
A completeness result forλµ

Phillipe Audebaud∗ Steffen van Bakel†

Inria Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France

E-mail:Philippe.Audebaud@sophia.inria.fr,svb@doc.ic.ac.uk

Abstract

We study the expressivity of Parigot’sλµ-calculus, and
show that each statementΓ ⊢LK ∆ that is provable in
Gentzen’s LK has a proof inλµ. This result is obtained
through defining an interpretation fromnets from theX -
calculus into both theλ-calculus andλµ; X enjoys the full
Curry-Howard isomorphism for (the implicative fragment of)
LK, and cut-elimination in LK is represented by reduction in
X .

This interpretation will be shown to preserve reduction in
X via equality in the target calculi, and to preserve typeabil-
ity using the standard double negation translation technique
of types. Using the fact that, inλµ, we can inhabit¬¬A→A
for all typesA, a completeness result as well as a consistency
result are shown forλµ.

1 Introduction

The sequent calculusLK , introduced by Gentzen [7], is
a logical system in which the rules only introduce connect-
ives (but on both sides of a sequent), on the contrary to
natural deduction which uses introduction and elimination
rules. The only way to eliminate a connective is to elimin-
ate the whole formula in which it appears, with an applica-
tion of the(cut)-rule. Gentzen’s calculus for classical logic
LK allows sequents of the formA1, . . . , An ⊢ B1, . . . , Bm,
whereA1, . . . , An is to be understood asA1∧ . . .∧An and
B1, . . . , Bm is to be understood asB1∨ . . .∨Bm. Thus,LK

appears as a very symmetrical system.
For this calculus, acut-elimination procedurehas been

defined that eliminates all applications of the(cut)-rule from
the proof of a sequent, generating a proof innormal formof
the same sequent, that is, with no cut. It is defined via local

∗École Normale Supérieure de Lyon, 46 Allée d’Italie 69364Lyon 07,
FRANCE

†On sabbatical leave from Department of Computing, ImperialCollege
London, 180 Queen’s Gate London SW7 2BZ, U.K.

rewriting steps, reductions of the proof-tree, which has the
flavour of the evaluation of explicit substitutions [4].

The calculusX , as presented in [1, 13] represents a cor-
respondencèa la Curry-Howard-de Bruijn forLK(→), the
implicational fragment ofLK , bringing together the various
features of two different approaches: that of Urban [17] and
that of Curien and Herbelin [5]. The aim of this paper is to
relateX to the standard presentation ofλµ, as we target the
analysis of two subreduction systems, both designed to avoid
unrecoverable critical pairs. We will show that there exist
faithful mappings fromX to both theλ-calculus and theλµ-
calculus, which establishes a strong link between provable
sequents inLK(→) and theλµ-calculus.

The relevance of this result can be understood from the ob-
servation that theX -calculus expresses the full symmetry of
LK , while theλµ-calculus does not. However, we will show
that the latter is expressive enough to reflect the propagation
rules ofX , thus exhibiting that the actual loss is due to nat-
ural deduction presentation of the calculus, which forces the
choice of a distinguished, active conclusion.

The symmetric nature of theX -calculus is evident from
the fact that reduction is not confluent; as the target calculus
is confluent, the price to pay is, as for the pureλ-calculus
case, to restrict ourselves to particular subsystems of thefull
reduction, that do not cause unrecoverable critical pairs to
occur.

From the logical point of view, the natural deduction
presentation introduces a lack of symmetry which is going
to require more work for the translation ofX -terms (called
circuits) intoλµ-terms. Our translation therefore will con-
sist of first applying a CPS-like transformation, followed by
a recovery of the type information for the global derivation
tree:

X→λµCPS→λµ

This will allow us to prove:

Theorem COMPLETENESS. If Γ ⊢LK ∆ in LK(→), then for
any (fresh) typeΩ, there exists aλµ-termM , and contexts
Γ′,∆′ such thatΓ′ ⊢λµ M :Ω | ∆′ such thatΓ,∆ can be
obtained fromΓ′,∆′ by erasure of names.

1

We will also prove:

Theorem CONSISTENCY. If P, P ′ are proofs inLK(→),
such that P can be changed intoP ′ performing cut-
elimination steps, then their interpretations inλµ are equi-
valent, i.e. share a common reduct.

This result is obtained via the interpretation ofX circuits into
pureλ-terms, which requires a double-negation translation
on types and loses the syntactical distinction between inputs
and outputs. As we deal with a fragment of classical logic, a
minimum requirement is to extend the pureλ-calculus in this
direction. Possible extensions are theλC -Calculus (where
C stands for Griffin’sC operator) [8, 12] or Parigot’sλµ-
Calculus [15]. Since we want sockets and plugs being kept
distinct from each other, we favour the second solution.

Limiting ourselves to the implicative fragment ofLK

might seem to be too much of a restriction, but this not so.
In fact, extending the calculus with (rules and constructs for)
the logical connectives∧,∨, ∀, ∃,¬ is straightforward, and
brings no added complexity for achievable results. Also, ar-
row types are the natural types for theλ-calculus andλµ.

2 TheX -calculus

2.1 From LK to a calculus

There exist a number of systems that link Classical Logic
with a notion of computation. In Parigot’sλµ-calculus is a
natural deduction system in which there is one main conclu-
sion that is being manipulated and possibly several alternat-
ive ones. On the other hand, there exists the sequent calculus
and the necessity for the left-introduction rules to manipulate
hypotheses, and the concept ofstoupthat Herbelin has thor-
oughly studied in [10, 5, 11].

As mentioned in the introduction,X is inspired by the se-
quent calculus, so it is worthwhile to recall some of the prin-
ciples.

Definition 2.1 LK(→). The sequent calculus we consider
has only implication, no structural rules and a changed ax-
iom. It offers an extremely natural presentation of the clas-
sical propositional calculus with implication, and is a variant
of systemLK .

It has four rules:axiom, right introductionof the arrow,
left introductionandcut.

(ax) :
Γ, A ⊢ A,∆

(cut) :
Γ ⊢ A,∆ Γ, A ⊢ ∆

Γ ⊢ ∆

(⇒R) :
Γ, A ⊢ B,∆

Γ ⊢ A⇒B,∆
(⇒L) :

Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A⇒B ⊢ ∆

It is well known that the rule(cut) plays a major role in
proofs, since cut-free proofs enjoy nice properties; proofre-
ductions via cut-elimination have been proposed by Gentzen.
Those reductions become the fundamental principle of com-
putation inX .

One of the key points of Herbelin’sλµµ̃-calculus is to no-
tice that the stoup and the main conclusion ofλµ are the dual
notions of each other, and to express this duality in a very
symmetrical syntax. But the duality goes beyond that: for
instance, the symmetry of the reduction rules display syn-
tactically the duality between theCBV andCBN evaluations
(see also [18]). However, this duality notwithstanding,λµµ̃
does not fully representLK . TheLK proof

Γ, A ⊢LK B,∆
(→R)

Γ ⊢LK A→B,∆

Γ ⊢LK A,∆ Γ, B ⊢LK ∆
(→L)

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

reduces to both

Γ ⊢LK A,∆

Γ, A ⊢LK B,∆

Γ, B ⊢LK ∆

Γ, A,B ⊢LK ∆

Γ, A ⊢LK ∆

Γ ⊢LK ∆

and
Γ ⊢LK A,∆

Γ ⊢LK A,B,∆ Γ, A ⊢LK B,∆

Γ ⊢LK B,∆ Γ, B ⊢LK ∆

Γ ⊢LK ∆

The first result is represented in the normal reduction system
of λµµ̃, but the second is not, whereas both are represented
in X .

2.2 Syntax

The Curry-Howard correspondence forX with classical
propositional calculus is achieved by giving propositions
names; those that appear in the left part of a sequent receive
names likex, y, z, . . . and those that appear in the right part
of a sequent receive name likeα, β, γ, . . ., and to associate
formulae with types.

The circuits that are the objects ofX are built with three
kinds of building stones, or constructors, calledcapsule, ex-
port andimport. In addition there is an operator we callcut,
which is handy for describing circuit construction, and which
will be eliminated eventually byrules. These four will be the
natural representatives for the four logical rules given above.

Circuits are connected throughwires that are named. In
our description wires are oriented. This means we know
in which direction the ‘ether running through our circuits’

2

moves, and can say when a wire provides an entrance to a
circuit or when a wire provides an exit. Thus we make the
distinction between exit wires which we callplugsand enter
wires which we callsockets. Plugs are named with Greek
lettersα, β, γ, δ, . . . and sockets are named with Latin letters
x, y, z,

When connecting two circuitsP andQ, we may suppose
thatP has a plugα andQ has a socketx which we want to
connect together to create a flow fromP toQ. After the link
has been established, the wires have been plugged, and the
name of the plug and the name of the socket are forgotten. To
be more precise, inPα̂ † x̂Q, the nameα is bound overP and
the namex is bound overQ, bound in the interaction. We use
the “hat” -notation, keeping in line with the old tradition of
Principia Mathematica[19], writing x̂ to say thatx is bound.

Definition 2.2 [1] SYNTAX . The circuits of theX -calculus
are defined by the following grammar, wherex, y, . . . range
over the infinite set ofsockets, andα, β over the infinite set
of plugs.

P,Q ::= 〈x.α〉 | ŷP β̂ ·α | P β̂ [y] x̂Q | Pα̂ † x̂Q

capsule export import cut

Notice that, using the intuition sketched above, for example,
the connectorβ is supposed not to occur outside ofŷP β̂ ·α.

The calculus, defined by the reduction rules (Section2.3)
explains in detail how cuts are distributed through circuits to
be eventually erased at the level of capsules.

We spoke above about bound names; we will introduce
now formally those notions with that of free sockets and plugs
intoX .

Definition 2.3 The free socketsand free plugsin a circuit
are:

fs(〈x.α〉) = {x}

fs(x̂P β̂ ·α) = fs(P) \ {x}

fs(Pα̂ [y] x̂Q) = fs(P) ∪{y} ∪(fs(Q) \ {x})

fs(Pα̂ † x̂Q) = fs(P) ∪(fs(Q) \ {x})

fp(〈x.α〉) = {α}

fp(x̂P β̂ ·α) = (fp(P) \ {β}) ∪{α}

fp(Pα̂ [y] x̂Q) = (fp(P) \ {α}) ∪ fp(Q)

fp(Pα̂ † x̂Q) = (fp(P) \ {α}) ∪ fp(Q)

A socketx or plugα which is not free is calledbound. We
will write x 6∈ fs(P,Q) for x 6∈ fs(P) & x 6∈ fs(Q).

We will normally adopt Barendregt’s convention (calledcon-
vention on variablesby Barendregt, but here it will be a con-
vention on names).

2.3 The rules

For reduction, it is important to know when a socket or
a plug is introduced, i.e. is connectable, i.e. is exposed and
unique. Informally, a circuitP introduces a socketx if P is
constructed from subcircuits which do not containx as free
socket, sox only occurs at the “top level.” This means thatP
is either an import with a middle connector[x] or a capsule
with left partx. Similarly, a circuit introduces a plugα if it
is an export that “creates”α or a capsule with right partα
(Urban [17] uses the terminology “freshly introduce”).

Definition 2.4 [1] I NTRODUCTION. (P introducesx) :
P = 〈x.β〉 orP = Rα̂ [x] ŷQ, with x 6∈ fs(R,Q).

(P introducesα) : P = 〈y.α〉 or P = x̂Qβ̂ ·α with
α 6∈ fp(Q).

We first present a simple family of reduction rules. They
say how to reduce a circuit that cuts subcircuits that both in-
troduce connectors.

Definition 2.5 LOGICAL REDUCTION [1]. The logical
rules are (assume that the circuits of the left-hand sides of
the rulesintroducethe socketx and the plugα)

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉

(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ

(imp) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →{
(Qγ̂ † ŷP)β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)

We now need to define how to reduce a cut circuit in case
when one of its sub-circuits does not introduce a socket or a
plug. This requires to extend the syntax with two new oper-
ators that we callactivatedcuts:

P ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

Reduction on circuits with activated cuts will make sure these
are propagated through the circuits.

Definition 2.6 [1] ACTIVATING THE CUTS.

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P does not introduceα
(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if Q does not introducex

Notice that both side-conditions can be valid simultaneously,
thereby validating both rewrite rules at the same moment.
This gives, in fact, acritical pair or superpositionfor our
notion of reduction, and is the cause for the loss of conflu-
ence.

3

We will now define how to propagate an activated cut
through sub-circuits. The direction of the activating shows
in which direction the cut should be propagated, hence the
two sets of reduction rules.

Definition 2.7 [1] PROPAGATION REDUCTION. The rules
of propagation are:

Left propagation

(dL) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P

(cap†) : 〈y.β〉α̂ † x̂P → 〈y.β〉, β 6= α

(exp-outs†) : (ŷQβ̂ ·α)α̂ † x̂P →

(ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P,γ fresh

(exp-ins†) : (ŷQβ̂ ·γ)α̂ † x̂P →

ŷ(Qα̂ † x̂P)β̂ ·γ, γ 6= α

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P →

(Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P →

(Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P)

Right propagation

(dR) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉
(†cap) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, y 6= x

(†exp) : Pα̂ † x̂(ŷQβ̂ ·γ) → ŷ(Pα̂ † x̂Q)β̂ ·γ

(†imp-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) →

Pα̂ † ẑ((Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R)), z fresh

(†imp-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) →

(Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R),z 6= x

(†cut) : Pα̂ † x̂(Qβ̂ † ŷR) →

(Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R)

The rules(exp-outs†) and(†imp-outs) deserve some at-
tention. For instance, in the left-hand side of(exp-outs†), α
is not introduced, henceα occurs more than once in̂yQβ̂ ·α,
that is once after the dot and again inQ. The occurrence
after the dot is dealt with separately by creating a new name
γ. Note that the cut associated with thatγ is then unactiv-
ated; this is because, after the cut has been pushed through
ŷ(Qα̂ † x̂P)β̂ ·γ (so leaves a circuit with no activated cut),
the resulting circuit(ŷRβ̂ ·γ)γ̂ † x̂P needs to be considered
in its entirety: although we now that nowγ is introduced,
we know not if x is. A similar reasoning holds forx in
(†imp-outs) and a new namez is created and the external
cut is not active.

2.4 Call-by-name and call-by-value

In this section we will define two sub-systems of reduc-
tion, that correspond to call-by-name (CBN) and call-by-value

(CBV) reduction. Notice that this is essentially different from
the approach of [18], where, as inλµµ̃, only one notion of
reduction is defined.

As mentioned above, whenP does not introduceα andQ
does not introducex, Pα̂ † x̂Q is a superposition, meaning
that two rules, namely (act-L) and (act-R), can both be fired.
Thecritical pair 〈Pα̂ † x̂Q, P α̂ † x̂Q〉. may lead to different
irreducible circuits. This is to say that the reduction relation
→ is not confluent. Non-determinism is a key feature of both
classical logic and term rewriting.

We introduce two strategies which explicitly favour one
kind of activating whenever the above critical pair occurs.
Consider a circuitPα̂ † x̂Q whereP does not introduceα
andQ does not introducex, intuitively CBV tends to pushQ
throughP andCBN tends to do the other way around.

Definition 2.8 • The CBV strategy only activates a cut
via (act-L) when it could be activated in two ways; we write
P →V Q in that case, and replace rule(act-R) by:

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if P introducesα

andQ does not introducex.

• TheCBN strategy only activates such a cut via(act-R);
like above, we writeP →N Q, and replace rule(act-L) by:

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if Q introducesx

andP does not introduceα.

2.5 Typing for X

We will now formally define a notion of type assignment
onX , which will establish the Curry-Howard-de Bruijn iso-
morphism betweenX andLK(→).

Definition 2.9 TYPES AND CONTEXTS. i) The set of
types is defined by the grammar:

A,B ::= ϕ | A→B.

The types considered in this paper are normally known as
simple(or Curry) types.

ii) A context of socketsΓ is a mapping from sockets to
types, denoted as a finite set ofstatementsx:A, such that the
subjectof the statements (x) are distinct. We writeΓ, x:A for
the context defined by:

Γ, x:A = Γ∪{x:A}, if Γ is not defined onx
= Γ, otherwise

So, when writing a context asΓ, x:A, this implies thatx:A ∈
Γ, or Γ is not defined onx. When we writeΓ1,Γ2 we mean
the union ofΓ1 andΓ2 whenΓ1 andΓ2 are coherent (ifΓ1

containsx:A1 andΓ2 containsx:A2 thenA1 = A2).

iii) Contexts ofplugs∆ are defined in a similar way.

4

Definition 2.10 [1] TYPING FORX . i) Type judge-
mentsare expressed via a ternary relationP ··· Γ ⊢ ∆, where
Γ is a context ofsocketsand∆ is a context ofplugs, andP
is a circuit. We say thatP is thewitnessof this judgement.

ii) Type assignment forX is defined by the following
sequent calculus:

(cap) :
〈y.α〉 ··· Γ, y:A ⊢ α:A,∆

(imp) :
P ·

·· Γ ⊢ α:A,∆ Q ·
·· Γ, x:B ⊢ ∆

Pα̂ [y] x̂Q ··· Γ, y:A→B ⊢ ∆

(exp) :
P ··· Γ, x:A ⊢ α:B,∆

x̂P α̂·β ·
·· Γ ⊢ β:A→B,∆

(cut) :
P ·

·· Γ ⊢ α:A,∆ Q ·
·· Γ, x:A ⊢ ∆

Pα̂ † x̂Q ··· Γ ⊢ ∆

We writeP ··· Γ ⊢ ∆ if there exists a derivation that has this
judgement in the bottom line.

Γ and∆ carry the types of the free connectors inP , as
unordered sets. There is no notion of type forP itself, instead
the derivable statement shows howP is connectable. The
Curry-Howard property for the implicative fragment of LK is
easily achieved by erasing all term-information.

The soundness result of simple type assignment with re-
spect to reduction is stated as usual:

Theorem 2.11 [1] W ITNESS REDUCTION. If P ··· Γ ⊢ ∆,
andP → Q, thenQ ··· Γ ⊢ ∆.

3 Theλ-calculus

The expressive power ofX is illustrated in [1] by show-
ing that theλ-calculus [3],λx, λµ, andλµµ̃ can be faith-
fully interpreted via the mapping⌈⌈M⌋⌋α. Using the notion
of Curry type assignment, assignable types are preserved by
the interpretation: ifΓ ⊢λ M :A, then ⌈⌈M⌋⌋α ·

·· Γ ⊢ α:A.
Even more, the interpretation encompassesCBV andCBN re-
duction. However, inX we have no need of two separate
interpretation functions, but will define onlyone. Combining
this with the two sub-reduction systems→V and→N we can
encode the theCBV- andCBN-λ-calculus.

We assume the reader to be familiar with theλ-calculus
[3]; we just recall the definition of lambda terms andβ-
contraction.

Definition 3.1 LAMBDA TERMS AND REDUCTION [3].

i) The setΛ of lambda termsis defined by the syntax:

M ::= x | λx.M |M1M2

ii) The reduction relation→β ⊆ Λ × Λ is defined as the
contextual, reflexive, symmetric, and transitive (i.e. compat-
ible [3]) closure of the rule:

(λx.M)N →β M [N/x]

iii) The notion of reduction→β can be restricted toCall
by Valuereduction by: the set ofvalues⊆ Λ is defined by the
syntax:

V ::= x | λx.M

Then theCall by Valuereduction relation→V is defined as
the compatible closure of the rule:

(λx.M)V →β M [V/x]

The full reduction system is then calledCall by Name, and
we will write →N when necessary.

This calculus has a notion of type assignment that corres-
ponds nicely to implicative propositional logic, in the frame-
work of natural deduction.

Definition 3.2 TYPE ASSIGNMENT FOR THEλ-CALCULUS.

(ax) :
Γ, x:A ⊢λ x :A

(→I) :
Γ, x:A ⊢λ M :B

Γ ⊢λ λx.M :A→B

(→E) :
Γ ⊢λ M :A→B Γ ⊢λ N :A

Γ ⊢λ MN :B

The logic that the above system establishes a Curry-
Howard isomorphism for is Implicative Intuitionistic Logic.

4 Theλµ-calculus

Parigot [15] presented theλµ-calculus as a calculus which
extends the proofs-as-programs paradigm of theλ-calculus
to classical logic. Theλµ-calculus gives a natural deduction
system which allows to deal with multi conclusions by choos-
ing at most oneactiveformula at once. This is achieved by
introducing two kinds of variables, as found in more recent
calculi likeX itself,λµµ̃[5], Wadler’s dual calculus [18], and
others.

Definition 4.1 λµ TERMS. Terms of theλµ–calculus are
generated by the grammar

(terms) : M,N ::= x | λx.M |M N | µα.C

(commands) : C ::= [α]M

wherex ranges over (ordinary) term variables, andα over
formula names (also calledµ-variables).

The set ofvaluesis defined by:

(values) : V ::= x | λx.M | µα.[β]V

5

We emphasise the clear distinction made above between
regular terms and the so called commands; the original
presentation of the calculus would have the caseµα.[β]M in
the syntax for terms. We use this separation for convenience
only as our interpretations rely on it.

Definition 4.2 λµ REDUCTION. Reduction for the λµ-
calculus is defined as the compatible closure of the following
reduction rules:

logical (β) : λx.M N → (M) 〈N/x〉

structural(µ) : (µα.C)M → µα.C[[α]�M/[α]�]

renaming(ν) : [β]µα.C → C〈α/β〉

erasing: µα.[α]M → M if α does not occur inM .

As usual, the substitution mechanismC[[α]�M/[α]�]
used in theµ-reduction rule consists of replacingrecursively
every occurrence in the commandC of a command[α]N la-
belledwith α, by the command[α](N M).

Call-by-Value reduction is defined by restricting the rules
as follows:

λx.M V → (M) 〈V /x〉

(µα.C)V → µα.C[[α](�V)/[α]�]

Equipped with these reductions, theλµ-calculus is well
known to be confluent.

In this paper, strictly speaking, we do not need to deal
with µ-reduction, but, instead, with the compounded reduc-
tion defined by:

(ν ◦ µ) : [α]((µβ.C) (λx.M)) → C〈λx.M · α/β〉

where the substitution mechanism consists of replacing re-
cursively inC every occurrence of a command of the shape
[β]N by the command[α](N λx.M).

In this paper, we shall assign types toλµ-terms much
along the same lines as for theλ-calculus. Actually, we
will use more general judgements such asΓ ⊢λµ M :T | ∆
where∆ holds types forµ-variables, and is void as far as pure
λ-calculus-terms are concerned. Formally:

Definition 4.3 TYPE ASSIGNMENT FORλµ. Type assign-
ment forλµ is defined by the following natural deduction
system:

(ax) :
Γ, x:A ⊢λµ x:A | ∆

(→I) :
Γ, x:A ⊢λµ M :B | ∆

Γ ⊢λµ λx.M : A→B | ∆

(→E) :
Γ ⊢λµ M :A→B | ∆ Γ ⊢λµ N :A | ∆

Γ ⊢λµ MN :B | ∆

(µ) :
Γ ⊢λµ C | α:A,Γ

Γ ⊢λµ µα.C:A | Γ

(CMD) :
Γ ⊢λµ M :A | α:A,Γ

Γ ⊢λµ [α]M | α:A,Γ

5 Interpreting X into the λ-calculus

As can be expected, the interpretation ofX ’s circuits into
pureλ-terms requires a double-negation translation on types
and loses syntactical distinction between inputs and outputs.
As we deal with a fragment of classical logic, a minimum
requirement is to extend the pureλ-calculus is this direction.

However, in this section we will show that we can still
faithfully interpretX into theλ-calculus, and obtain a type-
preservation result using the ’double negation’ technique.
A similar result was obtained in [13]; the main difference
between that result and the one obtained here is that we in-
terpret left- and right-cuts in different ways, whereas they are
interpreted in the same way in [13].

5.1 Call by Name

We will now show that we can interpret theCBN-
subreduction system ofX in theCBN-λ-calculus. It should be
noted that, in theCBN reduction system, a left-cutPα̂ † x̂Q
is only generated ifQ introducesx, so if Q = 〈x.β〉, or
Q = Rβ̂ [x] ŷS, andy not free inR,S; this observation will
prove important when dealing with activation and deactiva-
tion rules.

The CBN-interpretation of circuits inX as terms inΛ is
defined as follows:

Definition 5.1 CBN INTERPRETATION.

〈x.α〉N
λ

=
∆

xλu.αu

x̂P α̂·β N
λ

=
∆

β λxα. P N
λ

Pα̂ [y] x̂QN
λ =

∆

y λu.(λx. QN
λ)(u λα. P N

λ)

Pα̂ † x̂QN
λ

= Pα̂ † x̂QN
λ

=
∆

(λx. QN
λ
)(λα. P N

λ
)

Pα̂ † x̂〈x.β〉N
λ

=
∆

(λα. P N
λ
)(λx.βx)

Pα̂ † x̂(Qβ̂ [x] ŷR)N
λ

=
∆

(λα. P N
λ)(λx.(λy. RN

λ)(xλβ. QN
λ))

Notice that, defining

〈x.β〉A = βx

Qβ̂ [x] ŷRA = (λy. RN
λ
)(xλβ. QN

λ
)

for theQ that appears inPα̂ † x̂Q, we have

6

QN
λ = xλu. Q A [u/x]

and could have defined

Pα̂ † x̂QN
λ =

∆

(λα. P N
λ)(λx. Q A)

This will be used in the cases dealing with propagation of
left-cuts.

In order to show that typeability is preserved by the inter-
pretation, we need first to define aCBN-translation of types:

Definition 5.2 Give a type constantΩ, we define aCBN-
interpretation of types, that is split in two independent parts,
inductively defined by

〈φ〉lN = (φ→Ω)→Ω

〈A→B〉lN = ((〈A〉lN→〈B〉lN)→Ω)→Ω

〈φ〉rN = φ→Ω

〈A→B〉rN = ((〈A〉rN →Ω)→〈B〉rN →Ω)→Ω

We define〈Γ, x:A〉lN = 〈Γ〉lN, x:〈A〉
l
N, and 〈α:A,D〉rN =

α:〈A〉rN, 〈∆〉rN.

The following result links the two interpretations.

Lemma 5.3 〈A〉lN = 〈A〉rN →Ω

Using these interpretations, we can show:

Theorem 5.4 If P ·
·· Γ ⊢ ∆, then〈Γ〉lN, 〈∆〉rN ⊢λ P N

λ
: Ω.

We can show that reduction inX is modeled by equality
after interpretation:

Theorem 5.5 If P →N Q, then P N
λ
=N QN

λ.

5.2 Call by Value

The results obtained above can be repeated for theCBV-
subreduction. Again, note that, in theCBV reduction system,
a right-cutPα̂ † x̂Q is only generated ifP introducesα, so
if P = 〈y.α〉, orP = ŷRβ̂ ·α, andα not free inR.

The CBV-interpretation of nets inX as terms inλ is
defined as follows:

Definition 5.6 CBV INTERPRETATION.

〈x.α〉 V
λ =

∆

αx

x̂P α̂·β V
λ

=
∆

β λαx. P V
λ

Pα̂ [y] x̂Q V
λ

=
∆

(λα. P V
λ
)(y λx. Q V

λ
)

Pα̂ † x̂QV
λ = Pα̂ † x̂QV

λ =
∆

(λα. P V
λ)(λx. Q V

λ)

〈y.α〉α̂ † x̂QV
λ =

∆

(λx. Q V
λ) y

(ŷP β̂ ·α)α̂ † x̂QV
λ

=
∆

(λx. Q V
λ
)(λβy. P V

λ
)

Again, defining

〈x.β〉 A = x

ŷRβ̂ ·α A = λβy. R V
λ

for theP that appears inPα̂ † x̂Q, we have

P V
λ = α P A whereP introducesα

Notice that P A is a value in those cases, which is important
below to make sure that the reduction is call-by-value. We
could have defined

Pα̂ † x̂QV
λ =

∆

(λx. Q V
λ) P A

This will be used in the proofs below for the cases dealing
with propagation of right-cuts.

In order to show that typeability is preserved by the inter-
pretation, we need first to define aCBV-translation of types
(notice that this is not Plotkin’sCBV-interpretation):

Definition 5.7 Give again a type constantΩ, we now define
a CBN-interpretation of types, that is also split in two inde-
pendent parts, inductively by

〈φ〉lV = φ

〈A→B〉lV = (〈B〉lV →Ω)→〈A〉lV →Ω

〈φ〉rV = φ→Ω

〈A→B〉rV = (〈B〉rV→〈A〉rV)→Ω

Again, we define〈Γ, x:A〉lV = 〈Γ〉lV , x:〈A〉
l
V , and〈α:A,D〉rV =

α:〈A〉lV , 〈∆〉lV .

The following result links the two interpretations.

Lemma 5.8 〈A〉rV = 〈A〉lV →Ω.

Using these interpretations, we can show:

Theorem 5.9 If P ·
·· Γ ⊢ ∆, then〈Γ〉lV , 〈∆〉rV ⊢λ P V

λ : Ω.

We can show that, also for theCBV-interpretation, reduc-
tion inX is modeled by equality after interpretation:

Theorem 5.10 If P →V Q, then P V
λ =V Q V

λ.

6 From X to λµ

We have seen above, for the pureλ-calculus, that besides
the fact that we translate a symmetric calculus to a strongly
right-oriented one, reflecting the orientation of propagation
rules requires some particular attention in the translation. In
this section, we will show that the results achieved above are
obtainable forλµ as well, first for Call by Name, and then for

7

Call by Value. However, the details of the interpretations will
differ significantly.

The λµ-calculus is expressive enough to allow for the pre-
servation of types. Its asymmetric nature will prove to be no
obstacle; it is overcome by splitting the interpretation into
two steps. We perform first a compositional translation into
λµ which mimics the double negation translation in the sense
of Plotkin’sCBN, and thus alter the types as well. The second
step consists in recovering the types, which can only be done
globally. This first result implies that we can faithfully inter-
pretX into λµ, the second that typeability is fully preserved.

A natural idea would be to start from our formerλ-
calculus interpretations (see the previous section) to build this
interpretation. However, this is not going to help much, as
there the two kinds of variables have been merged. Instead,
we need to handle circuits directly, which means we are ac-
tually working out a genuine new interpretation.

Let us focus on theCBN-interpretation; theCBV one
comes along very similar guidelines. Towards our main the-
orem, sockets are translated into ordinaryλ-variables, and
plugs are embedded intoµ-variables; for both, we keep the
same name, to ease the reading. We interpret both ordin-
ary and right cuts the same way, while the left cut still re-
quires switching the position of the sub-terms, as the reduc-
tion rules in the (standard)λµ-calculus are intrinsically call-
by-name. Therefore, the flipping mechanism, used above to
left-activate a cut or to de-activate a left-cut, is still required
for the interpretation to hold along the bi-directional propaga-
tion rules fromX .

The formal definitions given below should be self-
explanatory, except from the observation that a double-
negation step is still used. This point deserves an explanation.
The circuitPα̂ † x̂Q for which we know

Pα̂ † x̂Q ·
·· Γ ⊢ ∆

is translated into a command[ω]((λx.M) (µα.C)) for some
λµ-termM and commandC and someµ-variableω. The
translation cannot be an ordinary term for both a syntactic
reason and a semantic one. Since we target the standardλµ-
calculus, the interpretation of the sub-circuitP has to be a
command, otherwise theµ-binding cannot be defined; as a
matter of consequence, the translation ofQ is going to be
of the shape[ω′]M ′, which means thatM = µη.[ω′]M ′ for
someµ-variablesη, ω′.

From theλµ-calculus perspective, this observation means
we are switching contexts intensively. This provides actu-
ally a semantic view on the way theX -calculus manages de-
rivations trees. The cut shows no privileged assumption nor
conclusion, just connectingP andQ circuits. The lack of a
selected assumption is reflected by the interpretation not to
be an abstraction; also, the lack of any particular conclusion
has the consequence we cannot use aµ binder at this point.
Therefore, cuts inX correspond to proofs handled at the level

of commands inλµ.
At this stage, we could have choosen to treat commands as

proofs for the⊥ negation type [14, 9]. This would have been
a fair choice, sinceλµ allows us to build a proof in any type
from such a proof. However, the translation itself can carry
out a more elegant and precise information. The definition
that we propose shows that, given an arbitrary, initial choice
of a named conclusionω:Ω, building circuits intoX can be
read as syntax rules for dealing with judgments, by switching
over the targeted conclusionΩ as apivot. (Then we can have
ω = ω′ in the previous informal analysis, and the formal
definition.)

As a matter of consequence, we get that the interpretation
of any given proof net can be built by targeting one conclu-
sionα:A among its non-empty set of conclusions, leading to
a λµ-termM which expresses the view that the proof forA
is done by switching back and forth with the conclusion.

Paradigmatic examples of such proofs are provided by
Peirce’s law or theex falso quodlibetformula¬¬T → T .
Our interpretation shows that this mechanism is general, at
least as far as the restricted fragment of sequent calculusX
deals with can tell.

6.1 Call by Name

As for the case of theλ-calculus, our results will depend
not only on an interpretation of terms, but also on one for
types. LetΩ be, as before, any (fixed) type and denote¬T ≡
T→Ω for convenience. The following lemma will provide
the necessary trick.

The following lemma will provide the necessary flippng
trick which comes along switching propagation directions.

There exists twoλµ-termsforceanddelaysuch that

force◦ delay =N I =V I

and for all typeT , force : ¬¬T→T anddelay : T→¬¬T .
Take

forceF =
∆

µτ.[ω](F λt.µ!.[τ]t) =
∆

F−

delayt =
∆

λf.f t =
∆

(t)⋆

Definition 6.1 PLOTKIN ’ S CBN. TheCBN interpretation of
typeT , denotedT N =

∆

¬¬ T N
′ is defined inductively by

X N
′ =

∆

X, X type variable

A→B N
′ =

∆

AN→ B N

Also Γ, x:T N =
∆

ΓN, x: T N.

Type recovery is possible, owing to the following result.

Lemma 6.2 For any typeT , there existϕT : T N→T and
ψT : T→ T N.

8

The first step of the interpretation is type-free, athough our
definition aims at complying with types later.

The notationµ!.C is a shortcut forµη.C whereη is a fresh
µ-variable wrtC.

Definition 6.3 CALL BY NAME . Let

〈x.α〉N
′

=
∆

λv.µ!.[α](v)⋆

P β̂ [x] ŷQN

′

=
∆

λv.µ!.[ω](λy.µ!. QN (v µβ. P N))

ForP anyX -term, we defineP N by structural induction

〈x.α〉N =
∆

[ω](x 〈x.α〉N
′

)

ŷP β̂ ·αN =
∆

[α](λy.µβ. P N)⋆

P β̂ [x] ŷQN =
∆

[ω](x P β̂ [x] ŷQN

′

)

Pα̂ † x̂QN =
∆

Pα̂ † x̂QN =
∆

[ω](λx.µ!. QN µα. P N)

Pα̂ † x̂QN =
∆

[ω](µα. P N)N
′

Q

Proposition 6.4CONSERVATION OF TYPES IN CBN.
P ·

·· Γ ⊢ ∆, then ΓN ⊢λµ P N | ω:Ω, ∆N.

Theorem 6.5 For anyP ·
·· Γ ⊢ ∆ in X , and typeΩ there

exists aλµ-term P N
Ω such thatΓ ⊢λµ P N

Ω

:Ω | ∆.

Theorem 6.6 For all X -terms P, P ′, if P →N
∗P ′, then

P N
Ω =N P ′

N
Ω.

6.2 Call by Value

Definition 6.7 PLOTKIN ’ S CBV. The CBV interpretation
of typeT , denotedT V =

∆

¬¬ T V
′ is defined inductively by

X V
′ =

∆

X, X type variable
A→B V

′ =
∆

AV
′→ B V

If ∆ is a typing judgement, and define accordingly
∆, x:T V =

∆

ΓV , x: T V and ∆, x:T V
′ =

∆

ΓV , x: T V
′.

Definition 6.8 CALL BY VALUE . For P any X -term, we
define P V by structural induction:

〈x.α〉 V =
∆

[α](x)⋆

ŷP β̂ ·α V =
∆

[α](λy.µβ. P V)⋆

P β̂ [x] ŷQ V =
∆

[ω](µβ. P V λv.µ!.[ω](x v λy.µ!. Q V))

Pα̂ † x̂QV =
∆

Pα̂ † x̂QV =
∆

[ω](µα. P V λx.µ!. Q V)

Pα̂ † x̂QV =
∆

[ω](λx.µ!. Q V µα. P V
−)

Proposition 6.9CONSERVATION OF TYPES IN CBV.
If P ··· ∆ ⊢ Γ, then ΓV

′ ⊢λµ P V | ω:Ω, ∆V .

Lemma 6.10 Ifα is introduced inP andV any value, then

µα. P V V =V V (µα. P V)−

The last result of this section is:

Theorem 6.11 For all X -termsP, P ′, if P →V
∗P ′, then

P V
Ω

=V P ′

V
Ω.

7 Main results

Using the results achieved above, we can now link provab-
ility in LK(→) with typability in λµ, and formulate the main
result of this paper:

Theorem 7.1 COMPLETENESS. If Γ ⊢LK ∆ in LK(→), then
for any (fresh) typeΩ, there exists aλµ-termM , and contexts
Γ′,∆′ such thatΓ′ ⊢λµ M :Ω | ∆′ such thatΓ,∆ can be
obtained fromΓ′,∆′ by erasure of names.

We also prove:

Theorem 7.2 CONSISTENCY. If P, P ′ are proofs in
LK(→), such thatP can be changed intoP ′ performing
cut-elimination steps that correspond toX reduction rules,
then their interpretations inλµ are equivalent, i.e. share a
common reduct.

Conclusion and Future work

The X -calculus offers a correspondenceà la Curry-
Howard-de Bruijn for the implicational fragment ofLK ,
bringing together various features from [17, 5] with a partic-
ular emphasis on local bi-directional propagation rules which
describe transformations on derivations. SinceX deals with
classical logic, one cannot ensure confluence from taking into
account the whole set of reduction rules. Two sub-reduction
systems can be described to avoid critical pairs, reflecting
Call by Name and Call by Value inX .

On the other hand,λµ has been designed from a fine ana-
lysis of which transformations could be applied on deriva-
tions, and has limited itself to a confluent extension of theλ-
calculus, presenting classical logic in natural deductionform.

This paper has focused on the intepretation ofX into λµ
(in its standard presentation) toward a stronger understanding
of X and its comparison with the former, as a better under-
stood calculus. Given one of theCBV or CBN strategies, our
interpretation proceeds internally through a(n intermediate)
CPS translation on types and terms, and transforms a proof
net into aλµ-term which structure generalises those found in
proofs for the Pierce law, or ex falso quodlibet.

We have shown this interpretation to be consistent with
equality in the target calculus, and proved a completeness
result forλµ in the process. As expected, trying out such
an interpretation in the pureλ-calculus cannot provides the
same benefits; however, it is worth noticing the simulation of
propagation rules does not require as complex constructions

9

as inλµ. This can be understood from the fact we would be
able to switch from one conclusion to another, as the latter
allows by design. In fact, the interpretation keeps the focus
on a conclusion, that we namedΩ, which is the usual output
type in the usual CPS transformations. On the other hand,
the interpretation inλµ requires that we encompass the eval-
uation model found in this calculus, strictly Call by Name in
its design. It is a noticeable result that, nevertheless, wedo
not need further extension ofλµ for propagation rules defined
in X to be faithfully reflected in the target calculus.

This work leaves space for some important issues we want
to address as a consequence of this analysis. An extension
of λµ-calculus towards a more symmetric one has been pro-
posed for some time, and studied in [6] with respect to nor-
malisation. Although confluence is lost, the reader might
have already noticed a more simpler interpretation that comes
to mind where terms switching position in the interpretation
of cuts could be handled with more straightforward design.
Symmetry is the main issue going behind all these calculi,
and we expect to have provided some new light on the compu-
tational behaviour of classical proofs. Meanwhile, Barbanera
and Berardi’s symmetric calculus [2] and Wadler’s analysis
of duality [18] should be investigated further within the con-
text of this paper towards a finer understanding in this area.

References

[1] S. Bakel, S. Lengrand, and P. Lescanne. The language
X : circuits, computations and classical logic. In Mario
Coppo, Elena Lodi, and G. Michele Pinna, editors,
Proceedings of Ninth Italian Conference on Theoret-
ical Computer Science (ICTCS’05), Siena, Italy, volume
3701 ofLecture Notes in Computer Science, pages 81–
96. Springer-Verlag, 2005.

[2] F. Barbanera and S. Berardi. A symmetric lambda cal-
culus for classical program extraction.Information and
Computation, 125(2):103–117, 1996.

[3] H. Barendregt.The Lambda Calculus: its Syntax and
Semantics. North-Holland, Amsterdam, revised edition,
1984.

[4] N. G. Bruijn. A namefree lambda calculus with fa-
cilities for internal definition of expressions and seg-
ments. TH-Report 78-WSK-03, Technological Univer-
sity Eindhoven, Netherlands, Department of Mathemat-
ics, 1978.

[5] Pierre-Louis Curien and Hugo Herbelin. The duality of
computation. InProceedings of the 5 th ACM SIGPLAN
International Conference on Functional Programming
(ICFP’00), pages 233–243. ACM, 2000.

[6] R. David and K. Nour. Arithmetical proofs of strong
normalization resultsfor the symmetric lambda-mu-
calculus. InTLCA, number 3461 in Lecture Notes in
Computer Science, 2005.

[7] G. Gentzen. Untersuchungen über das Logische
Schliessen.Mathematische Zeitschrift, 39:176–210 and
405–431, 1935. English translation in [16], Pages 68–
131.

[8] T. Griffin. A formulae-as-types notion of control. In
Proceedings of the 17th Annual ACM Symposium on
Principles Of Programming Languages, Orlando (Fla.,
USA), pages 47–58, 1990.

[9] Ph. Groote. On the relation between theλµ-calculus and
the syntactic theory of sequential control. In Springer-
Verlag, editor,Proceedings of the (th International Con-
ference on Logic Programming and Automated Reason-
ing, (LPAR’94), volume 822 ofLecture Notes in Com-
puter Science, pages 31–43, 1994.

[10] H. Herbelin. Śequents qu’on calcule : de
l’interpr étation du calcul des séquents comme calcul
de λ-termes et comme calcul de stratégies gagnantes.
Thèse d’université, Université Paris 7, Janvier 1995.

[11] H. Herbelin. C’est maintenant qu’on calcule: au cœur
de la dualit́e. Mémoire de habilitation, Université Paris
11, Décembre 2005.

[12] Jean-Louis Krivine. Classical logic, storage operators
and second-order lambda-calculus.Ann. Pure Appl. Lo-
gic, 68(1):53–78, 1994.

[13] Stéphane Lengrand. Call-by-value, call-by-name, and
strong normalization for the classical sequent calcu-
lus. In Bernhard Gramlich and Salvador Lucas, edit-
ors,Electronic Notes in Theoretical Computer Science,
volume 86. Elsevier, 2003.

[14] C.-H. L. Ong and C. A. Stewart. A Curry-Howard
foundation for functional computation with control. In
Proceedings of the 24th Annual ACM Symposium on
Principles Of Programming Languages, Paris (France),
pages 215–227, 1997.

[15] M. Parigot. An algorithmic interpretation of classical
natural deduction. InProc. of Int. Conf. on Logic Pro-
gramming and Automated Reasoning, LPAR’92, volume
624 ofLecture Notes in Computer Science, pages 190–
201. Springer-Verlag, 1992.

[16] M. E. Szabo, editor.The Collected Papers of Gerhard
Gentzen. Studies in Logic and the Foundations of Math-
ematics. North-Holland, 1969.

[17] Christian Urban. Classical Logic and Computation.
PhD thesis, University of Cambridge, October 2000.

[18] Philip Wadler. Call-by-Value is Dual to Call-by-Name.
In Proceedings of the eighth ACM SIGPLAN interna-
tional conference on Functional programming, pages
189 – 201, 2003.

[19] A N. Whitehead and B. Russell.Principia Mathematica.
Cambridge University Press, 2nd edition, 1925.

10

A Proofs for the main results

Theorem 5.5 If P →N Q, then P N
λ
=N QN

λ.

Proof: By induction on the length of the reduction path. We
just check the rules, of which we show the interesting cases.

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR)N
λ

=
∆

(λx.x λu.(λz. RN
λ
)(u λγ. QN

λ
))(λα.α λyβ. P N

λ
)

=N (λα.α λyβ. P N
λ)(λu.(λz. RN

λ)(u λγ. QN
λ))

(α 6∈ P N
λ) =N (λu.(λz. RN

λ)(u λγ. QN
λ))(λyβ. P N

λ)

=N (λz. RN
λ
)((λyβ. P N

λ
)(λγ. QN

λ
))

=N (λz. RN
λ
)(λβ. P N

λ
〈λγ. QN

λ
/y〉)

=N (λz. RN
λ)(λβ.(λy. P N

λ)(λγ. QN
λ))

=
∆

(Qγ̂ † ŷP)β̂ † ẑRN
λ

Also: (λz. RN
λ)(λβ. P N

λ〈λγ. QN
λ/y〉)

=N RN
λ
〈λβ. P N

λ
〈λγ. QN

λ
/y〉/z〉

(y 6∈ R, β 6∈ Q) = RN
λ
〈λβ. P N

λ
/z〉〈λγ. QN

λ
/y〉

=N (λy. RN
λ〈λβ. P N

λ/z〉)(λγ. QN
λ)

=N (λy.(λz. RN
λ)(λβ. P N

λ))(λγ. QN
λ)

=
∆

Qγ̂ † ŷ(P β̂ † ẑR)N
λ

(act-L) : Notice that eitherQ = 〈x.β〉, or Q =

Q1β̂ [x] ŷQ2, with x 6∈ fs(Q1, Q2), so we can use
QN

λ
=
∆

xλu. Q A [u/x], in all cases below.

Pα̂ † x̂QN
λ =

∆

(λx. QN
λ)(λα. P N

λ)

=N QN
λ〈λα. P N

λ/x〉

=
∆

(xλu. Q A [u/x])〈λα. P N
λ
/x〉

= (λα. P N
λ
)(λu. Q A [u/x])

(α) =N (λα. P N
λ)(λx. Q A)

=
∆

(λα. P N
λ)(λx. Q A)

=
∆

Pα̂ † x̂QN
λ

(dL) : 〈y.α〉α̂ † x̂P N
λ

=
∆

(λα.yλu.αu)(λx. P A)

=N yλu.(λx. P A)u

=N (λα.yλu.αu)(λx. P A)

=N (λv.vλx. P A)(λα.yλu.αu)

(α) =N (λx.xλv. P A [v/x])(λα.yλu.αu)

=
∆

(λx. P N
λ)(λα.yλu.αu)

=
∆

〈y.α〉α̂ † x̂P N
λ

(exp-outs†) : (ŷQβ̂ ·α)α̂ † x̂P N
λ

=
∆

(λα.α λyβ. QN
λ
)(λx. P A)

=N (αλyβ. QN
λ
)〈λx. P A/α〉

= (λx. P A)(λyβ. QN
λ〈λx. P A/α〉)

=N (λx. P A)(λyβ.(λα. QN
λ)(λx. P A))

=N (λδ.δ λyβ.(λα. QN
λ
)(λx. P A))(λx. P A)

=N (λu.u λx. P A)(λδ.δ λyβ.(λα. QN
λ
)(λx. P A))

(α) =N

(λx.xλu. P A [u/x])(λδ.δ λyβ.(λα. QN
λ
)(λx. P A))

=N (λx. P N
λ)(λδ.δ λyβ.(λα. QN

λ)(λx. P A))

=
∆

(ŷ(Qα̂ † x̂P)β̂ ·δ)δ̂ † x̂P N
λ

Theorem 5.10 If P →V Q, then P V
λ =V Q V

λ.

Proof: By induction on the length of the reduction path. We
just check the rules.

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) V
λ

=
∆

(λα.α λβy. P V
λ
)(λx.(λγ. Q V

λ
)(xλz. R V

λ
))

(α 6∈ P V
λ) =V (λx.(λγ. Q V

λ)(xλz. R V
λ))(λβ.λy. P V

λ)

=V (λγ. Q V
λ)((λβy. P V

λ)(λz. R V
λ))

=V (λγ. Q V
λ
)(λy.(P V

λ
〈λz. R V

λ
/β〉))

=V (λγ. Q V
λ
)(λy.(λβ. P V

λ
)(λz. R V

λ
))

=
∆

Qγ̂ † ŷ(P β̂ † ẑR)V
λ

Also: (λγ. Q V
λ)(λy. P V

λ〈λz. R V
λ/β〉)

=V Q V
λ〈λy. P V

λ〈λz. R V
λ/β〉/γ〉

(y 6∈ R, β 6∈ Q) = Q V
λ
〈λy. P V

λ
/γ〉〈λz. R V

λ
/β〉

=V (λβ. Q V
λ
〈λy. P V

λ
/γ〉)(λz. R V

λ
)

=V (λβ.(λγ. Q V
λ)(λy. P V

λ))(λz. R V
λ)

=
∆

(λβ. Qγ̂ † ŷP V
λ)(λz. R V

λ)

=
∆

(Qγ̂ † ŷP)β̂ † ẑR V
λ

(act-R) : Pα̂ † x̂Q→ Pα̂ † x̂Q, x not introduced.
Notice that eitherP = 〈y.α〉, or P = ŷRβ̂ ·α, with α 6∈

fp(R), so we can useP V
λ =

∆

α P A , in all cases below.
〈y.α〉α̂ † x̂QV

λ =
∆

(λα. 〈y.α〉 V
λ)(λx. Q V

λ)

=
∆

(λα. P V
λ
)(λx. Q V

λ
)

=
∆

(λα.α P A)(λx. Q V
λ
)

=V (λx. Q V
λ) P A

=
∆

Pα̂ † x̂QV
λ

(dR) : Pα̂ † x̂〈x.β〉 V
λ

=
∆

(λx. 〈x.β〉 V
λ
) P A

=V (λα.α P A)(λx. 〈x.β〉 V
λ)

= (λα. P V
λ)(λx. 〈x.β〉 V

λ)

=
∆

Pα̂ † x̂〈x.β〉 V
λ

(†imp-outs) : Pα̂ † x̂(Qν̂ [x] ŷR) V
λ

=
∆

(λx. Qν̂ [x] ŷR V
λ) P A

=
∆

(λx.(λν. Q V
λ)(xλy. R V

λ)) P A

=V (λν.(Q V
λ
〈 P A/x〉))(P A λy.(R V

λ
〈 P A/x〉))

=V (λν.((λx. Q V
λ
) P A))(P A λy.((λx. R V

λ
) P A))

=V (λz.(λν.((λx. Q V
λ) P A))(z λy.((λx. R V

λ) P A))) P A

=V (λα.α P A)(λz.(λν. P α̂ † x̂QV
λ)(z λy. P α̂ † x̂R V

λ))

= (λα. P V
λ
)(λz.(λν. P α̂ † x̂QV

λ
)(z λy. P α̂ † x̂R V

λ
))

=
∆

(λα. P V
λ
)(λz. (Pα̂ † x̂Q)ν̂ [z] ŷ(Pα̂ † x̂R) V

λ
)

=
∆

Pα̂ † ẑ((Pα̂ † x̂Q)ν̂ [z] ŷ(Pα̂ † x̂R)) V
λ

11

(exp-outs†) : (ŷQβ̂ ·α)α̂ † x̂P V
λ

=
∆

(λα.α λβy. Q V
λ
)(λx. P V

λ
)

=V (αλβy. Q V
λ
)〈λx. P V

λ
/α〉

=V (λx. P V
λ)λβy.(Q V

λ〈λx. P V
λ/α〉)

=V (λδ.δ λβy.(λα. Q V
λ)(λx. P V

λ))(λx. P V
λ)

=
∆

(ŷ(Qα̂ † x̂P)β̂ ·δ)δ̂ † x̂P V
λ

Theorem 6.6 For all X -circuits P, P ′, if P →N
∗P ′, then

P N
Ω

=N P ′

N
Ω.

Proof: By induction on the length of reduction sequences;
we only consider the base case, for which we show the more
interesting cases.

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR)N

=
∆

[ω](λx.µ!.[ω](x Qγ̂ [x] ẑRN
′

)µα.[α](λy.µβ. P N)⋆)

=N [ω]µ!.[ω](µα.[α](λy.µβ. P N)⋆ Qγ̂ [x] ẑRN
′

)

=N [ω](µα.[α](λy.µβ. P N)⋆ Qγ̂ [x] ẑRN
′

)

=N [ω]((λy.µβ. P N)⋆ Qγ̂ [x] ẑRN
′)

=N [ω](Qγ̂ [x] ẑRN
′

λy.µβ. P N)

=N [ω]µ!.[ω](λz.µ!. RN λy.µβ. P N µγ. QN)

=N [ω](λz.µ!. RN λy.µβ. P N µγ. QN)

=N [ω]µ!.(RN) 〈λy.µβ. P N µγ. QN/z〉

=N (RN) 〈λy.µβ. P N µγ. QN/z〉

=N (RN) 〈µβ.(P N) 〈µγ. QN/y〉/z〉

=N (RN) 〈µβ.[ω]µ!.(P N) 〈µγ. QN/y〉/z〉

=N (RN) 〈µβ.[ω](λy.µ!. P N µγ. QN)/z〉

=N [ω]µ!.(RN) 〈µβ. Qγ̂ † ŷP N/z〉

=N [ω](λz.µ!. RN µβ. Qγ̂ † ŷP N)

=
∆

(Qγ̂ † ŷP)β̂ † ẑRN

(act-L) : x introduced andα not introduced,

Pα̂ † x̂QN

=
∆

[ω]((λx.µ!.[ω](λx.µ!. QN (x)⋆))⋆ µα. P N)

=N [ω](µα. P N λx.µ!.[ω](λx.µ!. QN (x)⋆))

=N P N〈λx.µ!.[ω](λx.µ!. QN (x)⋆) · σ/α〉

=N [ω](µα. P N λx.µ!.[ω](λx.µ!. QN (x)⋆))

=
∆

Pα̂ † x̂QN

(dL) : LetF =
∆

λx.µ!.[ω](λx.µ!. P N (x)⋆) in

〈y.α〉α̂ † x̂P N

=
∆

[ω](µα.[ω](y λv0.µ!.[α](v0)
⋆)F)

=N [ω](y λv0.µ!.[ω]((v0)
⋆ F))

=N [ω](µα.[ω](y λv0.µ!.[α](v0)
⋆)F)

=N [ω]((F)⋆ µα.[ω](y λv0.µ!.[α](v0)
⋆))

=
∆

〈y.α〉α̂ † x̂P N

(exp-outs†) : TakeΓ fresh.
LetM =

∆

µ!.[ω](λx.µ!. P N (x)⋆) in

(ŷQβ̂ ·α)α̂ † x̂P N

=
∆

[ω](µα.[α](λy.µβ. QN)⋆ λx.M)

=N [ω]((λy.µβ. QN〈λx.M · σ/α〉)⋆ λx.M)

=N [ω]((λx.M)λy.µβ. QN〈λx.M · σ/α〉)

=N [ω]((λy.µβ. QN〈λx.M · σ/α〉)⋆ λx.M)

=N [ω](µσ.[ω](λy.µβ. QN〈λx.M · σ/α〉)⋆ λx.M)

=N [ω](µσ.[ω](λy.µβ.[ω](µα. QN λx.M))⋆ λx.M)

=N [ω]((λx.M)⋆ µσ.[ω](λy.µβ.[ω](µα. QN λx.M))⋆)

=
∆

(ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P N

Theorem 6.11 For all X -circuitsP, P ′, if P →V
∗P ′, then

P V
Ω =V P ′

V
Ω.

Proof: By induction on the length of reduction sequences;
we only consider the base case, for which we show the more
interesting cases.

(exp-imp) : LetM =
∆

µ!. R V .

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) V

=
∆

[ω] (µα.[α](λy.µβ. P V)⋆

λx.µ!.[ω](µγ. Q V λv0.µ!.[ω](x v0 λz.M)))

=V [ω] ((λy.µβ. P V)⋆

λx.µ!.[ω](µγ. Q V λv0.µ!.[ω](x v0 λz.M)))

=V [ω] (λx.µ!.[ω](µγ. Q V λv0.µ!.[ω](x v0 λz.M))

λy.µβ. P V)

=V [ω]µ!.[ω](µγ. Q V λv0.µ!.[ω](λy.µβ. P V v0 λz.M))

=V [ω](µγ. Q V λv0.µ!.[ω](λy.µβ. P V v0 λz.M))

=V Q V〈λv0.µ!.[ω](λy.µβ. P V v0 λz.M) · σ/γ〉

=V Q V〈λz.M · σ/β〉〈λy.µ!. P V〈λz.M · σ/β〉 · σ/γ〉

=V [ω](µβ. Q V〈λy.µ!. P V · σ/γ〉λz.M)

=V [ω](µβ.[ω](µγ. Q V λy.µ!. P V)λz.M)

=
∆

(Qγ̂ † ŷP)β̂ † ẑR V

(exp-outs†) : LetM =
∆

µ!. P V .

(ŷQβ̂ ·α)α̂ † x̂P V

=
∆

[ω]µα.[α](λy.µβ. Q V)⋆ λx.M

=V [ω]((λy.µβ. Q V〈λx.M · σ/α〉)⋆ λx.M)

=V [ω]((λx.M)λy.µβ. Q V〈λx.M · σ/α〉)

=V [ω]µ!.(P V) 〈λy.µβ. Q V〈λx.M · σ/α〉/x〉

=V (P V) 〈λy.µβ. Q V〈λx.M · σ/α〉/x〉

=V [ω]µ!.(P V) 〈λy.µβ. Q V〈λx.M · σ/α〉/x〉

=V [ω]((λx.M)λy.µβ. Q V〈λx.M · σ/α〉)

=V [ω]((λy.µβ. Q V〈λx.M · σ/α〉)⋆ λx.M)

=V [ω](µσ.[ω](λy.µβ. Q V〈λx.M · σ/α〉)⋆ λx.M)

=V [ω](µσ.[ω](λy.µβ.[ω](µα. Q V λx.M))⋆ λx.M)

=
∆

(ŷ(Qα̂ † x̂P)β̂ ·σ)σ̂ † x̂P V

12

(act-R) : Pα̂ † x̂QV

=
∆

[ω](((µα. P V)−)⋆ λx.µ!. Q V)

=V [ω](λx.µ!. Q V (µα. P V)−)

=V [ω]µ!.(Q V) 〈(µα. P V)−/x〉

=V (Q V) 〈(µα. P V)−/x〉

=V [ω]µ!.(Q V) 〈(µα. P V)−/x〉

=
∆

[ω](λx.µ!. Q V (µα. P V)−)

=
∆

Pα̂ † x̂QV

(dR) : LetM =
∆

(µα. P V)−:

Pα̂ † x̂QV =
∆

[ω](λx.µ!. Q V M)

=V [ω]((M)⋆ λx.µ!. Q V)

=
∆

Pα̂ † x̂QV

13

