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Abstract rewriting steps, reductions of the proof-tree, which has th
flavour of the evaluation of explicit substitutions [4].

We study the expressivity of Parigofia-calculus, and  The calculusY, as presented in [1, 13] represents a cor-
show that each statemerit H¢ A that is provable in respondenca la Curry-Howard-de Bruijn fornk (—), the
Gentzen’'s LK has a proof inu. This result is obtained implicational fragment of k, bringing together the various
through defining an interpretation fromets from the X'- features of two different approaches: that of Urban [17] and
calculus into both the\-calculus and\u; X enjoys the full that of Curien and Herbelin [5]. The aim of this paper is to
Curry-Howard isomorphism for (the implicative fragment ofelate X to the standard presentation g, as we target the
LK, and cut-elimination in LK is represented by reduction ianalysis of two subreduction systems, both designed taavoi
X. unrecoverable critical pairs. We will show that there exist

This interpretation will be shown to preserve reduction ifaithful mappings fromY to both the\-calculus and the u-

X via equality in the target calculi, and to preserve typeabitalculus, which establishes a strong link between provable
ity using the standard double negation translation techrigsequents ink (—) and the\u-calculus.
of types. Using the fact that, ik, we can inhabit-—A— A The relevance of this result can be understood from the ob-
for all typesA, a completeness result as well as a consistensgrvation that the’-calculus expresses the full symmetry of
result are shown foApu. LK, while the Au-calculus does not. However, we will show
that the latter is expressive enough to reflect the propagati
rules of X, thus exhibiting that the actual loss is due to nat-
1 Introduction ural deduction presentation of the calculus, which forbes t
choice of a distinguished, active conclusion.
The symmetric nature of th&'-calculus is evident from

Th_e sequent C.alcu“.nSK’ introduced by Gentzen [7], IStpe fact that reduction is not confluent; as the target cafcul
a logical system in which the rules only introduce connect-

ives (but on both sides of a sequent), on the contrary|§oconfluent’ _the price to pay IS, as for the purealculus
) : . . ..~ “ case, to restrict ourselves to particular subsystems diithe
natural deduction which uses introduction and elimination : " .
I S .. reduction, that do not cause unrecoverable critical pairs t
rules. The only way to eliminate a connective is to eI|m|n-CCur

ate the whole formula in which it appears, with an applica:
bp ' pp From the logical point of view, the natural deduction

tion of the (cut)-rule. Gentzen’s calculus for classical Iogicresentation introduces a lack of svmmetrv which is doin
LK allows sequents of the forr,,..., A, F By,..., By, P y y going

whereA;, ..., A, is to be understood ad; A ...AA, and to require more work for the translapon di-terms (galled
] circuits) into Au-terms. Our translation therefore will con-
Bq,...,B,, isto be understood a8,V ...VB,,. Thus,LK . 4 . . .
. sist of first applying a CPS-like transformation, followey b
appears as a very symmetrical system. ; : L
. I a recovery of the type information for the global derivation
For this calculus, aut-elimination procedurdnas been

defined that eliminates all applications of tfwait)-rule from tree: Yo A\
the proof of a sequent, generating a prooharmal formof HepsAn
the same sequent, that is, with no cut. It is defined via local This will allow us to prove:
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We will also prove: It is well known that the rulgcut) plays a major role in
. proofs, since cut-free proofs enjoy nice properties; preef
Theorem CONSISTENCY If P, P’ are proofs inLK (=), qyctions via cut-elimination have been proposed by Gentzen
such that P can be changed inta”" performing cut- Thqge reductions become the fundamental principle of com-
elimination steps, then their interpretations lu are equi- putation in.
valent, i.e. share a common reduct. One of the key points of Herbelin’sy i-calculus is to no-

This resultis obtained via the interpretationdfircuits into  tic€ that the stoup and the main conclusion\pfare the dual
pure \-terms, which requires a double-negation translatigftions of each other, and to express this duality in a very

on types and loses the syntactical distinction betweentinpgyMmetrical syntax. But the duality goes beyond that: for
and outputs. As we deal with a fragment of classical logic/Stance, the symmetry of the reduction rules display syn-
minimum requirement s to extend the pueealculus in this tactically the duality between thesv and CBN evaluations
direction. Possible extensions are the-Calculus (where (S€€ also [18]). However, this duality notwithstanding,i

C' stands for Griffin’sC' operator) [8, 12] or Parigots,- 0d0€s notfully represenk. TheLk proof

Calculus [15]. Since we want sockets and plugs being kept

distinct from each other, we favour the second solution. NAh B A R Fheda TBhea (L)
Limiting ourselves to the implicative fragment afk ' A—B,A I''A—-Bhx A
might seem to be too much of a restriction, but this not so. I A (cut)
LK

In fact, extending the calculus with (rules and construat} f

the logical connectives,, v, V, 3, - is straightforward, and (equces to both
brings no added complexity for achievable results. Alse, ar IBhe A
row types are the natural types for thecalculus and\ . T, Aby B, A m

2 The X-calculus I'hc A, A I Akk A
1—‘ I_LK A

2.1 From LK to a calculus and
bk A, A

There exist a number of systems that link Classical Logic L 4 o A
with a notion of computationY In Parigotlsu-calculus is ag T4 B,a T Al B4
natural deduction system in which there is one main conclu- 'k B, A I',Bhg A
sion that is being manipulated and possibly several alterna Tt A
ive ones. On the other hand, there exists the sequent calculu e
and the necessity for the left-introduction rules to malifi ThE first result is represented in the normal reduction syste
hypotheses, and the conceptstdupthat Herbelin has thor- of Aifi, but the second is not, whereas both are represented
oughly studied in [10, 5, 11]. in X.

As mentioned in the introductiotk, is inspired by the se-
quent calculus, so it is worthwhile to recall some of the pri2.2 Syntax
ciples.

The Curry-Howard correspondence far with classical
Definition 2.1 Lk (—). The sequent calculus we considgsropositional calculus is achieved by giving propositions
has only implication, no structural rules and a changed &ames; those that appear in the left part of a sequent receive
iom. It offers an extremely natural presentation of the Clagames likez, y, z, .. . and those that appear in the right part

sical propositional calculus with implication, and is aigat of a sequent receive name like 3, ~, . .., and to associate
of systemLk. formulae with types.

It has four rules:axiom right introductionof the arrow,  The circuits that are the objects af are built with three
left introductionandcut kinds of building stones, or constructors, caltspsule ex-
TFAA T AFA por_t aqdimport In additi_or_l there ig an operatprwe calllt, _

(ax) : T A-ARA (cut) : WhICh is handy for describing circuit construct|on,_and obhi

’ ’ 'eA will be eliminated eventually byules These four will be the
natural representatives for the four logical rules giveovah

(=R) - ra-sa . Ir44 TLBRA Circuits are connected througtires that are named. In

‘THA=B,A ’ IA=BFA our description wires are oriented. This means we know

in which direction the ‘ether running through our circuits’



moves, and can say when a wire provides an entrance 8.2 The rules

circuit or when a wire provides an exit. Thus we make the

distinction between exit wires which we callugsand enter  For reduction, it is important to know when a socket or

wires which we callsockets Plugs are named with Greeka plug is introduced, i.e. is connectable, i.e. is exposel an

lettersa, 3,7, 0, . .. and sockets are named with Latin lettergnique. Informally, a circuifP introduces a socket if P is

Ty, 2y constructed from subcircuits which do not contaias free
When connecting two circuit® andQ, we may suppose socket, sa: only occurs at the “top level.” This means that

that P has a plugx and@ has a socket which we want to s either an import with a middle connectior] or a capsule

connect together to create a flow frafto . After the link  with left partz. Similarly, a circuit introduces a plug if it

has been established, the wires have been plugged, andsttam export that “creates} or a capsule with right park

name of the plug and the name of the socket are forgotten.(Teban [17] uses the terminology “freshly introduce”).

be more precise, iPa 1 2Q, the namex is bound overP and

the namex is bound over), bound in the interaction. We useDefinition 2.4 [1] INTRODUCTION. (P introducesr) :

the “hat” -notation, keeping in line with the old tradition ofP = (x.5) or P = Ra [z] yQ, with z ¢ fs(R, Q).

Principia Mathematicg19], writing & to say that: is bound. (Pintroducesa) : P = (y.a) of P = ZQB-a with

- - a ¢fp(Q).
Definition 2.2 [1] SYNTAX. The circuits of theY-calculus

are defined by the following grammar, whergy, ... range e first present a simple family of reduction rules. They
over the infinite set ofocketsanda, 3 over the infinite set g4y how to reduce a circuit that cuts subcircuits that both in

of plugs troduce connectors.
P.Q = (v.a) | yPB o | Pﬁ_[y] zQ | PatzQ Definition 2.5 LoGICAL REDUCTION[1]. The logical
capsule export Import cut rules are (assume that the circuits of the left-hand sides of

_ ) S the rulesntroducethe socketr and the plugy)
Notice that, using the intuition sketched above, for exanpl

the connectop is supposed not to occur outsidejd? - a. (cap) : (y.a)yatz(z.p) — (y.0)
Tlh_e cglcgll{[s,_ldheflnedtby thedr_e':j_tz)ctlog ;rt:les (ﬁe(_:ﬂcﬁ)lm (exp) : (yPB-a)a t T(x.y) — GPB-y
explains in detail how cuts are distributed through cire imp) : WDE+B(PEIE20) — PBIS
be eventually erased at the level of capsules. ( . P) ) AP<ZA/ a>gT f( é[x] ig) =
We spoke above about bound names; we will introduce (exp-imp : (yPS-a)a T 2(Q7 [2]2 )A_)A o
now formally those notions with that of free sockets and plug (QYTyP)B1ZR
into X. Q7 ty(PBTZR)
Definition 2.3 The free socketsandfree plugsin a circuit We now need to define how to reduce a cut circuit in case
are: when one of its sub-circuits does not introduce a socket or a
plug. This requires to extend the syntax with two new oper-
f3(<x'oi>) = {«} ators that we calhctivatedcuts:
fs(zPB-a) = fs(P)\ {x}
S(Pa [y) 7Q) = fs(P) U{y} U(fs(Q) \ {=}) P:=...|Pa/3Q| PaxiQ
fs(PatzQ) = fs(P) U(fs(Q) \ {z})

Reduction on circuits with activated cuts will make suresthe
are propagated through the circuits.

:EE;@?L) z gf(;%P) \ {8}) Ufal Definition 2.6 [1] ACTIVATING THE CUTS.
fp(Pa [4] 2Q) = (Pp(P) \ {a}) UTP(Q) - |
fp(PatzQ) = (fp(P)\ {a}) Ufp(Q) (act1) : Patz@Q — Pa/zQ, if P does notintroducer

(actR) : PatzQ — PaXxzq, if @ does notintroduce
A socketx or pluga which is not free is calleound We
will write z ¢ fs(P, Q) for z & fs(P) & = ¢ fS(Q). Notice that both side-conditions can be valid simultangous
thereby validating both rewrite rules at the same moment.
We will normally adopt Barendregt's convention (calleeh- This gives, in fact, aritical pair or superpositionfor our
vention on variable®y Barendregt, but here it will be a connotion of reduction, and is the cause for the loss of conflu-
vention on hames). ence.



We will now define how to propagate an activated c@tBv) reduction. Notice that this is essentially different from
through sub-circuits. The direction of the activating seovthe approach of [18], where, as Muji, only one notion of
in which direction the cut should be propagated, hence tregluction is defined.

two sets of reduction rules.

Definition 2.7 [1] PROPAGATION REDUCTION. The rules

of propagation are:

Left propagation
(do) : (y.a)ya TP — (ya)atzP
(capr):  (yB)afiP — (yB), B#a
(exp-outs) :  (yQp-a)a fzP —
(7(Qa #EP)-7)7 t 2Py fresh
(exp-ing’) :  (JQB-7)AfEP —
~ y(Qa s zP)Bvy,v #a
(imp) : (QB[] gR)E /7P —
(Qa /ZP)j 2] §(Ra / TP)
(cut’): (QBtJR)a fzP —
(Qa f&P)B t §(Ra / ZP)
Right propagation
(dR) : PaXz(z.5) — Patz{z.[)
(Xcap) : P&\f(yﬂz\ — (y.B), vy f x
(Xexp : PaXx f@@\ﬁfy) — y(PaxzQ)s-y
(\imp-outg : PaXxz(Qp [x]yR) —

(Ximp-ing) :

(xcut) :

P& t2((Pax7Q)B [z] H(PaX\ZR)), = fresh
)

Pax#(QB[z] §R

(PAX\7Q)A [2] Y(PAXER),z # x
PaXT(QBtgR) —

(PaX\TQ)B t §(PAXZR)

As mentioned above, whef does not introduce and@
does not introduce, PatZ(@ is asuperposition meaning
that two rules, namelyat+) and @ct-r), can both be fired.
Thecritical pair (Pa /zQ, PaX Q). may lead to different
irreducible circuits. This is to say that the reduction tiela
— is not confluentNon-determinism is a key feature of both
classical logic and term rewriting.

We introduce two strategies which explicitly favour one
kind of activating whenever the above critical pair occurs.
Consider a circuitPa 1 Q) where P does not introducex
and(@ does not introduce, intuitively cBv tends to pusld)
throughP andcBeN tends to do the other way around.

Definition 2.8 e The cBV strategy only activates a cut
via (actL) when it could be activated in two ways; we write
P —y @ in that case, and replace rulect-R) by:

(actR) : PatzQ — PaXzq, if Pintroducesuy
and( does not introduce:.
e ThecCBN strategy only activates such a cut V&ct-R);
like above, we write? — @), and replace ruléact-L) by:
(act1): Patz@ — Pa/zQ, if Q introduces
and P does not introduce.

2.5 Typingfor X

We will now formally define a notion of type assignment
on X, which will establish the Curry-Howard-de Bruijn iso-
morphism betwee”” andLK (—).

Definition 2.9 TYPES AND CONTEXTS. i) The set of

The rules(exp-outg’) and (Ximp-outg deserve some at-YPes1s defined by the grammar:
tention. For instance, in the left-hand side(ekp-outs), o A,B = ¢ | A—B.
is not introduced, hence occurs more than once ﬁQ3~a, The types considered in this paper are normally known as
that is once after the dot and againGh The occurrence simple(or Curry) types.

after the dot is dealt with separately by creating a new Namey A context of sockets is a mapping from sockets to

7. Note that the cut associated with thats then unactiv- types, denoted as a finite setsttements: A, such that the

ated; this is because, after the cut has been pushed thralglle -1of the statements] are distinct. We writd, z: A for
y(Qa /zP)B-v (so leaves a circuit with no activated cutkne context defined by:

the resulting circui(ﬂRﬁqﬁ T P needs to be considered
in its entirety: although we now that now is introduced,
we know not if z is. A similar reasoning holds fot in
(ximp-out9 and a new name is created and the externaBo, when writing a context d3 x: A, this implies thatr: A €
cut is not active. T", orI' is not defined orx. When we writel'y, I's we mean
the union ofl’; andI's whenI'; andI's are coherent (if"y
containse: A; andI'y containse: A, thenA; = A»).

I,2:A = TU{x:A}, if T"is not defined on:
=T, otherwise

2.4 Call-by-name and call-by-value

iii) Contexts ofplugsA are defined in a similar way.
In this section we will define two sub-systems of reduc-

tion, that correspond to call-by-nan®gN) and call-by-value



Definition 2.10 [1] TYPING FORX. i) Type judge- i) The reduction relation—3 C A x A is defined as the
mentsare expressed via a ternary relatiBni- I' = A, where contextual, reflexive, symmetric, and transitive (i.e. pata
I" is a context osocketsand A is a context ofplugs and P ible [3]) closure of the rule:

is a circuit. We say thaP is thewitnessof this judgement. (A\e.M)N —5 M[N/z]

i) Type assignment fo’ is defined by the following

i) The notion of reduction—z can be restricted t€all
sequent calculus:

by Valuereduction by: the set ofaluesC A is defined by the
syntax:

(cap) : (ya) - T,y AF a:A, A Vi=al| e M

PoThawAA Q:T.a:Br-A Then theCall by Valuereduction relation—,, is defined as

(imp) : the compatible closure of the rule:
Paly|zQ - T,y:A-BFA e M)V —5 M[V/a]
P .- T,x:Ata:B, A The full reduction system is then callé€zhll by Name and
(exp) : TPas TrGA-B.A we will write —, when necessary.
P:TraAA Q. - T,xAFA This calculus has a notion of type assignment that corres-
(cut) : ponds nicely to implicative propositional logic, in therina-

_ _ barrQ - TEA ‘work of natural deduction.
We write P ;- T' = A if there exists a derivation that has this

judgement in the bottom line. Definition 3.2 TYPE ASSIGNMENT FOR THEA-CALCULUS.
I' and A carry the types of the free connector;l?m as T 2:AFy M:B
unordered sets. There is no notion of typeMitself, instead (ax): — (=)
the derivable statement shows hdWwis connectable. The Do:Abyz: A 'y A\e.M:A—B
Cur_ry—Hovyard property _for the |mpI|(_:at|ve frqgment of LK is [hy M:A-B [y N:A
easily achieved by erasing all term-information. —E):
The soundness result of simple type assignment with re- '\ MN:B

spect to reduction is stated as usual: ) )
The logic that the above system establishes a Curry-

Theorem 2.11[1] WITNESS REDUCTION If P - T'F A, Howard isomorphism for is Implicative Intuitionistic Lagi
andP — @, then@ :- T+ A.

4 The \u-calculus
3 The A-calculus
Parigot [15] presented thg:-calculus as a calculus which

The expressive power ot is illustrated in [1] by show- extends the proofs-as-programs paradigm of Xkealculus
ing that theX-calculus [3], Ax, A\x, and \u/i can be faith- to classical logic. Theu-calculus gives a natural deduction
fully interpreted via the mappin§ 7 |,. Using the notion system which allows to deal with multi conclusions by choos-
of Curry type assignment, assignable types are preservedngyat most onectiveformula at once. This is achieved by
the interpretation: iflC' -y M : A, then[M ], ;- T - a:A. introducing two kinds of variables, as found in more recent
Even more, the interpretation encompassgs andcsN re- calculi like X’ itself, A/i[5], Wadler's dual calculus [18], and
duction. However, inY¥ we have no need of two separatethers.
interpretation functions, but will define ongne Combining
this with the two sub-reduction systems, and —, we can Definition 4.1 Ay TERMS. Terms of the\u—calculus are

encode the theBv- andcBN-)\-calculus. generated by the grammar
We assume the reader to be familiar with thealculus
[3]; we just recall the definition of lambda terms ap (terms : M,N ==z [ a.M | M N | pa.C
contraction. (commands: C = [a]M
Definition 3.1 LAMBDA TERMS AND REDUCTION [3]. wherex ranges over (ordinary) term variables, amdver
formula names (also callgdvariables).
i) The setA of lambda termgs defined by the syntax: The set ofvaluesis defined by:

M ==z | e.M | M1 M,
(valueg : V =z | \a. M | pa[B]V



We emphasise the clear distinction made above between

regular terms and the so called commands; the original [y ClaA T

presentation of the calculus WOl_JId have the qasds) M in_ s Tk, pa.C:A|T

the syntax for terms. We use this separation for convenience

only as our interpretations rely on it. L'y, M:A|a:AT
y p y (CMD) : n

Definition 4.2 A\ REDUCTION. Reduction for the Au- T [o]M | a:4, T

calculus is defined as the compatible closure of the foIIgwi%

reduction rules: Interpreting X’ into the A-calculus

logical (B): Ae.M N — (M) (N/z) As can be expected, the interpretatiomds$ circuits into
structural (1) : (pa.C) M — pa.Cllo]0 M/[o]O] pureA-terms requires a double-negation translation on types
renaming(v) :  [Blua.C — Cla/f3) and loses syntactical distinction between inputs and dsitpu

ny. As we deal with a fragment of classical logic, a minimum
" requirement is to extend the pukecalculus is this direction.

As usual, the substitution mechanisif[c]0 M /[a]C]] However, in this section we will show that we can still
used in theu-reduction rule consists of replacinecursively faithfully interpret” into the A-calculus, and obtain a type-
every occurrence in the comma@dof a commanda]N la- preservation result using the 'double negation’ technique
belledwith «, by the commanéh](N M). A similar result was obtained in [13]; the main difference

Call-by-Value reduction is defined by restricting the ruidd€tween that result and the one obtained here is that we in-
as follows: terpret left- and right-cuts in different ways, whereasthee

interpreted in the same way in [13].

erasing: pa.[a]M — M if « does not occur i

Ae. MV — (M) (V/z)
(na.C)V — pa.Clla)(@0V)/[a]O] 5.1 Callby Name

Equipped with these reductions, thg:-calculus is well ~ We will now show that we can interpret theBn-

known to be confluent. subreduction system &f in thecBN-\-calculus. It should be
In this paper, strictly speaking, we do not need to deabted that, in thecBN reduction system, a left-cuta / 2Q

with p-reduction, but, instead, with the compounded redus-only generated ifY introducesz, so if Q = (z.3), or

tion defined by: Q = RB[z] 7S, andy not free inR, S; this observation will
prove important when dealing with activation and deactiva-
(vou): [a((uB.C) (A\e.M)) — C{da.M -/ 3) tion rules.

The cBN-interpretation of circuits int’ as terms inA is

where the substitution mechanism consists of replacing re-.
g%fmed as follows:

cursively inC' every occurrence of a command of the sha
[B]N by the command](N \z.M).

. . Definition 5.1 CBN INTERPRETATION
In this paper, we shall assign types i@-terms much

along the same lines as for thecalculus. Actually, we r(x.aﬂf 2 r\u.ou
will use more general judgements suchlas,, M:T | A %Pa-ﬁ?f 2 8o )
whereA holds types fop-variables, and is void as far as pure a

Pa [y] /‘T\Qk)\
A-calculus-terms are concerned. Formally:

y Au.(Ax. rQTNA) (u M. rPTNA)
Definition 4.3 TYPE ASSIGNMENT FOR\z. Type assign-  PatzQl = 'PaxzqQk = (\z.'Q\)(ha.TPYY)
ment for \i is defined by the following natural deduction fpa/ﬂxﬂﬂf 2 (AQ_FPTNA)(Az_ﬁx)
system: "Pa 1 2(QB [ GRIV 2
(A.TP) (Az.(Ay. TR (2 AB.TQLY)

(ax) : DAy, Al A
Notice that, defining

1) oAby, M:B| A "Bl = fa
—l): Sa =
T Az M A=B [ A 'QB =] RN = (\w."RW)( A6.7QWY)

Thy M:A—B|A  Thy, N:A|A
' Tky, MN:B| A

for the @ that appears iPa / zQ, we have

(—



QN = zAu.TQh[u/a]
and could have defined

P& /Z2QL = (Ma.TP)(A\z.TQ))

This will be used in the cases dealing with propagation of

left-cuts.

Again, defining

T

\3y. TRV

r<517/:ﬂ >>IA
[GRB-al =

for the P that appears i’a X 2@, we have

Pl = Pl whereP introducesx

In order to show that typeability is preserved by the inteNotice that" P}, is a value in those cases, which is important

pretation, we need first to definec@N-translation of types:

Definition 5.2 Give a type constarf, we define acBN-

interpretation of types, that is split in two independentga

inductively defined by

(O = (06— Q) —Q
(A=B), = ((AR—(B)) = Q) —Q
(O = 9—0
(A=B) = (AR = Q)= (BR — Q) = Q
We define (I, z:A), = (D), 2:(A), and (A, D), =

a:(AR, (AR

The following result links the two interpretations.

Lemma 5.3 (A), = (A}, —Q
Using these interpretations, we can show:

Theorem 5.4 If P ;- T'F A, then(D),, (A) Fx TP : €.

We can show that reduction i is modeled by equality o:(A), (A):

after interpretation:
Theorem 5.5 If P — Q, then™P} =, TQ1.
5.2 Call by Value

The results obtained above can be repeated focthe
subreduction. Again, note that, in te@v reduction system,
a right-cutPa X zQ is only generated if? introducesy, so
if P = (y.a), or P = §RA3-«, anda not free inR.

The cBv-interpretation of nets in¥' as terms inX is
defined as follows:

Definition 5.6 cBV INTERPRETATION

F<z a>7/\

= Pa'ﬁw

"Pa [y 2QV

PatzQV = TPa £ 2QV = (M
y.a)axTQY £ (\a
"GPB-c)ax2Q 2 (\a

oz
B Aoz rPTVA

(M. TPV (y Az.TQLY)
TP A)()\x.rQw\/A)
rQT A) y

QWY (ABy."PV)

|l> 1> I|l> >

below to make sure that the reduction is call-by-value. We
could have defined
TPaxzQV = (A\a.fTQV)P)

This will be used in the proofs below for the cases dealing
with propagation of right-cuts.

In order to show that typeability is preserved by the inter-
pretation, we need first to definecav-translation of types
(notice that this is not Plotkin’'sBv-interpretation):

Definition 5.7 Give again a type constaf¥, we now define
a CBN-interpretation of types, that is also split in two inde-
pendent parts, inductively by

(o) =
(A=B), = ((B), = Q)—(A), - Q
(oN = 9—Q
(A=B), = ((B—(4)) =~
Again, we definél’, z:A), = (I}, z:(A),, and(a: A, D), =

e

The following result links the two interpretations.

Lemma 5.8 (A), = (A}, — Q.

Using these interpretations, we can show:
Theorem 5.9 If P :- T+ A, then(I')L, (AY -y TPV : Q.

We can show that, also for thesv-interpretation, reduc-
tion in X is modeled by equality after interpretation:

Theorem 5.10 If P —, Q, then™P} =, TQ1.
6 From X to \u

We have seen above, for the purealculus, that besides
the fact that we translate a symmetric calculus to a strongly
right-oriented one, reflecting the orientation of propauyat
rules requires some particular attention in the trangfatio
this section, we will show that the results achieved aboge ar
obtainable for\;, as well, first for Call by Name, and then for



Call by Value. However, the details of the interpretatiorils wof commands im .
differ significantly. At this stage, we could have choosen to treat commands as

The Apu-calculus is expressive enough to allow for the preroofs for the L negation type [14, 9]. This would have been
servation of types. Its asymmetric nature will prove to be raofair choice, since\u, allows us to build a proof in any type
obstacle; it is overcome by splitting the interpretatiotoinfrom such a proof. However, the translation itself can carry
two steps. We perform first a compositional translation intut a more elegant and precise information. The definition
A which mimics the double negation translation in the sentbat we propose shows that, given an arbitrary, initial caoi
of Plotkin’scBN, and thus alter the types as well. The secomd a named conclusioa:(?, building circuits intoX’ can be
step consists in recovering the types, which can only be daead as syntax rules for dealing with judgments, by switghin
globally. This first result implies that we can faithfullytér- over the targeted conclusiéhas apivot. (Then we can have
pretX into Ay, the second that typeability is fully preservedv = «’ in the previous informal analysis, and the formal

A natural idea would be to start from our former definition.)
calculus interpretations (see the previous section) tid Ithiis As a matter of consequence, we get that the interpretation
interpretation. However, this is not going to help much, a$ any given proof net can be built by targeting one conclu-
there the two kinds of variables have been merged. Instesidna: A among its non-empty set of conclusions, leading to
we need to handle circuits directly, which means we are acA\u-term M which expresses the view that the proof for
tually working out a genuine new interpretation. is done by switching back and forth with the conclusion.

Let us focus on thecBN-interpretation; thecBv one Paradigmatic examples of such proofs are provided by
comes along very similar guidelines. Towards our main theeirce’s law or theex falso quodlibeformula——7 — T.
orem, sockets are translated into ordinaryariables, and Our interpretation shows that this mechanism is general, at
plugs are embedded injo-variables; for both, we keep theleast as far as the restricted fragment of sequent calctlus
same name, to ease the reading. We interpret both ordieals with can tell.
ary and right cuts the same way, while the left cut still re-
quires switching the position of the sub-terms, as the redé;1 Call by Name
tion rules in the (standard)u-calculus are intrinsically call-
by-name. Therefore, the flipping mechanism, used above toas for the case of thé-calculus, our results will depend
left-activate a cut or to de-activate a left-cut, is stifjugred not only on an interpretation of terms, but also on one for
for the interpretation to hold along the bi-directionalpaga- types. Let be, as before, any (fixed) type and denefe =
tion rules fromx'. T— for convenience. The following lemma will provide

The formal definitions given below should be selfthe necessary trick.
explanatory, except from the observation that a double-The following lemma will provide the necessary flippng
negation step is still used. This point deserves an exptamattrick which comes along switching propagation directions.
The circuitPa 1 2@ for which we know There exists two\u-termsforceanddelaysuch that

PatzQ - I'FA forceo delay =y I =, I

is translated into a command]((Az.M) (uc.C')) for some  and for all typeT’, force : ——T—T anddelay: T———T.
Ap-term M and command”’ and someu-variablew. The Tgke

translation cannot be an ordinary term for both a syntactic forceF = ur. [W](F At.pl.[7]t) 2 -
reason and a semantic one. Since we target the stangard delayt = \f.ft 2 (t)*
calculus, the interpretation of the sub-circiithas to be a

command, otherwise the-binding cannot be defined; as efinjtion 6.1 PLOTKIN'S CBN.  TheCBN interpretation of

matter of consequence, the translation(dfis going to be typeT’, denoted T}, = ——/T)" is defined inductively by
of the shapéw’|M’, which means thal/ = un.[w'|M’ for

somey-variablesy, w’. rx/
From the\u-calculus perspective, this observation means rA— B/

we are switching contexts intensively. This provides actu-

ally a semantic view on the way tt#-calculus manages de-AISO T, 2T\ 2 T, 2T,

rivations trees. The cut shows no privileged assumption nor ’ ’

conclusion, just connecting and@ circuits. The lack of & 1ype recovery is possible, owing to the following result.

selected assumption is reflected by the interpretationaot t

be an abstraction; also, the lack of any particular conohusi emma 6.2 For any typ#, there existor : "\ —1T and

has the consequence we cannot ugetander at this point. .. . 7,77,

Therefore, cuts itt’ correspond to proofs handled at the level

X,
4, —'Bl,

X type variable

1> 11>



The first step of the interpretation is type-free, athough ou The last result of this section is:

definition aims at complying with types later.
The notationu!.C'is a shortcut fopn.C wheren is a fresh
u-variable wrtC',

Definition 6.3 CALL BY NAME . Let

Mwa)k = .l [a](v)”
"PB2) 5OV 2 Aol [w] Ay QN (v uB.TP))

For P any X-term, we definé P}, by structural induction

||l> 1>

i r<:cA-oc>;N % w](z "(z.a)}’
JPB-an = [a](Ay.up. rPT)
PR TQL 2 W)z "PB2)5Q))
'PatzQl = 'PaxzQl = [w(Az.ul."QL pa."PY)
FpafoWN 2 [w]( TP, F)T IQ

Proposition 6.4 CONSERVATION OF TYPES IN CBN

Theorem 6.5 Forany P .- I' - A in X, and type(2 there
exists a\u-term"PY’ such thatl" -y, "PV:Q | A.

Theorem 6.6 For all X-terms P, P/, if P—\*P’, then
P =, (P12
6.2 Call by Value

Definition 6.7 PLOTKIN'S CBV. The CBYV interpretation
of typeT, denotedT?, = ——T7," is defined inductively by
FXTV/

rA—-Bl’

X,
AV 1B

X type variable

A
A

Theorem 6.11 For all X-terms P, P/, if P—, *P’, then
rPT\/Q =V rPﬂvn-

7 Main results

Using the results achieved above, we can now link provab-
ility in LK (—) with typability in Ax, and formulate the main
result of this paper:

Theorem 7.1 COMPLETENESS If T' ¢ A in LK(—), then

for any (fresh) typ&, there exists au-term M, and contexts
I, A’ such thatl” F», M:Q | A’ such thatl’, A can be

obtained fronT”, A’ by erasure of names.

We also prove:

Theorem 7.2 CONSISTENCY If P, P’ are proofs in
LK(—), such thatP can be changed int®®’ performing
cut-elimination steps that correspond 0 reduction rules,
then their interpretations imp are equivalent, i.e. share a
common reduct.

Conclusion and Future work

The X-calculus offers a correspondenéela Curry-
Howard-de Bruijn for the implicational fragment afk,
bringing together various features from [17, 5] with a parti
ular emphasis on local bi-directional propagation rulegctvh
describe transformations on derivations. SiAteeals with
classical logic, one cannot ensure confluence from takitog in
account the whole set of reduction rules. Two sub-reduction
systems can be described to avoid critical pairs, reflecting

If A is a typing judgement, and define accordingi@all by Name and Call by Value i’

A A
A, 2T, = T, 2T, andT™A, 2TV = T, 2:™T/ .

Definition 6.8 CALL BY VALUE . For P any X-term, we
define" P}, by structural induction:

[a] ()
[](Ay.puf.TPY)*

Nz.a)l
rgpg'ablv
"PB215Q),
[wW](1B.TPY Av.pl [w](z v Ay.pl.TQY))
PatzQl = TPa /2Ql = [w](uo."PY Az.pu!.TQY)
PaxzQl = [w](\z.p!.TQY po.TPL ™)

1> 1> e

Proposition 6.9 CONSERVATION OF TYPES IN CBV
If P:- AFT,then T Fy, TP | w:), TAY.

Lemma 6.10 I is introduced inP andV any value, then

pe"PLV =, V (pa.TPL)”

On the other handyx has been designed from a fine ana-
lysis of which transformations could be applied on deriva-
tions, and has limited itself to a confluent extension ofXhe
calculus, presenting classical logic in natural dedudibom.

This paper has focused on the intepretatiortointo Ay
(inits standard presentation) toward a stronger undedstgn
of X and its comparison with the former, as a better under-
stood calculus. Given one of tteBv or CBN strategies, our
interpretation proceeds internally through a(n interratai
CPS translation on types and terms, and transforms a proof
net into a\p-term which structure generalises those found in
proofs for the Pierce law, or ex falso quodlibet.

We have shown this interpretation to be consistent with
equality in the target calculus, and proved a completeness
result for A\i in the process. As expected, trying out such
an interpretation in the purg-calculus cannot provides the
same benefits; however, it is worth noticing the simulatibn o
propagation rules does not require as complex constrigtion
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in X to be faithfully reflected in the target calculus. the syntactic theory of sequential control. In Springer-
This work leaves space for some important issues we want \erlag, editorProceedings of the (th International Con-

to address as a consequence of this analysis. An extension ference on Logic Programming and Automated Reason-

of Au-calculus towards a more symmetric one has been pro- ing, (LPAR’94) volume 822 ofLecture Notes in Com-

posed for some time, and studied in [6] with respect to nor- puter Sciencegpages 31-43, 1994,
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A Proofs for the main results
N N (a) =n
Theorem5.5 If P—\ Q, then™ P =\ "Q}". (Oz.adu.TPh[u/z])(A6.6 AyB.(Ae.TQVY) (Az.TP}))
A A
Proof: By induction on the length of the reduction path. We -\ (r)‘x-rPTN )()\5{)\?/@-()\04-?% )(Az.TPL))
just check the rules, of which we show the interesting cases. = ' (J(Qa /ZP)3-6)6 t ZPy

(expimp:  [GPH-0)a t2(QT RN 2
Az Au.(Az. TRV (u Xy TQW)) (Ao Ay B.TPY)
= (o B TP (M. (Az.TRY) (u Ay.TQWY) Proof: By induction on the length of the reduction path. We

Theorem5.10 If P —, Q, then™P} =, Q1.

(a &PV =y (.M. TR) (uMy.TQWN) (B TP just check the rules.
= (A2 TR (BT PR)(M.QLY) (expimp:  [(GPF-a)at 2(Q7 [« ZR)V
=v (AzTRWOB.TPYM.TQN/y)) 2 a3y POz (0y.TQVY) (2 Az.TRVY)
=v (A2 R)(AB.0y. PR (M.TQKY) (a g TPV =y (Az.(M.TQW) (@ A2 TRV)) (A8 M. TPVY)
= (wammzRL = (M TQW)(ABy. TPV (A= "RVY)
Also:  (A=TRD) OGP A TQW ) = (M rQ“)(Ay(rP7vA<AzTRTvA/B>))
=v TRV OB PV O.TQY /y)/2) = (M.TQW) My (AB.TPVY(A2.TRVY)
WERAZQ) = TRROGTPRY/00. QR /) S s apat e
=v (AW.TRVOB.TPY2) (Ay.TQWY Also: M-TQWY . TPV (A2 TRV 8))
= (A2 RIS TPE) (M- QRY) =v Q. TPV (A= TRV B) /)
= loat iRl WERBLQ) = "QV . PV (A= "RV/B)
(actL) : Notice that eitherQ = (z.8), or Q = = (AB.TQV (M. TP /) (A2 "RLY)
Q153 [2] 7Qa, With z & f5(Q1,Q2), SO we can use = (AB-(.TQW) (M. TPV)) (2. TRVY)
(O = 2 Au.TQL[u/z], in all cases below. = (A8t @APT\/A)()\Z-FRTVA)
Ptk 2 (e QW) PV 2 T(@Qytgp)B 12\
= TQV . TP/ z) (actR) : PatzQ — PaXzQ, z notintroduced.
2 (2 QU u/a]) Aa.TPY ) Notice that eitherP = (y.a), or P = §Rfj3-a, with a ¢
— (Aa.VPTNA)()\u.VQTA[u/m]) fp(R), so we can uséPl* £ o TP}, in all cases below.
(@) =v (Aa.TP)(Az.TQY) "yoyatiQl = (.ly. oe>“)(Aw-fQV)
2 APz TQL) = (P2 QLY
2 Tpa fzQL = (Aa.aFITA)()\x.rQL’\)
— ron rpi
@ (a7 707 2 s
= QayAu.au)(Az.TPY) Y
— (P (drR): "Paxz@.A 2 (Oa.Tz./) Pl

(Az
)
=v (Aa.yru.au)(Az.TP = (Aa.a "PL)(Az.M(z.8)1)
(M.wdz.TPL) (M. y)\u au) = (a.PV) (280
v (Az.z v TPL[v/z])) (Aaylu.ou) = et 3@/
(Az.TPRY) Ay Au.au) (Nimp-outs : "PaX 3(Q7[x] GR)L"
"(y.a)a t 2PR (A\2.TQV [] yRV‘)rPl\
(exp-outs) : [(§QB-a)a /7P (M. (W FQV) ( Ay.TRVY)) TPy
o BT OW e L) O QU a))) (TP Ay (TR (TP )
o (AT TP ) (O TQV) TP (TP . (A TRV)TPL)
(A=
(
(
(

1> 1l

|
< <

<

(

(Az.TPL) (M. FQWA:C Pl /) O (A2 FQV)TPL)) (2 Ay (M. TRV PL))) TP
= (Az.TPL)(yB.(A\a.TQK) (Az.TPY)) Aa.a PL) Az (A "Pax 2QVY) (2 \y."Pax ZR1Y))

( (

(

Il
<

286 \yB.(Ae.TQV) Az, TPL)) (Az.TPL) Aa. TPV (M. ()\1/ TPaxz2QM(z ay."Pax ZRY)
A TP (2. [(PAX 2Q)D [2] §(PAX ZR)L)
Pa 1 2((PAX Q)7 [2] (PaX ZR))

N

(1> 1l

M Az TPY) (A6 Ay B.(Aa.TQY) (Az.TPL))

=N
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): (@QB-aya r 2P
(Aa.a ABy. QU (Aa.TPLY)
v (@A8y."QV) (A2 TPV )
(
(

(exp-outg
A

v (2 TPY) ABY. (TQV (2. TPV @)
v (A8 ABy.(Aa. rQTA)(/\I PV (M. TPV
"@(Qa rzP)B-6)5 + &Pl

112

Theorem 6.6 For all X-circuits P, P/, if P —\ *P’, then

Q Q
FPTN =y FP/TN .

Proof: By induction on the length of reduction sequences
we only consider the base case, for which we show the m

mterestlng cases.

(exp-imp - "GPB-0)a
[w](Az.pul.[w](z FQF [2] ZRL) p

t 2(QA 2] 2R)

]

=n [Wlnl[w)(pafa](Ay.uB."PR)* TQF [] ZRY)
(][] OB PY)* TQF ] ZRY)
=n [Wl((Ay-uB."Ph)* Q7 [2] ZRY)
=v [w](QY [2] ZR\ Ay.uB."PL)
= [w]pl [w](Az.pl.TRY Ay pB. TP py.TQN)
= [W](Az.pl TR Ay puB.TPY iy TQ)

[w]p!

wlpl. ("RY) (Ay.pB.TPY pry.TQN/ 2)

("TRN) (A\y.uB."P\ pry. rQT /2)

=v ("RN) (uB-("PL) (17-TQL /) / 2)
("RW) (uf3.[w]p!- (TP ) (uy-"QN/y) /=)
("R (uB.[w](Ny.pl.TPY . TQN) / 2)

=y [w]pl.("RY) (uB.7Q7 tyPL/2)
[w](Az.ul.TRY 1.7 Q7 T5PY)

"(Q319P)5 1 2R\

(act1) : x introduced andv not introduced,

rPatzQl

[W((Az.pu!. [w](Az.pl. QL (2)*))* per.TPY)
[wW](pa. TP Azl [w] (A . TQN (2)%))
TPL(Az.pl. [w](Az.pl.TQN (2)*) - o /)

v [w](pa TP Azl [w] (.. TQN (2)*))

Pa #zQ\
(du) : Let F = Az.pl.[w](Az.pl.TP) (2)*) in
Ny.a)a 2P
= [w)(uonw](y Avo.pt.[a](vo)*) F)
v (W] (y Avo.pl. [w]((vo)* )
v (W] (pe[w)(y Avo.pl.[o] (vo)*) F')
=n [W]((F)* pa.[w](y Avo.p!.[a](v0)*))
é r<y0‘> TZEPWN
(exp-outg) : Takel fresh.

Let M = pl.[w](Az.pl.TPY (2)*) in

12

dheor

Proof: By induction on the length of reduction sequences;
rp1y+y Wwe only consider the base case, for which we show the more
oo (Ay.uB."PL)*)

O
z I z =z HD@)
Q

[
=z

el

)a # P

prev. o] (Ay.pB.TQN)* Aw. M)
Ay.uB QN Az M - o /a))* Ax. M)
Av. M) Ny.pB.TQL (N M - o /a))
Ay uB. QN Az M - o /a))* A\x.M)

4[] 15T QMM - /) A M)
po [w](Ay.pB.Jw] (. "TQN Ao. M))* Ax. M)
()\w M)* po. [w](Ay-pf-[w] (po. QL Ax.M))¥)

7(Qa /TP)B4)7 t TP

AAAAAAAA
R

orem6.11 For all X-circuits P, P’, if P —, *P’, then

L, rPne.

interesting cases.
(exp-imp : Let M = ul.TRY,.

"GPB-0)a
2 ] (no

(exp outs‘

"GQ

|
e 22

t #(QF [2] ZR)Y
Je)(Ay.pB.TPY)*
Azl [w] (py.TQY Avg.p!. [w](x vo Az.M)))
[w] ((\y.pB.TPV)*
Az [w] (py.TQY Avg. . [w](x vo Az.M)))
[w] .l [w] (uy.TQY Avg.pu!.[w](x vo Az. M)
Ay.upB.TPY)

[w]pl [w] (7. TQY Avo.pl. [w](Ay.uB.TPY vo Az. M)
[w] (- TQY Avg.pl. [w] (Ay.pB.TPY wo Az.M))
QL (Mol [w](Ay.uB.TPY vo Az M) - /)
QLA M o /B)(Ny.p.TPL(A2.M - 0 /B) - o /7)
W] (B.TQY(Ay.pl.TPY, - o /) Az. M)
Wl (pB-[w](py-TQY Ay.pl.TPY) Az. M)
"@7t5P)B 1 2R
): LetM = pl.TPY,.
) /‘ZEPWV
[W] a.[o](Ay.pB.7QV)* Az. M
(W (Ay.uB.7QLV (Ax.M - o/a))* \ow.M)
[wWI(A2. M) Ay.puB.TQY (\e. M - o /ax))

WL ("PY) (Ay.uB. QY (Ne. M - o /) )
) (Ay-pB.TQV(Ax. M - o/a)/x)
1 ("PY) (My.pB.TQY (Ao M - o /a) [x)
(Aw. M) Ay.pB.TQY (e M - o /ax))
(A\y-pB. QUM - o /a))* Az. M)
(no [w(Ay.puB.TQY(Ae. M - o /)" Ax.M)
(.
(@

[w]p!.
("PY
[w]
[w]
[w]
[w]

|(uo.jw ](Ay.ﬁﬂ.[w](ua.rQL Ax.M))* Ax. M)
Qa ) zP)B-o)o

[w
I { &P}



(actR) : TPatzQl,
= [W)(((pen"PY) ) Aapl.TQY)
=v [W](Az.pl.TQY (pa.TPY) ™)
=v [w]p!.("QV) ((ne.TPY)™ /z)
=v ("QV) (ne."PY)~ /)
=v [wW]p!.("QV) {(ne.TPY)~ /z)
2 [w] (M.l FQY (pa.TPY)7)
= PaxzqQl,
(dR) : Let M = (pa.TPY)~:
PaxiQl 2 WO\ u' QL M)
=v [W]((M)* Az.pl.TQY)
é rPoz/‘:cQ1
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