
Boundary Inference
for Enforcing Security Policies

in Mobile Ambients
(Proceedings of IFIP-TCS’02, pp. 383-395, 2002)

Chiara Braghin, Agostino Cortesi, Riccardo Focardi†, Steffen van Bakel
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Abstract
The notion of “boundary ambient” has been recently introduced to model multilevel security
policies in the scenario of mobile systems, within pure Mobile Ambients calculus. Information
flow is defined in terms of the possibility for a confidential ambient/data to move outside a
security boundary, and boundary crossings can be captured through a suitable Control Flow
Analysis. We show that this approach can be further enhanced to infer which ambients should
be “protected” to guarantee the lack of information leakage for a given process.

keywords: Mobile Ambients, Security, Static Analysis.

1 Introduction

A Trusted Computing Base is the set of protection mechanisms within a computer system
the combination of which is responsible for enforcing a security policy [1]. One of the main
challenges faced when building a TCB is deciding which parts of the system are security-
critical. Our focus is on Multilevel Security, a particular Mandatory Access Control security
policy: every entity is bound to a security level (for simplicity, we consider only two levels:
high and low), and information may just flow from the low level to the high one. Typically,
two access rules are imposed: (i) No Read Up, a low level entity cannot access information of a
high level entity; (ii)No Write Down, a high level entity cannot leak information to a low level
entity.

In order to detect information leakages, a typical approach (see, e.g., [2, 8, 9, 10, 12, 13])
consists in directly defining what is an information flow from one level to another one. Then
it is sufficient to verify that, in any system execution, no flow of information is possible from
level high to level low. This is the approach we follow also in this paper.

To model information flow security, we adopt the scenario of mobile systems. This particu-
lar setting, where code may migrate from one security level to another one, complicates even
further the problem of capturing all the possible information leakages. As an example, confi-
dential data may be read by an authorized agent which, moving around, could expose them
to unexpected attacks. Moreover, the code itself could be confidential, and so not allowed to
be read/executed by lower levels.

† Work partially supported by MURST Projects “Interpretazione Astratta, Type Systems e Analisi Control-
Flow”, and MEFISTO, and EU Contract IST-2001-32617.
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In order to study this problem in an as abstract manner as possible, we consider the “pure”
Mobile Ambients calculus [5], in which no communication channels are present and the only
possible actions are represented by the moves performed by mobile processes. This allows the
study of a very general notion of information flow which should be applicable also to more
“concrete” versions of the calculus.

The information flow property of interest is defined in terms of the possibility for a con-
fidential ambient/data to move outside a security boundary. In [6], a very simple syntactic
property is introduced that it is sufficient to imply the absence of unwanted information flow.
In [3], a refinement of the control flow analysis defined in [11] is introduced that deals with
the same property with improved accuracy.

As an example, consider two different sites venice and montreal, each with some set of con-
fidential information that need to be protected. This can be modeled by just defining two
boundary ambients, one for each site:

veniceb[[P1 ]] | montrealb[[P2 ]] | Q�,

where Q is an untrusted process. In order to make the model applicable, a mechanism for
moving confidential data from one boundary to another one is certainly needed. This is
achieved through another boundary ambient which moves out from the first protected area
and into the second one. In the example, label b denotes a boundary, h a high-level ambient,
� a low-level ambient and c a capability. Consider the example depicted in Figure 1. Process

veniceb[[ sendb[[outc venice.inc montreal ]] | hdatah[[ inc send ]] ]] |
montrealb[[openc send ]] | Q�

may evolve to (step (b))

veniceb[[ ]] | sendb[[ inc montreal | hdatah[[ ]] ]] | montrealb[[openc send ]] | Q�

then to (step (c))

veniceb[[ ]] | montrealb[[openc send | sendb[[ hdatah[[ ]] ]] ]] | Q�

and finally to

veniceb[[ ]] | montrealb[[ hdatah[[ ]] ]] | Q�

Note that send is labeled as a boundary ambient. Thus, the high level data hdata is always
protected by boundary ambients, during the whole execution.

The analysis developed in [3] allows to verify that no leakage of secret data/ambients out-
side the boundary ambients is possible. When applied to this example, it shows that h is
always contained inside b, i.e., a boundary ambient. This basically proves that the system is
secure and no leakage of h data may happen.

In this paper we are interested in merging these ideas towards the definition of a TCB, to
a more ambitious perspective: which are the ambients that should be labeled “boundary”, to
guarantee that the system is secure, i.e. that no h data may fall into an unprotected environ-
ment? Is there always a solution to this problem? Is there a minimal solution?

We show that these problems can be properly addressed by re-executing the Control Flow
Analysis presented in [3]. A successful analysis infers boundary ambients until a fixed point
is reached, returning the set of ambients that should be “protected”.

In the example above, all we know is that hdata is information that must be protected during
the whole execution of the process; thus, a successful analysis should infer venice, montreal and
send as ambients to be labeled “boundary”.
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Figure 1: Venice and Montreal exchange confidential information.

The rest of the paper is organized as follows. In Section 2 we introduce the basic terminology
on ambient calculus, then we present the model of multilevel security for mobile agents and
we show how to guarantee absence of unwanted information flows through the control flow
analysis of [3]. In Section 3, we introduce the enhanced Control Flow Analysis. Section 4
concludes the paper.

2 Background

In this section we introduce the basic terminology on ambient calculus on multilevel security
and we briefly recall the control flow analysis defined in [3].

2.1 Mobile Ambients

The Mobile Ambients calculus has been introduced in [5] with the main purpose of explic-
itly modeling mobility. Indeed, ambients are arbitrarily nested boundaries which can move
around through suitable capabilities. The syntax of processes is given as follows, where n
denotes an ambient name.
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P, Q ::= (νn)P restriction
| 0 inactivity
| P | Q composition
| !P replication
| n�a

[[P ]] ambient
| in�t

n.P capability to enter n
| out�

t
n.P capability to exit n

| open�t
n.P capability to open n

Labels �a ∈ Laba on ambients and labels �t ∈ Labt on transitions (capabilities), have been
introduced in the control flow analysis proposed in [11]. This is just a way of indicating
“program points” and will be useful in the next section when developing the analysis.

Intuitively, the restriction (νn)P introduces the new name n and limits its scope to P; process
0 does nothing; P | Q is P and Q running in parallel; replication provides recursion and
iteration as !P represents any number of copies of P in parallel. By n�a

[[P ]] we denote the
ambient named n with the process P running inside it. The capabilities in�t

n and out�
t
n

move their enclosing ambients in and out ambient n, respectively; the capability open�t
n

is used to dissolve the boundary of a sibling ambient n. The operational semantics [5] of
a process P is given through a suitable reduction relation → and a structural congruence ≡
between processes. Intuitively, P → Q represents the possibility for P of reducing to Q through
some computation.

2.2 Modeling Multilevel Security

In order to define Multilevel security in Mobile Ambients we first need to classify information
into different levels of confidentiality. We do that by exploiting the labeling of ambients. In
particular, the set of ambient labels Laba will be partitioned into three mutually disjoint sets
Laba

H,Laba
L and Laba

B, which stand for high, low and boundary labels. We denote by L the triplet
(Laba

H,Laba
L,Laba

B).
Given a process, the multilevel security policy may be established by deciding which am-

bients are the ones responsible for confining confidential information. These will be labeled
with boundary labels from set Laba

B and we will refer to them as boundary ambients. Thus,
all the high level ambients must be contained in a boundary ambient, and labeled with la-
bels from set Laba

H. On the other side, all the external ambients are considered low level
ones and consequently labeled with labels from set Laba

L. This is how we will always label
processes, and corresponds to defining the security policy (what is secret, what is not, what
is a container of secrets). In all the examples, we will use the following notation for labels:
b ∈ Laba

B,h ∈ Laba
H, m,m

′ ∈ Laba
L and c, ch, cm, cm

′ ∈ Labt.
In [3] we introduced a refinement of the Control Flow Analysis of [11], in order to incorpo-

rate the ideas above, thus yielding to a more accurate tool for detecting unwanted boundary
crossings. The main idea is to keep information about the nesting of boundaries, and about
“unprotected” ambients.

Definition 2.1 The refined control flow analysis works on triplet ( ÎB, ÎE,Ĥ), where:

( ÎB) : The first component is an element of ℘(Laba × (Laba ∪Labt)). If a process contains either
a capability or an ambient labeled � inside an ambient labeled �a which is a boundary or
an ambient nested inside a boundary (referred as protected ambient) then (�a,�) is expected
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βL(P) = βL
env,False(P)

(res) βL
�,Proct((νn)P) = βL

�,Proct(P)
(zero) βL

�,Proct(0) = (∅,∅,∅)

(par) βL
�,Proct(P | Q) = βL

�,Proct(P) � βL
�,Proct(Q)

(repl) βL
�,Proct(!P) = βL

�,Proct(P)
(amb) βL

�,Proct(n�a
[[P ]] ) = case Proct of

True : βL
�a,Proct(P) � ({(�,�a)} ,∅,{(�a,n)})

False: if (�a ∈ Laba
B) then

let Proct
′

= True else Proct
′

= False in
βL
�a,Proct′ (P) � (∅,{(�,�a)} ,{(�a,n)})

(in) βL
�,Proct(in

�t
n.P) = case Proct of

True : βL
�,Proct(P)� (

{
(�,�t)

}
,∅,∅)

False: βL
�,Proct(P) � (∅,

{
(�,�t)

}
,∅)

(out) βL
�,Proct(out�

t
n.P) = case Proct of

True : βL
�,Proct(P)� (

{
(�,�t)

}
,∅,∅)

False: βL
�,Proct(P) � (∅,

{
(�,�t)

}
,∅)

(open) βL
�,Proct(open�t

n.P) = case Proct of
True : βL

�,Proct(P)� (
{
(�,�t)

}
,∅,∅)

False: βL
�,Proct(P) � (∅,

{
(�,�t)

}
,∅)

Figure 2: Representation Function for the refined Control Flow Analysis

to belong to ÎB. As long as high level data is contained inside a protected ambient there
is no unwanted information flow.

( ÎE) : The second component is also an element of ℘(Laba × (Laba ∪ Labt)). If a process
contains either a capability or an ambient labeled � inside an ambient labeled �a which is
not protected, then (�a,�) is expected to belong to ÎE.

(Ĥ) : The third component keeps track of the correspondence between names and labels. If a
process contains an ambient labeled �a with name n, then (�a,n) is expected to belong to
Ĥ.

The analysis is defined by a representation function and a specification, like in [11]. They are
depicted, respectively, in Figure 2 and Figure 3, in which we consider a process P∗ executing
at the top-level environment labeled env.

Observe that within the specification of the analysis (depicted in Figure 3), some predicates
are used to enhance readability, namely

• pathB (�
a,�) =




True if �a = � ∨ ∃�1,�2, . . . ,�n 
∈ Laba
B : n ≥ 0∧

(�a,�1), (�1,�2), . . . , (�n,�) ∈ ÎB ∧ �a,� 
∈ Laba
B,

False otherwise.

• pathE (�
a,�) =




True if �a = � ∨ ∃�1,�2, . . . ,�n 
∈ Laba
B : n ≥ 0∧

(�a,�1), (�1,�2), . . . , (�n,�) ∈ ÎE ∧ �a,� 
∈ Laba
B,

False otherwise.
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(res) ( ÎB, ÎE, Ĥ) |=L (νn)P iff ( ÎB, ÎE, Ĥ) |=L P

(zero) ( ÎB, ÎE, Ĥ) |=L 0 always

(par) ( ÎB, ÎE, Ĥ) |=L P | Q iff ( ÎB, ÎE, Ĥ) |=L P ∧ ( ÎB, ÎE, Ĥ) |=L Q

(repl) ( ÎB, ÎE, Ĥ) |=L !P iff ( ÎB, ÎE, Ĥ) |=L P

(amb) ( ÎB, ÎE, Ĥ) |=L n�a
[[P ]] iff ( ÎB, ÎE, Ĥ) |=L P

(in) ( ÎB, ÎE, Ĥ) |=L in�t
n.P iff ( ÎB, ÎE, Ĥ) |=L P ∧

∀�a,�a′ ,�a′′ ∈ Laba :
case ((�a,�t) ∈ ÎB ∧ (�a′′ ,�a) ∈ ÎB ∧ (�a′′ ,�a′) ∈ ÎB ∧ (�a′ ,n) ∈ Ĥ)

=⇒ (�a′ ,�a) ∈ ÎB

case ((�a,�t) ∈ ÎB ∧ (�a′′ ,�a) ∈ ÎE ∧ (�a′′ ,�a′) ∈ ÎE ∧ �a ∈ Laba
B

∧ (�a′ ,n) ∈ Ĥ) =⇒
if ( �a′ ∈ Laba

B) then (�a′ ,�a) ∈ ÎB

else (�a′ ,�a) ∈ ÎE

case ((�a,�t) ∈ ÎE ∧ (�a′′ ,�a) ∈ ÎE ∧ (�a′′ ,�a′) ∈ ÎE ∧ (�a′ ,n) ∈ Ĥ) =⇒
if ( �a′ ∈ Laba

B)

then (�a′ ,�a) ∈ ÎB ∧ {
(�,�′) ∈ ÎE | pathE(�

a,�)
} ⊆ ÎB

else (�a′ ,�a) ∈ ÎE

(out) ( ÎB, ÎE, Ĥ) |=L out�
t
n.P iff ( ÎB, ÎE, Ĥ) |=L P ∧

∀�a,�a′ ,�a′′ ∈ Laba :
case ((�a,�t) ∈ ÎB ∧ (�a′ ,�a) ∈ ÎE ∪ ÎB ∧ (�a′′ ,�a′) ∈ ÎE

∧ (�a′ ,n) ∈ Ĥ) =⇒
if ( �a ∈ Laba

B) then (�a′′ ,�a) ∈ ÎE

else (�a′′ ,�a) ∈ ÎE ∧ {
(�,�′) ∈ ÎB | pathB(�

a,�)
} ⊆ ÎE

case ((�a,�t) ∈ ÎB ∧ (�a′ ,�a) ∈ ÎB ∧ (�a′′ ,�a′) ∈ ÎB ∧ (�a′ ,n) ∈ Ĥ)

=⇒ (�a′′ ,�a) ∈ ÎB

case ((�a,�t) ∈ ÎE ∧ (�a′ ,�a) ∈ ÎE ∧ (�a′′ ,�a′) ∈ ÎE ∧ (�a′ ,n) ∈ Ĥ)

=⇒ (�a′′ ,�a) ∈ ÎE

(open) ( ÎB, ÎE, Ĥ) |=L open�t
n.P iff ( ÎB, ÎE, Ĥ) |=L P ∧

∀�a,�a′ ∈ Laba :
case ((�a,�t) ∈ ÎE ∧ (�a,�a′) ∈ ÎE ∧ (�a′ ,n) ∈ Ĥ) =⇒

if ( �a′ ∈ Laba
B) then

{
(�a,�a′′) | (�a′ ,�a′′) ∈ ÎB

}
⊆ ÎE ∧{

(�,�′) | (�,�′) ∈ ÎB ∧ (�a′ ,�
′′
) ∈ ÎB ∧ pathB(�

′′
,�)

}
⊆ ÎE

else
{
(�a,�) | (�a′ ,�) ∈ ÎE

}
⊆ ÎE

case ((�a,�t) ∈ ÎB ∧ (�a,�a′) ∈ ÎB ∧ (�a′ ,n) ∈ Ĥ)

=⇒
{
(�a,�) | (�a′ ,�) ∈ ÎB

}
⊆ ÎB

Figure 3: Specification of the Control Flow Analysis
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The representation function maps processes to their abstract representation, i.e. a triplet
( ÎB, ÎE, Ĥ) representing process P∗.

Example 2.2 Let P be a process of the form: P = n�a
1 [[ m�a

2 [[out�
t
n ]] ]] , with �a

1 ∈ Laba
B and �a

2 ∈
Laba

L, thus the representation function of P is the following: βL(P) = ({(�a
1,�a

2), (�
a
2,�t)},{(env,�a

1)},{(�a
1,n), (�a

2,m)
.

The specification of the analysis amounts to recursive checks of subprocesses, which provide
constraints that the triplet ( ÎB, ÎE, Ĥ) should satisfy in order to be a correct solution for the
analysis. It is possible to prove that a least solution of this analysis exists and it may be
computed as follows: first apply the representation function to the process P∗, then apply
the analysis to validate the correctness of the proposed solution, adding, if needed, new
information to the triplet until a fixed point is reached.

Example 2.3 Let P be the process of Example 2.2. The least solution of P is the triplet ( ÎB, ÎE,Ĥ)
where ÎB= {(�a

1,�a
2), (�

a
2,�t)}, ÎE= {(env,�a

1), (env,�a
2), (�

a
2,�t)}, and Ĥ = {(�a

1,n), (�a
2,m)}. Ob-

serve that ( ÎB, ÎE, Ĥ) strictly contains βL(P), as expected being ( ÎB, ÎE, Ĥ) a safe approximation.

More formally, the fixed point algorithm works as follows:

[Algorithm 2.4 F ixed Point Algorithm]
Input: a process P∗ and a partition labeling L.

(i) Apply the representation function βL to process P∗ to get a triplet ( Îo
B, Îo

E, Ĥ);

(ii) for all the constraints of the specification of the analysis, validate the triplet ( Î i
B, Î i

E, Ĥ)
generated in (i):
a) if the constraint is satisfied, continue;
b) else, in case the constraint is not satisfied, this is due to the fact that either ÎB or ÎE do

not consider nestings that may actually occur. In this case, modify ÎB and ÎE by adding
the “missing” pairs, thus getting a new triplet ( ˆIi+1

B , ˆIi+1
E , Ĥ). Then, go back to (ii) with

i = i + 1.

The iterative procedure above computes the least solution independent of the iteration order.
The result of the analysis should be read, as expected, in terms of information flows.

Theorem 2.5 No leakage of secret data/ambients outside the boundary ambients is possible if in the
analysis no high level label appears in ÎE.

Example 2.6 Consider, for instance, a process, which allows an application (say, an applet) to be
downloaded from the web within montreal; then, the application may open the ambient send
and disappear.

P4 = veniceb1 [[ sendb3 [[outcvenice.incmontreal | hdatah [[ inchfilter]] ]] |
| downloadm

′
[[outcm

′
venice.incm

′
web.incm

′
montreal]] ]] |

| montrealb2 [[opencweb.opencapplication]] |
webm[[applicationm[[opencmsend.filterm[[ ]] ]] | opencmdownload]]

In this case, there is no information flow, as the application is not exporting any data out of
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the montreal boundary. In this case, the refined CFA yields to positive information, namely:

ÎB = {(b1,b3), (b1,m′), (b3,h), (b3, c), (h, ch), (m′, cm′), (b2,b3), (b2,h),
(b2,m′), (b2,b2), (b2,m), (b2, c), (b2, cm′), (b2, cm), (m,h), (m,m′),
(m,b2), (m,m), (m, cm′), (m, cm)}

ÎE = {(env,b1), (env,b3), (env,m′), (env,b2), (env,m), (m′, cm′), (m,m′),
(m,b2), (m,m), (m, cm′), (m, cm)}

Ĥ = {(b1,venice), (b3,send), (b2,montreal), (h,hdata), (m′,download),
(m,web), (m,application), (m,filter)}

Observe that the result is also better than the Hansen-Jensen-Nielsons’s CFA [11] as the
latter does not capture the fact that h enters m only after it has crossed the boundary and can
never return back.

3 Inferring Boundaries

Let us turn now to the boundary inference issue. By now, we consider a process P wherein
high level data are known, i.e. LabH is fixed. We are interested to partition the set of ambient
labels into LabL and LabB so that LabB is the minimal labeling that guarantees the absence of
direct information flow concerning confidential data. In other words, the aim of the analysis
is to detect which ambients among the “untrusted ones” should be protected (let’s say by a
firewall or by encryption) as they may carry sensitive data.

Since we want to infer a minimal set of boundary ambients it makes sense to discriminate
all the ambients belonging to process P∗, thus we assume that initially all ambient occurrences
have different labels. Note that this condition may not be verified during the execution of
process P because of the replication operator. Given this initial labeling, a label has at most
one parent, thus we can give the following definitions.

Definition 3.1 (Border of an ambient) Given an ambient with label � in a process P, we
denote by B(�) the border of the ambient n labeled �, i.e. the label of the ambient which n
belongs to. Observe that B(�) is defined for all ambients but the environment env.

For example, in process P = pt[[ mk[[ n�[[0 ]] ]] | qs[[0 ]] ]] , the border of the ambient labeled � is
B(�) = k.

Definition 3.2 (Upward closure) The upward closure of the border of an ambient labeled �,
B(�), is the minimal set that contains B(�) and such that m ∈ B(�)⇒B(m) ∈ B(�).

For instance, considering again process P = pt[[ mk[[ n�[[0 ]] ]] | qs[[0 ]] ]] , the upward closure
of the border of � is B(�) = {k, t,env}.

We have already observed that Algorithm 2.4 takes as input a labeling, where labels are
partitioned into three distinct sets: high, low and boundary. Let us introduce this notion more
formally in order to deal with a dynamic labeling, where only the high labels cannot change
status.

Definition 3.3 (i-th Label Partitioning Li ) We denote by Li and we call it the i-th Label
Partitioning, the triplet Li = (LabH,Labi

B,Labi
L). We assume that LabH, LabB and LabL are

mutually disjoint, and that LabH ∪ LabB ∪ LabL = Laba.
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3.1 The Algorithm

The algorithm described below analyses process P starting from the initial labeling L0. It
may either succeed (in this case a labeling Lk is reached that fulfills the security property we
are interested in) or it may fail. The latter case simply means that the process P cannot be
guaranteed to be secure by our analysis.

Initial Label Partitioning. Given a set of high level labels LabH, we initially partition the
remaining ambients into the following sets:

Lab0
B = {� ∈ Laba \ LabH | ∃h ∈ LabH ∧ � = B(h) ∧


 ∃h
′ ∈ LabH : B(h′

) ∈ B(h)}
Lab0

L = Lab \ (LabH ∪ Lab0
B)

Through this step, the boundaries that guarantee the absence of information flow in the
initial state of process P are defined. Observe that in this way we avoid initial boundary
nesting. This is how the boundaries are inferred:
For all h ambients belonging to the process P:

i) compute the border B(h). If B(h) = env, process P is insecure by construction, then stop
with failure;

ii) if B(h) ∈ Laba \ LabH, compute the upward closure B(h) and label B(h) as boundary iff

 ∃h

′ ∈ LabH : B(h′
) ∈ B(h).

[Algorithm 3.4 B oundary Inference Algorithm] The analysis is performed by the fixed point
algorithm parameterized with respect to Li. At the beginning, i = 0.

(i) Compute Algorithm 2.4 with input Li and P∗.
(ii) During the execution of Algorithm 2.4, whenever a high level ambient n labeled h gets into

an unprotected environment, i.e. ∃� : (�,h) ∈ ÎE do:
a) if (env,h) ∈ ÎE, the analysis terminates with failure, as it cannot infer a satisfactory

labeling that guarantees absence of information leakage;
b) otherwise, if (env,h) 
∈ ÎE:

∗ a new labeling Li+1 should be considered, labeling every � such that (�,h) ∈ ÎE as a
boundary. Let L = {�| (�,h) ∈ ÎE} then Li+1 = (LabH,Labi

B ∪ {L},Labi
L \ {L}).

∗ go to (i) with i = i + 1.

Refining the solution. Through this step, a more precise label partitioning L∗ might be
computed. From the set of boundaries inferred by the analysis, we take away, if possible,
the set of boundaries B that are not needed to guarantee absence of information leakage (i.e.
boundaries nested inside other boundaries). Observe that the set of boundaries nested inside
other boundaries can be empty. This refinement procedure can be seen as a narrowing step in
the sense of Abstract Interpretation. More formally:

L∗ = (LabH,LabB \ B,LabL ∪ B)
B = {� ∈ LabB | ∃�′ : (�

′
,�) ∈ ÎB ∧ 
 ∃�′′ : (�′′,�) ∈ ÎE)}

Before addressing termination, soundness and minimality issues, let us try to understand
the behavior of this algorithm by looking at an example.
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Example 3.5 Let us consider again the example given in the Introduction:

venicex[[ sendy[[outc venice.inc montreal ]] | hdatah[[ inc send ]] ]] |
| montrealz[[openc send ]] | Q�

• Given the set of high level labels LabH in P, the initial label partitioning L0 is computed.
L0 = (LabH = {h},Lab0

B = {x},Lab0
L = {y,z})

• Applying the representation function βL0 to P∗, it returns the triplet ( Îo
B, Îo

E, Ĥ):

Îo
B = {(x,y), (x,h), (y, c), (h, c)}

Îo
E = {(env, x), (env,z), (z, c)}

Ĥ = {(h,hdata), (x,venice), (y, send), (z,montreal)}
Executing Algorithm 2.4, the pair (y,h) is introduced in ÎE, reflecting the fact that ambient
send leaves ambient venice during the execution of process P.

• At this point, a new label partitioning should be considered:
L1 = (LabH = {h},Lab1

B = {x,y},Lab1
L = {z})

Algorithm 2.4 is computed again. During its execution, the pair (z,h) ∈ ÎE, reflecting the
fact that the boundary send , containing confidential data, is opened inside the low ambient
montreal during the execution of process P.

• At this point, the following new label partitioning is considered:
L2 = (LabH = {h},Lab2

B = {x,y,z},Lab2
L = ∅)

Algorithm 2.4 is computed again, and a fixed point is finally reached. In this case, there
is no need to refine the solution. Thus, the set of ambients that should be labeled as
boundaries is {venice,send,montreal}.

3.2 Soundness and Minimality

In this final section we formally prove termination and correctness of the Boundary Inference
Algorithm described in section 3.1. Moreover, we show a minimality result on the computed
solution.

Theorem 3.6 (Termination) The algorithm always terminates.

Proof: Straightforward, as the number of labels is finite.

Theorem 3.7 (Soundness) If there exists a label partitioning Lk such that the analysis of process P
(with initial label partitioning L0) terminates with success and, in the resulting triplet ( ÎB, ÎE, Ĥ), no
high level ambient does appear in the pairs of ÎE, then the labeling Lk is sufficient to guarantee the
absence of direct leakage within the process P.

We introduce a new predicate to formalize the notion of protected ambient. Given a label
�a ∈ Laba, Protected(�a) is true iff 
 ∃�a′ : [(�a′ ,�a) ∈ ÎE ∧ �a 
= env] ∨ �a ∈ Laba

B.
The following result guarantees a minimality condition of the refined solution computed by

Algorithm 3.4.

Lemma 3.8 In the solution ( ÎB, ÎE, Ĥ) |=L P∗:

(i) � ∈ B ⇒ Protected(�) both in L and L∗.
(ii) Protected(�) in L⇔ Protected(�) in L∗.
(iii) βL(P∗) = βL∗(P∗) and Protected(�) in βL(P∗)⇔ Protected(�) in βL∗(P∗).
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Theorem 3.9 (Minimality) Let L be the triplet (Laba
H,Laba

L,Laba
B) and L∗ the label partitioning

generated by the Boundary Inference Algorithm 3.1. Then, the Fixed Point Algorithm 2.4 parameterized
with respect to L and to L∗ compute the same solution ( ÎB, ÎE, Ĥ).

Proof: Essentially the proof simply amounts to observing that, if computing both the algo-
rithms step by step, the pairs added to ÎE or ÎB are the same. It is proven by induction on the
steps computed by the algorithms. Only the cases for capabilities are non-trivial.

Base of the induction: performing one step from βL(P∗) = βL∗(P∗) with label partitioning L
and L∗ has the same effect.

(in) : Protected(�a′′) is the same both in βL(P∗) and βL∗(P∗) from point (iii) of Lemma 3.8, thus
ÎB is modified exactly in the same way with L and L∗.
¬ Protected(�a′′)⇒ �a′′ ,�a′ ,�a 
∈ B, thus ÎE is modified exactly in the same way with L and
L∗.

(out) : Protected(�a′′) is the same both in βL(P∗) and βL∗(P∗) from point (iii) of Lemma 3.8,
thus ÎB is modified exactly in the same way with L and L∗.

(open) : the case is analogous to the out one.

The inductive step is proved by exploiting the fact that the predicate Protected(�) is the
same for L and L∗ in each step. Observe that minimality within each step is guaranteed by
the fact that Algorithm 2.4 computes the least solution.

4 Conclusions

As far as we know, the idea of inferring a security policy that avoids direct information leakage
when modeling mobility through Ambients, has not been investigated in the literature yet.
Major emphasis, in fact, has been put on Access Control issues [7, 4] than in Information Flow
properties. Most of the works in this area, in fact, focus more on enhancing the language
to control how ambients may move in and out of other ambients, than on looking at how to
”protect” high-data information from untrusted environments.

A few interesting open issues are under investigation to complete the picture we draw in
this paper. In particular, it would be interesting to see if there is an ordering among labeling
w.r.t. which the analysis behaves monotonically, and if optimizations can be applied to our
algorithm to reduce the overall complexity.
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