 ∪∆2 . We

have x:B→C ⊢M x : B→C | by rule (Ax-R) and the result follows by rule (cut).

Notice the role of intersection and union in the third and fifth cases.

The relation between syntax and derivable judgements is formulated through:

Lemma 5.4 (Generation Lemma) i) If 〈v|e〉 : Γ ⊢M ∆ , then Γ ⊢M v : A |∆ and Γ | e : A ⊢M ∆ for some

A.

ii) If Γ, x:A ⊢M x : B | ∆ , then A ≤ B.

iii) If Γ ⊢M λx.v : A | ∆ , then there are Ai (∀i∈n) such that ∩n Ai ≤ A, and for all i∈n there exist

Bi,Ci such that Ai = Bi→Ci, and Γ, x:Bi ⊢M v : Ci | ∆ .

iv) If Γ ⊢M µα.c : A |∆ , then there are Ai (∀i∈n) such that ∩n Ai ≤ A, and, for all i∈n, c : Γ ⊢M α:Ai,∆ .

v) If Γ | α : A ⊢M α:B,∆ , then A ≤ B.

vi) If Γ | v·e : A ⊢M ∆ , then there are Ai (∀i∈n) such that A ≤ ∪n Ai, and for all i∈n there are Bi,Ci

such that Ai = Bi→Ci, and Γ ⊢M v : Bi | ∆ and Γ | e : Ci ⊢M ∆ .

vii) If Γ | µ̃x.c : A ⊢M ∆ , then there are Ai (∀i∈n) such that A≤∪n Ai, and, for all i∈n, c : Γ, x:Ai ⊢M ∆ .

Proof : Straightforward.

In particular, the Generation Lemma does not state that “if Γ ⊢M µα.c : A | ∆ , then c : Γ ⊢M
α:A,∆”; in fact, we could have used (∩R) when deriving the first statement:

c : Γ ⊢ α:Ai,∆
(µ)

Γ ⊢ µα.c : Ai | ∆ (∀i∈n)
(∩R)

Γ ⊢ µα.c : ∩n Ai | ∆

We can perhaps derive c : Γ ⊢λ α:Ai,∆ , for all i∈n, but cannot derive c : Γ ⊢λ α:∩n Ai,∆ , since

we do not allow intersection types in right-hand type environments. Similarly, we can derive

c : Γ, x:Ai ⊢ ∆
(µ̃)

Γ | µ̃x.c : Ai ⊢ ∆ (∀i∈n)
(∪L)

Γ | µ̃x.c : ∪n Ai ⊢ ∆

but not c : Γ, x:∪n Ai ⊢M ∆ . This creates a problem for soundness, as we will see below.

Notice that the Generation Lemma is formulated in terms of the type inclusion relation ≤.

In fact, we can show the following:

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 19

Lemma 5.5 The rules

(≤R) :
Γ ⊢ v : A | ∆

(A ≤ B)
Γ ⊢ v : B | ∆

(≤L) :
Γ | e : B ⊢ ∆

(A ≤ B)
Γ | e : A ⊢ ∆

are admissible in ⊢M.

Proof : We show first that the rules

(≤∪) :
Γ ⊢ v : A | ∆

(A ≤∪ B)
Γ ⊢ v : B | ∆

(≤∩) :
Γ | e : B ⊢ ∆

(A ≤∩ B)
Γ | e : A ⊢ ∆

are admissible. For (≤∪): if A ≤∪ B, then B = ∪nBi, A = ∪m Aj, and, for every j∈m there is an

i∈n such that Aj = Bi, so B = A ∪C, for some C, and the result follows from rule (∪R). For

(≤∩), the reasoning is similar.

For the first case, (≤R), assume Γ ⊢M v : A | ∆ ; if A ≤ B, then there exists C∈Tp such that

A ≤∩ C and C ≤∪ B, or A ≤∪ B. This derivation ends with either:

(Ax-R) : Then v = x, and x:D∈Γ with D ≤∩ A; then also D ≤∩ C, so also Γ ⊢M x : C | ∆ .

(→R) : Then v = λx.v′, and A = D→E. Since D→E ≤∩ C, in fact D→E = C; then D→E ≤∪ B.

(µ) : Then v = µα.c, and c : Γ ⊢M α:A,∆ . Then A is not an intersection type, so A ≤∪ B.

(∩R) : Then A = ∩n Ai, C = A, and D = C ∪E, for some E.

(∪R) : Then A = ∪n Ai ≤∪ B.

In all cases, we conclude using rule (≤∪).

As for the second rule, (≤L), if A ≤ B, then either B is not a union, and then A ≤∩ B, or

there exists C∈Tp such that A ≤∩ C ≤∪ B. Assume Γ | e : B ⊢M ∆ , then this derivation ends with

either:

(Ax-L) : Then e = α, and α:D∈∆ with B ≤∪ D; then also C ≤∪ D, so also Γ | α : C ⊢M ∆ .

(→L) : Then e = v·e′, and B = D→E. Since C ≤∪ D→E, in fact D→E = C; then A ≤∩ D→E.

(µ̃) : Then e = µ̃x.c, and c : Γ, x:B ⊢M ∆ . Then B is not an union type, A ≤∩ B.

(∪L) : Then A = ∪n Ai, C = ∪mCj, where for every j∈m there is an i∈n such that Cj = Ai, and

D = ∩mCj ∩E, for some E. Then, by rule (∪L), also Γ | e : ∪mCj ⊢M ∆ .

(∩L) : Then A = C.

In all cases, we now conclude using rule (≤∩).

As a direct consequence, also the following rules are admissible:

(∩E) :
Γ ⊢ v : ∩n Ai | ∆

(j∈ν)
Γ ⊢ v : Aj | ∆

(∪E) :
Γ | e : ∪nAi ⊢ ∆

(j∈ν)
Γ | e : Aj ⊢ ∆

One might think that being able to model (∩E) is enough to show that the interpretation

of λ-terms now preserves assignable types, but this is not the case. The problem is in the

fact that intersection types are not allowed in right-hand environment, as is clear from the

following:

Example 5.6 Assume a derivation in ⊢d ends with (→E): then the term in question is an

application PQ, and there is a B such that Γ ⊢D P : B→A and Γ ⊢D Q : B. Assume, by induction,

that both Γ ⊢M P µ̃ : B→A | and Γ ⊢M Q µ̃ : B | are derivable: since PQ µ̃ = µα.〈 P µ̃ | Q µ̃ ·α〉

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 20

we would like to construct

Γ ⊢ P µ̃ : B→A |

Γ ⊢ Q µ̃ : B | | α : A ⊢ α:A
(→L)

Γ | Q µ̃ ·α : B→A ⊢ α:A
(cut)

〈 P µ̃ | Q µ̃ ·α〉 : Γ ⊢ α:A
(µ)

Γ ⊢ µα.〈 P µ̃ | Q µ̃ ·α〉 : A |

but A might be an intersection type ∩n Ai, and then we cannot derive | α : A ⊢M α:A . What we

then perhaps could show is the following:

Γ ⊢ P µ̃ : B→Ai |

Γ ⊢ Q µ̃ : B | | α : Ai ⊢ α:Ai
(→L)

Γ | Q µ̃ ·α : B→Ai ⊢ α:Ai
(cut)

〈 P µ̃ | Q µ̃ ·α〉 : Γ ⊢ α:Ai
(µ)

Γ ⊢ µα.〈 P µ̃ | Q µ̃ ·α〉 : Ai | (∀i∈n)
(∩R)

Γ ⊢ µα.〈 P µ̃ | Q µ̃ ·α〉 : ∩n Ai |

but this depends on being able to show that Γ ⊢M P µ̃ : B→∩n Ai | implies Γ ⊢M P µ̃ : B→Ai |

for all i∈n, a property that holds only in a system closed under a contra-variant relation on

types, which M is not. So it seems that, although M uses full BCD [11] types, it is, in fact,

strict [1] in nature.

We will be able to show the type preservation result for System Mc in Section 9.

Notice that typing is not preserved for the rule (η): for example, we can derive:

y:A→B ⊢ y : A→B |

x:A∩C ⊢ x : A | β:B | β : B ⊢ β:B
(→L)

x:A∩C | x·β : A→B ⊢ β:B
(cut)

〈y|x·β〉 : y:A→B, x:A∩C ⊢ β:B
(µ)

y:A→B, x:A∩C ⊢ µβ.〈y|x·β〉 : B |
(→R)

y:A→B ⊢ λxµβ.〈y|x·β〉 : (A∩C)→B |

but cannot show y:A→B ⊢M y : (A∩C)→B | ; we would again need a ≤-relation on types that

is contra-variant over arrow types.

However, we can show that µ̃-reduction towards an intersection and µ-reduction towards a

union are safe, as well as rule (→); we will start with the latter:

Theorem 5.7 (Soundness for rule (→)) If 〈λx.v1 |v2·e〉 : Γ ⊢M ∆ , then 〈v2 | µ̃x.〈v1 |e〉〉 : Γ ⊢M ∆ .

Proof : If 〈λx.v1 |v2·e〉 : Γ ⊢M ∆ , then, by Lemma 5.4, we have:

D1
i

Γ, x:Ci ⊢ v1 : Di | ∆
(→R)

Γ ⊢ λx.v1 : Ci→Di | ∆ (∀i∈n)
(∩R)

Γ ⊢ λx.v1 : ∩n(Ci→Di) | ∆
(≤R)

Γ ⊢ λx.v1 : A | ∆

D2
j

Γ ⊢ v2 : Ej | ∆

D3
j

Γ | e : Fj ⊢ ∆

(→L)
Γ | v2·e : Ej→Fj ⊢ ∆ (∀j∈m)

(∪L)
Γ | v2·e : ∪m(Ej→Fj) ⊢ ∆

(≤L)
Γ | v2·e : A ⊢ ∆

(cut)
〈λx.v1 |v2·e〉 : Γ ⊢ ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 21

for some n and m. Notice that then either n = 1 or m = 1, or ∩n(Ci→Di) ≤ ∪m(Ej→Fj), so, in

particular, there exists an i∈n, j∈m and A, B such that Ci→Di = A→B = Ej→Fj, so such that

Ej = Ci = A and Di = Fj = B. But then we can derive:

D2
j

Γ ⊢ v2 : A | ∆

D1
i

Γ, x:A ⊢ v1 : B | ∆

D3
j

Γ | e : B ⊢ ∆
(cut)

〈v1 |e〉 : Γ, x:A ⊢ ∆
(µ̃)

Γ | µ̃x.〈v1 |e〉 : A ⊢ ∆
(cut)

〈v2 | µ̃x.〈v1 |e〉〉 : Γ ⊢ ∆

as desired. In fact, we can argue that both the derived intersection type as well as the derived

union type are obsolete: since the implicit output of λx.v1 and the implicit input of v2·e are

unique, there is no need for either intersection or union.

The following lemmas show that a well-typed substitution of a term for a term variable and

of a context for a context variable is sound. This gives a partial result for reduction, stating

that a µ-contraction towards a union type A such that Γ ⊢M µα.c : A | ∆ is sound, as well as that

a µ̃-contraction towards an intersection type A such that Γ | µ̃x.c : A ⊢M ∆ is.

Lemma 5.8 (Term substitution lemma) Let Γ ⊢M v : B | ∆ .

i) If c : Γ, x:B ⊢M ∆ , then c{v/x} : Γ ⊢M ∆ .

ii) If Γ, x:B ⊢M v′ : A | ∆ , then Γ ⊢M v′{v/x} : A | ∆ .

iii) If Γ, x:B | e : A ⊢M ∆ , then Γ | e{v/x} : A ⊢M ∆ .

Proof : By simultaneously induction; we show only some of the cases.

(c = 〈v′ |e′〉) : By Lemma 5.4, we have both Γ, x:B ⊢M v′ : A | ∆ and Γ, x:B | e′ : A ⊢M ∆ for some

A. Then by induction (ii) and (iii), both Γ ⊢M v′{v/x} : A | ∆ and Γ | e′{v/x} : A ⊢M ∆ , and

c{v/x} : Γ ⊢M ∆ follows by rule (cut).

(v′ = x) : Then, by Lemma 5.4, B ≤ A. By rule (≤R), also Γ ⊢M v : A | ∆ .

(v′ = µα.c) : Then, by Lemma 5.4, there are Ai (∀i∈n) such that ∩n Ai ≤ A, and c : Γ, x:B ⊢M
α:Ai,∆ . By induction (i), c{v/x} : Γ ⊢M α:Ai,∆ , so Γ ⊢M (µα.c){v/x} : Ai | ∆ by rule (µ); the

result follows by (∩R) and (≤R).

(e = α) : By thinning, Γ | α : A ⊢M ∆ .

(e = v′·e′) : Then, by Lemma 5.4, there are Ci, Di (∀i∈n) such that A ≤ ∪n(Ci→Di), and both

Γ, x:B ⊢M v′ : Ci | ∆ and Γ, x:B | e′ : Di ⊢M ∆ for all i∈n. We have Γ ⊢M v′{v/x} : Ci | ∆ by

induction (ii) and Γ | e′{v/x} : Di ⊢M ∆ by induction (iii), so Γ | (v′·e′){v/x} : Ci→Di ⊢M ∆ by

rule (→L); the result follows from (∪L) and (≤L).

Notice, since left-hand environments contain only intersection types, we do not need the

condition B∈T∩.

Lemma 5.9 (Context substitution lemma) Let Γ | e : B ⊢M ∆ .

i) If c : Γ ⊢M α:B,∆ , then c{e/α} : Γ ⊢M ∆ .

ii) If Γ ⊢M v : A | α:B,∆ , then Γ ⊢M v{e/α} : A | ∆ .

iii) If Γ | e′ : A ⊢M α:B,∆ , then Γ | e′{e/α} : A ⊢M ∆ .

Proof : By simultaneously induction; we show only some of the cases.

(c = 〈v′ |e′〉) : By Lemma 5.4, we have both Γ ⊢M v′ : A | α:B,∆ and Γ | e′ : A ⊢M α:B,∆ for some

A. Then by induction (ii) and (iii), both Γ ⊢M v′{e/α} : A | ∆ and Γ | e′{e/α} : A ⊢M ∆ , and

c{e/α} : Γ ⊢M ∆ by rule (cut).

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 22

(v = x) : By thinning, Γ ⊢M x : A | ∆ .

(v = λy.v′) : Then, by Lemma 5.4, there are Ci, Di (∀i∈n) such that ∩n(Ci→Di) ≤ A, and

Γ, x:B,y:Ci ⊢M v′′ : Di | ∆ , for all i∈n. By induction (ii), Γ,y:Ci ⊢M v′′{e/α} : Di | ∆ , so also

Γ ⊢M (λy.v′′){e/α} : Ci→Di | ∆ by rule (→R), and the result follows from (∩R) and (≤R).

(e = α) : Then, by Lemma 5.4, A ≤ B. By rule (≤L), also Γ | e : A ⊢M ∆ .

(e = v′·e′) : Then, by Lemma 5.4, there are Ci, Di (∀i∈n) such that A ≤ ∪n(Ci→Di), with

Γ ⊢M v′ : Ci | α:B,∆ and Γ | e′ : Di ⊢M α:B,∆ , for all i∈n. Then Γ ⊢M v′{e/α} : Ci |∆ by induction

(ii), and Γ | e′{e/α} : Di ⊢M ∆ by induction (iii), so Γ | (v′·e′){e/α} : Ci→Di ⊢M ∆ by rule (→L);

the result follows from (∪L) and (≤L).

The promised (conditional) reduction results for both µ̃ and µ reduction are implied by the

first parts, respectively, of these lemmas.

Theorem 5.10 i) If 〈µα.c|e〉 : Γ ⊢M ∆ such that Γ ⊢M µα.c : A | ∆ is derived in an immediate sub-

derivation with A ∈/ T∩, then c{e/α} : Γ ⊢M ∆ .

ii) If 〈v|µ̃x.c〉 : Γ ⊢M ∆ such that Γ | µ̃x.c : A ⊢M ∆ is derived in an immediate sub-derivation with

A ∈/ T∪, then c{v/x} : Γ ⊢M ∆ .

Proof : i) If 〈µα.c|e〉 : Γ ⊢M ∆ , then there exists A such that Γ ⊢M µα.c : A | ∆ and Γ | e : A ⊢M ∆ . If

A ∈/ T∩, then, by Lemma 5.4, c : Γ ⊢M α:A,∆ , and c{e/α} : Γ ⊢M ∆ follows by Lemma 5.9.

ii) Similar, using Lemma 5.8.

Notice that, in part (i), if A = ∩n Ai, then, as a result of (∩R) and (µ), also c : Γ ⊢M α:Ai,∆ ; we

now cannot show the result, since all Ai might be necessary for Γ | e : ∩n Ai ⊢M ∆ , so we cannot

derive Γ | e : Ai ⊢M ∆ (see Example 7.1).

As a consequence, using run-time type checking it is possible to build a sound implemen-

tation of this system; we will show in Section 7 that we cannot achieve a stronger result.

6 Loss of completeness

The main goal of the authors of [18] was to characterise strong normalisation; an important

property in the proof for that result in systems with abstraction is that the system is complete

(see the proof in [1] for the characterisation of strong normalisation in the context of the λ-

calculus, as well as [3, 5] for two new proofs), so we would need to show that, if c1 → c2 and

c2 : Γ ⊢M ∆ then also c1 : Γ ⊢M ∆ . But, surprisingly, and considering it is the minimal system

we identified above, the presence of intersection and union notwithstanding, System M is not

complete, not even for non-cancelling reduction, where ⊤ and ⊥ could be useful.

To show this, we will give a number of counter examples. We give two terms c1 and c2 such

that c1 → c2, and give a derivation for c2 that we cannot expand to a derivation for c1.

Example 6.1 Take the reduction 〈λx.v1 |v2·e〉 → 〈v2 | µ̃x.〈v1 |e〉〉 via rule (→). Assume that for

the right-hand side we can derive:

D1

Γ ⊢ v2 : ∪n Ai | ∆

Di
2

Γ, x:Ai ⊢ v1 : Bi | ∆

Di
3

Γ | e : Bi ⊢ ∆
(cut)

〈v1 |e〉 : Γ, x:Ai ⊢ ∆
(µ̃)

Γ | µ̃x.〈v1 |e〉 : Ai ⊢ ∆ (∀i∈n)
(∪L)

Γ | µ̃x.〈v1 |e〉 : ∪n Ai ⊢ ∆
(cut)

〈v2 | µ̃x.〈v1 |e〉〉 : Γ ⊢ ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 23

(note that for v2 we can pick a term that truly needs all types mentioned in the union as in

Example 4.7). Given the collection of sub-derivations, there is little choice when constructing

the derivation for 〈λx.v1 |v2·e〉. Notice that we are looking for a type C to derive

Γ ⊢ λx.v1 : C | ∆ Γ | v2·e : C ⊢ ∆
(cut)

〈λx.v1 |v2·e〉 : Γ ⊢ ∆

Focussing on the right-hand sub-derivation, not considering rules (∪L) and (∩L) (since these

would require a sub-derivation for v2·e as well), this gives:

Γ ⊢ λx.v1 : ∪n Ai→D | ∆

D1

Γ ⊢ v2 : ∪n Ai | ∆

D3

Γ | e : D ⊢ ∆
(→L)

Γ | v2·e : ∪n Ai→D ⊢ ∆
(cut)

〈λx.v1 |v2·e〉 : Γ ⊢ ∆

so C = ∪n Ai→D; note that, a priori, since the system lacks choice, derivation D1 cannot be

decomposed, and that D in D3 is composed out of the Bi, either via application of rule (∩L)

or (∪L). Focussing now on the left-hand sub-derivation, since this derives an arrow type, we

get:

D2

Γ, x:∪nAi ⊢ v1 : D | ∆

(→R)
Γ ⊢ λx.v1 : ∪n Ai→D | ∆

D1

Γ ⊢ v2 : ∪n Ai | ∆

D3

Γ | e : D ⊢ ∆
(→L)

Γ | v2·e : ∪n Ai→D ⊢ ∆
(cut)

〈λx.v1 |v2·e〉 : Γ ⊢ ∆

Now the derivation D2 must be constructed from the Di
2 by either rule (∩R) or (∪R); this is

not possible, since neither creates a union type for x. As suggested in Remark 4.3, the last

step for D2 requires a rule like

() :
Γi, x:Ai ⊢ v : Bi | ∆i (∀i∈n)

∩nΓi, x:∪n Ai ⊢ v : ∪nBi | ∪n∆i

which is not admissible in System M. As mentioned above, to achieve soundness, [18] treats

implicit and explicit variables differently, thereby diminishing the necessary expressiveness of

the system.

As shown in the next example, also µ-expansion is problematic.

Example 6.2 Let c1 = 〈µα.〈x|α〉 | µ̃y.〈y|y·β〉〉, and c2 = 〈x | µ̃y.〈y|y·β〉〉, and notice that c1 →µ c2.

Let D be the derivation for µ̃y.〈y|y·β〉 given in Example 4.7, then we can type c2 as follows:

x:C→D ⊢ x : C→D | x:C ⊢ x : C |
(∩R)

x:(C→D)∩C ⊢ x : (C→D)∩C |

D

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D
(cut)

〈x | µ̃y.〈y|y·β〉〉 : x:(C→D)∩C ⊢ β:D

We cannot derive c2’s typing for c1. Extracting the context µ̃y.〈y|y·β〉 from the command

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 24

〈x | x·µ̃y.〈y|y·β〉〉 would create:

.

..

.

..

x:C→D ⊢ x : C→D | x:C ⊢ x : C |
(∩R)

x:(C→D)∩C ⊢ x : (C→D)∩C |
(?)

| α : (C→D)∩C ⊢ α:(C→D)∩C
(cut)

〈x |α〉 : x:(C→D)∩C ⊢ β:D,α:(C→D)∩C
(µ)

x:(C→D)∩C ⊢ µα.〈x |α〉 : (C→D)∩C | β:D

D

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D
(cut)

〈µα.〈x |α〉 | µ̃y.〈y|y·β〉〉 : x:(C→D)∩C ⊢ β:D

which is illegal: there is no way we can justify step (?) - remember that system M does

not permit intersection types for context variables. So there is a completeness problem with

respect to →µ.

We can also give a similar example that shows that union types can be problematic as well

for expansion towards a µ̃-reduction.

Example 6.3 Let c1 = 〈µδ.〈λxµβ.〈x|δ〉 | δ〉 | µ̃y.〈y|β〉〉 and c2 = 〈µδ.〈λxµβ.〈x|δ〉 |δ〉 |β〉, and no-

tice that c1 →µ̃ c2. Let D be the derivation for ⊢M µδ.〈λxµβ.〈x|δ〉 | δ〉 : A ∪ (A→B) | from

Example 4.7. Then for c2 we can derive the typing:

D

⊢ µδ.〈λxµβ.〈x |δ〉 |δ〉 : A ∪ (A→B) |

| β : A ⊢ β:A | β : A→B ⊢ β:A→B
(∪L)

| β : A ∪ (A→B) ⊢ β:A ∪ (A→B)
(cut)

〈µδ.〈λxµβ.〈x |δ〉 | δ〉 |β〉 : ⊢ β:A ∪ (A→B)

and extracting the context µδ.〈λxµβ.〈x|δ〉 |δ〉 would yield:

D

⊢ µδ.〈λxµβ.〈x |δ〉 |δ〉 : A ∪ (A→B) |

.

.

.

(?)
y:A ∪ (A→B) ⊢ y : A ∪ (A→B) | | β : A ⊢ β:A | β : A→B ⊢ β:A→B

(∪L)
| β : A ∪ (A→B) ⊢ β:A ∪ (A→B)

(cut)
〈y|β〉 : y:A ∪ (A→B) ⊢ β:A ∪ (A→B)

(µ̃)
| µ̃y.〈y|β〉 : A ∪ (A→B) ⊢ β:A ∪ (A→B)

(cut)
〈µδ.〈λxµβ.〈x|δ〉 |δ〉 | µ̃y.〈y|β〉〉 : ⊢ β : A ∪ (A→B)

which, again, is not a correct derivation: step (?) cannot be justified, given the restriction to

intersection types for term-variables, so there is also a completeness problem with respect to

→µ̃.

This lack of completeness is relatively easy to correct, by adding the rules () and () (see

Definition 9.1), and to allow all types in both left and right-hand environments; this will be

the approach of Section 9. Unfortunately, this will then jeopardise the substitution lemmae

5.8 and 5.9, so we will have to abandon this solution when looking for a soundness result.

7 Loss of soundness

Contrary to the efforts made, perhaps surprisingly, System M is also not sound: we cannot

show that, if c1 → c2 and c1 : Γ ⊢M ∆ then also c2 : Γ ⊢M ∆ . In fact, it fails for the two main

reduction rules, →µ and →µ̃, as we will illustrate in the next two examples, and is mainly

due to the fact that Γ ⊢M µα.c : A | ∆ does not always imply c : Γ ⊢M α:A,∆ , and Γ | µ̃x.c : A ⊢M ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 25

does not always imply c : Γ, x:A ⊢M ∆ . This was in part also reported on in [19], and was the

motivation for the restriction made in the system presented in that paper; as we will show in

Section 8, this was not enough.

Example 7.1 Let c1 = 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉

c2 = 〈x | x·(µα.〈x|x·α〉·β)〉

c3 = 〈x | x·µ̃y.〈y|y·β〉〉

It is straightforward to verify that c1 →n c2

c1 = 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉 →µ̃

〈µα.〈x|x·α〉 | (µα.〈x|x·α〉)·β〉 →µ

〈x | x·(µα.〈x|x·α〉·β)〉 = c2

and c1 →v c3 in one step via →µ. Let D1 be the derivation for | µ̃y.〈y|y·β〉 : (C→D)∩C ⊢M β:D

from Example 4.7, D2 be the derivation

x:A→C ⊢ x : A→C |

x:A ⊢ x : A | | α : C ⊢ α:C
(→L)

x:A | x·α : A→C ⊢ α:C
(cut)

〈x |x·α〉 : x:A ∩ (A→C) ⊢ α:C
(µ)

x:A ∩ (A→C) ⊢ µα.〈x |x·α〉 : C |

and D3 be

x:A→C→D ⊢ x : A→C→D |

x:A ⊢ x : A | | α : C→D ⊢ α:C→D
(→L)

x:A | x·α : A→C→D ⊢ α:C→D
(cut)

〈x |x·α〉 : x:A ∩ (A→C→D) ⊢ α:C→D
(µ)

x:A ∩ (A→C→D) ⊢ µα.〈x |x·α〉 : C→D |

(notice that the main difference between D2 and D3 is the type for α).

Take the following typing for c1:

..

.

.

D3

x:A ∩ (A→C→D) ⊢ µα.〈x |x·α〉 : C→D |

D2

x:A ∩ (A→C) ⊢ µα.〈x |x·α〉 : C |
(∩R)

x:A ∩ (A→C) ∩ (A→C→D) ⊢ µα.〈x |x·α〉 : (C→D)∩C |
D1

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D
(cut)

〈µα.〈x |x·α〉 | µ̃y.〈y|y·β〉〉 : x:A ∩ (A→C) ∩ (A→C→D) ⊢ β:D

Let us look at soundness starting from this particular derivation. Since for c2 we can derive:

..

.

..

.
x:A→C→D ⊢ x : A→C→D |

x:A ⊢ x : A |

D2

x:A ∩ (A→C) ⊢ µα.〈x |x·α〉 : C | | β : D ⊢ β:D
(→L)

x:A ∩ (A→C) | µα.〈x |x·α〉·β : C→D ⊢ β:D
(→L)

x:A ∩ (A→C) | x·(µα.〈x |x·α〉·β) : A→C→D ⊢ β:D
(cut)

〈x |x·(µα.〈x |x·α〉·β)〉 : x:A ∩ (A→C) ∩ (A→C→D) ⊢ β:D

it will be obvious that, when reducing c1 to c2, there is no problem. When reducing c1 →v c3

on the other hand, contracting the µα redex in c1, the context µ̃y.〈y|y·β〉 will be inserted for

the context variable α. But we cannot derive:

〈x | x·µ̃y.〈y|y·β〉〉 : x:A ∩ (A→C) ∩ (A→C→D) ⊢M β:D

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 26

We would expect the derivation D1 to be inserted for α (in one way or another; since

intersection and union are involved in this system, it might be that a derivation gets divided

into pieces before being inserted) in the derivation for 〈x|x·α〉. However, notice that we do

not have a sub-derivation for | α : (C→D)∩C ⊢M α:(C→D)∩C , but two, for | α : C ⊢M α:C and

| α : C→D ⊢M α:C→D . Now we cannot split the intersection needed to derive D1: both types C

and C→D are needed to type µ̃y.〈y|y·β〉, and no rule allows the elimination of an intersection

type for a context (nor of a union for a term), so we cannot derive neither | µ̃y.〈y|y·β〉 : C→D ⊢M
β:D , nor | µ̃y.〈y|y·β〉 : C ⊢M β:D ; we can also not derive

| α : C→D ⊢M α: (C→D)∩C

which could have solved the problem, nor | α : C ⊢M α: (C→D)∩C. Given the structure of the

rules in system M, this implies that for c3 we can at most derive:

x:A→(C→D)∩C ⊢ x : A→(C→D)∩C |

x:A ⊢ x : A |

D1

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D
(→L)

x:A | x·µ̃y.〈y|y·β〉 : A→(C→D)∩C ⊢ β:D
(cut)

〈x |x·µ̃y.〈y|y·β〉〉 : x:A ∩ (A→(C→D)∩C) ⊢ β:D

Notice that this is incomparable to the desired result: there is no way we can transform

A, A→C and A→C→D (i.e. A ∩ (A→C) ∩ (A→C→D)) into A ∩ (A→(C→D)∩C). We would

need the contra-variant relation ≤ on types to achieve this; since that relation is not considered

in [18], this is not possible. So we have a type assignment for c1 that is a valid typing also for

c2, but not for c3.

Note that the above typing for c3 shows the necessity of allowing intersection on the right

of arrow types. Remark also that it is impossible to derive c1 : x:A ∩ (A→(C→D)∩C) ⊢M β:D ,

since that would require

x:A→(C→D)∩C ⊢ x : A→(C→D)∩C |

x:A ⊢ x : A |
(?)

| α : (C→D)∩C ⊢ α:(C→D)∩C
(→L)

x:A | x·α : A→(C→D)∩C ⊢ α:(C→D)∩C, β:D

.

.

.

(cut)
〈x |x·α〉 : x:A ∩ (A→(C→D)∩C) ⊢ α:(C→D)∩C, β:D

(µ)
x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C | β:D

D

| µ̃y.〈y|y·β〉 : (C→D)∩C ⊢ β:D
(cut)

〈µα.〈x |x·α〉 | µ̃y.〈y|y·β〉〉 : x:A ∩ (A→(C→D)∩C) ⊢ β:D

but this is not valid in M; this gives another counterexample against completeness, which is

essentially the same as Example 6.2.

We will now give an example that shows that union types can be problematic as well.

Example 7.2 Take c1 = 〈µδ.〈λx.µβ.〈x|δ〉 | δ〉 | µ̃z.〈λv.z|γ〉〉

c2 = 〈λv.µδ.〈λx.µβ.〈x|δ〉 | δ〉 |γ〉

c3 = 〈λwx.µβ.〈x | µ̃z.〈λv.z|γ〉〉 |γ〉

Then c1 → c2 in one step, and c1 → c3:

c1 = 〈µδ.〈λx.µβ.〈x|δ〉 | δ〉 | µ̃z.〈λv.z|γ〉〉 →µ

〈λx.µβ.〈x | µ̃z.〈λv.z|γ〉〉 | µ̃z.〈λv.z|γ〉〉 →µ̃

〈λvx.µβ.〈x | µ̃z.〈λv.z|γ〉〉 |γ〉 = c3

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 27

Let D :: ⊢M µδ.〈λxµβ.〈x|δ〉 |δ〉 : A ∪ (A→B) | be as in Example 4.7, then we can type c1 as

follows:

D

⊢ µδ.〈λxµβ.〈x |δ〉 |δ〉 : A ∪ (A→B) |

v:C,z:A ⊢ z : A |
(→R)

z:A ⊢ λv.z : C→A |

| γ : C→A ⊢ γ:C→A

.

..

.

(cut)
〈λv.z|γ〉 : z:A ⊢ γ:C→A

(µ̃)
| µ̃z.〈λv.z|γ〉 : A ⊢ γ:C→A

v:C,z:A→B ⊢ z : A→B |
(→R)

z:A→B ⊢ λv.z : C→A→B |

| γ : C→A→B ⊢ γ:C→A→B

.

..

.

..

(cut)
〈λv.z|γ〉 : z:A→B ⊢ γ:C→A→B

(µ̃)
| µ̃z.〈λv.z|γ〉 : A→B ⊢ γ:C→A→B

(∪L)
| µ̃z.〈λv.z|γ〉 : A ∪ (A→B) ⊢ γ:(C→A)∪(C→A→B)

..

.

..

.

(cut)
〈µδ.〈λxµβ.〈x |δ〉 | δ〉 | µ̃z.〈λv.z|γ〉〉 : ⊢ γ:(C→A)∪(C→A→B)

Consider the cbn reduction to c2; we now expect the derivation D to be inserted for z in the

derivation for 〈λv.z|γ〉. But we cannot derive:

〈λvµδ.〈λxµβ.〈x|δ〉 |δ〉 |γ〉 : ⊢M γ:(C→A)∪(C→A→B)

Notice that we have two sub-derivations in D2, each using a different type for z; since we

cannot separate the components of the union type derived in D1, we cannot construct a

derivation for the contractum.

These two examples show that we also cannot achieve soundness in System M.

8 The system M∩ of [19]

A typical reason to set up a notion of typing with intersection types is to prove a characterisa-

tion result for strong normalisation, and that was one of the motivations for [18]. In order to

bring in the right expressiveness to achieve this result, in an attempt to deal with the problem

that the symmetry of λµµ̃ poses on a proof, the authors of that paper decided to modify the

system they defined in [18] quite drastically, adding negation and expressing union types via

intersection and negation; this conforms to their view that union is only of limited use. This

is accompanied by transforming derivable statements from sequent style to natural deduction

style, writing only a environment to the left and to have a single result (conclusion).

We will briefly revisit that system here (adapting notation and syntax), and show we can

give counterexamples for both completeness and soundness for that modified system as well.

Remark 8.1 It is important to point out that [19] presents a slightly different version of λµµ̃’s

reduction relation (Definition 1.2): instead of rule (→) it uses [16]’s rule

(→′) : 〈λx.v1 |v2·e〉 → 〈v1{v2/x} | e〉

Although this is the desirable reduction result when considering the command 〈λx.v1 |v2·e〉

an application, it limits λµµ̃’s original reduction relation. For example, for the full reduction

as we consider here, we can reduce as follows:

〈λy.µβ.〈y|y·β〉 |µγ.〈x|x·γ〉·α〉 → 〈µγ.〈x|x·γ〉 | µ̃y.〈µβ.〈y|y·β〉 |α〉〉

Now this latter term can be reduced in two ways: the first is:

〈µγ.〈x|x·γ〉 | µ̃y.〈µβ.〈y|y·β〉 |α〉〉 →µ 〈x | x·µ̃y.〈µβ.〈y|y·β〉 |α〉〉

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 28

which corresponds to a cbv reduction. The other contraction gives:

〈µγ.〈x|x·γ〉 | µ̃y.〈µβ.〈y|y·β〉 |α〉〉 →µ̃ 〈µβ.〈µγ.〈x|x·γ〉 |µγ.〈x|x·γ〉·β〉 |α〉

which corresponds to a cbn reduction. Using the reduction rule (→′), we can only reduce:

〈λy.µβ.〈y|y·β〉 |µγ.〈x|x·γ〉·α〉 → 〈µβ.〈µγ.〈x|x·γ〉 |µγ.〈x|x·γ〉·β〉 |α〉

So [19] partially (i.e. essentially) restricts reduction to cbn.

The notion of type assignment defined in [19] is in fact inspired by the strict system of [1];

it uses a rule (ax) expressing (∩E) for variables, and hides (∩I) in another rule.

Definition 8.2 (System M∩ [19]) i) Types are defined by

A, B ::= ϕ | A→B | A∩B | A

Intersection is associative and commutative, and (A) = A.

ii) The typing rules are defined by (changing it again to combine environments in rules):

(ax) :
Σ, x:∩n Ai ⊢ x : Ai

(cut) :
Σ1 ⊢ v : A Σ2 ⊢ e : A

Σ1 ∩Σ2 ⊢ 〈v|e〉 : ⊥

(→r) :
Σ, x:A ⊢ v : B

Σ ⊢ λx.v : A→B
(→e) :

Σi ⊢ v : Ai (∀i∈n) Σ ⊢ e : B

∩nΣi ∩Σ ⊢ v·e : ((∩n Ai)→B)

(µ) :
Σ,α:A ⊢ c : ⊥

Σ ⊢ µα.c : A
(µ̃) :

Σ, x:A ⊢ c : ⊥

Σ ⊢ µ̃x.c : A

We will use ⊢M∩ for this notion.

Notice that union types are omitted, but that they are ‘silently’ present as negated inter-

section types; it is the view of the authors of [19] that union is not the dual of intersection,

a view we do not share here. Moreover, notice that rule (∩R) is missing altogether: this in

particular creates a problem with the completeness result that collapses now also for other

reasons than the one already exposed in Example 6.1 for System M. There is only an implicit

(∩I) in rule (→e), much as there was one in rule (→E) in the first presentation of the strict

type assignment system in [1]; that system, however, also had an implicit general (∩I) rule

that is missing here.

We first show that completeness does not hold:

Example 8.3 Notice that, since the derivation in Example 7.1 for c1 uses rule (∩R), we cannot

simulate that derivation in M∩, so cannot derive

x:A ∩ (A→C) ∩ (A→C→D), β: D ⊢ 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉 : ⊥

But we can, of course, derive that typing for c2:

..

.

..

.

.
x:A→C→D ⊢ x : A→C→D

x:A ⊢ x : A

x:A→C ⊢ x : A→C

x:A ⊢ x : A α: C ⊢ α : C
(→e)

x:A,α: C ⊢ x·α : (A→C)
(cut)

x:A ∩ (A→C),α: C ⊢ 〈x |x·α〉 : ⊥
(µ)

x:A ∩ (A→C) ⊢ µα.〈x|x·α〉 : C β: D ⊢ β : D
(→e)

x:A ∩ (A→C), β: D ⊢ µα.〈x |x·α〉·β : (C→D)
(→e)

x:A ∩ (A→C), β: D ⊢ x·(µα.〈x |x·α〉·β) : (A→C→D)
(cut)

x:A ∩ (A→C) ∩ (A→C→D) ⊢ 〈x |x·(µα.〈x |x·α〉·β)〉 : ⊥

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 29

This now gives an immediate counter example against completeness: c1 reduces to c2, but not

every typing for c2 is valid for c1.

As for the counterexamples given in Section 7 for System M∩∪, as intended we cannot

represent Example 7.1 nor Example 7.2, since both depend on rule (∩R) which cannot be

modelled. This notwithstanding, we can show that soundness also fails.

Surprisingly, although no intersection type is ever derived in this system (after all, only strict

types are derived for variables, and rule (∩R) is missing), they are now implicitly present in

the system, but for context-variables, whereas that was explicitly excluded for system M.

Example 8.4 Take, again, c1 as in Example 7.1. First we construct D1:

x:A→((C→D)∩C) ⊢ x : A→((C→D)∩C)

x:A ⊢ x : A α: ((C→D)∩C) ⊢ α : ((C→D)∩C)
(→e)

x:A,α: ((C→D)∩C) ⊢ x·α : (A→((C→D)∩C))
(cut)

x:A ∩ (A→(C→D)∩C),α: ((C→D)∩C) ⊢ 〈x |x·α〉 : ⊥
(µ)

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C

Note that we cannot derive the corresponding result in M, which would be

x:A→(C→D)∩C ⊢M x : A→(C→D)∩C |

x:A ⊢M x : A |
(?)

| α : (C→D)∩C ⊢M α:(C→D)∩C
(→L)

x:A | x·α : A→(C→D)∩C ⊢M α:(C→D)∩C, β:D
(cut)

〈x |x·α〉 : x:A ∩ (A→(C→D)∩C) ⊢M α:(C→D)∩C, β:D
(µ)

x:A ∩ (A→(C→D)∩C) ⊢M µα.〈x |x·α〉 : (C→D)∩C | β:D

since we are not allowed to use an intersection type for α in that system. Let D2 be:

y:C→D ⊢ y : C→D

y:C ⊢ y : C β: D ⊢ β : D
(→e)

y:C, β: D ⊢ y·β : (C→D)
(cut)

y:(C→D)∩C, β: D ⊢ 〈y|y·β〉 : ⊥
(µ̃)

β: D ⊢ µ̃y.〈y|y·β〉 : ((C→D)∩C)

then a derivation for c1 = 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉 is given by

D1

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C

D2

β: D ⊢ µ̃y.〈y|y·β〉 : ((C→D)∩C)
(cut)

x:A ∩ (A→(C→D)∩C), β: D ⊢ 〈µα.〈x |x·α〉 | µ̃y.〈y|y·β〉〉 : ⊥

Now we have 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉→µ̃ 〈µα.〈x|x·α〉 |µα.〈x|x·α〉·β〉, which would yield some-

thing like:

D1

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C
(?)

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : C→D

D1

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C
(?)

x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : C β: D ⊢ β : D
(→e)

β: D ⊢ µα.〈x |x·α〉·β : (C→D)

.

..

.

..

.

(cut)
β: D ⊢ 〈µα.〈x |x·α〉 |µα.〈x |x·α〉·β〉 : ⊥

But we cannot make the (?) steps, since we cannot admit rule (∩E) in M∩.

So, both soundness and completeness collapse for System M∩.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 30

9 Fixing completeness: system Mc

As mentioned above in Section 7, neither completeness nor soundness hold for System M.

We have argued above, in Examples 6.2 and 6.3, that in order to obtain completeness, it is

at least necessary to allow also for union types for term variables and intersection types for

context variables. Notice that this is not in contradiction with our findings when analysing

the minimal requirements in Section 3: there we found that left-hand environments should be

allowed to contain intersection types, and right-hand environments union types, which does

not exclude intersections in right-hand environments or union in left-hand environments.

This generalisation is part of the approach of the system presented in this section. With

respect to the rules of M, the main difference is that we add the rules (⊤) and (⊥) to deal with

erasing reductions, and add the rules () and () to deal with the problem noted in Example 6.1;

we keep, however, the non-contra-variant relation on types.

Definition 9.1 (System Mc) The system Mc is defined by:

i) The left and right-hand environment Γ and ∆ for derivable statements can contain all

types in T .

ii) Typing in Mc is defined by the following sequent system:

(cut) :
Γ1 ⊢ v : A | ∆1 Γ2 | e : A ⊢ ∆2

〈v|e〉 : Γ1 ∩Γ2 ⊢ ∆1 ∪∆2

(Ax-R) :
Γ, x:A ⊢ x : A | ∆

(Ax-L) :
Γ | α : A ⊢ α:A,∆

(→R) :
Γ, x:A ⊢ v : B | ∆

Γ ⊢ λx.v : A→B | ∆
(→L) :

Γ1 ⊢ v : A | ∆1 Γ2 | e : B ⊢ ∆2

Γ1 ∩Γ2 | v·e : A→B ⊢ ∆1 ∪∆2

(µ) :
c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A | ∆
(µ̃) :

c : Γ, x:A ⊢ ∆

Γ | µ̃x.c : A ⊢ ∆

(∩R) :
Γi ⊢ v : Ai | ∆i (∀i∈n)

∩nΓi ⊢ v : ∩n Ai | ∪n∆i

(∪L) :
Γi | e : Ai ⊢ ∆i (∀i∈n)

∩nΓi | e : ∪n Ai ⊢ ∪n∆i

(⊤) :
Γ ⊢ v : ⊤ | ∆

(⊥) :
Γ | e : ⊥ ⊢ ∆

(≤R) :
Γ ⊢ v : A | ∆

(A ≤ B)
Γ ⊢ v : B | ∆

(≤L) :
Γ | e : B ⊢ ∆

(A ≤ B)
Γ | e : A ⊢ ∆

(∪R-v) :
Γi, x:Ai ⊢ v : Bi | ∆i (∀i∈n)

∩nΓi, x:∪n Ai ⊢ v : ∪nBi | ∪n∆i

(∩L-e) :
Γi | e : Ai ⊢ α:Bi,∆i (∀i∈n)

∩nΓi | e : ∩n Ai ⊢ α:∩n Bi,∪n∆i

(∪Γ) :
c : Γi, x:Ai ⊢ ∆i (∀i∈n)

c : ∩nΓi, x:∪nAi ⊢ ∪n∆i

(∩∆) :
c : Γi ⊢ α:Bi,∆i (∀i∈n)

c : ∩nΓi ⊢ α:∩n Bi,∪n∆i

We will use ⊢c for this notion.

Notice that the (∩E)/(∪E) character of rules (Ax-R) and (Ax-L) of system M is no longer

part of the rules above; instead, we just pick a statement from a environment, and use the

rules (≤R) and (≤L) to perform the necessary selection of sub-types; notice also that these

rules supersede the rules (∪R) and (∩L) of M. And in fact, we can show:

Theorem 9.2 If c : Γ ⊢M ∆ , then c : Γ ⊢c ∆ , and similarly for Γ ⊢M v : A | ∆ and Γ | e : A ⊢M ∆ .

Proof : By easy induction.

Notice also that the rules (⊤) and (⊥) are special cases of (∩R) and (∪L) by allowing

n = 0 as well and conveniently ignoring the fact that an intersection (or union) of an empty

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 31

collection of sets is the empty set. So we will rather be using the rules

(∩R) :
Γi ⊢ v : Ai | ∆i (∀i∈n)

(n ≥ 0,n =/ 1)
∩nΓi ⊢ v : ∩n Ai | ∪n∆i

(∪L) :
Γi | e : Ai ⊢ ∆i (∀i∈n)

(n ≥ 0,n =/ 1)
∩nΓi | e : ∪nAi ⊢ ∪n∆i

Remark 9.3 To be more consistent with the system of Definition 4.5, we could have used the

rules:

(Ax-R) : (A ≤∩ B, B∈Tp)
Γ, x:A ⊢ x : B | ∆

(Ax-L) : (A ≤∪ B, A∈Tp)
Γ | α : A ⊢ α:B,∆

(∪R) :
Γ ⊢ v : Ai | ∆ (∀i∈n)

(n ≥ 2)
Γ ⊢ v : ∪nAi | ∆

(∩L) :
Γ | e : Ai ⊢ ∆ (∀i∈n)

(n ≥ 2)
Γ | e : ∩n Ai ⊢ ∆

instead of rules (Ax-R), (Ax-L), (≤R), and (≤L) of M. It is easy to check that these alternative

rules are derivable in the system of Definition 9.1; for the converse, we can show, by induction

on the structure of derivations, that then rules (≤R) and (≤L) are admissible.

We can characterise typeability in ⊢c as usual:

Lemma 9.4 (Generation Lemma) i) If 〈v|e〉 : Γ ⊢c ∆ , then there exists A such that Γ ⊢c v : A | ∆

and Γ | e : A ⊢c ∆ .

ii) a) If Γ ⊢c x : A | ∆ , then there exists x:B∈Γ such that B ≤ A.

b) If Γ ⊢c λx.v : A | ∆ , then there exists n ≥ 1, Bi,Ci (∀i∈n) such that Γ, x:Bi ⊢c v : Ci | ∆ , and

∩n(Bi→Ci)≤ A.

c) If Γ ⊢c µα.c : A | ∆ , then there exists B such that c : Γ ⊢c α:B,∆ , and B ≤ A.

iii) a) If Γ | α : A ⊢c ∆ , then there exists α:B∈∆ such that A ≤ B.

b) If Γ ⊢c v·e : A | ∆ , then there exists n ≥ 1, Bi,Ci (∀i∈n) such that Γ ⊢c v : Bi | ∆ and Γ | e : Ci ⊢c

∆ , and A ≤ ∪n(Bi→Ci).

c) If Γ | µ̃x.c : A ⊢c ∆ , then there exists B such that c : Γ, x:B ⊢c ∆ , and A ≤ B.

Proof : Straightforward.

We can now show that typing is preserved by the interpretation of the λ-calculus in λµµ̃:

Theorem 9.5 If Γ ⊢∩ M : A then Γ ⊢c M µ̃ : A | .

Proof : By easy induction on the structure of derivations in ⊢∩.

(Ax) : Then M = x, and x:A∈Γ; by rule (Ax-R), Γ ⊢c x : A | .

(→I) : Then M = λx.N, A = B→C, and Γ, x:B ⊢∩ N : C. By induction we can assume that

Γ, x:B ⊢c N µ̃ : C | ; then, by rule (→R), also Γ ⊢c λx.N µ̃ : A | .

(→E) : Then M = PQ, and there is a B such that Γ ⊢∩ P : B→A and Γ ⊢∩ Q : B. By induction,

we have both Γ ⊢c P µ̃ : B→A | and Γ ⊢c Q µ̃ : B | , and we can construct:

Γ ⊢ P µ̃ : B→A |

Γ ⊢ Q µ̃ : B | | α : A ⊢ α:A
(→L)

Γ | Q µ̃ ·α : B→A ⊢ α:A
(cut)

〈 P µ̃ | Q µ̃ ·α〉 : Γ ⊢ α:A
(µ)

Γ ⊢ µα.〈 P µ̃ | Q µ̃ ·α〉 : A |

(∩I) : Then A = ∩n Ai, and, for every i∈n, Γ ⊢∩ M : Ai. Then, by induction we can assume that

Γ ⊢c M µ̃ : Ai | for all i∈n, and by (∩R), Γ ⊢c M µ̃ : A | .

(∩E) : Then Γ ⊢∩ M : A∩B, for some B. Then, by induction, Γ ⊢c M µ̃ : A∩B | , and also

Γ ⊢c M µ̃ : A | by rule (≤R).

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 32

Remember that this proof would not be valid in M, since, in case (→E), A might be an

intersection type.

We will now show that Mc is complete. First, we show some of the properties that this

system satisfies. As is usual, we can constrict the environment to just those statements that

are relevant, and add irrelevant statements to environments.

Lemma 9.6 (Thinning and weakening) i) If c : Γ ⊢c ∆ and Γ′ = {x:B∈Γ | x∈ fv(c)} and ∆′ =

{α:B∈Γ | α∈ fv(c)}, then also c : Γ′ ⊢c ∆′ . Similar for Γ | e : A ⊢c ∆ and Γ ⊢c v : A | ∆ .

ii) If c : Γ ⊢c ∆ and Γ′ ≤∩ Γ as well as ∆ ≤∪ ∆′, then also c : Γ′ ⊢c ∆′ . Also similar for Γ | e : A ⊢c ∆

and Γ ⊢c v : A | ∆ .

Proof : Both properties are shown by induction on the structure of derivations.

We start by showing the following expansion lemmas that express that, given a typeable

term, context or command, we can extract a subterm (which might occur more than once,

i.e. the extraction is expressed via substitution) and type both the result of the extraction and

the extracted term/context.

First for the extraction of a term:

Lemma 9.7 (Term expansion lemma) i) If c{v/x} : Γ ⊢c ∆ there exists B∈T such that c : Γ, x:B ⊢c

∆ and Γ ⊢c v : B | ∆ .

ii) If Γ ⊢c v′{v/x} : A | ∆ then there exists B∈T such that Γ, x:B ⊢c v′ : A | ∆ and Γ ⊢c v : B | ∆ .

iii) If Γ | e{v/x} : A ⊢c ∆ then there exists B∈T such that Γ, x:B | e : A ⊢c ∆ and Γ ⊢c v : B | ∆ .

Proof : By simultaneous induction; we only show some of the cases.

i) If c{v/x} : Γ ⊢c ∆ then c = 〈v′ |e′〉, and we have Γ ⊢c v′{v/x} : C | ∆ and Γ | e′{v/x} : C ⊢c ∆

for some C∈T (by weakening we can assume the environments to be the same). Then,

by induction (ii) and (iii), there exist B1 such that Γ, x:B1 ⊢c v′ : C | ∆ and Γ ⊢c v : B1 | ∆ , and

B2 such that Γ, x:B2 | e′ : C ⊢c ∆ and Γ ⊢c v : B2 | ∆ . Then, by Lemma 9.6 and rule (cut), we

have 〈v′ |e′〉 : Γ, x:B1∩B2 ⊢c ∆ , and, by rule (∩R), Γ ⊢c v : B1∩B2 | ∆ .

ii) We have four cases, of which we show two; the other two follow by induction:

(v′ = x) : Then Γ ⊢c v : A | ∆ . Take B = A; by rule (Ax-R), Γ, x:A ⊢c x : A | ∆ . (Notice that A

can be a union type.)

(v′ = y =/ x) : Then Γ ⊢c y : A | ∆ . Take B =⊤; then by rule (⊤), we have Γ ⊢c v : ⊤ | ∆ , and by

weakening, also Γ, x:⊤ ⊢c y : A | ∆ .

iii) We have three cases, of which we show two:

(e = α) : Then Γ | α : A ⊢c ∆ . Take B = ⊤, then Γ, x:⊤ | α : A ⊢c ∆ by weakening, and, by rule

(⊤), Γ ⊢c v : ⊤ | ∆ .

(e = v′·e′) : Without loss of generality, assume that the derivation ends with rule (→L). Then

there exist C, D such that A= C→D, Γ ⊢c v′{v/x} : C |∆ , and Γ | e′{v/x} : D ⊢c ∆ . Then, by

induction (ii), there exists a type B1 such that both Γ, x:B1 ⊢c v′ : C | ∆ and Γ ⊢c v′ : B1 | ∆

and there exists B2 such that Γ, x:B2 | e′ : D ⊢c ∆ and Γ ⊢c v : B2 | ∆ by induction (iii).

Then, by Lemma 9.6 and rule (→L), we have v′·e′ : Γ, x:B1∩B2 ⊢c ∆ , and, by rule (∩R),

Γ ⊢c v : B1∩B2 | ∆ .

Notice that, in this proof, we only ever build intersection types for x; however, since, by rule

(µ), we can build a union type for a term, we do not always have that B∈T∩, and can only

show our property for B∈T .

We can show a similar result for the extraction of a context:

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 33

Lemma 9.8 (Context expansion lemma) i) If c{e/α} : Γ ⊢c ∆ then there exists B∈T such that

c : Γ ⊢c α:B,∆ and Γ | e : B ⊢c ∆ .

ii) If Γ ⊢c v′{e/α} : A | ∆ then there exists B∈T such that Γ ⊢c v′ : A | α:B,∆ and Γ | e : B ⊢c ∆ .

iii) If Γ | e′{e/α} : A ⊢c ∆ then there exists B∈T such that Γ | e′ : A ⊢c α:B,∆ and Γ | e : B ⊢c ∆ .

Proof : By simultaneous induction, much like Lemma 9.7, using union and ⊥ rather than in-

tersection and ⊤.

Notice that intersections and ⊤ are crucial for Lemma 9.7, as are union and ⊥ for Lemma

9.8. Using these two lemmas, it is easy to show the following completeness result.

Theorem 9.9 (Subject expansion) Let c1 → c2: if c2 : Γ ⊢c ∆ then c1 : Γ ⊢c ∆ .

Proof : By induction on the definition of reduction, where we focus on the logical rules:

(〈λx.v1 |v2·e〉 → 〈v2 | µ̃x.〈v1 |e〉〉) : assume 〈v2 | µ̃x.〈v1 |e〉〉 : Γ ⊢c ∆ , then by Lemma 9.4,

– there exists A such that D1 :: Γ ⊢c v2 : A | ∆ and Γ | µ̃x.〈v1 |e〉 : A ⊢c ∆ , so

– there exists B such that D2 :: 〈v1 |e〉 : Γ, x:B ⊢c ∆ , and A ≤ B, so

– there exists C such that D1
2 :: Γ, x:B ⊢c v1 : C | ∆ and D2

2 :: Γ | e : C ⊢c ∆ .

(note that we can assume that x does not occur in e). Then we can construct

D1
2

Γ, x:B ⊢ v1 : C | ∆
(→R)

Γ ⊢ λx.v1 : B→C | ∆

D1

Γ ⊢ v2 : A | ∆
(≤R)

Γ ⊢ v2 : B | ∆

D2
2

Γ | e : C ⊢ ∆
(→L)

Γ | v2·e : B→C ⊢ ∆
(cut)

〈λx.v1 |v2·e〉 : Γ ⊢ ∆

(〈v|µ̃x.c〉→ c{v/x}) : By Lemma 9.7, there exists an A such that both c : Γ, x:A ⊢c ∆ , and

Γ ⊢c v : A | ∆ . Then we can derive:

Γ ⊢ v : A | ∆

c : Γ, x:A ⊢ ∆
(µ̃)

Γ | µ̃x.c : A ⊢ ∆
(cut)

〈v|µ̃x.c〉 : Γ ⊢ ∆

(〈µβ.c|e〉 → c{e/β}) : By Lemma 9.8, there exists an A such that both c : Γ ⊢c β:A,∆ , and

Γ | e : A ⊢c ∆ . Then we can derive:

c : Γ ⊢ β:A,∆
(µ)

Γ ⊢ µβ.c : A | ∆ Γ | e : A ⊢ ∆
(cut)

〈µβ.c|e〉 : Γ ⊢ ∆

Notice that this proof only works in Mc.

Allowing all types in left and right-hand environments increases the typeability of terms:

Example 9.10 Let c1, c2 and c3 be as in Example 7.1, where we have shown

• 〈µα.〈x|x·α〉 | µ̃y.〈y|y·β〉〉 : x:A ∩ (A→C) ∩ (A→C→D) ⊢c β:D ,

• 〈x | x·(µα.〈x|x·α〉·β)〉 : x:A ∩ (A→C) ∩ (A→C→D) ⊢c β:D , and

• 〈x | x·µ̃y.〈y|y·β〉〉 : x:A ∩ (A→(C→D)∩C) ⊢c β:D .

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 34

and c1 →n c2 and c1 →v c3. As remarked after that example, we cannot derive c3’s type for c1

in M; we can, however, derive that in Mc:

x:A→(C→D)∩C ⊢ x : A→(C→D)∩C |

x:A ⊢ x : A | | α : (C→D)∩C ⊢ α:(C→D)∩C
(→L)

x:A | x·α : A→(C→D)∩C ⊢ α:(C→D)∩C, β:D

.

.

..

(cut)
〈x |x·α〉 : x:A ∩ (A→(C→D)∩C) ⊢ α:(C→D)∩C, β:D

(µ)
x:A ∩ (A→(C→D)∩C) ⊢ µα.〈x |x·α〉 : (C→D)∩C | β:D

(cut)
〈µα.〈x |x·α〉 | µ̃y.〈y|y·β〉〉 : x:A ∩ (A→(C→D)∩C) ⊢ β:D

so there is no soundness nor completeness problem for this typing when reducing c1 to c3. In

the other direction, reducing c1 to c2, the soundness problem for this typing does not exist,

since we can derive c3’s type for c2:

.

.

..

.

..

.

..

.

..

.

..

.

..

.
x:A→C ∩ (C→D) ⊢ x : A→C ∩ (C→D) |

x:A ⊢ x : A |

x:A→C ∩ (C→D) ⊢ x : A→C ∩ (C→D) |

x:A ⊢ x : A |

| α : C ⊢ α:C
(≤L)

| α : C ∩ (C→D) ⊢ α:C
(→L)

x:A | x·α : A→C ∩ (C→D) ⊢ α:C
(cut)

〈x |x·α〉 : x:A ∩ (A→C ∩ (C→D)) ⊢ α:C
(µ)

x:A ∩ (A→C ∩ (C→D)) ⊢ µα.〈x |x·α〉 : C | | β : D ⊢ β:D
(→L)

x:A ∩ (A→C ∩ (C→D)) | µα.〈x |x·α〉·β : C→D ⊢ β:D
(≤L)

x:A ∩ (A→C ∩ (C→D)) | µα.〈x |x·α〉·β : C ∩ (C→D) ⊢ β:D
(→L)

x:A ∩ (A→C ∩ (C→D)) | x·(µα.〈x |x·α〉·β) : A→C ∩ (C→D) ⊢ β:D
(cut)

〈x | x·(µα.〈x |x·α〉·β)〉 : x:A ∩ (A→C ∩ (C→D)) ⊢ β:D

Notice that now the two uses of rule (≤L) actually correspond to (∩L), which (finally) is of

use.

Although using Mc rather than M solves one subject reduction problem, it does not solve

that of Example 7.2. Moreover, we still cannot show soundness result for the reduction rule

→µ, as we will illustrate in the next example.

Example 9.11 Take

c1 = 〈µα.〈λxµβ.〈v|α〉 | e〉 | µ̃y.〈y|y·δ〉〉 and

c2 = 〈λxµβ.〈v | µ̃y.〈y|y·δ〉〉 | e〉,

where α does not occur in v or e; notice that c1 →µ c2. Assuming we have the derivations for,

respectively,

D1 :: x:C ⊢c v : A→B | β:E

D2 :: Γ | e : C→E ⊢c ∆

D3 :: x:D ⊢c v : A | β:F

D4 :: Γ | e : D→F ⊢c ∆

then we can type c1 as follows. First, take D5 :: | µ̃y.〈y|y·δ〉 : (A→B)∩ A ⊢λ δ:B from Exam-

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 35

ple 4.7. Then take

D6 ::

D1

Γ, x:C ⊢ v : A→B | β:E,∆ | α : A→B ⊢ α:A→B
(cut)

〈v|α〉 : Γ, x:C ⊢ β:E,α:A→B,∆
(µ)

Γ, x:C ⊢ µβ.〈v|α〉 : E | α:A→B,∆
(→R)

Γ ⊢ λxµβ.〈v|α〉 : C→E | α:A→B,∆

D2

Γ | e : C→E ⊢ ∆
(cut)

〈λxµβ.〈v|α〉 | e〉 : Γ ⊢ α:A→B,∆
(µ)

Γ ⊢ µα.〈λxµβ.〈v|α〉 | e〉 : A→B | ∆

and

D7 ::

D3

Γ, x:D ⊢ v : A | β:F,∆ | α : A ⊢ α:A
(cut)

〈v|α〉 : Γ, x:D ⊢ β:F,α:A,∆
(µ)

Γ, x:D ⊢ µβ.〈v|α〉 : F | α:A,∆
(→R)

Γ ⊢ λxµβ.〈v|α〉 : D→F | α:A,∆

D4

Γ | e : D→F ⊢ ∆
(cut)

〈λxµβ.〈v|α〉 | e〉 : Γ ⊢ α:A,∆
(µ)

Γ ⊢ µα.〈λxµβ.〈v|α〉 | e〉 : A | ∆

then we can construct:

.

.

..

D6

Γ ⊢ µα.〈λxµβ.〈v|α〉 | e〉 : A→B | ∆

D7

Γ ⊢ µα.〈λxµβ.〈v|α〉 | e〉 : A | ∆

(∩R)
Γ ⊢ µα.〈λxµβ.〈v|α〉 | e〉 : (A→B)∩ A | ∆

D5

| µ̃y.〈y|y·δ〉 : (A→B)∩ A ⊢ δ:B
(cut)

〈µα.〈λxµβ.〈v|α〉 | e〉 | µ̃y.〈y|y·δ〉〉 : Γ ⊢ δ:B,∆

Now we expect the derivation for c2 : Γ ⊢λ δ:B,∆ to be composed out of D1 to D5; however,

since the intersection type in derivation D5 cannot be split, we can at most derive:

D1

Γ, x:C ⊢ v : A→B | β:E,∆

D2

Γ, x:D ⊢ v : A | β:F,∆
(∩R)

Γ, x:C∩ D ⊢ v : (A→B)∩ A | β:E∪F,∆

D5

| µ̃y.〈y|y·δ〉 : (A→B)∩ A ⊢ δ:B

..

.

(cut)
〈v | µ̃y.〈y|y·δ〉〉 : Γ, x:C∩ D ⊢ β:E∪F,∆

(µ)
Γ, x:C∩ D ⊢ µβ.〈v | µ̃y.〈y|y·δ〉〉 : E∪F | δ:B,∆

(→R)
Γ ⊢ λxµβ.〈v | µ̃y.〈y|y·δ〉〉 : e:C∩ D→E∪F | δ:B,∆

D3

Γ | e : C→E ⊢ ∆

D4

Γ | e : D→F ⊢ ∆
(∪L)

Γ | e : (C→E)∪(D→F) ⊢ ∆
(?)

〈λxµβ.〈v | µ̃y.〈y|y·δ〉〉 | e〉 : ? ⊢ ?

We could only solve this problem via ≤ if C∩D→E∪F is smaller than (C→E)∪(D→F); this is

not the case.

10 Sound restrictions of System M

We have seen above that, in order to achieve completeness (and to show Theorem 9.5), we need

to allow all types in both kinds of environments. However, apart from solving a problem for

completeness, this also creates one for soundness, even for just mere renaming.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 36

To better understand the problem, assume we have the derivation

c : Γ ⊢ α:Ai,∆ (∀i∈n)
(∩R)

Γ ⊢ µα.c : ∩n Ai | ∆ | β : ∩n Ai ⊢ β:∩n Ai
(cut)

〈µα.c|β〉 : Γ ⊢ β:∩n Ai,∆

Now 〈µα.c|β〉 →µ c{β/α}, and we can easily derive c{β/α} : Γ ⊢c β:Ai,∆ for all i∈n, but we

cannot, in general, derive c{β/α} : Γ⊢c β:∩n Ai,∆ , since we lack a rule that builds an intersection

type for a context variable. To deal with this issue, we have to add the rules (), (), (∩L) and

(∪R) (which, in turn, we can motivate with the reduction 〈x|µ̃y.c〉 →µ c{x/y}).

(∩∆) :
c : Γi ⊢ α:Ai,∆i (∀i∈n)

c : ∩nΓi ⊢ α:∩n Ai,∪n∆i

(∪L-c) :
c : Γi, x:Ai ⊢ ∆i (∀i∈n)

c : ∩nΓi, x:∪n Ai ⊢ ∪n∆i

The presence of these rules, however, creates ambiguity in the system, in that there is more

than one way to derive a result, since we can derive both

Di

c : Γi ⊢ α:Ai,∆i
(µ)

Γi ⊢ µα.c : Ai | ∆i (∀i∈n)
(∩R)

∩nΓi ⊢ µα.c : ∩n Ai | ∪n∆i

D

Γ | e : ∩n Ai ⊢ ∆

(cut)
〈µα.c |e〉 : ∩nΓi ∩Γ ⊢ ∪n∆i ∪∆

and
Di

c : Γi ⊢ α:Ai,∆i (∀i∈n)
(∩∆)

c : ∩nΓi ⊢ α:∩n Ai,∪n∆i
(µ)

∩nΓi ⊢ µα.c : ∩n Ai | ∪n∆i

D

Γ | e : ∩n Ai ⊢ ∆

(cut)
〈µα.c|e〉 : ∩nΓi ∩Γ ⊢ ∪n∆i ∪∆

This makes reasoning about derivations much more complex; there might be ways to avoid

this, by allowing rules to be applied only in a certain order, but we would still have a cumber-

some generation lemma for Mc. Moreover, not even for Mc can we show a general subject

reduction result: the counterexamples we gave for M are also valid for Mc, and we will show

that we need to restrict any system before that property becomes provable. Also, the ele-

gant solution we present below (restricting (∩R) to values or (∪L) to slots) would need to be

extended (modified) in Mc, since there more rules introduce intersections or unions.

So, rather, we revert to System M; however, the solution we will present below will, in all

likelihood, be central also to a solution for Mc.

Looking at the essence of the counterexamples 7.1 and 7.2, it is evident that it is problematic

to: (1) perform a µ-reduction towards an intersection type, introduced via (∩R), or (2) perform

a µ̃-reduction towards a union type, introduced via (∪L). Let’s first of all analyse the situation.

If an intersection has been used to type a µ-abstraction, we find ourselves in the following

situation:
Di

c : Γi ⊢ α:Ai,∆i
(µ)

Γi ⊢ µα.c : Ai | ∆i (∀i∈n)
(∩R)

∩nΓi ⊢ µα.c : ∩n Ai | ∪n∆i

D

Γ | e : ∩n Ai ⊢ ∆

(cut)
〈µα.c |e〉 : ∩nΓi ∩Γ ⊢ ∪n∆i ∪∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 37

We normally cannot remove any of the types in ∩n Ai in the derivation D, so we cannot safely

propagate D into the various Di. So this is the problem case that should be caught.

Similarly, for union, we have the situation

D

Γ ⊢ v : ∪nAi | ∆

Di

c : Γi, x:Ai ⊢ ∆i
(µ̃)

Γi | µ̃x.c : Ai ⊢ ∆i (∀i∈n)
(∪L)

∩nΓi | µ̃x.c : ∪n Ai ⊢ ∪n∆i
(cut)

〈v|µ̃x.c〉 : ∩nΓi ∩Γ ⊢ ∪n∆i ∪∆

As above, propagating D into the Di should be avoided.

This problem also appears when dealing with quantification, as in ml:

Example 10.1 Assume a system with quantification3, so containing the additional rules

(∀R) :
Γ ⊢ v : A | ∆

(φ not free in Γ,∆)
Γ ⊢ v : ∀φ.A | ∆

(∀v) :
Γ, x:∀φ.A ⊢ x : A{B/φ} | ∆

(∃v) :
Γ | α : A{B/φ} ⊢ α:∃φ.A,∆ (∃L) :

Γ | e : A ⊢ ∆
(φ not free in Γ,∆)

Γ | e : ∃φ.A ⊢λ ∆

(as with intersection and union, the connectors ∀ and ∃ are not treated as logical, so the rules

(∀L) and (∃R) need not be added) in which we have a derivation for

〈µγ.〈λx.µβ.〈λy.x |γ〉 |γ〉 | µ̃y.〈y|y·δ〉〉 : y:∀φ.φ→φ ⊢λ δ:φ→φ

constructed as follows. Take D1:

x:φ,y:φ ⊢ x : φ |
(→R)

x:φ ⊢ λy.x : φ→φ | | γ : φ→φ ⊢ β:φ,γ:φ→φ
(cut)

〈λy.x|γ〉 : x:φ ⊢ β:φ,γ:φ→φ
(µ)

x:φ ⊢ µβ.〈λy.x |γ〉 : φ | γ:φ→φ
(→R)

⊢ λx.µβ.〈λy.x |γ〉 : φ→φ | γ:φ→φ | γ : φ→φ ⊢ γ:φ→φ
(cut)

〈λx.µβ.〈λy.x|γ〉 |γ〉 : Γ ⊢ γ:φ→φ
(µ)

Γ ⊢ µγ.〈λx.µβ.〈λy.x|γ〉 |γ〉 : φ→φ |
(∀R)

Γ ⊢ µγ.〈λx.µβ.〈λy.x|γ〉 |γ〉 : ∀φ.φ→φ |

and D2:

(∀v)
y:∀φ.φ→φ ⊢ y : (φ′→φ′)′→φ′→φ′ |

(∀v)
y:∀φ.φ→φ ⊢ y : φ′→φ′ | | δ : φ′→φ′ ⊢ δ:φ′→φ′

(→L)
y:∀φ.φ→φ | y·δ : (φ′→φ′)′→φ′→φ′ ⊢ δ:φ′→φ′

(cut)
〈y|y·δ〉 : Γ,y:∀φ.φ→φ ⊢ δ:φ′→φ′

(µ̃)
y:∀φ.φ→φ | µ̃y.〈y|y·δ〉 : ∀φ.φ→φ ⊢ δ:φ′→φ′

(notice that we cannot derive y:∀φ.φ→φ | µ̃y.〈y|y·δ〉 : A→A ⊢ δ:φ′→φ′ , for any A, so the quan-

tifier cannot be removed) then we can construct:

D1

Γ ⊢ µγ.〈λx.µβ.〈λy.x|γ〉 |γ〉 : ∀φ.φ→φ |

D2

y:∀φ.φ→φ | µ̃y.〈y|y·δ〉 : ∀φ.φ→φ ⊢ δ:φ′→φ′

(cut)
〈µγ.〈λx.µβ.〈λy.x|γ〉 |γ〉 | µ̃y.〈y|y·δ〉〉 : y:∀φ.φ→φ ⊢ δ:φ′→φ′

3 Essentially by Alexander J. Summers; see [43] for a detailed treatment of quantification in sequent calculi.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 38

Now the µ-reduction

〈µγ.〈λx.µβ.〈λy.x|γ〉 |γ〉 | µ̃y.〈y|y·δ〉〉 →µ 〈λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 | µ̃y.〈y|y·δ〉〉

will cause problems. Notice that γ:φ→φ is contracted in D1, so in fact occurs twice: bringing

the quantifier inside, as would be required when µ-reducing, would force two independent

closures (applications of rule (∀R)) of the type φ→φ. In fact, we would want to create a

derivation like:

.

.

..

.

.

x:φ,y:φ ⊢ x : φ |
(→R)

x:φ ⊢ λy.x : φ→φ |
(?)

x:φ ⊢ λy.x : ∀φ.φ→φ |

D2

y:∀φ.φ→φ | µ̃y.〈y|y·δ〉 : ∀φ.φ→φ ⊢ δ:φ′→φ′

(cut)
〈λy.x | µ̃y.〈y|y·δ〉〉 : x:φ ⊢ β:φ,δ:φ′→φ′

(µ)
x:φ ⊢ µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 : φ | δ:φ′→φ′

(→R)
⊢ λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 : φ→φ | δ:φ′→φ′

(∀R)
⊢ λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 : ∀φ.φ→φ | δ:φ′→φ′

D2

y:∀φ.φ→φ | µ̃y.〈y|y·δ〉 : ∀φ.φ→φ ⊢ δ:φ′→φ′

(cut)
〈λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 | µ̃y.〈y|y·δ〉〉 : Γ ⊢ δ:φ′→φ′

(µ)
Γ ⊢ µγ.〈λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 | µ̃y.〈y|y·δ〉〉 : φ→φ | δ:φ′→φ′

(∀R)
Γ ⊢ µγ.〈λx.µβ.〈λy.x | µ̃y.〈y|y·δ〉〉 | µ̃y.〈y|y·δ〉〉 : ∀φ.φ→φ | δ:φ′→φ′

this not a correct derivation: we would like to use rule (∀R) for (?) but cannot, since φ is free

in the left-hand environment x:φ, which violates the side-condition on rule (∀R).

We now look at two restrictions of the notion of typing ⊢M that will avoid these two prob-

lematic cases, and will investigate if we can at least partially recover soundness by limiting

reduction; we will look at both cbv and cbn. We will recover from the loss of soundness only

partially, in that we will obtain a soundness result for both (limited) notions of reduction.

Since the systems are restrictions of ⊢M, union types are not allowed to appear in left-hand

environments, and intersection types not in right-hand environments, completeness cannot

be shown. This restriction on environments is used in the proofs below (Lemmae 10.4 and

10.2), so cannot be dropped.

The general idea of the restrictions is to make sure that a reduction towards an introduced

intersection will be blocked by allowing rule (∩R) only for values; that way, if 〈v|e〉 is typeable,

and (∩R) is used to type v, then v is not a µ-abstraction, so a reduction towards v is excluded.

Likewise, a reduction towards an introduced union will be blocked by allowing rule (∪L) only

for slots.

First we deal with cbn, as defined in Definition 4.6(ii), where we restricted the applicability

of rule (∪L) to slots. It is clear that hereby reduction into a union is stopped, but how do we

stop reducing into an intersection? Remember that this only happens in case 〈µα.c|v·e〉; in

that case, the intersection type on the right (for v·e) is superfluous, and only one proper type

inside it is needed, as is shown in the following lemma:

Lemma 10.2 If Γ | E : ∩n Ai ⊢n ∆ , then there exists ∀j∈n such that Γ | E : Aj ⊢n ∆ .

Proof : By induction on the structure of derivations. If it ends with (∩L), the result is imme-

diate; if it ends with (∪L), then there exists Bi (∀i∈m) such that ∩n Ai = ∪mBj; this is only

possible if m = 1 and B1 = ∩n Ai, and the result follows by induction. Otherwise, we have

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 39

two cases: the derivation exists of (Ax-L), or ends with (→L); then n = 1 and the result is

immediate.

Using this result, we can now show:

Theorem 10.3 (Soundness for →n in ⊢n) If c1 : Γ ⊢n ∆ and c1 →n c2, then c2 : Γ ⊢n ∆ .

Proof : We focus on the main reduction rules:

(→) : By Theorem 5.7.

(→µn
) : Then c1 = 〈µα.c|E〉, c2 = c{E/α}, and there exists A such that we have Γ ⊢n µα.c : A |∆

and Γ | E : A ⊢n ∆ . We conclude by induction on the structure of the derivation for the

first result.

(µ) : then c : Γ ⊢n α:A,∆ , and, by Lemma 5.9, c{E/α} : Γ ⊢n ∆ .

(∩R) : then there exists Ai (∀i∈n) (with n ≥ 2) such that, for all i∈n, Γ | E : ∩n Ai ⊢n ∆ , and

c : Γ ⊢n α:Ai,∆ . Then the derivation is shaped like:

Di
1

c : Γ ⊢ α:Ai,∆
(µ)

Γ ⊢ µα.c : Ai | ∆ (∀i∈n)
(∩R)

Γ ⊢ µα.c : ∩n Ai | ∆

D2

Γ | E : ∩n Ai ⊢ ∆

(cut)
〈µα.c|E〉 : Γ ⊢ ∆

(by weakening, we can assume that only one left and right-hand environment is used).

Since E is a slot, by Lemma 10.2, Γ | E : Aj ⊢n ∆ , for some ∀j∈n; since also c : Γ ⊢n α:Aj,∆ ,

by Lemma 5.9 we get c{E/α} : Γ ⊢n ∆ .

(∪R) : Then the derivation is shaped like:

Γ ⊢ µα.c : Aj | ∆ (∀j∈n)
(∪R)

Γ ⊢ µα.c : ∪n Ai | ∆

D2

Γ | E : ∪n Ai ⊢ ∆

(cut)
〈µα.c|E〉 : Γ ⊢ ∆

Since also Γ | E : Aj ⊢n ∆ by rule (∪E) (admissible by Lemma 5.5), the result follows by

induction.

(→µ̃) : Then c1 = 〈v|µ̃x.c〉, and c2 = c{v/x}, and Γ ⊢n v : A | ∆ and Γ | µ̃x.c : A ⊢n ∆ for some

A. We conclude by induction on the structure of the derivation for Γ | µ̃x.c : A ⊢n ∆ .

(µ̃) : Then c : Γ, x:A ⊢n ∆ , and by Lemma 5.8, c{v/x} : Γ ⊢n ∆ .

(∪L) : Not applicable, since (∪L) has been restricted to slots.

(∩L) : Then the derivation is shaped like:

Γ ⊢ v : ∩n Ai | ∆

D2

Γ | E : Aj ⊢ ∆ (j∈n)
(∩L)

Γ | E : ∩n Ai ⊢ ∆
(cut)

〈µα.c|E〉 : Γ ⊢ ∆

Then, by rule (∩E) (admissible by Lemma 5.5), also Γ ⊢n v : Aj |∆ , and the result follows

by induction.

For cbv, as defined in Definition 4.6(i), we take the dual approach, and restrict the use

of (∩R) to values; this is similar to the approach in ml with side-effects, where rule (∀I) is

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 40

limited to values [27, 47, 36]. To avoid a µ-reduction into an intersection, we make sure that

no intersection is introduced for µα.c via the restriction on (∩R). The only thing then to solve

is to avoid the contraction of 〈v|µ̃x.c〉 into a union, which is solved by the fact that then v is a

value. We first show:

Lemma 10.4 If Γ ⊢v V : ∪n Ai | ∆ , then there exists ∀j∈n such that Γ ⊢v V : Aj | ∆ .

Proof : By induction on the structure of derivations. If it ends with (∪R), the result is imme-

diate; if it ends with (∩R), then there exists Bi (∀i∈m) such that ∪n Ai = ∩m Bj; this is only

possible if n = 1 and A1 = ∪mBj, and the result follows by induction. Otherwise, we have two

cases: the derivation exists of (Ax-R) or ends with (→R), and then n = 1 and the result is

immediate.

We conclude this paper by showing:

Theorem 10.5 (Soundness for →v in ⊢v) If c1 : Γ ⊢v ∆ and c1 →v c2, then c2 : Γ ⊢v ∆ .

Proof : We focus on the main reduction rules:

(→) : By Theorem 5.7.

(→µ) : Then c1 = 〈µα.c|e〉, c2 = c{e/α}, and both Γ ⊢v µα.c : A | ∆ and Γ | e : A ⊢v ∆ for some

A. By induction on the structure of derivations for Γ ⊢v µα.c : A | ∆ :

(µ) : Then c : Γ ⊢v α:A,∆ , and by Lemma 5.9, c{e/α} : Γ ⊢v ∆ .

(∩R) : Impossible, since (∩R) has been restricted to values.

(∪R) : Then the derivation is shaped like:

Γ ⊢ µα.c : Aj | ∆ (j∈n)
(∪R)

Γ ⊢ µα.c : ∪n Ai | ∆ Γ ⊢ e : ∪n Ai | ∆

(cut)
〈µα.c|e〉 : Γ ⊢ ∆

By (∪E) also Γ | e : Aj ⊢v ∆ , and the result follows by induction.

(→µ̃v
) : Then c1 = 〈V |µ̃x.c〉, and c2 = c{V/x}, and Γ ⊢v V : A | ∆ and Γ | µ̃x.c : A ⊢v ∆ for some

A. By induction on the structure of derivation for Γ | µ̃x.c : A ⊢v ∆ .

(µ̃) : then c : Γ, x:A ⊢v ∆ , and, by Lemma 5.8, c{V/x} : Γ ⊢v ∆ .

(∪L) : then there exists Ai (∀i∈n) (without loss of generality, n ≥ 2) such that, for all i∈n,

Γ | V : ∩n Ai ⊢v ∆ , and c : Γ ⊢v α:Ai,∆ . Then the derivation is shaped like:

D1

Γ ⊢ V : ∪n Ai | ∆

Di
2

c : Γ, x:Ai ⊢ ∆

Γ | µ̃x.c : Ai ⊢ ∆ (∀i∈n)
(∪L)

Γ ⊢ µ̃x.c : ∪n Ai | ∆
(cut)

〈V |µ̃x.c〉 : Γ ⊢ ∆

Since V is a value, by Lemma 10.4, Γ ⊢v V : Aj | ∆ for some ∀j∈n; since c : Γ, x:Aj ⊢v ∆ ,

we get c{V/x} : Γ ⊢v ∆ by Lemma 5.9.

(∩L) : Then the derivation is shaped like:

Γ ⊢ V : ∩n Ai | ∆

Γ ⊢ µ̃x.c : Aj | ∆ (j∈n)
(∩L)

Γ ⊢ µ̃x.c : ∩n Ai | ∆
(cut)

〈V |µ̃x.c〉 : Γ ⊢ ∆

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 41

By (∩E) also Γ ⊢v V : Aj | ∆ , and the result follows by induction.

11 Concluding remarks

We have seen that which notion of intersection and union type assignment to use for λµµ̃ is

not as easily decided as might seem. The most natural approach, inspired by the superficial

correspondence between intersection types and the logical connector ∧ and a quick analysis of

the problem of completeness resulted in Dougherty, Ghilezan and Lescanne’s System M∩∪, as

presented in [18]. Although this gives a perfectly reasonable system in terms of the structure

of rules, it does not satisfy almost any of the important properties. First of all, soundness fails

for this system, as also remarked by Herbelin, and commented on in [19]; in fact, the system

M∩ presented in that paper is a modification of M∩∪, modified in order to recover from that

flaw. As shown in this paper, this attempt failed. But, more unexpectedly, also completeness

fails for both M∩∪ and M∩, as was shown in this paper. This is the more remarkable, seen

that the main role of intersection is to deal exactly with completeness, and System M∩∪ is

defined in much the same way as the BCD system was.

System M∩∪ is just one of the possible ways of dealing with intersection and union in the

context of λµµ̃. In fact, allowing intersection and union for activated formulae only actually

leans too strongly on the similarity between those type constructs and the logical ∧ and ∨. We

have seen that none of the important (and expected) properties (soundness and completeness,

conservativeness with respect to Système Dω) hold, and that in order to achieve completeness

the system at least needs to allow union and intersection freely in both left and right-hand

environment, and that both need to be assigned also to inactive statements, by adding new

rules, resulting in System Mc. However, this does not solve the soundness problem at all.

The approach followed (essentially, since it deals with a different calculus) in [4], is to

not depend on the logical foundation at all any more, and to allow (∪L) and (∩R) only for

commands:

(∩R) :
c : Γi ⊢λ α:Ai,∆i (∀i∈n)

(n ≥ 0)
c : ∩nΓi ⊢λ α:∩n Ai,∪n∆i

(∪L) :
c : Γi, x:Ai ⊢λ ∆i (∀i∈n)

(n ≥ 0)
c : ∩nΓi, x:∪n Ai ⊢λ ∪n∆i

It is still possible then to preserve the types assignable in the ⊢∩-system, but we would need a

different interpretation function that explicitly names all outputs.

As in similar notions for the λ-calculus, combining union and intersection types breaks the

soundness of the system; unlike the λ-calculus, however, also intersection is problematic. We

have isolated the problem cases, and seen that it is exactly the non-logical behaviour of both

type constructors that causes the problem. We have looked at restrictions for either cbn or

cbv reduction that overcome this defect, but all with the loss of the completeness.

We have argued that any full system of intersection and union types is doomed to fail. We

presented System Mc – an extension of M∩∪ – that satisfies completeness, but could not fix

soundness. Only by limiting the notion of reduction (in our case, to either Call-By-Name of

Call-By-Value reduction), and the applicability of some type assignment rules can we come

to sound notions of type assignment, but at the price of sacrificing completeness. Perhaps we

can recover from this failure for cbn and cbv, but would need a different approach - we leave

this for future work; as we have show in detail, there is no reprieve for unrestricted reduction.

So we find that it is impossible to define a semantics using intersection and union types for

the symmetric notion of reduction that is in λµµ̃. This does not exclude the characterisation

results that are mentioned in the introduction; although a correct proof is still missing, it is

perfectly possible that all terms typeable in our System Mc are strongly normalisable - and

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 42

by extension also those of M∩∪; the proof might depend on a proof that derivation reduction

is strongly normalisable, as also used in [3, 6, 5]; this is left for future work.

Acknowledgements

I would like to thank Silvia Ghilezan, Pierre Lescanne, Mariangiola Dezani, Alexander J.

Summers and especially Dan Dougherty for detailed, critical, and constructive discussions on

the results of this paper, and Vanessa Loprete for valuable support.

References

[1] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102(1):135–163, 1992.

[2] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[3] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Nor-
malising. Notre Dame journal of Formal Logic, 45(1):35–63, 2004.

[4] S. van Bakel. Reduction in X does not agree with Intersection and Union Types. In Electronic
Proceedings of 4th International Workshop Intersection Types and Related Systems (ITRS’08), Turin,
Italy, 2008.

[5] S. van Bakel. Strict Intersection Types for the Lambda Calculus. To appear in ACM Surveys, 2010.

[6] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

[7] S. van Bakel, S. Lengrand, and P. Lescanne. The language X : circuits, computations and Classical
Logic. In Mario Coppo, Elena Lodi, and G. Michele Pinna, editors, Proceedings of Ninth Italian
Conference on Theoretical Computer Science (ICTCS’05), Siena, Italy, volume 3701 of Lecture Notes in
Computer Science, pages 81–96. Springer Verlag, 2005.

[8] S. van Bakel and P. Lescanne. Computation with Classical Sequents. Mathematical Structures in
Computer Science, 18:555–609, 2008.

[9] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Intersection and Union Types: Syntax
and Semantics. Information and Computation, 119(2):202–230, 1995.

[10] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[11] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[12] G. M. Bierman. A computational interpretation of the λµ-calculus. In Proceedings of Symposium
on Mathematical Foundations of Computer Science., volume 1450 of Lecture Notes in Computer Science,
pages 336–345. Springer Verlag, 1998.

[13] R. Bloo and K.H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with
Explicit Substitution and Garbage Collection. In CSN’95 – Computer Science in the Netherlands,
pages 62–72, 1995.

[14] A. Church. A note on the entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.

[15] M. Coppo and M. Dezani-Ciancaglini. A New Type Assignment for Lambda-Terms. Archive für
Mathematischer Logic und Grundlagenforschung, 19:139–156, 1978.

[16] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP’00), volume 35.9 of ACM Sigplan Notices,
pages 233–243. ACM, 2000.

[17] R. Davies and F. Pfenning. Intersection types and computational effects. In Proceedings of the 5th
ACM SIGPLAN International Conference on Functional Programming (ICFP’00), volume 35.9 of ACM
Sigplan Notices, pages 198–208. ACM Press, 2000.

[18] D. Dougherty, S. Ghilezan, and P. Lescanne. Intersection and Union Types in the λµµ̃-calculus.
In Electronic Proceedings of 2nd International Workshop Intersection Types and Related Systems
(ITRS’04), Turku, Finland, volume 136 of Electronic Notes in Theoretical Computer Science, pages 228–
246, 2004.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 43

[19] D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-
Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. Theoretical Computer
Science, 398, 2008.

[20] D. Dougherty, S. Ghilezan, P. Lescanne, and S. Likavec. Strong Normalization of the Dual Classical
Sequent Calculus. In Proceedings of 12th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture Notes in Computer Science, pages 169–
183, 2005.

[21] J. Dunfield and F. Pfenning. Type Assignment for Intersections and Unions in Call-by-Value
Languages. In Andrew D. Gordon, editor, Proceedings of 6th International Conference on Foundations
of Software Science and Computational Structures (FOSSACS’03), pages 250–266, 2003.

[22] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control.
Theoretical Computer Science, 52:205–237, 1987.

[23] G. Gentzen. Investigations into logical deduction. In The Collected Papers of Gerhard Gentzen. Ed M.
E. Szabo, North Holland, 68ff (1969), 1935.

[24] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39:176–210
and 405–431, 1935.

[25] T. Griffin. A formulae-as-types notion of control. In Proceedings of the 17th Annual ACM Symposium
on Principles Of Programming Languages, Orlando (Fla., USA), pages 47–58, 1990.

[26] Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential
control. In Proceedings of 5th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’94), volume 822 of Lecture Notes in Computer Science, pages 31–43. Springer
Verlag, 1994.

[27] B. Harper and M. Lillibridge. ML with callcc is unsound. Post to TYPES mailing list, July 8, 1991.

[28] H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de λ-termes
et comme calcul de stratégies gagnantes. Thèse d’université, Université Paris 7, Janvier 1995.

[29] H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation, Université
Paris 11, Décembre 2005.

[30] Hugo Herbelin. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus
Structure. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, 8th International
Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers, volume 933 of Lecture
Notes in Computer Science, pages 61–75. Springer Verlag, 1995.

[31] J.R. Hindley. Coppo-Dezani Types do not Correspond to Propositional Logic. Theoretical Computer
Science, 28:235–236, 1984.

[32] H. Ishihara and T. Kurata. Completeness of intersection and union type assignment systems for
call-by-value λ-models. Theoretical Computer Science, 272(1–2):197–221, 2002.

[33] S.C. Kleene. Introduction to Metamathematics. Études et Recherches en Informatique. North Holland,
Amsterdam, 1952.

[34] J.-L. Krivine. Lambda calculus, types and models. Ellis Horwood, 1993.

[35] S. Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent cal-
culus. In Bernhard Gramlich and Salvador Lucas, editors, Post-proceedings of the 3rd Workshop
on Reduction Strategies in Rewriting and Programming (WRS 2003), volume 86 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[36] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML. MIT Press, 1990.
Revised edition.

[37] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with
control. In Proceedings of the 24th Annual ACM Symposium on Principles Of Programming Languages,
Paris (France), pages 215–227, 1997.

[38] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proceedings of 3rd
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’92),
volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer Verlag, 1992.

[39] M. Parigot. Classical Proofs as Programs. In Kurt Gödel Colloquium, pages 263–276, 1993. Presented
at TYPES Workshop, at Bǎstad, June 1992.

[40] G. Pottinger. A Type Assignment for the Strongly Normalizable λ-terms. In J.P. Seldin and J.R.
Hindley, editors, To H. B. Curry, Essays in combinatory logic, lambda-calculus and formalism, pages
561–577. Academic press, New York, 1980.

Annals of Pure and Applied Logic 161, pp 1400-1430, 2010 44

[41] P. Sallé. Une extension de la théorie des types. In G. Ausiello and C. Böhm, editors, Automata,
languages and programming. Fifth Colloquium, Udine, Italy, volume 62 of Lecture Notes in Computer
Science, pages 398–410. Springer Verlag, 1978.

[42] A. Summers and S. van Bakel. Approaches to Polymorphism in Classical Sequent Calculus. In
P. Sestoft, editor, Proceedings of 15th European Symposium on Programming (ESOP’06), Vienna, Aus-
tria, volume 3924 of Lecture Notes in Computer Science, pages 84 – 99. Springer Verlag, 2006.

[43] A.J. Summers. Curry-Howard Term Calculi for Gentzen-Style Classical Logic. PhD thesis, Imperial
College London, 2008.

[44] C. Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, October 2000.

[45] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. Fundamenta
Informaticae, 45(1,2):123–155, 2001.

[46] P. Wadler. Call-by-Value is Dual to Call-by-Name. In Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 189 – 201, 2003.

[47] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8(4):343–355, 1995.

	The calculus 112
	Système D`w of Intersection Type Assignment for the `l-calculus
	Some initial observations
	The system M of intersection and union typing for 112
	Basic properties of System M
	Loss of completeness
	Loss of soundness
	The system M of DGL-CDR'08
	Fixing completeness: system Mc
	Sound restrictions of System M
	Concluding remarks

