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Abstract

This paper studies intersection and union type assignment for the calculus λµµ̃ [6], a proof-
term syntax for Gentzen’s classical sequent calculus. We show that this notion is closed for
subject-expansion, and show that it needs to be restricted to satisfy subject-reduction as well,
even when limiting reduction to (confluent) call-by-name or call-by-value reduction, making
it unsuitable to define a semantics.

Introduction

The role of Classical Logic in computer science is changing drastically over the last few years.
Given the direct relation between the Lambda Calculus [4] and intuitionistic logic, for many
years it was believed that only the constructive logics had any real computational content, and
only after Griffin’s discovery of the relation between double-negation elimination [14] and
Felleisen’s control operators [12] did the research community become aware of the computa-
tional advantages of Classical Logic. Since then, many researchers have focussed on different
calculi, trying to exploit the Curry-Howard isomorphism for various classical logics, both in
sequent style and in natural deduction, for computer science: amongst many, we mention
[22, 21, 6, 24, 25]. In this paper we contribute to that line of research by studying the λµµ̃-
calculus [6], which enjoys a Curry-Howard isomorphism for implicative G3 [18], an variant of
Gentzen’s system lk [13].

One of the great advantages of using classical logic is the capture of not only parameter
passing, but also context management: for programs based on full classical logic, a parameter
call is truly dual to a context call. This gives rise to far richer programming paradigms,
which need to be fully investigated and exploited. This paper tries to prepare the ground
for semantics, by defining a notion of intersection-union typing for λµµ̃, and to study its
properties.

One of the main contributions of intersection types [5] for the λ-calculus [4] is the charac-
terisation of strong normalisation, which states that, in a system without the type constant
� 1 the typeable terms are exactly the strongly normalisable ones [1]. This result has since
then been achieved in many ways for different calculi, and in order to come to a similar char-
acterisation for the (untyped) sequent calculus λµµ̃ [6], [8] presented a notion of intersection
and union typing for that calculus. Another main contribution is that of the construction of
filter semantics, i.e. to build a λ-model using assignable types. With this goal in mind, in this
paper we revisit the system of [8], adding � as the maximal and ⊥ as the minimal type, and

1 Normally, ω is used; here we reserve Greek characters for context variables.
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the derivation rules (�), (⊥), that are added for the purpose of subject expansion (also called
completeness).

The notion of typing (i.e. context assignment) we present here will be shown to be the nat-
ural system, in that intersection, �, union, and ⊥ play their expected roles for subject expan-
sion, our first step towards the construction of a filter model. However, we show that subject
reduction no longer holds, and will argue that this is caused by the non-logical foundation
(i.e. typeable terms no longer correspond to proofs [17]) of both intersection and union. We
will show that we can partially recover from these failures by restricting to either call-by-name
or call-by-value reduction, but that we also need to restrict the applicability of either union
or intersection. This then, unfortunately, demolishes the subject-expansion result, making the
system not suitable to define semantics.

In this paper we will show that the –at the time– surprising loss of soundness for the system
with intersection and union types in [3] is, in fact, natural and inevitable. Also, working with
intersection and union in the context of these highly symmetric sequent calculi makes clear
that these are truly dual; we will show that it is not union alone that causes problems, but
they also arise when dealing with intersection. Although the idea behind both intersection
and union might be (the logical) and and or, the fact that they are both not logical destroys the
soundness, both for a system based on intersection, as for a system based on union. This also
explains why, for ml with side-effects [15, 26, 20], quantification is no longer sound: also the
(∀I) and (∀E) rules of ml are not logical. This problem also appears when using intersection
and union types in an operational setting [7, 11].

The system presented here is also a natural extension of the system considered for λµµ̃ in
[6], i.e. the basic implicative system for Classical Logic, but extended with intersection and
union types and the type constants � and ⊥. That system is based on the sequent calculus,
introduced by Gentzen in [13], is a logical system in which the rules only introduce connectives
(but on both sides of a sequent), in contrast to natural deduction which uses introduction and
elimination rules. The only way to eliminate a connective is to eliminate the whole formula in
which it appears, via an application of the (cut)-rule.

In this paper we will treat λµµ̃ as a pure, untyped calculus, and define a notion of sequent-
style intersection-union typing for λµµ̃. The system is set up to be a conservative extension
of Krivine’s Système D intersection type assignment system for the λ-calculus [19] (�D), in
that lambda terms typeable in that system translate to λµµ̃-terms, while preserving the type.
There are many different notions of intersection type assignment in existence (see also [5, 1, 2]),
that, in the context of the λ-calculus more or less coincide; the most important difference is
normally the language of types (full BCD [5, 19], or strict types [1, 2]), and the availability of a
contra-variant ≤-relation [5, 2] or not [19, 1]. Surprisingly, this is no longer true when bringing
intersection types (and union) to the context of sequent calculi; BCD-types are needed, as will
be shown in this paper. The main results of this paper are that this notion is closed for
expansion and that it needs to be restricted to become closed for reduction; characterisation
of strong normalisation is still an open issue.

We will show in this paper that there are two causes for the loss of subject reduction:

(a)) Performing a µ-reduction towards an introduced intersection (i.e. via rule (∩R)), and
(b)) Performing a µ̃-reduction towards an introduced union (via rule (∪L)).

Any solution for subject reduction for a system with intersection and union types for λµµ̃
will need to solve both problems.

To address the problem of subject-reduction, in this paper we will revisit the system of [8],
and discuss the problem of subject reduction and expansion in the context of that system in
detail. We will then define a notion of typing that is an extension of [8] by adding � and ⊥,
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and show that subject reduction is problematic. After that we will focus on two sub-sytems, �v
and �n, that will successfully tackle that problem; for cbv we limit (∩R) to values, and for cbn
limit (∪L) to slots. These solutions are crucially different from any other published in the past,
in that we do not limit the syntax of types at all (as in [10, 9]), and pose completely different
side-conditions on rules (wrt [16]), in fact generalising the there claimed result. As far as we
know, these are the first correct presentations of sound restrictions of a fully expressive system
with intersection and union types for λµµ̃.

As intersection is not problematic for cbn-reduction, we can still embed the �D-system for
the λ-calculus whilst preserving the types, so our system �n is as least as expressive; also,
union types are still useful for µ-reductions. On the other hand, union types are not problem-
atic for cbv-reduction, and intersection can then be used for µ̃-reductions. However, limiting
the applicability of either rule (∩R) or (∪L) disrupts the proof of subject-expansion: this im-
plies that it is impossible to define a notion of typing that is closed for conversion, even when
restricting to cbv of cbn. So we cannot construct a filter model using types for λµµ̃ using this
system.

1 The calculus λµµ̃

In its typed version, λµµ̃ is a proof-term syntax for a classical sequent calculus. As in λµ
[22], for the λµµ̃-calculus there are two sets of variables: x,y,z, etc., label the types of the
hypotheses and α, β,γ, etc., label the types of the conclusions. Moreover, the syntax of λµµ̃
has three different categories: commands, terms, and contexts (or co-terms). Correspondingly,
they are typed by three kinds of sequents: the usual sequents Γ � ∆ type commands, while
the sequents typing terms (resp. contexts) are of the form Γ � A | ∆ (resp. Γ | A � ∆), marking
the conclusion (resp. hypothesis) A as active.

Definition 1.1 (Commands, Terms, and Contexts [6])

c ::= 〈v | e〉 v ::= x | λx.v | µβ.c e ::= α | v·e | µ̃x.c
commands terms contexts

Here µα.c, µ̃x.c′ and λy.v respectively bind α in c, x in c′ and y in v; as usual, we will
consider terms, contexts and commands up to α-conversion, and consider substitution to be
capture avoiding.

Typing for λµµ̃ is defined by:

Definition 1.2 (Typing for λµµ̃ [6])

(cut) :
Γ �M v : A | ∆ Γ | e : A �M ∆

〈v | e〉 : Γ �M ∆

(Ax-R) : Γ, x:A �M x : A | ∆ (Ax-L) : Γ | α : A �M α:A,∆

(RI) :
Γ, x:A �M v : B | ∆

Γ �M λx.v : A→B | ∆
(LI) :

Γ �M v : A | ∆ Γ | e : B �M ∆

Γ | v · e : A→B �M ∆

(µ) :
c : Γ �M α:A,∆

Γ �M µα.c : A | ∆
(µ̃) :

c : Γ, x:A �M ∆

Γ | µ̃x.c : A �M ∆
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Commands can be computed (thus eliminating the cut in the corresponding proof):
We have a critical pair in the command 〈µα.c1 | µ̃x.c2〉; since cut-elimination of the classical
sequent calculus is not confluent, neither is reduction in λµµ̃.

Notice that λµµ̃ has both explicit and implicit variables: the implicit variables are for example
in v·e, where the hole (·, which acts as input) does not have an identity, and in λx.v where the
context (output) is anonymous. We can make these variables explicit by, respectively, µ̃y〈y |v·e〉
and µα.〈λx.v |α〉; in case the variable y (α) does not occur in v·e (λx.v), these terms are η
redexes, but, in general, the implicit variable can be made to correspond to one that already
occurs. The type assignment system below (Definition 2.3) is designed to be indifferent to
these steps.

Herbelin’s λµµ̃-calculus expresses the duality of lk’s left and right introduction in a very
symmetrical syntax. But the duality goes beyond that: for instance, the symmetry of the
reduction rules display syntactically the duality between the call-by-value (cbv) and call-by-
name (cbn) evaluations (see also [25]). Indeed, the cbv reduction →v is obtained by forbidding
a µ̃-reduction when the redex is also a µ-redex, whereas the cbn reduction →n forbids a µ-
reduction when the redex is also a µ̃-redex.

Definition 1.4 (cbv and cbn [6, 16]) Values V are defined by V ::= x | λx.v, and slots2 E are
defined by E ::= α | v · e.

• cbv-reduction is defined by replacing rule (µ̃) by: (µ̃v) : 〈V | µ̃x.c〉 → c[V/x] ;
• cbn-reduction is defined by replacing rule (µ) by: (µn) : 〈µβ.c |E〉 → c[E/β] .

The remainder of this paper will be dedicated to the definition of a notion of intersection
typing on λµµ̃. This will be defined as a natural extension of a system with intersection types
for the λ-calculus; we will start by briefly summarising the latter. We assume the reader to be
familiar with the λ-calculus [4]. As done in [6], we define an encoding of the λ-calculus into
λµµ̃:

Definition 1.5 |[x]|λ =
∆ x |[(λx.M)]|λ =

∆ λx.|[M]|λ |[(MN)]|λ =
∆ µα.〈|[M]|λ | |[N]|λ · α〉

Correctness of this encoding is easy to prove; ηµ-reduction is needed here:

Lemma 1.6 |[(λx.M)N]|λ → |[M]|λ [|[N]|λ/x] .

Using this lemma, we can prove the following relation between the λ-calculus and λµµ̃:

Theorem 1.7 i) If M →β N, then |[M]|λ → |[N]|λ.
ii) If M →v N, then |[M]|λ →v |[N]|λ.

The notion of intersection type assignment for λµµ̃ as defined in the next section is a conser-
vative extension of Système D [19] – which is a restricted version of the BCD-system presented
in [5], not closed for η-reduction – in that we can translate lambda terms typeable in that sys-
tem to λµµ̃ terms whilst preserving types. The BCD-system treats the two type constructors
‘→’ and ‘∩’ the same, allowing, in particular, intersection to occur at the right of arrow types;
this general treatment is not necessary within the context of the λ-calculus (see [2]), but for
λµµ̃, as we will see in Example 4.1, to type all normal forms it is natural to have an intersection

2 In [16], slots are called linear evaluation contexts.



Visions of Computer Science, BCS International Academic Conference, London, pp. 249-258, 2008 5

type occur on the right-hand side of an arrow type. We will not consider a relation on types
that is contra-variant on the arrow, since we are not interested in modelling extensionality.

Definition 1.8 i) Let V be a countable (infinite) set of type-variables, ranged over by ϕ. The
set T of intersection types, ranged over by A, B . . ., is defined through:

A, B ::= ϕ | � | (A→B) | (A∩B)

ii) A statement is an expression of the form M : A, with M ∈ Λ, and A ∈ T . M is the subject
and A the predicate of M : A.

iii) A context Γ is a partial mapping from term variables to intersection types, and we write
x:A∈ Γ if Γ x = A. We will write x ∈ Γ if Γ is not defined on x, and Γ\x when we remove
x from the domain of Γ.

We will consider a pre-order on types which takes into account the idem-potence, commu-
tativity and associativity of the intersection type constructor, and defines � to be the maximal
element. We write n for the set {1, . . . ,n}. It is easy to show that the type constructor ∩ is
associative and commutative, and we will write ∩nA i for A1 ∩ · · · ∩ An, and consider � to be
the empty intersection: � = ∩0A i.

Definition 1.9 Intersection type assignment and derivations are defined by the following (se-
quent style) natural deduction system.

(Ax) :
Γ, x:A �D x : A (→I) :

Γ, x:A �D M : B

Γ �D λx.M : A→B
(∩E) :

Γ �D M :∩nA i
(j ∈ n,n ≥ 1)

Γ �D M : Aj

(→E) :
Γ �D M : A→B Γ �D N : A

Γ �D MN : B
(∩I) :

Γ �D M : Aj (∀j ∈ n)
(n ≥ 0)

Γ �D M :∩nA i

2 The system M∩∪ of intersection and union typing for λµµ̃

The first notion of intersection and union typing for λµµ̃ was presented in [8]. In this paper,
we will revisit this system, albeit in a presentation that is adapted to our approach, and discuss
its results and shortcomings.

We start with the definition of intersection/union types.

Definition 2.1 (Intersection and Union Types, Contexts) i) The set T∩∪ of intersection-un-
ion types (we will write T for short), ranged over by A, B, . . . is inductively defined by:

A, B ::= ϕ | (A→B) | (A∩B) | (A ∪ B)

ii) A context Γ of term-variables (∆ of context-variables) is a partial mapping from term-
variables (context-variables) to types, represented as a set of statements with only distinct
variables as subjects.

We will omit unnecessary brackets in types; the type constructors ‘∩’ and ‘∪’ will bind more
strongly than ‘→’, so A∩B→C∩D is used for ((A∩B)→(C∩D)), A→B∩C→D for (A→((B∩
C)→D)), and (A→B)∩C→D for (((A→B)∩C)→D). We will sometimes write the omitable
brackets to enhance readability.

We will consider a pre-order on types which takes into account the idem-potence, commu-
tativity and associativity of the intersection and union type constructors.
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Definition 2.2 (Relations on types) i) The relation ≤ is defined as the least pre-order on T
such that:

A ≤� A∩B ≤ A, B A ≤ C & A ≤ B ⇒ A ≤ B∩C
⊥ ≤A A, B ≤ A ∪ B A ≤ C & B ≤ C ⇒ A ∪ B ≤ C

We will write A ≤∩ B for the relation on types defined by the first line, and A ≤∪ B for
the one defined by the second.

ii) The equivalence relation ∼ on types is defined by:

A ≤ B ≤ A ⇒ A ∼ B
A ∼ C & B ∼ D ⇒ A→B ∼ C→D

Since we want the structure of types and derivations to correspond as much as possible,
the set T will not be considered modulo . Since intersection and union are associative and
commutative, we will write ∩nA i for A1 ∩ · · · ∩ A n, as well as ∪n Ai for A 1 ∪ · · ·∪A n, and will
only allow permutations of types within an intersection or within a union.

We will now present a notion of intersection-union typing for λµµ̃, system M∩∪, as defined
in [8], adapted to our purposes.

Definition 2.3 (∩-∪ typing for λµµ̃)
(cut) :

Γ1 �M v : A | ∆1 Γ2 | e : A �M ∆2

〈v | e〉 : Γ1 ∩Γ2 �M ∆1 ∪ ∆2

(Ax-R) : Γ∩x:A �M x : A | ∆ (Ax-L) : Γ | α : A �M α:A ∪∆

(→R) :
Γ, x:A �M v : B | ∆

Γ �M λx.v : A→B | ∆
(→L) :

Γ1 �M v : A | ∆1 Γ2 | e : B �M ∆2

Γ1 ∩Γ2 | v·e : A→B �M ∆1 ∪ ∆2

(µ) :
c : Γ �M α:A,∆

Γ �M µα.c : A | ∆
(µ̃) :

c : Γ, x:A �M ∆

Γ | µ̃x.c : A �M ∆

(∩R) :
Γi �M v : Ai | ∆ i (∀i ∈ n)

(n ≥ 0)
∩n Γi �M v : ∩nA i | ∪n∆ i

(∪L) :
Γi | e : Ai �M ∆ i (∀i ∈ n)

(n ≥ 0)
∩n Γi | e : ∪n Ai �M ∪n∆ i

(∪R) :
Γi, x:Bi �M v : Aj | ∆ i

(j ∈ n)
∩n Γi, x:∪n Bi �M v : ∪n Ai | ∪n∆ i

(∩L) :
Γi | e : Aj �M α:Bi,∆ i

(j ∈ n)
∩n Γi | e : ∩nA i �M α:∩nB i,∪n∆ i

This system is a multiplicative variant of system M∩∪ of [8], but for the fact that we deal
with (�) and (⊥), and generalise rules (∪R) and (∩L). Notice that the rules (�) and (⊥) are
special cases of (∩R) and (∪L) by taking n = 0 as well and conveniently ignoring the fact that
an intersection (or union) of an empty collection of sets is the empty set.

Notice that, in rule (Ax-R) (and (Ax-L)), a type is selected from within an intersection (a
union) for a term (context) variable. To obtain the same functionality for the implicit variables,
the system adds rules (∪R) (and (∩L)).

Also, their notion of typing is defined without any relation on types, it is just stated that
types are considered to be defined modulo commutativity and associativity for ∩ and ∪; this
corresponds to the type inclusion relation we use here. Notice we do not have a contra-
variant type inclusion relation (which would state that C ≤ A & B ≤ D ⇒ A→B ≤ C→D);
this combined with the full BCD-intersection types gives a notion of typing that is closest to
Krivine’s system D (see Theorem 3.2).
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3 Properties for System �M

In this section we study some of the properties of �M in detail.
As for the strict system, we can easily show the following.

Lemma 3.1 The following rules are admissible.

(∩E) :
Γ �M v : ∩nA i | ∆

(j ∈ n)
Γ �M v : Aj | ∆

(∪E) :
Γ | e : ∪n Ai �M ∆

(j ∈ n)
Γ | e : Aj �M ∆

We can now show that typing is preserved by the interpretation of the λ-calculus:

Theorem 3.2 If Γ �D M : A then Γ �M |[M]|λ : A | .

Notice that typing is not preserved for the rule (η): for example, we can derive

y:A→B �M λx.µβ.〈y | x·β〉 : (A∩C)→B |

but cannot show y:A→B �M y : (A∩C)→B | ; we would need a ≤-relation on types that is
contra-variant over arrow types.

It is easy to show the following completeness result.

Theorem 3.3 (Subject expansion) Let c1 → c2: if c2 : Γ �M ∆ then c1 : Γ �M ∆.

As for the system suggested in [16] (there only the intersection and union rules for a cbn
and cbv restriction are given), the added rules are:

(∩L) :
Γ | e : Ai �M ∆

(i = 1,2)
Γ | e : A1 ∩ A2 �M ∆

(∩R) :
Γ �M v : A1 | ∆ Γ �M v : A2 | ∆

Γ �M v : A1 ∩ A2 | ∆

(∪L) :
Γ | e : A1 �M ∆ Γ | e : A2 �M ∆

Γ | e : A1 ∪ A2 �M ∆
(∩L) :

Γ �M v : Ai | ∆
(i = 1,2)

Γ �M v : A1 ∪ A2 | ∆

With these rules, none of the above result can be achieved; for example, there we cannot
derive �M |[λx.xx]|λ : ((A→B)∩ A)→B | , so cannot type all normal forms. Notice the role of
intersection on term variables and union on context variables in Theorem 3.3; we cannot prove
such a property for the system of [16].

As we will show in the next section, we cannot prove a general subject reduction result.
However, we can show that µ̃-reduction towards an intersection and µ-reduction towards a
union are safe, as well as rule (→); we will start with the latter:

Theorem 3.4 (Soundness for rule (→)) If 〈λx.v1 |v2·e〉 : Γ �M ∆ then 〈v2 | µ̃x.〈v1 | e〉〉 : Γ �M ∆.

The following lemmas show that µ-contraction to any type A, even a union, such that
c : Γ �M α:A,∆ is sound, as is a µ̃-contraction to any type A, even an intersection, such that
c : Γ, x:A �M ∆.

Lemma 3.5 (Safe term substitution lemma) Let B ∈ T .
i) If c : Γ, x:B �M ∆ and Γ �M v : B | ∆, then c[v/x] : Γ �M ∆.

ii) If Γ, x:B �M v′ : A | ∆ and Γ �M v : B | ∆, then Γ �M v′[v/x] : A | ∆.
iii) If Γ, x:B | e : A �M ∆ and Γ �M v : B | ∆, then Γ | e[v/x] : A �M ∆.
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Lemma 3.6 (Safe context substitution lemma) Let B ∈ T .
i) If c : Γ �M α:B,∆ and Γ | e : B �M ∆, then c[e/α] : Γ �M ∆.

ii) If Γ �M v : A | α:B,∆ and Γ | e : B �M ∆, then Γ �M v[e/α] : A | ∆.
iii) If Γ | e′ : A �M α:B,∆ and Γ | e : B �M ∆, then Γ | e′[e/α] : A �M ∆.

The promised reduction results for both µ̃ and µ reduction are in the first parts, respectively,
of these lemmas.

4 The problem with subject reduction

In this section we will focus on soundness, i.e. investigate when assignable types (and con-
texts) are preserved by reduction.

Example 4.1 Take the commands c1 = 〈µα.〈x | x·α〉 | µ̃y.〈y |y·β〉〉, c2 = 〈x | x·(µα.〈x | x·α〉·β)〉, and
c3 = 〈x | x · µ̃y.〈y |y·β〉〉, and notice that c1 →v c2, and c1 →n c3. We can easily derive

c2 : x:A∩ (A→((C→D)∩C)) �M β:D

and
c3 : x:A∩ (A→C)∩ (A→C→D) �M β:D,

and (by subject expansion) can derive both typings also for c1, but subject reduction fails: we
cannot derive c3’s typing for c2, but can only derive c2’s typing for c3.

Notice that the typing for c2 shows the usefulness of allowing intersection types on the right
of an arrow.

The example above shows a counterexample for cbv reduction, but we can also give one for
cbn:

Example 4.2 Take the commands

c1 = 〈µδ.〈λx.µβ.〈x |δ〉 |δ〉 | µ̃z.〈λvµα.〈z |α〉 |γ〉〉,
c2 = 〈λv.µα.〈µδ.〈λx.µβ.〈x |δ〉 |δ〉 |α〉 |γ〉, and
c3 = 〈λv.µα.〈λxµβ.〈x | µ̃z.〈λw.µα.〈z |α〉 |γ〉〉 |α〉 |γ〉

then c1 →n c2 and c1 →v c3 . We can derive

c2 : �M γ:C→A ∪ (A→B)

and
c3 : �M γ:(C→A) ∪ (C→A→B)

and both these typings also for c1, as well as c2’s for c3, but not c3’s for c2.

So we cannot achieve soundness (or subject reduction) in this system for λµµ̃.
Performing a µ-reduction towards an intersection type, or performing a µ̃-reduction towards

a union type, is problematic. Let’s first of all analyse the situation. If an intersection has been
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used to type a command, we find ourselves in either one of the following two situations:

Di

c : Γi �M α:Ai,∆ i
(µ)

Γi �M µα.c : Ai | ∆ i (∀i ∈ n)
(∩R)

∩n Γi �M µα.c : ∩nA i | ∪n∆ i

D

Γ | e : ∩nA i �M ∆
(cut)

〈µα.c | e〉 : ∩n Γi ∩Γ �M ∪n∆ i ∪ ∆

D′

c : Γ �M α:∩nA i,∆
(µ)

Γ �M µα.c : ∩nA i | ∆

D

Γ | e : ∩nA i �M ∆
(cut)

〈µα.c | e〉 : ∩n Γi ∩Γ �M ∪n∆ i ∪ ∆

Only the first case is problematic, since from the second we get c[e/α] : ∩n Γi ∩Γ �M ∪n∆ i ∪ ∆
by Lemma 3.6. For the first case, we normally cannot remove any of the types in ∩nA i in the
derivation D, so we cannot safely propagate D into the various Di. So this is the problem case
that should be caught.

This problem also appears when dealing with quantification, as in ml: assume we have a
derivation for (example essentially by Alexander J. Summers: see [23] for a detailed treatment
of quantification in sequent calculi).

..

.

x:φ,y:φ �M x : φ |
(→R)

x:φ �M λy.x : φ→φ |

| γ : φ→φ �M β:φ,γ:φ→φ

..

..

(cut)
〈λy.x |γ〉 : x:φ �M β:φ,γ:φ→φ

(µ)
x:φ �M µβ.〈λy.x |γ〉 : φ | γ:φ→φ

(→R)
�M λx.µβ.〈λy.x |γ〉 : φ→φ | γ:φ→φ

| γ : φ→φ �M γ:φ→φ
(cut)

〈λx.µβ.〈λy.x |γ〉 |γ〉 : Γ �M γ:φ→φ
(µ)

Γ �M µγ.〈λx.µβ.〈λy.x |γ〉 |γ〉 : φ→φ |
(∀R)

Γ �M µγ.〈λx.µβ.〈λy.x |γ〉 |γ〉 : ∀φ.φ→φ |

y:∀φ.φ→φ �M y : ∀φ.φ→φ |
(∀E)

y:∀φ.φ→φ �M y : (φ′→φ′)′→φ′→φ′ |

y:∀φ.φ→φ �M y : ∀φ.φ→φ |
(∀E)

y:∀φ.φ→φ �M y : φ′→φ′ | | δ : φ′→φ′ �M δ:φ′→φ′
(→L)

y:∀φ.φ→φ | y·δ : (φ′→φ′)′→φ′→φ′ �M δ:φ′→φ′

..

..

..

..

(cut)
〈y |y·δ〉 : Γ,y:y:∀φ.φ→φ �M δ:φ′→φ′

(µ̃)
y:∀φ.φ→φ | µ̃y.〈y |y·δ〉 : ∀φ.φ→φ �M δ:φ′→φ′

(cut)
〈µγ.〈λx.µβ.〈λy.x |γ〉 |γ〉 | µ̃y.〈y |y·δ〉〉 : y:∀φ.φ→φ �M δ:φ→φ

then the µ-reduction will cause problems. Notice that γ:φ→φ is contracted, so in fact occurs
twice: bringing the quantifier inside, as would be required when µ-reducing, would force two
independent closures of the type φ→φ for γ; this is impossible, because the ‘other’ γ will
have the φ free, which violates the side-condition on rule ∀R.

Similarly, for union, we have the situations:

D

Γ �M v : ∪n Ai | ∆

D′

c : Γi, x:∪n Ai �M ∆ i
(µ̃)

Γi | µ̃x.c : ∪n Ai �M ∆ i
(cut)

〈v | µ̃x.c〉 : ∩n Γi ∩Γ �M ∪n∆ i ∪ ∆
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D

Γ �M v : ∪n Ai | ∆

Di

c : Γi, x:Ai �M ∆ i
(µ̃)

Γi | µ̃x.c : Ai �M ∆ i (∀i ∈ n)
(∪L)

∩n Γi | µ̃x.c : ∪n Ai �M ∪n∆ i
(cut)

〈v | µ̃x.c〉 : ∩n Γi ∩Γ �M ∪n∆ i ∪ ∆

As above, only the second situation is possibly problematic, and propagating D into the Di
should be avoided.

In [16], the subject reduction problem is recognised, and two systems are proposed that solve
the problem, one for cbv, and one for cbn reduction, as we will do in Section 5. There the
cbv restriction is defined by limiting rule (∪R) to values, and the cbn restriction by limiting
rule (∩L) to slots. How this will achieve subject-reduction is not made clear; it is remarkable
that the suggested solution is almost orthogonal to what we define below. However, this does
not seem to affect the validity of the subject reduction claim in [16]; in fact, we conjecture
that, given the applicability of rule (∩L) only to contexts and rule (∪R) only to terms, subject
reduction even holds for the unrestricted system of that paper.

5 Sound restrictions of �
In this section, we will study two restrictions for which we can show a subject reduction
result. First of all, we can show that the rule (→), µ̃-reduction towards an intersection, and
µ-reduction towards a union are safe.

Unfortunately, as suggested above (and noted in [16], and observed by others), we cannot
show the above soundness result for the other two main reduction rules, → µ or → µ̃. To
show the crucial defects, we presented two counterexamples in Examples 4.1 and 4.2. This
is mainly due to the fact that Γ �M µα.c : A | ∆ does not always imply c : Γ �M α:A,∆, and
Γ | µ̃x.c : A �M ∆ does not always imply c : Γ, x:A �M ∆.

Summarising, it is problematic to: i) perform a µ-reduction towards an intersection type,
introduced via (∩R), or ii) perform a µ̃-reduction towards a union type, introduced via (∪L).

It seems reasonable to allow full (∩R) for cbn; assuming we use the restriction mentioned
above on (∪L), how do we stop reducing into an intersection? Remember that this only
happens in case 〈µα.c | e〉, with e a slot; in that case, the intersection type on the right is
superfluous, and only one proper type inside it is needed.

Definition 5.1 The notion of typing �n is defined as �M, by changing rules (∪L) and (∪R):

(∪L) :
Γi | E : Ai �n∆ i (∀i ∈ n)

(n ≥ 1)
∩n Γi | E : ∪n Ai �n∪n∆ i

(∪R) :
Γ �M v : Aj | ∆

(j ∈ n,n ≥ 1)
Γ �M v : ∪n Ai | ∆

That subject-expansion now fails is immediate, since the condition on rule (∪L) (the context
is a slot) is not preserved by expansion. We can now show:

Theorem 5.2 (Soundness for →n in �n) If c1 : Γ �n∆ and c1 →n c2, then c2 : Γ �n∆.

For cbv, we take the dual approach, and restrict the use of (∩R). To avoid a µ-reduction
into an intersection, we either do not allow intersections for cuts at all (which, by the example
above, is clearly to restrictive), or make sure that no intersection is introduced for µα.c via the
restriction on (∩R). The only thing to solve is then to avoid the contraction of 〈v | µ̃x.c〉 into a
union, which is solved by the fact that then v is a value.
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Definition 5.3 The notion of typing �v is defined as �M, by changing rules (∩R) and (∩L):

(∩L) :
Γ | e : Aj �M ∆

(j ∈ n,n ≥ 1)
Γ | e : ∩nA i �M ∆

(∩R) :
Γi �vV : Ai | ∆ i (∀i ∈ n)

(n ≥ 0)
∩n Γi �vV : ∩nA i | ∪n∆ i

That subject-expansion now fails is again immediate, since the condition on rule (∩R) (the
term is a value) is not preserved by expansion.

Theorem 5.4 (Soundness for →v in �v) If c : Γ �v∆ and c →v c′, then c′ : Γ �v∆.

6 Concluding remarks

It is worthwhile to observe that the system presented above is just one of the possible ways of
dealing with intersection and union in the context of λµµ̃. In fact, allowing intersection and
union for activated formulae only, actually leans strongly on the similarity between those type
constructs and the logical & and ∨.
We have seen that it is straightforward to define a natural notion of typing to the sequent
calculus λµµ̃ that uses intersection and union types. This system was shown natural in that
we were able to show that subject expansion - the main reason to use either intersection or
union - follows easily, and that both intersection and union play their natural and crucial role
in that proof.

However, this ease is not paired with soundness with respect to subject reduction. As in
similar notions for the λ-calculus, combining union and intersection types breaks the sound-
ness of the system; unlike the λ-calculus, however, also intersection is problematic. We have
isolated the problem cases, and seen that it is exactly the non-logical behaviour of both type
constructors that causes the problem. We have looked at restrictions for either cbn or cbv
reduction that overcome this defect, but all with the loss of the subject expansion result.
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