
Comparing Cubes of Typed and Type Assignment
Systems

(Annals of Pure and Applied Logic, 86(3):267-303, 1997)

Steffen van Bakel1, Luigi Liquori2‡, Simona Ronchi della Rocca2∗, and Paweł

Urzyczyn3§

s.vanbakel@imperial.ac.uk

1 Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K,
svb@doc.ic.ac.uk

2 Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10145
Torino, Italia,
{liquori,ronchi}@di.unito.it

3 Instytut Informatyki Uniwersytetu Warszawskiego, ul. Banacha 2, 02-097 Warszawa, Polska,
urzy@mimuw.edu.pl

Introduction

Types can be used as predicates for terms of λ-calculus in two different ways. A first approach
is to define terms directly decorated with types; in this fully typed approach, every closed term
comes with a unique, intrinsic type. A typed system consists of a set of (derivation) rules for
proving judgements of the shape Γt �t Mt : φt, where Mt is a typed term, φt is a type, and Γt is
a context. The meaning of such a judgement is that the term Mt has type φt under the context
Γt, where Γt records the types of the free variables of Mt and φt.

Alternatively, in the type assignment approach, types can be assigned to terms of the untyped
λ-calculus. A type assignment system consists of a set of (derivation) rules for proving judge-
ments of the shape Γ � M : φ, where M is a term of the untyped λ-calculus, φ is a type, and
Γ is a context that assigns types to the free variables of M and φ. Such a judgement can be
understood as that we can assign the type φ to the λ-term M, when types are assigned to the
free variables of M and φ as specified in the context Γ. In this approach, types are viewed as
predicates, or properties, of terms, and each closed term can be assigned either none or infinitely
many types.

When we look at λ-calculus as a paradigmatic programming language, the first approach
corresponds to explicitly typed languages, like for example Haskell, whereas the second cor-
responds to ML-like languages, where the user can write programs in a completely untyped
language, and types are automatically inferred at compile time. The latter can be considered
to be the construction of an abstract interpretation of the program, that can be used as a
correctness criterion.

‡ Partly supported by HCM project No. ERBCHRXCT920046 “Typed Lambda Calculus”
§ Partly supported by grants NSF CCR–9113196, KBN 2 P301 031 06, and by a grant from the Commission of

The European Communities ERB–CIPA–CT92–2266(294).

Annals of Pure and Applied Logic, 86(3):267-303, 1997 2

In the typed approach, called à la Church by Barendregt, there exists several typed λ-calculi,
where terms are decorated with types in various ways. Examples of typed λ-calculi are the
simply typed λ-calculus (λ→) of Church, the second order λ-calculus of Girard and Reynolds
(λ2) [15, 20], and the calculus of constructions (λPω) [7, 8]. Barendregt gave in [4] a compact
and appealing presentation of a class of typed systems (TS), arranging them in a cube. In this
cube, every vertex represents a different typed system. One vertex is the origin and represents
the simply typed λ-calculus; the three dimensions of the cube represent the introduction of
some new rules of type formation, namely Polymorphism, Higher-Order and Dependencies (see
Definition 1.5). This three-dimensional structure allows for a deep comparative analysis of
different typed λ-calculi.

In [13], a type assignment version of Barendregt’s cube (TAS) was defined trough an erasing
function E that erases type information from terms. To be precise, if a typed system consists
of a set R of derivation rules, the rules of the corresponding type assignment system can
be obtained by applying E to every object occurring in the rules of R. The dependency-
free plane of TAS contains some type assignment systems already known in the literature,
that are convertible to certain typed systems: the Curry type assignment system (F1) [9] that
corresponds to λ→, the polymorphic type assignment system (F2) [17] that corresponds to
λ2, and the higher order type assignment system (Fω) [14] that corresponds to λω.

The fact that in [13] also systems that contain dependencies were considered, was a first
attempt to study dependent types in a type assignment approach. In that paper was proved
that the introduction of dependencies does not increase the expressiveness of a system, i.e.,
the terms typable in a type assignment system with dependencies are all nothing but those
typable in the similar system, obtained from the first by erasing the dependencies.

In [13], it was observed that, perhaps surprisingly, in presence of dependencies there no
longer exists an isomorphism between corresponding systems of typed and type assignment
cubes, in the sense that not every derivation in TAS is the image under erasure of a derivation
in TS. However, in that paper was conjectured that at least there exists an isomorphism be-
tween judgements rather than between derivations, i.e.: a judgement Γ � M : φ is true in one
of the type assignment systems if and only if, in the corresponding typed system, a judgement
Γt �t Mt : φt can be proved such that E (Mt) = M, E (Γt) = Γ, and E (φt) = φ.

In this paper, where we focus closely on the differences and similarities between TS and
TAS, we will disprove this conjecture, showing that it is true only for systems without poly-
morphism. The type assignment systems with polymorphism and dependencies (DF2 and
DFω, that correspond respectively to λP2 and λPω) are in some sense more powerful than
their typed versions. In fact, we prove that there are judgements, provable in one of these
systems, that cannot be obtained as erasures of typed judgements. This implies that there are
types, inhabited in these systems, that are not erasures of inhabited types in the correspond-
ing typed systems, and, moreover, that a term M can be assigned more types than just those
that can be obtained, through erasure, from types belonging to any typed version of M.

This result gives then rise to a new question, namely if it is possible to build a cube of
type assignment systems that is isomorphic to Barendregt’s cube, in the sense that typed and
type assignment systems in the corresponding vertices are isomorphic. We solve this problem
by defining a cube of type assignment systems TAS′ that enjoy this property. This cube is
based on the definition of a new erasing function E′ that coincides with E when dependencies
are not present. The main difference between E and E′ is that, while E always erases type
information in terms, E′ is context dependent and erases type information from a term only
if that term does not occur in a type; otherwise it leaves the term unchanged. This cube has
the the (somewhat unelegant) property that some type assignment rules use explicitly typed
rules of the corresponding typed system in Barendregt’s cube. But this seems to be the price

Annals of Pure and Applied Logic, 86(3):267-303, 1997 3

to pay for obtaining isomorphism.
As stated already in [13], the above mentioned erasing function E, at least for the dependency-

free plane of TS and TAS, induces an isomorphism between derivations in corresponding sys-
tems. More precisely, if D is a derivation in a typed system, by applying E to every object (i.e.
term, constructor, or kind) in D, a valid derivation in the corresponding type assignment sys-
tem is obtained. Vice-versa, again only for dependency-free systems, every type assignment
derivation can be obtained by applying E to a typed one. Clearly, the fact that the classes of
derivations for typed and a type assignment systems are isomorphic means that they have the
same underlying logical system.

The relation with (intuitionistic) logic through the so-called Curry-Howard isomorphism, or
‘formulae as types’ principle, has been profoundly studied for Barendregt’s cube, and has been
clearly established for the plane of the cube without dependencies. However, in the opposite
plane, this relation is less clear, as demonstrated by Berardi in [6]. As mentioned above, in
this paper, we show an example of a inhabited type in TAS, that cannot be obtained through
erasure of an inhabited type in TS. This negative result of course implies that the logical sides
of these two cubes are different; however, this difference only shows up in the plane of the
cube with dependencies, where already TS has lost a clear connection with logic. Moreover,
the underlined logics of the cube TAS′ are those of the typed cube of Barendregt.

Furthermore, it is also our opinion that there is more to types than just logic: studying types
is not solely justifiable through the connection between types and logic, as is clearly shown
by, for example, the type system developed for ML that models type-constants and recursion
[18], and the intersection type discipline [2]. In our view, the main motivation for TAS comes
from the ML-style of approaching types: to have type-free code with type assignment seen as
a correctness criterion, or safety means, but always outside of programs rather than built in.
Certainly, in order to be correctly applied in this way, a type assignment system must enjoy
some fundamental properties, like the Church-Rosser property, the subject-reduction property
and normalization. We prove these properties in this paper for all systems in TAS. So, TAS
can make sense even if it does not fit the corresponding TS: it is just another way to select
legitimate code. Studying type systems with dependencies can be of value from the point of
view of abstract interpretation; such type assignment system could introduce a more refined
notion of types in a programming language setting. For example, since the version of F1 with
dependencies is decidable, and the core of the type system for ML is based on F1, designing
a version of ML with dependent types seems feasible.

We would like to emphasize that the scope of this paper is to compare the systems TS and
TAS, not to propagandize any of these.

This paper is organized as follows. Section 1 contains a presentation of Barendregt’s cube in
a stratified version, and of a cube of type assignment systems. In Section 2, the properties of
the type assignment systems belonging to the latter are studied; in particular, it contains the
proofs of the subject reduction property, and of the strong normalization property. Section 3
is devoted to the study of the relation between the two cubes. In that section, we disprove the
conjecture cited above. In Section 4, a new erasing function, together with the induced new
cube of type assignment systems is presented. In that section, we will show that these type
assignment systems are isomorphic to the systems in Barendregt’s cube.

A preliminary version of this paper was presented in [1].

Notational conventions: In this paper, a term will be either an (un)typed λ-term, a constructor,
a kind, or a sort. The symbols M, N, P, Q, . . . range over (un)typed λ-terms; φ, ψ, ξ, µ, . . . range

Annals of Pure and Applied Logic, 86(3):267-303, 1997 4

over constructors; K ranges over kinds; s ranges over sorts: A, B, C, D, . . . range over arbitrary
terms; x, y, z, . . . range over λ-term-variables; α, β, γ, . . . range over constructor-variables;
a, b, c, . . . range over λ-term-variables and constructor-variables. The symbol Γ will range
over contexts. All symbols can appear indexed. The symbol ≡ denotes the syntactic identity
of terms, and we will consider terms modulo α-conversion. The notation Πn

i=1ai :Ai.B is an
abbreviation of Πa1:A1. · · ·Πan :An.B.

1 Two Cubes

Barendregt’s cube of typed systems, already defined in [4], is normally presented using a
rather compact notation, using rule schemes rather than rules. Before coming to the definition
of a cube of type assignment systems related to Barendregt’s cube, in this section we will first
present a ‘stratified‘ version of the systems in that cube, by splitting the terms considered by
Barendregt in three different classes, being those of λ-terms, constructors, and kinds. Starting
from that stratified version, we will define an erasing function E and, using this function,
obtain the related cube of type assignment systems. The same approach can be found in [13].

1.1 The Cube of Typed Systems

In this subsection we will give a short overview of Barendregt’s cube. A number of formal
notions and properties for this cube (like ‘free variable’, ‘substitution’, or ‘context’) are used
in this paper; however, in view of the strong similarity with definitions given in Subsection
1.2, we will skip those here. Here we will limit ourselves to the presentation of the formal
syntax and derivation rules in our own denotation, since that differs from the one commonly
used; this should enable the appreciation of the presentation of our cube of type assignment
systems in the next subsection. For a complete development of Barendregt’s cube, we refer to
[4, 11].

Definition 1.1 i) {∗,�} is the set of sorts.
ii) The sets of typed λ-terms (Λt), typed constructors (Const), and typed kinds (Kindt) are mutu-

ally defined by the following grammar, where M, φ, and K are metavariables for λ-terms,
constructors and kinds respectively:

M ::= x | λx:φ.M | MM | λα:K.M | Mφ

φ ::= α | Πx:φ.φ | Πα:K.φ | λx:φ.φ | λα:K.φ | φφ | φM
K ::= ∗ | Πx:φ.K | Πα:K.K

The set Tt of typed terms is the union of the sets Λt, Const and Kindt .

Definition 1.2 (Typed reduction) β-reduction on typed terms (denoted as →→β) is defined as
usual, i.e., as the contextual, reflexive and transitive closure of the following one-step reduc-
tion rule:

(λa:A.B)C →β B[C/a].

The symbol =β denotes β-conversion, i.e., the least equivalence relation generated by →→β.

The introduction of three classes of ‘terms’ in Definition 1.1 induces a stratified version of the
set derivation rules; each class comes with its own derivations rules. The names of the rules

Annals of Pure and Applied Logic, 86(3):267-303, 1997 5

are, to save space, restricted to a few characters. We have tried to use an orthogonal approach
in baptizing the rules: in general a name for a rule is composed like (X−YZ), meaning that:

• it is a rule that follows the syntax of objects in class X, where X is omitted for λ-terms, is
C for constructors, and K for kinds,

• Y is either

– I for an introduction rule, that are used to deal with the various λ-abstractions,
– E for an elimination rule, that deal with applications,
– F for a formation rule, that deal with the Π-abstraction,

• and Z is used (as X above) to indicate the class either of the bound variable (in case of an
introduction or formation rule), or of the right-hand side term in an application (in case
of a formation rule).

Definition 1.3 (Barendregt’s general typed system) The following rules are used to derive
judgements of the form Γ �t A : B, where Γ is a context and A : B is a statement. The derivation
rules can be divided in four groups, depending of the subjects of the statements:

i) Common Rules

(Proj) :
Γ �t A : s a �∈ Dom (Γ)

Γ, a:A �t a : A

(Weak) :
Γ �t A : B Γ �t C : s c �∈ Dom (Γ)

Γ, c:C �t A : B

(Conv) :
Γ �t A : B Γ �t C : s B =β C

Γ �t A : C
ii) Typed λ-Term Rules

(I) :
Γ, x:φ �t M : ψ

Γ �t λx:φ.M : Πx:φ.ψ

(E) :
Γ �t M : Πx:φ.ψ Γ �t N : φ

Γ �t MN : ψ[N/x]

(IK) :
Γ,α:K �t M : φ

Γ �t λα:K.M : Πα:K.φ

(EK) :
Γ �t M : Πα:K.φ Γ �t ψ : K

Γ �t Mψ : φ[ψ/α]

iii) Typed Constructor Rules

(C–IC) :
Γ, x:φ �t ψ : K

Γ �t λx:φ.ψ : Πx:φ.K

(C–EC) :
Γ �t ψ : Πx:φ.K Γ �t M : φ

Γ �t ψM : K[M/x]

(C–IK) :
Γ,α:K1 �t ψ : K2

Γ �t λα:K1.ψ : Πα:K1.K2

(C–EK) :
Γ �t φ : Πα:K1.K2 Γ �t ψ : K1

Γ �t φψ : K2[ψ/α]

(C–FC) :
Γ, x:φ �t ψ : ∗

Γ �t Πx:φ.ψ : ∗

Annals of Pure and Applied Logic, 86(3):267-303, 1997 6

(C–FK) :
Γ,α:K �t φ : ∗

Γ �t Πα:K.φ : ∗
iv) Typed Kind Rules

(Axiom) :
<> �t ∗ : �

(K–FC) :
Γ, x:φ �t K : �

Γ �t Πx:φ.K : �

(K–FK) :
Γ,α:K1 �t K2 : �

Γ �t Πα:K1.K2 : �

If Γ �t M : φ for a typed λ-term M, then Γ �t φ : ∗ (see [4]). In this case we say that φ is a
type or, to be more precise, a type with respect to the context Γ.

In the next definition we present a notation for derivations, that is of use in the sequel.

Definition 1.4 i) We write D:: Γ �t A : B to express that D is a derivation for the judgement
Γ �t A : B.

ii) We write D′ ⊆ D when D′ is a subderivation of D.
iii) We will use the notation

C1 . . . CnD:: (R)C
to denote the derivation D, proving the judgement C, that is obtained by applying the

rule (R) to the premises C1, . . . ,Cn, which are conclusions of some derivations.

Definition 1.5 i) Let the following sets of rules be defined by:
Base-Rules = {(Axiom), (Proj), (Weak), (I), (E), (C–FC)},
Polymorphism = {(IK), (EK), (C–FK)},
Dependencies = {(C–IC), (C–EC), (K–FC), (Conv)},
Higher-Order = {(C–IK), (C–EK), (K–FK), (Conv)}.

ii) The eight typed systems in Barendregt’s cube can be represented by the set of derivation
rules used in each system.

λ→ = Base-Rules,
λω = λ→∪Higher-Order,
λ2 = λ→∪Polymorphism,

λω = λ→∪Higher-Order ∪Polymorphism,
λP = λ→∪Dependencies,

λPω = λ→∪Dependencies ∪Higher-Order,
λP2 = λ→∪Dependencies ∪Polymorphism,

λPω = λ→∪Dependencies ∪Higher-Order ∪Polymorphism.

For each set of rules S, we write Γ �S A : B to indicate that Γ �t A : B can be derived
using only the rules in S. The expression ‘system S’ refers to the typed system obtained
by restricting the full system to allow only the rules in S. Then the eight typed systems
can be arranged as vertices of the following cube (Barendregt’s cube):

Annals of Pure and Applied Logic, 86(3):267-303, 1997 7

λ→

�

��
���

λω

�

�

λ2 ��
���

λω �

λP
�
���

�

λPω

�

λP2
�
���

λPω

We list a few of the properties of this cube, being those that are explicitly used in this paper.

Property 1.6 A[B/b][C/c] ≡ A[C/c][B[C/c]/b], provided b �∈ FV (C).

Property 1.7 (Church-Rosser for TS) A =β B & Γ �t A : C & Γ �t B : C ⇒ ∃ D [A →→β D &
B →→β D].

Property 1.8 Barendregt’s general typed system derives judgements of the following shapes:

Γ �t M : φ, Γ �t φ : K, or Γ �t K : �.

Property 1.9 D:: Γ, c:C �t A : B ⇒ ∃D′ ⊆ D [D′:: Γ �t C : s].

Property 1.10 (Typed Generation Lemma) i) Γ �t a : A ⇒ ∃ s, B [Γ �t B : s & a:B ∈ Γ &
A =β B].

ii) Γ �t λa:A.B : C ⇒ ∃ s, D [Γ �t Πa:A.D : s & Γ, a:A �t B : D & C =β Πa:A.D].
iii) Γ �t AB : C ⇒ ∃ D, E [Γ �t A : Πd:D.E & Γ �t B : D & C =β E[B/d]].
iv) Γ �t Πa:A.B : C ⇒ ∃ s1, s2, s3 [Γ �t A : s1 & Γ, a:A �t B : s2 & C =β s3].

Property 1.11 Γ �t A : B ⇒ B ≡ �∨ Γt �t B : s.

Property 1.12 (Termination for typed terms) If Γ �t A : B, then A and B are both strongly normalizing.

1.2 The Cube of Type Assignment Systems

In this subsection, we will present the cube of type assignment system as was first introduced
in [13]. The definition of the type assignment cube is based on the definition of the type-
erasing function E. In fact, both the syntax of terms, and the rules of the type assignment
systems in the cube are obtained directly from the corresponding syntax and rules of the
typed systems in Barendregt’s cube, by applying E.

From now on, we will reserve the name typed systems (TS) for the systems of Barendregt’s
cube, and we reserve the expression type assignment systems (TAS) for the systems to be defined
below.

As we already mentioned in the introduction, for the plane of the TScube without depen-
dencies, there exists a function that, erasing type information from typed λ-terms, allows to
switch from a typed system to a corresponding type assignment system. To be precise, it
erases type information from λ-bindings occurring in λ-terms, while leaving all type informa-
tion that decorates bindings in constructors and kinds intact. In [13], a more general function

Annals of Pure and Applied Logic, 86(3):267-303, 1997 8

E was defined, by extending the domain of the above function to terms with dependencies in
a natural way, as shown in the next definition.

Definition 1.13 i) {∗,�} is the set of sorts.
ii) The sets of λ-terms (Λ), constructors (Cons), and kinds (Kind) are mutually defined by the

following grammar, where M,φ and K, are metavariables for λ-terms, constructors and
kinds respectively:

M ::= x | λx.M | MM
φ ::= α | Πx:φ.φ | Πα:K.φ | λx:φ.φ | λα:K.φ | φφ | φM

K ::= ∗ | Πx:φ.K | Πα:K.K
The set Tu of terms is the union of the sets Λ, Cons and Kind.

iii) The erasing function E : Tt → Tu is inductively defined as follows:
a) On Λt.

E (x) = x,
E (MN) = E (M)E (N),
E (Mφ) = E (M),

E (λx:φ.M) = λx.E (M),
E (λα:K.M) = E (M).

b) On Const .

E (α) = α,
E (Πx:φ.ψ) = Πx:E (φ).E (ψ),
E (Πα:K.ψ) = Πα:E (K).E (ψ),
E (λx:φ.ψ) = λx:E (φ).E (ψ),
E (λα:K.ψ) = λα:E (K).E (ψ),

E (φψ) = E (φ)E (ψ),
E (φM) = E (φ)E (M).

c) On Kindt .

E (∗) = ∗,
E (Πx:φ.K) = Πx:E (φ).E (K),

E (Πα:K1.K2) = Πα:E (K1).E (K2).

The erasing function is extended to contexts in the obvious way and we use the notation
E (Γ). Note that the behaviour of E is such that, in the image of E, λ-terms are completely
untyped, while constructors and kinds are ‘partially’ typed.

The notions of free variables, subterms and β-reduction, to be defined below, are similar to
their ‘fully typed’ counterparts as can be found in [4, 11], but slightly modified, according to
the untyped term syntax.

Definition 1.14 FV (A), the set of free variables of A, and ST (A), the set of subterms of A, are
inductively defined by:

Annals of Pure and Applied Logic, 86(3):267-303, 1997 9

FV (∗) = ∅,

FV (a) = {a},

FV (BC) = FV (B) ∪ FV (C),

FV (Πa:B.C) = FV (B) ∪ (FV (C) \ {a}),
FV (λa:B.C) = FV (B) ∪ (FV (C) \ {a}),

FV (λx.M) = FV (M) \ {x},

ST (∗) = {∗},

ST (a) = {a},

ST (BC) = {BC} ∪ ST (B) ∪ ST (C),

ST (Πa:B.C) = {Πa:B.C} ∪ ST (B) ∪ ST (C),

ST (λa:B.C) = {λa:B.C} ∪ ST (B) ∪ ST (C),

ST (λx.M) = {λx.M} ∪ ST (M).

Definition 1.15 The result of a simultaneous substitution S = [A1/a1, . . . , An/an], applied to
a term D, is denoted either by D[A1/a1, . . . , An/an], or by DS. We normally assume that no
variable bound in D is free in any of the Ai’s and that the set {a1, . . . , an} is disjoint from the
set of bound variables of D. Formally, the substitution on terms is inductively defined by:

aS
i ≡ Ai, for 1≤ i≤n,

bS ≡ b, for every b �∈ {a1, . . . , an},
(BC)S ≡ BSCS,

(Πb:B.C)S ≡ Πb:BS.CS,
(λb:B.C)S ≡ λb:BS.CS,
(λx.M)S ≡ λx.MS.

The ‘untyped variant’ of Property 1.6 also holds:

Lemma 1.16 A[B/b][C/c] ≡ A[C/c][B[C/c]/b], provided b �∈ FV (C).

Proof: By easy induction on the definition of substitution.

Definition 1.17 β-reduction on terms can no longer be presented through a single generic
rule as in Definition 1.2. Instead, we have the following three rules:

(λx:φ.ψ)M →β ψ[M/x],
(λα:K.φ)ψ →β φ[ψ/α],
(λx.M)N →β M[N/x].

The relations →→β and =β are defined as usual, starting from the reduction rules defined
above.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 10

Lemma 1.18 If B =β C, then B[D/a] =β C[D/a].

Proof: By easy induction on the definition of =β, using Lemma 1.16.

Definition 1.19 i) A statement is an expression of one of the forms:
M : φ, φ : K, or K : �,

where M is a λ-term, φ is a constructor and K is a kind. The left part of the statement is
called the subject, the right part is called the predicate.

ii) A declaration is a statement whose subject is a variable.

Definition 1.20 i) A context is a sequence of declarations, whose subjects are distinct. The
empty context is denoted by <>.

ii) Equality on contexts is defined by:
a) <> = <>;
b) Γ, a:A = Γ′,b:B, if Γ = Γ′, a ≡ b, and A ≡ B.

iii) We write a:A ∈ Γ, if the declaration a:A occurs in Γ.
iv) The domain of Γ, denoted by Dom (Γ), is the set {a | ∃ A [a:A ∈ Γ]}.
v) If Γ1 and Γ2 are contexts such that Dom (Γ1) ∩ Dom (Γ2) = ∅, then Γ1, Γ2 is a context

obtained by concatenating Γ1 to Γ2.
vi) FV (Γ) =

⋃{FV (A) | ∃ a [a:A ∈ Γ]}.
vii) We extend the notion of substitution to contexts by: <>S = <>, and (Γ,b:B)S = ΓS,b:BS.

Given the difference in syntax, the type assignment rules as presented in Definition 1.21 are
only in appearance similar to those of Definition 1.3. Note that the denotation of a rule is only
different for the rules (I), (IK) and (EK). We will, therefore, take the liberty of using the same
notation and names for rules; note, however, that the similarity is only superficial.

Definition 1.21 (General type assignment system) The following rules are used to derive
judgements of the form Γ � A : B, where Γ is a context and A : B is a statement.

i) Common Rules

(Proj) :
Γ � A : s a �∈ Dom (Γ)

Γ, a:A � a : A

(Weak) :
Γ � A : B Γ � C : s c �∈ Dom (Γ)

Γ, c:C � A : B

(Conv) :
Γ � A : B Γ � C : s B =β C

Γ � A : C
ii) λ-Term Rules

(I) :
Γ, x:φ � M : ψ

Γ � λx.M : Πx:φ.ψ

(E) :
Γ � M : Πx:φ.ψ Γ � N : φ

Γ � MN : ψ[N/x]

(IK) :
Γ,α:K � M : φ

Γ � M : Πα:K.φ

(EK) :
Γ � M : Πα:K.φ Γ � ψ : K

Γ � M : φ[ψ/α]

Annals of Pure and Applied Logic, 86(3):267-303, 1997 11

iii) Constructor Rules

(C–IC) :
Γ, x:φ � ψ : K

Γ � λx:φ.ψ : Πx:φ.K

(C–EC) :
Γ � ψ : Πx:φ.K Γ � M : φ

Γ � ψM : K[M/x]

(C–IK) :
Γ,α:K1 � ψ : K2

Γ � λα:K1.ψ : Πα:K1.K2

(C–EK) :
Γ � φ : Πα:K1.K2 Γ � ψ : K1

Γ � φψ : K2[ψ/α]

(C–FC) :
Γ, x:φ � ψ : ∗

Γ � Πx:φ.ψ : ∗

(C–FK) :
Γ,α:K � φ : ∗

Γ � Πα:K.φ : ∗
iv) Kind Rules

(Axiom) :
<> � ∗ : �

(K–FC) :
Γ, x:φ � K : �

Γ � Πx:φ.K : �

(K–FK) :
Γ,α:K1 � K2 : �

Γ � Πα:K1.K2 : �
Notice that, unlike for the derivation rules of Definition 1.3, the subject does not change in the
type assignment rules (IK) and (EK). These two, together with the rules (Weak) and (Conv), are
called the not syntax-directed rules.

The notion of derivation and subderivation for a judgement are the same as in Definition
1.4, and an analogue of Property 1.8 also holds:

Lemma 1.22 The general type assignment system derives judgements of the following shapes:

Γ � M : φ, Γ � φ : K, or Γ � K : �.

Proof: Easy, by looking at the rules and by observing that the sets Cons and Kind are closed for
the substitution of λ-term-variables by λ-terms and constructor-variables by constructors.

As before, a type is a constructor of kind ∗ (and this is again a context-dependent property).
A λ-term M is typable if there are a context Γ and a constructor φ, such that Γ � M : φ (we
prove in Section 2 that φ must be a type).

As in [13], we can distinguish eight different type assignment systems, defined using the
same collection of rules given in Definition 1.5 (i) for the TS-cube.

F1 = Base-Rules,
F′ = F1 ∪Higher-Order,
F2 = F1 ∪Polymorphism,

Fω = F1 ∪Higher-Order ∪Polymorphism,
DF1 = F1 ∪Dependencies,
DF′ = F1 ∪Dependencies ∪Higher-Order,

Annals of Pure and Applied Logic, 86(3):267-303, 1997 12

DF2 = F1 ∪Dependencies ∪Polymorphism,
DFω = F1 ∪Dependencies ∪Higher-Order ∪Polymorphism.

Like for TS we will use, for each set of rules S, the expression Γ �S A : B to indicate that
Γ � A : B can be derived using only the rules in S. These systems can be arranged as vertices
of the following cube:

F1

�

��
���

F′

�

�

F2 ��
���

Fω �

DF1
�
���

�

DF′

�

DF2
�
���

DFω

Notice that, in the left-hand plane of the cube, the constructors coincide with the typed
ones, because there they cannot depend on λ-terms. This no longer holds in the right-hand
plane: here we can build constructors like (λx:φ.ψ)N, where N is a pure, untyped λ-term.

The system F1 corresponds to the well-known Curry type assignment system, whereas F2
is the type assignment version of the second order λ-calculus. The three dimensions in this
cube of type assignment systems correspond, as for Barendregt’s cube, to the introduction of
polymorphic types, higher-order types and dependent types.

2 Properties of the Cube of Type Assignment Systems

In this section, we will prove that all systems in the TAS-cube satisfy good computational
properties, like subject reduction, the Church-Rosser property, and strong normalization of
typable terms. To prove these results, we need more definitions and technical lemmas, stating
properties of the systems that are also of independent interest.

2.1 Basic properties

In this subsection, we will focus on some of the basic properties that hold for the cube of
Type Assignment Systems. They are those that can be expected, and that also hold (in their
typed variants) for Barendregt’s cube; of course the results of section 3 show that those results
cannot be used for the proofs needed here.

The following lemma states that every term, typable by ∗ or �, cannot be typable by both,
and guarantees consistency of the system.

Lemma 2.1 For every context Γ, term A, and sorts s1, s2: if Γ � A : s1 and Γ � A : s2, then s1 ≡ s2.

Proof: This is an obvious consequence of Lemma 1.22.

Definition 2.2 A legal context is inductively defined as follows:
i) The empty context <> is legal;

Annals of Pure and Applied Logic, 86(3):267-303, 1997 13

ii) If Γ is legal, and there exists s, such that Γ � A : s, then, for every a �∈ Dom (Γ), also Γ, a:A
is legal.

Lemma 2.3 If Γ � A : B, then Γ is legal.

Proof: By easy induction on the structure of derivations, using Definition 2.2.

From now on, to avoid unnecessary complications in proofs and definitions, every context
is assumed to be legal.

We define the following relations on contexts:

Definition 2.4 i) Γ � Γ′ ⇐⇒ Γ is a prefix of Γ′.
ii) The relation �· is inductively defined by:

a) <> �· Γ.
b) If Γ �· Γ′, then Γ, a:A �· Γ′, a:A.
c) If Γ �· Γ′, then Γ �· Γ′, a:A.

For these relations, the following lemma holds.

Lemma 2.5 i) If Γ1 � Γ2, then Γ1 �· Γ2.
ii) If Γ1, a:A, Γ2 �· Γ′, then Γ′ = Γ′

1, a:A, Γ′
2, with Γ1 �· Γ′

1, and Γ′
2 contains at least all statements

of Γ2.

Proof: Easy.
Notice that, in part (ii), in general the subcontexts Γ2 and Γ′

2 are not legal contexts.

Lemma 2.6 If Γ �· Γ′and Γ � A : B, then
i) (Free Variable Lemma) FV (A) ∪ FV (B) ⊆ Dom (Γ).

ii) (Thinning Lemma) Γ′ � A : B.

Proof: i) By induction on the structure of derivations. The only interesting cases are the
elimination rules; take for instance (E):

Γ � M : Πx:φ.ψ Γ � N : φ

Γ � MN : ψ[N/x]
(E).

By induction, if c ∈ FV (M) ∪ FV (Πx:φ.ψ), then c ∈ Dom (Γ), and if c ∈ FV (N) ∪
FV (φ), then c ∈ Dom (Γ). Observe that FV (ψ[N/x]) = FV (ψ)\{x} ∪ FV (N).

ii) By induction on the structure of derivations. The only interesting cases are (Proj) and
(Weak).

(Proj) : Then Γ = Γ1, a:A, for some Γ1, such that Γ1 � A : s and Γ1, a:A �· Γ′. Then, by Lemma
2.5 (ii), Γ′ = Γ′

1, a:A, Γ′
2, with Γ1 �· Γ′

1, and, by induction, Γ′
1 � A : s. To derive Γ′ � a : A,

apply (Proj) once, and then (Weak) a suitable number of times.
(Weak) : Then Γ = Γ1, c:C. Since Γ1, c:C �· Γ′, by Lemma 2.5 (ii), we have that Γ′ = Γ′

1, c:C, Γ′
2

and Γ1 �· Γ′
1. By induction, Γ′

1 � A : B, and, by applying a series of (Weak), we derive
Γ′ � A : B.

The following relation is introduced to abbreviate a sequence of derivation rules (IK) and
(EK), that together correspond to polymorphism, and also takes the presence of rule (Conv)
into account. It will be of use in Lemma 2.8 and in Theorem 2.18.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 14

Definition 2.7 We define the relation � on constructors inductively by:

φ =β ψ ⇒ φ � ψ,
φ � Πα:K.φ,

Πα:K.φ � φ[ξ/α],
φ � ψ � ξ ⇒ φ � ξ.

The four cases in Definition 2.7 reflect, respectively, an application of rule (Conv), (IK), or
(EK), and a sequence of not syntax directed rules.

Worth noticing is the second case of Definition 2.7, because it illustrates an important differ-
ence between the original presentation of the polymorphic type assignment system [17], and
our presentation as a system in the topology of the TAS-cube. The equivalent rule for (IK) in
the polymorphic type assignment system is:

(∀ I) :
Γ � M : σ

Γ � M : ∀α.σ
α �∈ FV (Γ)

The type ∀α.σ is essentially the constructor Πα:∗.σ, and α �∈ FV (Γ) is a side-condition, in-
dicating that binding of the type variable α is only allowed when α does not occur free in
any predicate belonging to the context. The polymorphic type assignment system needs this
side-condition to avoid to assign, for example,

x:α � x : ∀α.α.

The TAS presentation of this system does not require this extra condition on the derivation
rule (IK): in fact, types are generated by the system itself, using only legal contexts, which
are essentially linear ordered sets of declarations in the derivations. In these systems, it is
impossible to apply a (IK) rule to the derivation for

α:∗, x:α � x : α,

because α:∗ is not the right-most declaration in the context; when Γ,α:∗ � M : α, then, by
legality of the context, α does not occur in Γ, so especially does not occur free in Γ. We can
say that the extra condition on (IK) is hidden in the definition of legal context.

For TAS the following properties hold:

Lemma 2.8 (Generation Lemma for λ-terms) i) If Γ � x : ξ, then there is ξ′, such that x:ξ′ ∈
Γ and ξ′ � ξ.

ii) If D:: Γ � MN : ξ, then there are Γ′, φ, ψ, and D′ ⊆ D, such that ψ[N/x] � ξ and

D′::
Γ′ � M : Πx:φ.ψ Γ′ � N : φ

Γ′ � MN : ψ[N/x]
(E).

iii) If D:: Γ � λx.M : ξ, then there are Γ′, φ, ψ, and D′ ⊆ D, such that Πx:φ.ψ � ξ and

D′::
Γ′, x:φ � M : ψ

Γ′ � λx.M : Πx:φ.ψ
(I).

Proof: By induction on the structure of derivations, using Definition 2.7.

Notice that this lemma states more than, for example, Property 1.10, since it explicitly states
the existence of a subderivation. This will be convenient in the proof of Theorem 2.18. Also
the following properties hold.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 15

Lemma 2.9 (Generation Lemma for constructors and kinds) i) If Γ � α : K, then there is
K′, such that α:K′ ∈ Γ and K′ =β K.

ii) If Γ � λa:A.B : C, then there are Γ′ � Γ, and D, such that Γ′, a:A � B : D and Πa:A.D =β C.
iii) If Γ � AB : C, then there are Γ′ � Γ, D, and E, such that Γ′ � A : Πd:D.E, Γ′ � B : D and

E[B/d] =β C.
iv) If Γ � Πa:A.B : s, then there is Γ′ � Γ, such that Γ′, a:A � B : s.

Proof: By easy induction on the structure of derivations.

2.2 Typability

In this subsection, we will focus on a number of more evolved properties of the cube of Type
Assignment Systems. First we prove that the notion of reduction as presented in Definition
1.17 satisfies the following property.

Property 2.10 (Church-Rosser for TAS) If A →→β A′ and B →→β B′, then there exists C, such
that A′ →→β C and B′ →→β C.

Proof: In the terminology of Klop [16], our β-reduction is a regular combinatory reduction
system, and thus the Church-Rosser property follows from Theorem 3.11 in [16].

The following lemma shows that all subterms of typable terms are typable.

Lemma 2.11 Let B ∈ ST (A). If Γ � A : C, then there exist Γ′, E, such that Γ′ � B : E.

Proof: By induction on the structure of derivations. The only interesting cases are the intro-
duction rules (C–IC) and (C–IK); the others follow by easy induction. Take for instance (C–IC):

Γ, x:φ � ψ : K

Γ � λx:φ.ψ : Πx:φ.K
(C–IC).

Recall that ST (λx:φ.ψ) = {λx:φ.ψ} ∪ ST (φ) ∪ ST (ψ). The result follows directly for B ≡
λx:φ.ψ, by induction for B ∈ ST (ψ), and by induction and Lemma 2.3 for B ∈ ST (φ).

The next lemma formulates that the class of derivable statements is closed for substitution
on terms.

Lemma 2.12 (Substitution Lemma) If Γ1, c:C, Γ2 � A : B, and Γ1 � D : C, then Γ1, Γ2[D/c] � A[D/c] : B[D/c].

Proof: By induction on the structure of derivations. The most interesting cases are when the
last rule is (Proj), (Weak), or (Conv).

(Proj) : If this rule is applied to the variable c, then we have
Γ1 � C : s c �∈ Dom (Γ1)

Γ1, c:C � c : C
(Proj),

and the result follows immediately from the assumption Γ1 � D : C.
Otherwise, (Proj) is applied to a variable different from c, i.e., Γ2 = Γ′

2,b:B and
Γ1, c:C, Γ′

2 � B : s b �∈ Dom (Γ1, c:C, Γ2)

Γ1, c:C, Γ′
2,b:B � b : B

(Proj).

Then, by induction, we obtain Γ1, Γ2[D/c] � B[D/c] : s. Notice that, from the assump-
tion Γ1 � D : C and Lemma 2.6 (i), we know that FV (D) ⊆ Dom (Γ1). Then, since b �∈

Annals of Pure and Applied Logic, 86(3):267-303, 1997 16

Dom (Γ1, c:C, Γ2), also b �∈ Dom (Γ1, Γ2[D/c]). Then Γ1, Γ2[D/c],b:B[D/c] � b : B[D/c], as
desired.

(Weak) : Like for (Proj), we have to consider two subcases, of which the first is of the form
Γ1 � A : B Γ1 � C : s c �∈ Dom (Γ1)

Γ1, c:C � A : B
(Weak).

The result follows directly from the assumption Γ1 � A : B and the observation that,
since c �∈ Dom (Γ1) ⊇ FV (A) ∪ FV (B), by Lemma 2.6 (i), also A[D/c] ≡ A and B[D/c] ≡
B. The second case follows by straightforward induction.

(Conv) : By induction and Lemma 1.18.

Now we are able to prove the property that all predicates in derivable statements are typable.

Lemma 2.13 If Γ � E : F, then either F ≡ �, or Γ � F : s.

Proof: By induction on the structure of derivations.

(Axiom), (Conv), (Proj) : Immediate.

(Weak) : By induction.

Elimination Rules : Then F ≡ B[D/a], Γ � C : Πa:A.B and Γ � D : A. By induction, either
Πa:A.B ≡ �, or Γ � Πa:A.B : s, for some s. The first is impossible; for the second, by
the Generation Lemma (2.9 (iv)), there is a Γ′, such that Γ′, a:A � B : s and Γ′ � Γ. Then
Γ, a:A � B : s follows from Lemmas 2.5 (i) and 2.6 (ii). By applying the Substitution Lemma
(2.12), we obtain Γ � B[D/a] : s.

Introduction Rules : Then F ≡ Πa:A.B, and Γ, a:A � E : B. By induction, either B ≡ �, or
Γ, a:A � B : s, for some s. The first case is impossible; for the second, apply a formation
rule to obtain Γ � Πa:A.B : s.

Formation Rules : Then F ≡ s, and Γ, a:A � B : s. Clearly F ≡ �, or F ≡ ∗. The first case is
immediate; in the second, observe that Γ′ � ∗ : � is derivable for all legal contexts.

Lemma 2.14 If Γ � M : φ, then Γ � φ : ∗, i.e., φ is a type with respect to Γ.

Proof: By Lemma 2.13, either φ ≡ �, or Γ � φ : s. But, by Lemma 1.22, φ �≡�, since M ∈ Λ.
We finish the proof by showing that Γ � φ : s implies s ≡ ∗, by induction on the structure
of derivations. The only important cases are the elimination rules, of which we show one
example, and the (Proj) rule for constructors; the others follow by easy induction.

(C–EC) : Then Γ � φ : K[N/x] and K[N/x] is a sort. By the syntax of kinds we have that
K[N/x] ≡ ∗.

(Proj) : Then φ is a constructor variable, say α. Then Γ = Γ′,α:s and, by legality of contexts,
also Γ′ � s : s′. But this is possible only if s ≡ ∗.

2.3 Subject reduction

We now come to the proof that the here defined notion of type assignment is closed for subject
reduction on typable λ-terms, i.e., if Γ � M : ψ and M →→β N, then also Γ � N : ψ. The proof
of this result is not immediate, because of the presence of the derivations rules that are not
syntax directed. It requires a sequence of lemmas; to start with, the next lemma states that
contexts can be considered modulo β-conversion of predicates.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 17

Lemma 2.15 If Γ1, a:A, Γ2 � B : C, then Γ1, a:A′, Γ2 � B : C, for all A′ such that Γ1, a:A′ is legal and
A′ =β A.

Proof: By induction on the structure of derivations. Most cases are dealt with by straightfor-
ward induction, except for:

(Proj) : If B ≡ a, also C ≡ A and Γ2 = <>. Then Γ1 � A : s and a �∈ Dom (Γ1). The result is
obtained from the following derivation (which exists, since Γ1, a:A′ is legal):

Γ1 � A′ : s a �∈ Dom (Γ1)(Proj)
Γ1, a:A′ � a : A′

Γ1 � A : s Γ1 � A′ : s a �∈ Dom (Γ1) (Weak)
Γ1, a:A′ � A : s A =β A′

(Conv)
Γ1, a:A′ � a : A.

If B is a variable different from a, the result follows by induction.

(Weak) : If this rule is applied to the variable a, then Γ1 � B : C and a �∈ Dom (Γ1). Then we
can also derive (again, by assumption, Γ1, a:A′ is legal):

Γ1 � B : C Γ1 � A′ : s a �∈ Dom (Γ1)

Γ1, a:A′ � B : C
(Weak).

Again, if this rule is applied to a variable c different from a, the result follows by
induction.

The following two lemmas together prove that if Πx:φ.ψ is derivable for λx.M from the
context Γ, then ψ is derivable for M from the context Γ, x:φ.

Lemma 2.16 If Γ � λx.M : ξ, then there are K1, . . . , Kk, φ and ψ, such that Πk
i=1αi:Ki.Πx:φ.ψ =β ξ,

and Γ,α1:K1, . . . ,αk:Kk, x:φ � M : ψ.

Proof: By induction on the structure of derivations.

(I) : Immediate, with k = 0.

(Weak) : Let Γ be Γ′, c:C, then Γ′ � λx.M : ξ and Γ′ � C : s. By induction,

ξ =β Πk
i=1αi:Ki.Πx:φ.ψ and Γ′,α1:K1, . . . ,αk:Kk, x:φ � M : ψ.

Since

Γ′,α1:K1, . . . ,αk:Kk, x:φ �· Γ′, c:C,α1:K1, . . . ,αk:Kk, x:φ,

we can apply Lemma 2.6 (ii) to obtain Γ′, c:C,α1:K1, . . . ,αk:Kk, x:φ � M : ψ.

(Conv), (IK) : Easy.

(EK) : Let ξ ≡ ξ′ [µ/α], then there exists K, such that Γ � λx.M : Πα:K.ξ′ and Γ � µ : K. By
induction, we have

Πα:K.ξ′ =β Πk
i=1αi:Ki.Πx:φ.ψ and Γ,α1:K1,α2:K2, . . . ,αk:Kk, x:φ � M : ψ.

By the Church-Rosser Property (2.10), β-convertible terms have a common reduct,
so it must be that k≥1, K =β K1 (assuming by α-conversion that α is α1) and ξ′ =β

Πk
i=2αi:Ki.Πx:φ.ψ. By Lemma 1.18, we have ξ ≡ ξ′S =β Πk

i=2αi:KS
i .Πx:φS.ψS, where S

stands for the substitution [µ/α]. By Lemma 2.15, we have

Γ,α:K,α2:K2, . . . ,αk:Kk, x:φ � M : ψ,

and by the Substitution Lemma (2.12), we obtain

Γ,α2:KS
2 , . . . ,αk:KS

k , x:φS � M : ψS.

The other cases are impossible.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 18

Lemma 2.17 (Term Abstraction Lemma) If Γ � λx.M : Πx:φ.ψ, then Γ, x:φ � M : ψ.

Proof: By Lemma 2.16, we have Πx:φ.ψ =β Πk
i=1αi:Ki.Πx:φ′.ψ′, and since these two expres-

sions have a common reduct, it must be that k = 0, φ =β φ′ and ψ =β ψ′. Also by Lemma 2.16,
we know that Γ, x:φ′ � M : ψ′. Since Γ � λx.M : Πx:φ.ψ, by Lemma 2.13, also Γ � Πx:φ.ψ : ∗.
By Lemma 2.9 (iv), there exists Γ′ � Γ, such that Γ′, x:φ � ψ : ∗, so by the Thinning Lemma 2.6 (ii),
also Γ, x:φ � ψ : ∗ and, by Lemma 2.3, Γ, x:φ is legal. Since φ =β φ′, by Lemma 2.15, Γ, x:φ � M : ψ′.
Moreover, since Γ, x:φ � ψ : ∗ and ψ =β ψ′, we can apply rule (Conv) to this last derivation and
obtain Γ, x:φ � M : ψ.

Using this last lemma, is becomes easy to prove that the notion of type assignment we
consider in this paper is closed for subject reduction on terms.

Theorem 2.18 (Subject Reduction for Terms) If Γ � M : ψ and M →→β N, then Γ � N : ψ.

Proof: By induction on the number of β-reduction steps in M →→β N. We just consider the base
case, the inductive step is straightforward. The base case is proved by structural induction
on the context in which the redex occurs: we only consider the case M ≡ (λx.P)Q and N ≡
P[Q/x]. Let D be a derivation for Γ � (λx.P)Q : ψ. By the Generation Lemma (2.8 (ii)), D has
the following structure:

...
Γ′ � (λx.P) : Πx:φ′.ψ′

...
Γ′ � Q : φ′

D1:: (E)
Γ′ � (λx.P)Q : ψ′[Q/x]...D::

Γ � (λx.P)Q : ψ

with ψ′[Q/x] � ψ. That is, there is a subderivation D1, ending with an application of rule
(E), that is followed by a (possibly empty) sequence of applications of the not syntax-directed
rules (Weak), (Conv), (IK) and (EK). By the Term Abstraction Lemma (2.17), we obtain

Γ′, x:φ′ � P : ψ′.

Since Γ′ � Q : φ′, by the Substitution Lemma (2.12), we obtain

Γ′ � P[Q/x] : ψ′[Q/x].
Apply the same rules as used to go from D1 to D to obtain

Γ � P[Q/x] : ψ,

as desired.

2.4 Normalization

An important property of type assignment systems is the strong normalization of typable
terms; this is already know to hold for the systems Fω, F1, F2 and F′ [13]. Using this result,
we will show that it also holds for the other four systems of the cube of type assignment
systems.

For this, we use the function ED that ‘erases dependencies’, i.e., removes the λ-term infor-
mation in dependent types, as defined in [13], that is based on a similar definition given in
[19]. A similar function, erasing term-dependencies in the Theory of Generalized Functional-
ity of [21], can also be found in [5].

Definition 2.19 The function ED : Tu → Tu is defined as follows:

Annals of Pure and Applied Logic, 86(3):267-303, 1997 19

i) On Λ.

ED (M) = M.

ii) On Cons.

ED (α) = α,
ED (Πx:φ.ψ) = Πx:ED (φ).ED (ψ),
ED (Πα:K.ψ) = Πα:ED (K).ED (ψ),
ED (λx:φ.ψ) = ED (ψ),
ED (λα:K.ψ) = λα:ED (K).ED (ψ),

ED (φψ) = ED (φ)ED (ψ),
ED (φM) = ED (φ).

iii) On Kind.

ED (∗) = ∗,
ED (Πx:φ.K) = ED (K),

ED (Πα:K1.K2) = Πα:ED (K1).ED (K2).

Lemma 2.20 For ED, the following properties hold:

ED ((λx.M)N) = (λx.ED (M))(ED (N)),
ED (M[N/x]) = ED (M)[ED (N)/x],

ED ((λα:K.φ)ψ) = (λα:ED (K).ED (φ))(ED (ψ)),
ED (φ[ψ/α]) = ED (φ)[ED (ψ)/α],

ED ((λx:φ.ψ)M) = ED (ψ),
ED (ψ[M/x]) = ED (ψ).

Let →β denote the one-step β-reduction rule. Then A →β B implies either ED (A) →β ED (B), or
ED (A) ≡ ED (B).

Proof: Easy.

Using this dependency-erasing function, we can relate the strong normalization problem for
the full cube to that of the plane without dependencies, as done in the following theorem.

Theorem 2.21 (Termination for terms) If Γ � A : B, then A is strongly normalizing.

Proof: In [13], Theorem 2.2.1 states that if Γ � A : B is a derived judgement in DFω (DF1,
DF2, DF′), then ED (Γ) � ED (A) : ED (B) is derivable in Fω (F1, F2, F′). Suppose now that
A ≡ A0 →β A1 →β A2 →β . . . is a sequence of β-reductions. By Lemma 2.20, for every
i ≥ 1, either ED (Ai) →β ED (Ai+1), or ED (Ai) ≡ ED (Ai+1). Suppose the sequence A0 →β

A1 →β A2 →β . . . is infinite. Since β-reduction in Fω (F1, F2, F′) is strongly normalizing,
there is an n, such that ED (Aj) ≡ ED (Aj+1), for every j ≥ n. So from step n, every step in the
infinite sequence A0 →β A1 →β A2 →β . . . corresponds to a reduction of a redex of the form
(λx:φ.ψ)M. However, since M is a λ-term, such a reduction cannot create new abstractions of
the form λx:φ.ψ. Therefore, the number of such abstractions must decrease after every step,
and our reduction cannot be infinite.

Corollary 2.22 If Γ � A : B, then:

Annals of Pure and Applied Logic, 86(3):267-303, 1997 20

i) B is strongly normalizing.
ii) all predicates in Γ are strongly normalizing.

Proof: Immediate, using Lemmas 2.13 and 2.3.

3 The relation between the cubes of Typed and Type Assignment
Systems

In this section we will focus on the relation between Barendregt’s cube and the cube of Type
Assignment Systems.

3.1 Consistency, similarity, and isomorphism between systems

In this subsection, we first introduce the notions of consistency, similarity, and isomorphism be-
tween typed and type assignment systems. Note that these notions depend on the choice of
an erasing function E .

Definition 3.1 Let St and Su be, respectively, a typed and type assignment system, and let E
be an erasing function from terms in St to terms in Su.

i) We say that St and Su are consistent (via E) if E is sound with respect to provable judge-
ments, i.e. Γt �St At : Bt implies E (Γt) �Su E (At) : E (Bt).

ii) Systems St and Su are similar (via E) if they are consistent and, moreover, E is complete
with respect to provable judgements, i.e. Γ �Su A : B implies that there exists Γt, At and
Bt, such that Γt �St At : Bt and E (Γt) = Γ, E (At) ≡ A and E (Bt) ≡ B.

iii) Let Dert and Deru be the sets of all derivations in St and Su. Systems St and Su are
isomorphic (via E) if and only if there are F : Dert→Deru and G: Deru→Dert, such that:
a) If D:: Γ �St A : B, then F (D):: E (Γ) �Su E (At) : E (Bt).
b) F◦G and G◦F are the identity on Deru and Dert, respectively.
c) Both F and G preserve the structure of derivations, (i.e., the tree obtained from a

derivation by erasing all judgements, but not the names of the rules).

Notice that the definition of isomorphism expresses more than just soundness and complete-
ness of E . Notice, moreover, that F is not defined by induction on derivations, a detail that
will be of importance in Section 4. Finally, notice that, in the previous definition, Su is not
assumed to be obtained from St through the application of E to the rules of St.

The definition of isomorphism between two systems was already given in [13], but in a less
general way. We have defined isomorphism with respect to an erasing function E ; the def-
inition of isomorphism in [13] used a fixed function. To be more precise, two systems are
isomorphic according to the definition in [13], if they are isomorphic in the sense of Defini-
tion 3.1 with respect to the function F that is defined as follows: F (D) is obtained from D by
applying the erasing function E to all terms in D; by abuse of notation, we denote F (D) by
E (D).

The following lemma states that, for the TS and TAS-cubes, the two notions of isomorphism
coincide.

Lemma 3.2 Let St and Su be systems in corresponding vertices of the TS and TAS-cube, respectively,
and suppose they are isomorphic through the functions F and G. Then F (D) = E (D), for every typed

Annals of Pure and Applied Logic, 86(3):267-303, 1997 21

derivation D.

Proof: By easy induction.

To show consistency of our systems we need the following lemma that shows that type
erasure does not affect β-reduction.

Lemma 3.3 i) E (A[B/b]) ≡ E (A)[E (B)/b].
ii) If A →→β B, then E (A) →→β E (B).

Proof: i) By easy induction on the definition of substitution.
ii) By induction on the definition of →→β, using part (i).

A similar result for β-conversion follows easily.

In [13], some results about the relation between TS and TAS have been proved. They are
summarized in the following proposition.

Proposition 3.4 ([13]) Let St and Su be systems in corresponding vertices of the TS and TAS-cube,
respectively.

i) Systems St and Su are consistent.
ii) If St and Su do not contain Dependencies as subset rules, then St and Su are isomorphic.

iii) If the assumption of part (ii) is not satisfied, then St and Su are not isomorphic.

Proof: See [13]. The proof of parts (i) and (ii) uses Lemma 3.3.

So, all typed systems St are consistents with respect to the corresponding untyped systems
Su. In addition, applying the erasing function E to all judgements used in a derivation in
St yields a correct derivation in Su. This implies that St and Su are similar. Unfortunately,
systems with dependencies need not be isomorphic, as we will show below.

Although a counterexample for proving Proposition 3.4 (iii) can be found in [13], we will
give here another, both for the convenience of the reader, and because it is an easier example
than that in [13] (it does not make use of the (Conv) rule).

Example 3.5 Consider the following derivation in DF1 (for reasons of readability, we use the
notation A→B for Πa:A.B, when a does not occur in B).

Let O stand for the λ-term (λxy.y) and let I denote the identity (λx.x). Let Γ be a context
consisting of the following declarations:

α:∗, β:∗,γ:∗, a:(γ→γ)→∗ .

Clearly, we can derive both Γ � I : α→α and Γ � O : (α→α)→γ→γ; combining these gives
Γ � OI : γ→γ, with which we can derive Γ � a(OI) : ∗; let Di be the derivation for this result:

D1:: Γ � a(OI) : ∗.

By applying rules (Weak) and (C–FC), we get Γ � a(OI)→γ : ∗. Applying rule (Proj) gives
Γ,u:a(OI)→γ � u : a(OI)→γ, and by applying a (Weak) (using again derivation D1), we get

D2:: Γ,u:a(OI)→γ,v:a(OI) � u : a(OI)→γ.

On the other hand, we can also derive Γ � I : β→β and Γ � O : (β→β)→γ→γ, which can

Annals of Pure and Applied Logic, 86(3):267-303, 1997 22

be used, as above, to obtain Γ � a(OI)→γ : ∗, and by applying rules (Weak), (C–FC) and (Proj),
we obtain

D3:: Γ,u:a(OI)→γ,v:a(OI) � v : a(OI).

Thus, using derivations D2 and D3, and applying rule (E), we may conclude with

D4:: Γ,u:a(OI)→γ,v:a(OI) � uv : γ.

The above described derivation, although legal in DF1, is not an erasure of any derivation
in the fully typed system λP. To see this, note that we used two different types for different
occurrences of the λ-term I (and thus also for different occurrences of O) to obtain the two
derivations D2 and D3. The expression OI, however, is free of types, so the final typing for
the application uv is correct. But if we want to obtain a correct derivation in λP of which D4
is the erasure, we have to assign the same type to the occurrences of I in the types of u and v.

More precisely, assume that D4 is obtained by erasure of a typed derivation D′
4, such that

D′
4:: Γt,u:aMt→γ,v:aMt �t uv : γ.

where Mt is a typed λ-term of type γ→γ, such that E (Mt) ≡ OI. The latter implies that

Mt ≡ (λα1:K1 . . . λαn:Kn.OtIt)φ1 · · ·φm,

for some n,m ≥ 0, where E (Ot) ≡ O and E (It) ≡ I. But the fact that Mt must have type γ→γ
implies that n = m = 0, and so Mt ≡ OtIt.

Since D4 is obtained from D′
4 by erasure, there must be two subderivations of D′

4 proving,
respectively,

Γt �t Ot : (α→α)→γ→γ, and Γt �t Ot : (β→β)→γ→γ,

such that E (Ot) ≡ O. But this is not possible, since this implies that

Ot ≡ λx:α→α.λy:γ.y, and Ot ≡ λx:β→β.λy:γ.y,

at the same time, while α and β are different constructor variables.

Notice however, that we can derive Γt,u : a(OtIt)→γ,v:a(OtIt) �t uv : γ, because in construct-
ing a derivation we are not forced to construct different types α→α and β→β for It, but are
free to choose β ≡ α; therefore, this example is not a counterexample against similarity.

After the negative result of Proposition 3.4 (iii), it is natural to ask if the corresponding sys-
tems in the TS and TAS-cubes are at least similar, like was stated as conjecture in [13]. This
property will be shown to hold in Theorem 3.12, but only for those systems with dependencies
that are without polymorphism, namely, for DF1 versus λP, and for DF′ versus λPω. Unfortu-
nately, adding polymorphism makes a difference: the systems with both polymorphism and
dependencies are not similar.

Theorem 3.6 Let St be either λP2, or λPω, and let Su be, respectively, DF2 and DFω. Then St and
Su are not similar.

Proof: As a counterexample, we show a derivable judgement of DF2, that cannot be obtained

Annals of Pure and Applied Logic, 86(3):267-303, 1997 23

as an erasure of any derivable judgement in λP2.
Let Γ0 be a context consisting of the following declarations:

(type variables) α:∗, β:∗,γ:∗,δ:∗,
(constructor variable) ε:β→∗,
(λ-term variables) u : Πη:∗.((η→η)→α)→β, x:α,y:γ,z:δ.

Let K denote the λ-term (λxy.x), and let the untyped λ-terms M, M0 and M1 be defined by:

M ≡ u(λ f .x), M0 ≡ u(λ f .Kx(f y)), and M1 ≡ u(λ f .Kx(f z)).

Clearly, both M0 and M1 β-reduce to M, and all these terms can correctly be assigned the type
β in the context Γ0. Thus, we can assert

Γ0 � εM0→α : ∗, and Γ0 � εM1 : ∗,

and this means that the context Γ = Γ0, p:εM0→α,q:εM1 is legal. With help of the rules (Proj),
(Conv) and (E), we can easily derive

Γ � pq : α.

We claim that the above judgement cannot be obtained as an erasure of any judgement
Γt �t Nt : φ derivable in λP2, i.e., that we cannot have E (Γt) = Γ, E (Nt) ≡ pq and E (φ) ≡ α.
To justify our claim, let us assume the opposite. First note that φ ≡ α, since no terms occur in
α (the erasing function can only modify types containing occurrences of terms, in which case
the result must also contain terms). Similarly, Γt may differ from Γ only in the declarations of
p and q, which must be of the form:

p:εM0
t →α, and q:εM1

t ,

where E (M0
t) ≡ M0 and E (M1

t) ≡ M1.
We can assume that Nt is of the form PtQt, where E (Pt) ≡ p and E (Qt) ≡ q (otherwise we

consider an appropriate subterm of Nt instead). Since Pt is applied to Qt, and the type of PtQt

is α, it follows that Pt has a type of the form εM0
t
′ → α, where E (M0

t
′
) ≡ M0. Similarly, Qt has

a type of the form εM1
t
′, where E (M1

t
′
) ≡ M1. In order to make the application well-typed

(after a possible series of applications of rule (Conv)), it must be that M0
t
′
=β M1

t
′.

So we have β-convertible λ-terms M0
t
′ and M1

t
′, that erase to M0 and M1, respectively, and

both are of type β. Without loss of generality, we can assume that these λ-terms have no
β-redexes involving polymorphic abstraction and/or application, and thus we may write:

M0
t
′ ≡ uγ(λ f :γ→γ.Ktx(f y)), and M1

t
′ ≡ uδ(λ f :δ→δ.K′

tx(f z)),

where Kt and K′
t both erase to K. The types of f used in the above are forced by the applica-

tions f y and f z. Note that the type of f may not be externally quantified: if the polymorphic
variable u is applied to a type µ, then f must be of type µ→µ, and no constructor appli-
cation f φ is possible. The β-normal forms of these terms are as follows: M0

t
′ reduces to

uγ(λ f :γ→γ.x), while M1
t
′ reduces to uδ(λ f :δ→δ.x). But these β-normal forms are different,

and this contradicts the previous claim that M0
t
′
=β M1

t
′.

The following picture graphically summarizes this proof.

�=βM0
t
′ =β

�
�
�
��

E

M0
t

�
�
�
��

E

M0
β
��

M1
t

=β

�
�
�
��

E

M1
t
′

�
�

�
��

E

M1
β

		

Tt

Tu

M

Annals of Pure and Applied Logic, 86(3):267-303, 1997 24

In the above system, we have shown the existence of two typed λ-terms, namely M0
t
′ and

M1
t
′, and of a context Γ and type β that allow the construction of the counterexample to the

similarity, i.e. such that:

• M0
t
′ �=β M1

t
′;

• E (M0
t
′
) =β E (M1

t
′
);

• Γ �t M0
t
′ : β and Γ �t M1

t
′ : β.

The heart of the counterexample lies in both the polymorphic rules, and the fact that it is
possible to abstract with respect to variables not occurring in the body. In fact, in the proof
above, the polymorphic behaviour of the variable u makes that this term can be applied to both
the terms λ f :γ→γ.Ktx(f y) and λ f :δ→δ.Ktx(f y). Also the use of the λ-term K is essential in
order to obtain the correct final typing; because K is a cancelling term, the type assumed for
the variable f has no effect on the type of the full terms M0

t
′ and M1

t
′.

It is natural to ask if this result allows some comparison between the power (with respect
to typability and inhabitation) of the corresponding systems, respectively DF2 and λP2, DFω
and λPω. Recall that a (closed) type φ is inhabited in a system S, if and only if there is a
(closed) term M such that <> � M : φ.

The following corollary states that the set of types inhabited in Su includes properly those
types that are obtained through E from inhabited types in St, and states that also the set of
types assignable to a term in Su is larger than its corresponding set in St.

Corollary 3.7 Let St be either λP2 or λPω, and Su be, respectively, DF2 or DFω.
i) {φ | ∃M [<> �Su M : φ]} ⊃�= {φ | ∃φt, Mt [<> �St Mt : φt & E (φt) = φ]}.

ii) Let M be a closed term. Then {φ | <> �Su M : φ} ⊃�=
{φ | ∃φt, Mt [<> �St Mt : φt & E (Mt) = M & E (φt) = φ]}.

Proof: i) The inclusion follows immediately from the fact that St and Su are consistent vie
E. To prove that the inclusion is proper, take the derivation for Γ � pq : α as constructed
in the proof of Theorem 3.6. Clearly, <> � λxyzpq.pq : φ, where φ is the closure of α
with respect to the context Γ. Then there is a derivation proving ξ:φ→∗ � λxyzpq.pq : ∗,
and, therefore, <> � Πξ:φ→∗λxyzpq.pq : ∗. Let ψ be short for Πξ:φ→∗λxyzpq.pq, then
obviously ψ→ψ is a type inhabited in Su by the term λx.x, while it is not the erasure of
an inhabited type in St.

ii) Also in this case, the inclusion follows from the consistency via E between Su and St. To
prove that the inclusion is proper, it is sufficient to observe that, for every closed term M
typeable in Su, there is a typing for M of the shape α:∗ � M : ξ[α]. Then <> � M : Πα:∗.ξ[α],
and, by rule (EK), <> � M : ξ[ψ], where ψ is defined as in part (i). Clearly this type cannot
be the erasure of an inhabited type in St.

3.2 Systems without polymorphism

In case polymorphism is not permitted, we can prove that the corresponding TS and TAS are
similar. In what follows, the symbol � denotes �S , for S ∈ {F1, F′, DF1, DF′}, while �t
refers to the corresponding TS. That is, we consider only systems without polymorphism. It is
important to point out that, restricting the systems in this way, the derivation rules (IK), (EK)
and (C–FK) are eliminated. Moreover, the syntax of terms is limited by no longer allowing for
terms of the shape Mφ, λα:K.φ and Πα:K.φ.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 25

Before we come to the main proof, we need some preliminary lemmas.

Lemma 3.8 i) If Γ �t A : B and A is in β-normal form, then so is E (A).
ii) If E (A) is of the form ∗, variable, application, abstraction, or product, then so is A.

Proof: Easy.

The following lemma formulates that, in the absence of polymorphism, the erasing function
E is injective on terms in normal form that can be assigned the same predicate.

Lemma 3.9 Suppose Γ �t B1 : A and Γ �t B2 : A, and let both B1 and B2 be β-normal forms. If
E (B1) ≡ E (B2), then B1 ≡ B2.

Proof: By induction on the structure of terms.

Variable or sort constant : This case is immediate.

Abstractions : We only consider the case that B1 is a λ-term, the other are essentially the same.
Let B1 ≡ λx:φ1.M1, with φ1 and M1 in β-normal form. By Property 1.10 (ii), we have A =β

Πx:φ1.ψ1, for some ψ1, such that Γ, x:φ1 �t M1 : ψ1. Since E (B2) ≡ E (B1) ≡ λx.E (M1),
it must be that B2 ≡ λx:φ2.M2, for some φ2 and M2 in β-normal form. Furthermore,
Γ �t λx:φ2.M2 : A and, by (Conv), we have Γ �t λx:φ2.M2 : Πx:φ1.ψ1. By Property 1.10 (ii),
we have that Γ, x:φ2 �t M2 : ψ2, for some ψ2, such that Πx:φ1.ψ1 =β A =β Πx:φ2.ψ2. By
the Church-Rosser Property for TS (1.7), this implies φ1 =β φ2 and ψ1 =β ψ2. Since φ1 and
φ2 are β-normal forms, they must be identical. Thus, we have in fact Γ, x:φ1 �t M2 : ψ1
(with help of (Conv)) and, by induction, we get M1 ≡ M2, so B1 ≡ B2.

Applications : If B1 is an application in β-normal form, then B1 ≡ aC1 · · ·Cn, where a is a
variable. Assume that a:D ∈ Γ. By Property 1.10 (iii), there are F1, . . . , Fn and G, such
that:

a) D =β Πn
i=1bi:Fi.G;

b) A =β G[C1/b1] · · · [Cn/bn];
c) Γ �t Ci : Fi[C1/b1] · · · [Ci−1/bi−1], for all 1≤ i≤n.
Since E (B1) ≡ E (B2), we have B2 ≡ aC′

1 · · ·C′
n, with E (Ci) ≡ E (C′

i). Repeating for B2
the same argument as above, we get

d) D =β Πn
i=1bi:F′

i .G′;
e) A =β G′[C′

1/b1] · · · [C′
n/bn];

f) Γ �t C′
i : F′

i [C
′
1/b1] · · · [C′

i−1/bi−1], for all 1≤ i≤n.
We have Πn

i=1bi:Fi.G =β D =β Πn
i=1bi:F′

i .G′. Using the Church-Rosser Property for TS
(1.7), we easily get G =β G′ and Fi =β F′

i , for all 1≤ i≤n. It remains to show that Ci ≡ C′
i ,

for all i. Note that, by induction, and by the above properties (c) and (f), the terms Ci and
C′

i have the same type (the same kind) and are in β-normal form. Since Ci is a subterm of
B1, by induction, we obtain Ci ≡ C′

i .

Products : Let B1 ≡ Πc:C1.D1. As E (B2) ≡ E (B1), we have B2 ≡ Πc:C2.D2. By Property 1.10 (iv),
we have Γ, c:C1 �t D1 : s and Γ, c:C2 �t D2 : s. Since the contexts are legal, we have also
Γ �t C1 : s and Γ �t C2 : s. By induction, we obtain C1 ≡ C2. Thus Γ, c:C1 �t D2 : s and,
once more by induction, we get D1 ≡ D2.

Using this result, in the following lemma we will prove that, in the absence of polymor-
phism, the erasing function E is injective on terms, modulo β-equality, that can be assigned
the same predicate.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 26

Lemma 3.10 Let Γ �t B1 : A and Γ �t B2 : A. If E (B1) =β E (B2), then B1 =β B2.

Proof: Let B′
1 be the β-normal form of B1 and let B′

2 be the β-normal form of B2 (by Theorem
1.12, both terms are strong normalizable). Since B1 reduces to B′

1, we have E (B1) =β E (B′
1), by

Lemma 3.3 (ii), and similarly for B2. Thus, by Lemma 3.8 (i), we have E (B′
1) ≡ E (B′

2) as they
are β-normal forms. Finally, by Lemma 3.9, we have B′

1 ≡ B′
2, and thus B1 =β B2.

Lemma 3.11 Suppose that Γ � A : B. Then the following conditions hold:
i) There exists a typed legal context Γt , and typed terms At, Bt, satisfying E (Γt) = Γ, E (At) ≡ A

and E (Bt) ≡ B, such that Γt �t At : Bt.
ii) For every typed legal context Γt, and every typed term Bt, satisfying E (Γt) = Γ, E (Bt) ≡ B and

Γt �t Bt : s, there exists a typed term At, such that Γt �t At : Bt and E (At) ≡ A.

Proof: By mutual induction on the structure of derivations.

(Proj) : Then Γ = Γ′, a:B. Part (i) follows by induction. To show part (ii), assume E (Γt) =
Γ′, a:B and E (Bt) ≡ B and Γt �t Bt : s. Note that we have Γt = Γ′

t , a:B′
t, with E (B′

t) ≡ B.
By Lemma 3.10, B′

t =β Bt. We want to prove that Γt �t a : Bt, which is accomplished as
follows: since Γ′

t , a:B′
t �t Bt : s, by Property 1.9, we know that Γ′

t �t B′
t : s. We apply (Proj)

to obtain Γt �t a : B′
t and, finally, (Conv) to conclude Γt �t a : Bt.

(Weak) : Then Γ = Γ′, c:C, and Γ′ � A : B and Γ′ � C : s. To prove part (i), by induction on part
(i) to the first premise, we obtain Γ′

t �t At : Bt. Then use part (ii) to get Γ′
t �t Ct : s (with

the same context), and apply (Weak). For part (ii), by induction we obtain At such that
Γ′

t , c:Ct �t At : Bt. To be able to conclude the desired result by applying a (Weak), we also
need Γ′

t �t Ct : s; this is obtained by Property 1.9 from the second premise.

(Conv) : Then there is C, such that Γ � A : C and Γ � B : s, with B =β C. By induction, we
derive Γt �t At : Ct and Γt �t Bt : s. Since E (Bt) ≡ B =β C ≡ E (Ct), by Lemma 3.10, we
have Bt =β Ct, and we can apply (Conv) to prove part (i). Part (ii) is similar.

Introduction Rules : Part (i) follows immediately by induction; part (ii) is similar, but here we
use Lemma 3.8 (ii).

Elimination Rules : Part (i) is easy (use Lemmas 3.8 (ii) and 3.3 (i)). For part (ii), assume
that from Γ � F : Πa:G.C and Γ � D : G we derived Γ � FD : C[D/a]. Let Γt and Ht be
such that E (Γt) = Γ and E (Ht) ≡ C[D/a]. Then by induction Γt �t Ft : Πa:Gt.Ct and
Γt �t Dt : Gt, and we can derive Γt �t FtDt : Ct[Dt/a], using the same elimination rule. By
Lemma 3.3 (i), we have E (Ct[Dt/a]) ≡ C[D/a] ≡ E (Ht).

Since Ct[Dt/a] is a predicate of a derivable judgement, also Γt �t Ct[Dt/a] : s, by Prop-
erty 1.11. The term Ht is assumed to satisfy Γt �t Ht : s, and we may apply Lemma 3.10
to obtain Ct[Dt/a] =β Ht. By applying (Conv), we derive Γt �t FtDt : Ht.

The remaining cases are easy.

With the last lemma, we can prove the main theorem of this subsection.

Theorem 3.12 Let St be a TS system whose set of rules does not contain Polymorphism as subset, and
let Su be the corresponding TAS system. Then St and Su are similar.

Proof: By Theorem 3.4 (i), and Lemma 3.11 (i).

Annals of Pure and Applied Logic, 86(3):267-303, 1997 27

4 How to obtain an isomorphism

In this section, we will briefly discuss a way to define a cube of type assignment systems that
is isomorphic to TS. As discussed above, the main problem that causes loss of isomorphism
between TS and TAS, is that the erasure, through E, of two typed terms can be β-equivalent,
while the originals were not (a thorough investigation on the possible alternative definitions
of the (Conv) rule on typed systems can be found in [12]). We will show that it is possible to
define another erasing function, named E′, that gives rise to a second type assignment cube
TAS′ which is isomorphic to the TS-cube (via E′).

Remember that the behaviour of E was to erase type information from λ-terms. So, in case of
dependencies, if A is a typed constructor, occurring in a typed kind, E (A) can either coincide
with A (in case A does not contain occurrences of λ-terms), or E (A) can be partially typed.
The new erasing function E′ we will present below has a context-dependent behaviour, in the
sense that it erases type information fromλ-terms, but not when these occur as subterms of
constructors or kinds.

Definition 4.1 The new erasing function E′ : Tt → T ′
u is defined as follows:

E′ (M) = E (M),
E′ (φ) = φ,
E′ (K) = K.

Now we will define a new type assignment cube TAS′. Note that, in contrast to the TAS-
cube, this cube is not obtained by applying an erasing functin to all rules of TS. Instead, the
new derivation rules are defined independently; however, the objects in the conclusion of each
rule are in the codomain of E′.

Definition 4.2 (The TAS′ Cube) Let M range over Λ, φ range over typed constructors and K
ranges over typed kinds; A, B, and C range over T ′

u.
i) The untyped and typed λ-terms, typed constructors, and typed kinds are defined as

before (Definitions 1.1 and 1.13). Let T ′
u be the union of the sets Λ, Const and Kindt .

ii) The general type assignment system proves judgements of the following form:
Γ �′ M : φ, Γ �′ φ : K, or Γ �′ K : �.

where φ ∈ Const , and K ∈ Kindt .
iii) The type assignment rules are:

(Axiom) :
<> �′ ∗ : �

(Conv) :
Γ �′ A : B Γ �′ C : s B =β C

Γ �′ A : C

(Proj) :
Γ �′ A : s a �∈ Dom (Γ)

Γ, a:A �′ a : A

(Weak) :
Γ �′ A : B Γ �′ C : s c �∈ Dom (Γ)

Γ, c:C �′ A : B

(I) :
Γ, x:φ �′ M : ψ

Γ �′ λx.M : Πx:φ.ψ

Annals of Pure and Applied Logic, 86(3):267-303, 1997 28

(E) :
Γ �′ M : Πx:φ.ψ Γ �t Nt : φ

Γ �′ M(E (Nt)) : ψ[Nt/x]

(IK) :
Γ,α:K �′ M : φ

Γ �′ M : Πα:K.φ

(EK) :
Γ �′ M : Πα:K.φ Γ �′ ψ : K

Γ �′ M : φ[ψ/α]

(C–IC) :
Γ, x:φ �′ ψ : K

Γ �′ λx:φ.ψ : Πx:φ.K

(C–EC) :
Γ �′ ψ : Πx:φ.K Γ �t Mt : φ

Γ �′ ψMt : K[Mt/x]

(C–IK) :
Γ,α:K1 �′ ψ : K2

Γ �′ λα:K1.ψ : Πα:K1.K2

(C–EK) :
Γ �′ φ : Πα:K1.K2 Γ �′ ψ : K1

Γ �′ φψ : K2[ψ/α]

(C–FC) :
Γ, x:φ �′ ψ : ∗

Γ �′ Πx:φ.ψ : ∗

(C–FK) :
Γ,α:K �′ φ : ∗

Γ �′ Πα:K.φ : ∗

(K–FC) :
Γ, x:φ �′ K : �

Γ �′ Πx:φ.K : �

(K–FK) :
Γ,α:K1 �′ K2 : �

Γ �′ Πα:K1.K2 : �

Notice that the derivation rules (E) and (C–EC) require derivations in TS, although
restricted to typed λ-terms. This means that, officially, all rules of TS belong to the set of
rules. Notice, moreover, that only types dependent on typed λ-terms are created in this
way.

iv) As in Definition 1.5 (i), the rules can be grouped in sets. Again eight type assignment
systems can be defined, whose relation can be represented as before by drawing a cube.

The main result on the relation between the TS-cube and the TAS′-cube is:

Theorem 4.3 Let St be any typed system in the TS-cube, and let Su be the corresponding system in
the TAS′-cube. Then St and Su are isomorphic (via E′).

Proof: i) The function F : Dert→Deru can be defined by induction on the structure of D ∈
Dert in the following way:

(E) : In this case, the typed derivation has the following shape:

D::
D′:: Γ �t M : Πx:φ.ψ Γ �t N : φ

Γ �t MN : ψ[N/x]
(E).

By induction, F (D′):: E′ (Γ) �′ E′ (M) : E′ (Πx:φ.ψ). Since E′ (Πx:φ.ψ) ≡ Πx:φ.ψ and
E′ (Γ) = Γ, we can define:

Annals of Pure and Applied Logic, 86(3):267-303, 1997 29

F (D)::
Γ �′ E′ (M) : Πx:φ.ψ Γ �t N : φ

Γ �′ E′ (MN) : ψ[N/x]
(E).

(C–EC) : The typed derivation has the following shape:

D::
D′:: Γ �t ψ : Πx:φ.K Γ �t N : φ

Γ �t ψN : K[N/x]
(C–EC).

By induction, F (D′):: E′ (Γ) �′ E′ (ψ) : E′ (Πx:φ.K). Since E′ (ψ) = ψ, E′ (Γ) = Γ and
E′ (Πx:φ.K) ≡ Πx:φ.K, we can define:

F (D)::
Γ �′ ψ : Πx:φ.K Γ �t N : φ

Γ �′ ψN : K[N/x]
(C–EC).

For all other rules, the definition of F is given by straightforward induction.
ii) The function G: Deru→Dert can be defined by induction on the structure of D ∈ Deru in

a similar way:
(E) : Then the derivation has the following shape:

D::
D′:: Γ �′ M : Πx:φ.ψ Γ �t N : φ

Γ �′ M(E′ (N)) : ψ[N/x]
(E).

By induction, G(D′):: Γt �t Mt : ξ, where E′ (Γt) = Γ, E′ (Mt) ≡ M and E′ (ξ) ≡ Πx:φ.ψ.
This implies that Γt = Γ and ξ ≡ Πx:φ.ψ. So, we can define:

G(D)::
Γ �t Mt : Πx:φ.ψ Γ �t N : φ

Γ �t MtN : ψ[N/x]
(E).

(C–EC) : In this case, the derivation has the following shape:

D::
D′:: Γ �′ ψ : Πx:φ.K Γ �t N : φ

Γ �′ ψN : K[N/x]
(C–EC).

By induction, G(D′):: Γt �t θ : ξ, where E′ (Γt) = Γ, E′ (θ) ≡ ψ and E′ (ξ) ≡ Πx:φ.K. This
implies that Γt = Γ, θ ≡ ψ and ξ ≡ Πx:φ.ψ. So, we can define:

G(D)::
Γ �t ψ : Πx:φ.K Γ �t N : φ

Γ �t ψN : K[N/x]
(C–EC).

For all other rules, the definition is straightforward.
It is easy to verify that these two functions realize an isomorphism between the corresponding
systems in the two cubes.

While the definition of the erasing function E′ is (apparently) easy, the definition of the re-
lated cube is rather involved, since some rules require TS-derivations, and the erasing function
occurs explicitly in the conclusion of rule (E). So, this cube does not satisfy the property of
compositionality of derivations: not all subderivations of a derivation D are valid derivations
in the system �′ . This is the price paid for defining a cube that is isomorphic to the typed
one.

5 Related work

This paper, together with [13], can be seen as the first attempt to study type assignment
systems with dependent types. In fact, all systems in the dependency-free part of the cubes
TAS and TAS′ have been extensively studied in the literature. The only type assignment
system with dependent types already defined in the literature is the system of Dowek [10],
which is based on the typed system λP. Strictly speaking, this is not a type assignment system
in the usual sense. In [10], there is no formal system to derive judgements; instead, a valid

Annals of Pure and Applied Logic, 86(3):267-303, 1997 30

judgement of this system is defined as one of the form Γ � E(M) : B, where Γ �t M : B is a
valid judgement of λP. The type checking problem for Dowek’s system was shown to be
undecidable in that paper. Dowek’s system is equivalent to the system corresponding to λP
in the TAS′-cube. We conjecture that this undecidability result is true for all our systems with
dependencies. A further step of the work done in this paper could be made by looking for a
type assignment counterpart to the Generalized Type Systems, as defined in [3, 4, 6].

References

[1] S. van Bakel, L. Liquori, S. Ronchi della Rocca, and P. Urzyczyn. Comparing Cubes. In A. Nerode
and Yu.V. Matiyasevich, editors, Proceedings of LFCS ’94. Third International Symposium on Logical
Foundations of Computer Science, St. Petersburg, Russia, volume 813 of Lecture Notes in Computer
Science, pages 353–365. Springer-Verlag, 1994.

[2] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[3] H.P. Barendregt. Introduction to Generalised Type Systems. Journal of Functional Programming,
1(2):125–154, 1991.

[4] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 118–310. Clarendon Press,
1992.

[5] C.B. Ben-Yelles. g-Stratification is Equivalent to f -Stratification. Zeitschr. f. Math. und Grundlagen d.
Math, Bd. 27:141–150, 1981.

[6] S. Berardi. Towards a Mathematical Analysis of Type Dependence in Coquand–Huet Calculus
of Constructions and the Other Systems in Barendregt’s Cube. Technical report, Department of
Computer Science, CMU, and Dipartimento di Matematica, Torino, 1988.

[7] T. Coquand. Metamathematical Investigations of a Calculus of Constructions. In P. Odifreddi,
editor, Logic and Computer Science, pages 91–122. Academic press, New York, 1991.

[8] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation, 76(2,3):95–
120, 1988.

[9] H.B. Curry. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci. U.S.A., volume 20, pages
584–590, 1934.

[10] G. Dowek. The Undecidability of Typability in the Lambda-Pi-Calculus. In M. Bezem and J.F.
Groote, editors, Proceedings of TLCA ’93. International Conference on Typed Lambda Calculi and Appli-
cations, Utrecht, the Netherlands, volume 664 of Lecture Notes in Computer Science, pages 139–145.
Springer-Verlag, 1993.

[11] H. Geuvers and M. Nederhof. Modular Proof of Strong Normalization for the Calculus of Con-
structions. Journal of Functional Programming, 1(2):155–189, 1991.

[12] H. Geuvers and B. Werner. On the Church-Rosser Property for Expressive Type Systems and its
Consequences for their Metatheoretic Study. In Proceedings of the Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 320–329, 1994.

[13] P. Giannini, F. Honsell, and S. Ronchi della Rocca. Type inference: some results, some problems.
Fundamenta Informaticae, 19(1,2):87–126, 1993.

[14] P. Giannini and S. Ronchi della Rocca. Characterization of Typings in Polymorphic Type Disci-
pline. In Proceedings of the Third Annual IEEE Symposium on Logic in Computer Science, pages 61–70,
1988.

[15] J.Y. Girard. The System F of Variable Types, Fifteen years later. Theoretical Computer Science,
45:159–192, 1986.

[16] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Department of Computer Science, Rijks-
universiteit Utrecht, 1980.

[17] D. Leivant. Polymorphic Type Inference. In Proceedings 10th ACM Symposium on Principles of
Programming Languages, Austin Texas, pages 88–98, Austin Texas, 1983.

Annals of Pure and Applied Logic, 86(3):267-303, 1997 31

[18] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17:348–375, 1978.

[19] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of Constructions.
In Proceedings Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, 1989. Association for Computing Machinery.

[20] J.C. Reynolds. Towards a Theory of Type Structures. In B. Robinet, editor, Proceedings of Pro-
gramming Symposium, Paris, France, volume 19 of Lecture Notes in Computer Science, pages 408–425.
Springer-Verlag, 1974.

[21] J.P. Seldin. Progress Report on Generalised Functionality. Annals of Math. Logic, 17:29–59, 1979.

