
Understanding Call By Push Value through λµµ̃

Steffen van Bakel, Emma Tye, and Nicholas Wu

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK

Abstract

Call by Push Value (cbpv) is a calculus for explicitly modeling call-by-name and call-by-
value reduction in the λ-calculus and many other intuitionistic logic-based calculi. We in-
vestigate whether classical logic-based calculi, specifically the λµµ̃-calculus, can model cbpv

and therefore subsume the call-by-name and call-by-value paradigms.
In order to achieve reduction respecting mappings for the cbn and cbv λ-calculus, we define
ecbpv, essential cbpv, by modifying the syntax slightly by allowing forcing only for vari-
ables, thunking only for computations that are not forced variables, and changing the nature
of term substitution, also abolishing the U -reduction rule. These changes make it possible to
establish a strong relation between λµµ̃ and ecbpv, allowing to simulate ecbpv reduction
in λµµ̃, and preserving assignable types. This should open up avenues for describing the
semantics of call-by-name and call-by-value via classical logic semantics.

Introduction

Both the ‘call by name’ (cbn) and ‘call by value’ (cbv) reduction strategies of the λ-calculus

[4, 2] are important paradigms in theory and as well as in practice of computer science. The

first, also known as ‘lazy’ reduction, is based on the concept that the execution of function

application (the contraction of a β-redex) takes places ‘as is’, without consideration of the

computational status of the argument, but only if the term under consideration is a function

application itself. The second is similar, but the main distinction is that it forces the evaluation

of the argument to a value before the main redex gets contracted. cbn-reduction is normalis-

ing, so cbn-reduction will lead to a cbn-normal form, if it exists. The main advantage of cbv

is that, since an argument is evaluated before being substituted, unnecessary duplication of

reduction is avoided, but at the price that this strategy is not normalising, so cbv-reduction

does not necessarily lead to a normal form.

These two reduction strategies differ significantly in semantics and for example do not share

all normal forms, and it is an interesting question if a calculus can be found in which both

can be modelled coherently, preserving typeability, assignable types, denotational semantics,

etc. In [11] Levy proposed the calculus Call by Push Value (cbpv) as answer to this question,

as a subsuming paradigm for the cbn and cbv paradigms of the λ-calculus.

cbpv is presented with a deterministic reduction relation, that can be thought of as encoded

in the term itself, as reduction is blocked and activated through additional syntax. As is

usual, since their reduction relation is different, the cbn and cbv reduction strategies of the

λ-calculus are interpreted differently into cbpv; these interpretations preserve the operational

and denotational semantics, making cbpv a good candidate for the study of both.

However, cbpv is not the only calculus that achieves the embodiment of this duality. Her-

belin and Curien [7, 3] defined the calculus λµµ̃ that represents proofs and cut-elimination of

a variant Gentzen’s Sequent Calculus for Classical Logic [6] with focus, which can be seen as

a generalisation and extension of Parigot’s λµ-calculus [13], and has been shown to represent

an abstract machine which models both these paradigms successfully. In particular, also the

1

interpretations of the cbn and cbv λ-calculus into λµµ̃ preserve the reductions. Moreover,

[11] defines an abstract machine, ck, to give an operational semantics for cbpv, which very

closely corresponds to the workings of these interpretations into λµµ̃.

This observation lead us to investigate the link between these two calculi - λµµ̃ and cbpv -

and here we will give an interpretation of cbpv into λµµ̃, inspired by the behaviour of cbpv

in the abstract machine ck [12]. Using the motivation for λµµ̃ as an abstract machine to run

the λ-calculus in, we attempt to use a similar technique for translating cbpv. However, the

artificial halting and continuing of computations - ‘thunking’ and ‘forcing’ - cannot be mod-

elled by the traditional λµµ̃ syntax. A computation M that is ‘thunked’ and then immediately

‘forced’ continues running as M, removing the surrounding ‘thunk’ and ‘force’ syntax. In the

abstract machine ck, this computational step doesn’t interact with the stack at all, but still

reduces. So it cannot be represented as a function or a variable, hence cannot be translated

into λµµ̃ syntax. To overcome this, we basically remove the ‘thunk’ - ‘force’ reduction step,

for which we had to change the notion of term substitution.

Outline of this paper

We start in Section 1 by giving a quick overview of the λ-calculus, and its relevant reduction

strategies; this is followed in Section 2 where we revisit the functional core of Levy’s cbpv-

calculus and the abstract machine ck that is used to give an operational semantics for cbpv.

In Section 3 we will revisit some results on the interpretation of cbn-λ and cbv-λ into cbpv,

as well as those presented in λ-val [5]; we will see that not all results shown are as powerful

as first suggested. For example, the interpretations do not respect reduction, only equality.

To address the shortcomings we observe in Section 3, in Section 4 we will present essential

cbpv, a variant of cbpv where only variables can be forced, and only ‘real’ computations can

be thunked (so not forced variables). This is paired with a different notion of term substitution,

that carefully avoids to create a term like {M}! since these are no longer accepted as terms.

We will define interpretations of cbn-λ and cbv-λ into ecbpv and show that now reduction

is respected. But we achieve more: because of this change, we can also establish a strong

relation with λµµ̃ and show the interpretation results in Section 6.

In Section 5 we will give a short overview of Herbelin’s calculus λµµ̃ with a more detailed

definition of its cbn and cbv-reduction strategies, so more detailed than done in previous

papers. We define a single interpretation of λ-terms into λµµ̃ (so do not define a cbn or

cbn-interpretation), and show through detailed proofs that cbn-λ is respected under that

interpretation by cbn-λµµ̃, and that cbv-λ is respected under that interpretation by cbv-λµµ̃.

This is followed in Section 6 by the definition of an interpretation of ecbpv-terms into λµµ̃,

and one for the abstract machine ck into λµµ̃, and show that both fully preserve reduction,

and that the first also preserves typeability. In fact, reduction in ecbpv is fully modelled in

cbn-λµµ̃, emphasising again that cbpv is, in fact, a call-by-name calculus.

1 The λ-calculus

We assume the reader to be familiar with the λ-calculus; we just recall the definition of λ-terms

and β-reduction.

Definition 1.1 (Lambda terms, cbn and cbv reduction [2]) i) λ-terms are defined by the

grammar:

M, N ::= V | MN

V ::= x | λx. M (values)

ii) (One-step) β-reduction is defined using the β-rule

2

(β) : (λx. M)N→ M [N/x]

where [N/x] stands for the implicit substitution1 that is to take place immediately and

silently, and evaluation contexts that are defined as terms with a single hole by:

C ::= ⌈ ⌋2 | CM | MC | λx. C

We write C [M] for the term obtained from the context C by replacing its hole ⌈ ⌋ with

M, allowing variables to be captured. One-step β reduction is defined as the compatible

closure of the β-rule through:

(β) : C[(λx. M)N] → C [M [N/x]]

for any evaluation context. We write →∗β for the transitive closure of →β, and use that

notation for all the notions of reduction we consider in this paper.

iii) Call-by-name evaluation contexts are defined through:

Cn ::= ⌈ ⌋ | Cn M

Call-by-name (cbn) reduction, →n is defined through:

Cn [(λx. M)N] → Cn [M [N/x]]

(also known as lazy reduction)

iv) Call-by-value evaluation contexts are defined through:

Cv ::= ⌈ ⌋ | Cv M | V Cv

Call-by-value (cbv) reduction,→v, is defined through: Cv [(λx. M)V] → Cv [M [V/x]]

For the discourse of this paper, it is important to highlight the difference between cbn and

cbv-reduction.

Remark 1.2 Let M ≡ M1 M2 M3 · · ·Mn be a λ-term such that M1 is not an application, then

either M1 ≡ λx. M′1, or M1 ≡ y. If M1 ≡ λx. N, then cbn-reduction on M will contract the

redex (λx. M′1)M2 to obtain the term M′1 [M2/x]M3 · · ·Mn, so without touching M2. On the

other hand, cbv-reduction will first run M2 using the cbv-reduction strategy until it reaches

an abstraction or variable V2; only then will the first redex become contractable, and will M

reduce to M′1 [V2/x]M3 · · ·Mn.

Curry (or simple) type assignment for the λ-calculus is defined as follows:

Definition 1.3 (Curry type assignment for the λ-calculus) i) Let ϕ range over a count-

able (infinite) set of type-variables. The set of Curry types is defined by the grammar:

A, B ::= ϕ | A→B

ii) A context of variables Γ is a partial mapping from term variables to types, denoted as a

finite set of statements x:A, such that the subjects of the statements (x) are distinct.

iii) Curry type assignment is defined by the following inference system:

(Ax) :
Γ, x:A ⊢ x : A

(→I) :
Γ, x:A ⊢ M : B

(x 6∈ Γ)
Γ ⊢ λx . M : A→B

(→E) :
Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ M N : B

Type assignment in this system is decidable, and it enjoys a Curry-Howard correspondence

1 The notation {N/x} is traditionally used, but since the curly brackets are used for term construction in cbpv,
we decided to use a different notation here.

2 The notation for the ‘hole’ in contexts differs in the literature; we go for the non-standard ⌈ ⌋, since the
alternatives, like [], or { }, or (), are used for different things in this paper.

3

with implicative intuitionistic logic.

2 Call By Push Value

Call by Push Value, presented by [11], is a calculus designed to make the execution order of a

λ-based term explicit, by presenting a deterministic reduction system, but one that is capable

of expressing both cbn-λ and cbv-λ.

cbpv, as does cbv-λ, splits its terms into two distinct categories: computations and values,

but does that in a different way, in that abstraction no longer yields a value, only the construct

of ‘thunking’ (blocking reductions) a term does. The slogan from [11] is

“a value is, a computation does”

and this is expressed through the reduction relation, where only computations reduce to each

other, and values are substituted or parameters. A computation can be used as a value if

it is ‘thunked’, and a value can be used as a computation if it is ‘forced’, unblocking the

reductions. This arbitrarily halting and continuing of computation can easily be brought

back to just the essential steps, as we will see in this paper. Computations include forced

values, λ-abstractions, applications, sequencing, and returning, and values are variables and

thunked computations. Sequencing and returning play a major role in the encoding of cbv-λ,

to influence the order of evaluation in an application. Under cbv, the subterm N in (λx. M)N

gets evaluated first, but in cbpv an application is always of the shape PV, which does not

allow for reduction of the argument; the encoding fixes this, mainly through sequencing. In

fact, its name notwithstanding, reduction in cbpv is mainly ‘by name’ (or lazy) in nature;

this is reflected in the ease with which cbn-λ can be encoded. Its type system has a Curry-

Howard-style correspondence with intuitionistic linear logic [14], hence only intuitionistic

calculi can be translated into cbpv.

In this paper we use the syntax from [5] but for reasons of simplicity consider pure, func-

tional cbpv without effects - in particular, we do not the consider sum and product types3

that were included in the original definition of cbpv. Also, Figure 1 of [11] presents cbpv as a

language of typeable terms, with an operational semantics using the abstract machine ck (see

Definition 2.7), and equality only defined for typeable terms in Figure 2; since normally ty-

peability implies termination, these results are rather limited. Here we will deviate from that

approach, and treat cbpv as a pure λ-calculus: we will define syntax and type assignment

separately, as well as a one-step reduction relation on terms. This will enable us to interpret

the untyped cbn/cbv-λ-calculus, but more importantly we can deal with non-terminating

reductions as well.

Definition 2.1 (cbpv terms) There are two categories of cbpv-terms: values (ranged over by

V,W) and computations (ranged over by M, N). They are defined through the grammar:

V,W ::= x | {M} (values)

M, N ::= V! | λx. M | MV | retV | x := M; N (computations)

The notion of free and bound variables is defined as usual, taking x to be bound in the terms

λx. M and x := M; N; in the latter, the occurrences of x in N are bound, and by Barendregt’s

convention x does not occur in M.

3 This paper ignores the values (), (V1,V2) and injiV, and the computations split(V, x1.x2.M), case constructs
case0(V), 〈〉, case(V, x1.M1, x2.M2), pairs 〈M1, M2 〉 and projections prji M. These are all valuable features for
programming languages, but in the context of cbpv do not themselves cause any non-standard treatment, and
greatly complicate the presentation of the calculus. Moreover, we would have to add those features to λµµ̃ as well.

4

We read {·} as ‘thunk’, which represents the blocking of a computation by making it a value,

and ·! as ‘force’, which pushes a value into becoming a computation. Notice that all vari-

ables are values, and hence they can only be replaced by computations if said computation is

‘thunked’ (i.e. of the form {M}).

Many different notations have been used for cbpv in the past. For example, application

MV is written ‘operand first’ as V`M in [10] and past papers used let x = M in N or even

let x← M in N for our x := M; N. We prefer to use the latter notation since it immediately

suggest the correct reduction order: to effectuate an assignment x := M, we first evaluate M to

completion (so until it becomes of the shape retV) and then assign its result to x; then, when

evaluating N, whenever we encounter x, the result of M is used.4

Reduction is not defined as a one-step reduction relation in [10], but only through a big-step

semantics in Figure 4; [11] defines a typeable equational theory, so equality is only defined on

typeable terms. We have extracted one-step reduction from that.

Definition 2.2 (CBPV reduction rules) i) The three basic reduction rules are defined by:

(C) 5 : (λx. M)V → M [V/x] (contract)

(U) : {M}! → M (unblock)

(F) : x := retV ; M → M [V/x] (force)

ii) The cbpv-evaluation contexts are defined through:

C ::= ⌈ ⌋ | CV | x := C; M

iii) cbpv-reduction is defined through:

M→ N ⇒ C [M]→ C [N]

whenever M→ N through either rule (C), (U), or (F). We will use→p for this notion of

reduction.

Notice that reduction is not allowed to take place under an abstraction, irrespective of calling

an abstraction a computation, not a value: the terminology is confusing.

It might be worthwhile to observe that the notion of ‘value’ in cbpv is not the standard

one. Normally, a value is either a variable or an abstraction, and cbv-reduction stands for

the strategy that arguments N in an application MN are only ever reduced when the running

of M produces a value; then N will be reduced until it itself becomes a value, and the redex

(λx. M)N will only ever be contracted if N is a value - the argument is called ‘by value’. This

is not the case for cbpv. Here values are variables or blocked computations of the shape {M},

where M can be any computation. Arguments are never reduced, and a redex (λx. M){N}

can be contracted even when N is an application.

Example 2.3 We have

(λx. x!){y!y} →p {y!y}! →p y!y

whereas the corresponding λ-term (λx. x) (yy) is in cbv-normal form.

As unforced variables can only occur on the right-hand side of an application, they can

never be the result of a computation, as is evidenced by (λx. x!)y→ y!.

There are also infinite reductions:

4 Traditionally the let-construct let x = M in N represents sequentiality since in case x does not occur in N, the
let-expression is equivalent to M; N. However, we should perhaps point out that in a language without side-effects,
as we are considering here, the term M; N stands for just N.

5 This rule is called (→) in [10].

5

(λx.(x!)x){λx.(x!)x} →p (C)

({λx.(x!)x}!){λx.(x!)x} →p (U)

(λx.(x!)x){λx.(x!)x}

The notion of type assignment for cbpv is atypical in that values are typed with value types,

and computations with computation types.

Definition 2.4 (cbpv type assignment) i) There are two sorts of types for cbpv terms:

A, B ::= ϕ | UA (value types)

A,B ::= A→B | FA (computation types)

ii) Contexts are defined as in Definition 1.2.

iii) Type assignment for cbpv is defined through the following inference system; it intro-

duces two notions, ⊢v and ⊢c, that express a judgement for a value or computation,

respectively.

(axiom) :
Γ, x:A ⊢v x : A

(thunk) :
Γ ⊢c M : A

Γ ⊢v {M} : U A

(abstr) :
Γ, x:A ⊢c M : B

Γ ⊢c λx . M : A→B

(appl) :
Γ ⊢c M : A →B Γ ⊢v V : A

Γ ⊢c MV : B

(force) :
Γ ⊢v V : U A

Γ ⊢c V! : A

(ret) :
Γ ⊢v V : A

Γ ⊢c retV : F A
(assign) :

Γ ⊢c M : FA Γ, x:A ⊢c N : B

Γ ⊢c x := M ; N : B

We can show that this notion of type assignment is sound, i.e. satisfies subject-reduction.

Lemma 2.5 i) If Γ, x:A ⊢v V : B , and Γ ⊢v V ′ : A , then Γ ⊢v V [V ′/x] : B .

ii) If Γ, x:A ⊢c M : B , and Γ ⊢v V ′ : A , then Γ ⊢v M [V ′/x] : B .

Proof : By simultaneous induction on the definition of ‘· [V/x]’.

Theorem 2.6 (Subject reduction) If Γ ⊢c M : B , and M→p N, then Γ ⊢c N : B .

Proof : By induction on the definition of reduction; we will only consider the base cases.

(C) : Then M = (λx. M′)V, and there exists A such that Γ, x:A ⊢c M′ : B and Γ ⊢v V : A ; the

result follows from Lemma 2.5.

(U) : Then M = {M′}!, and we have Γ ⊢c M′ : B by rules (thunk) and (force).

(F) : Then M = x := retV ; M′ and there exists A such that Γ, x:A ⊢c M′ : B and Γ ⊢v V : A ;

the result follows from Lemma 2.5.

In the same vein as Krivine’s machine for the λ-calculus [9], in [10] Levy defines an oper-

ational semantics of cbpv in ck, a stack machine. The machine uses configurations 〈M | S〉

where M is the computation being evaluated and S is the environment (a stack of values, in

combination with contexts that are awaiting the completion of the evaluation of a term to be

inserted in the context) in which the evaluation of M takes place. We will present a variant of

that machine here.

Definition 2.7 (ck-machine [10]) i) Evaluation stacks are defined through:

S ::= ǫ | V : S | x := []; M : S

ii) The evaluation of configurations 〈M | S〉 of M in the evaluation stack S is defined by:

6

〈λx. M |V : S〉 →ck 〈M [V/x] |S〉

〈MV |S〉 →ck 〈M |V : S〉

〈x := M; N |S〉 →ck 〈M | x := []; N : S〉

〈retV | x := []; M : S〉 →ck 〈M [V/x] |S〉

〈{M}! |S〉 →ck 〈M |S〉

We define =ck as the equivalence relation generated by →ck.

iii) We define an interpretation for cbpv to ck by: M ck = 〈M | ǫ〉.

Notice that in the last step, there is no interaction with the stack.

We can now show that cbpv-reduction is preserved under =ck.

Theorem 2.8 If M→p N, then 〈M | S〉 =ck 〈N | S〉.

Proof : By induction on the definition of→p.

((λx. M)V→p M [V/x]) : 〈(λx. M)V | S〉 →ck 〈λx. M |V : S〉 →ck 〈M [V/x] | S〉

({M}!→p M) : 〈{M}! | S〉 →ck 〈M | S〉

(x := ret V ; M→p M [V/x]) : 〈x := retV ; M | S〉 →ck 〈retV | x := []; M : S〉 →ck

〈M [V/x] | S〉

(M→p N ⇒ MV→p NV) : 〈MV | S〉 →ck 〈M |V : S〉 =ck (IH) 〈N |V : S〉 ←ck 〈NV | S〉

(M→p N ⇒ x := M; P→p x := N ; P) : 〈x := M; P | S〉 →ck 〈M | x := []; P : S〉 =ck (IH)

〈N | x := []; P : S〉 ←ck 〈x := N ; P | S〉

With this result, we immediately have that cbpv-reduction is preserved by the interpretation

·ck.

Corollary 2.9 If M→∗
p

N, then M ck =ck N ck.

The last property is claimed in [10] (adapted here to our notation) as ‘For any closed com-

putation M, we have M ⇓ T iff 〈M | ǫ〉 →∗
ck
〈T | ǫ〉’. However, this seems unlikely, since we

have:

(M→p N ⇒ MV→p NV) : 〈MV | S〉 →ck 〈M |V : S〉 →ck (IH) 〈N |V : S〉

Now 〈N | V : S〉 does not reduce under →ck to 〈NV | S〉, rather we only have the reverse:

〈NV | S〉 →ck 〈N | V : S〉; hence our use of =ck.

We will see this problem come back in Theorem 3.3.

3 Interpreting the λ-calculus in cbpv

There are two different ways to interpret the λ-calculus - by modelling cbn reduction or

modelling cbv reduction. It is claimed that the syntax of cbpv allows us to explicitly encode

the execution order, so we will encode our chosen reduction strategy.

Levy [10] presents what he calls Fine-Grain CBV, a typed λ-calculus extended with two

let constructs and a conditional construct, presented as proofs; a variant of that calculus is

considered in [5], but there with product and sum. Since in this paper we are mainly interested

in the relation between the pure λ-calculus, cbpv, and λµµ̃, all untyped, we will concentrate

on the pure functional component of those calculi.

7

3.1 A cbv-interpretation of Λ in cbpv

Rather than following the path of [10, 5] where extended calculi are studied, we will here focus

on the interpretation of the pure λ-calculus with cbv-reduction, as defined in Definition 1.1,

in cbpv, so start from the thought that the cbv is a reduction strategy for the λ-calculus that

does not require changing the syntax. We will revisit the results of [10, 5].

Definition 3.1 ([10]) Levy’s cbv-interpretation · λ
v of λ-terms into cbpv is defined through:

x λ
v = ret x

λx. M λ
v = ret{λx. M λ

v}

MN λ
v = x := M λ

v ; y := N λ
v ; x!y

Notice the use of sequencing. We will show that this interpretation preserves reduction and

assignable types; we first show that it respects term-substitution.

Lemma 3.2 (Substitution lemma for · λ
v) i) M λ

v [w/z] = M [w/z] λ
v.

ii) M λ
v [{λw . R λ

v}/z] = M [λw.R/z] λ
v.

Proof : i) By straightforward induction on the definition of substitution.

ii) (M ≡ z) : z λ
v [{λw . R λ

v}/z] = (ret z) [{λw . R λ
v}/z] = ret{λw . R λ

v} = λw.R λ
v =

z [λw.R/z]λ
v

(M ≡ u and u 6= z) : u λ
v [{λw . R λ

v}/z] = (ret u) [{λw . R λ
v}/z] = ret u = u λ

v =

u [λw.R/z] λ
v

The other cases follow by induction.

With this result we can show that the interpretation · λ
v respects reduction up to equality.

Theorem 3.3 If M→v N, then M λ
v =p N λ

v.

Proof : ((λz. M)w→v M [w/z]) : (λz. M)w λ
v =∆ x := λz. M λ

v ; y := w λ
v ; x!y =∆

x := ret{λz. M λ
v}; y := ret w; x!y →p y := ret w; {λz. M λ

v}!y →p

{λz. M λ
v}!w →p (λz. M λ

v)w →p M λ
v [w/z] = (3.2) M [w/z] λ

v

((λz. M) (λw.R)→v M [λw.R/z]) : (λz. M) (λw.R)λ
v =∆ x := λz. M λ

v ; y := λw.R λ
v ; x!y =∆

x := ret{λz. M λ
v}; y := ret{λw . R λ

v}; x!y →p y := ret{λw . R λ
v}; {λz. M λ

v}!y →p

{λz. M λ
v}!{λw . R λ

v} →p (λz. M λ
v){λw . R λ

v} →p

M λ
v [{λw . R λ

v}/z] = (3.2) M [{λw . R}/z] λ
v

(M→v N ⇒ MP→v NP) : MP λ
v =∆ x := M λ

v ; y := P λ
v ; x!y =p (IH)

x := N λ
v ; y := P λ

v ; x!y =∆ NP λ
v

(M→v N ⇒ zM→v zN) : zM λ
v =∆ x := ret z; y := M λ

v ; x!y →p y := N λ
v ; z!y

and zN λ
v =∆ x := z; y := N λ

v ; x!y →p y := N λ
v ; z!y

(M→v N ⇒ (λw.R)M→v (λw.R)N) : (λw.R)M λ
v =∆ x := ret{λw . R λ

v}; y := M λ
v ; x!y →p

y := M λ
v ; {λw . R λ

v}!y =p (IH) y := N λ
v ; {λw . R λ

v}!y

and (λw.R)N λ
v =∆ x := ret{λw . R λ

v}; y := N λ
v ; x!y →p y := N λ

v ; {λw . R λ
v}!y

Notice that, in the last two cases, as was also the case or →ck, the two interpretations of

the terms involved in the →v-reduction step are not related through reduction, but through

equality.

We can show that the systems are related also on the level of types. We first define an

interpretation of types.

8

Definition 3.4 ([10]) The cbv-interpretation of Curry types into cbpv-types is defined through:

ϕ =∆ ϕ

A→B =∆ U(A→FB)

This interpretation is straightforwardly extended to contexts: Γ =∆ {x:A | x:A ∈ Γ}.

We can now show:

Lemma 3.5 If Γ ⊢ M : A , then Γ ⊢c M λ
v : F A.

Proof : Simultaneously by induction on definition of type assignment. We only show the base

case, the other follow by induction.

((Ax)) : Then v ≡ x, and Γ = Γ′, x:A; since v λ
v = x, and Γ = Γ′, x:A. We can construct:

(axiom)
Γ ⊢v x : A

(ret)
Γ ⊢v ret x : F A

Notice that x λ
v =∆ ret x.

3.2 A cbn-handling of Λ in cbpv

In [10], Levy also deals with mapping cbn-reduction for the λ-calculus into cbpv, but this

attempt is less successful than the one dealing with cbv; [5] basically repeats Levy’s work and

result.

Under cbn-reduction in the λ-calculus, the right-hand-side of an application is never eval-

uated; if we think of cbn reductions as cbpv computations, those parts of terms need to be

‘thunked’ (or halted), and only resume after being substituted for a variable, so a variable

should be ‘forced’. Using this intuition, we can revisit Levy’s cbn-treatment of λ-terms into

cbpv.

Definition 3.6 (Simulation of cbn [10, 5]) The relation 7→n between λ-terms and cbpv-terms

is defined as:

x 7→n x!

M 7→n M′

λx . M 7→n λx . M′

M 7→n M′ N 7→n N′

M′{N′}

M 7→n M′

M 7→n {M′}!
6

Notice that ‘x := N ; M’ and ‘retV’ are not used here.

A problem with this definition is that it does not define an interpretation; the fourth rule

allows to place an arbitrary amount of ‘force’-’thunk’ pairs around interpreted λ-terms, so

for every λ-term M there are infinitely many cbpv-terms M′ such that M 7→n M′. Thereby

this relation does not give anything close to a semantics. [5] states that 7→n is injective, but

that seems to be an unnecessary claim for a relation that follows the application-abstraction

structure of terms precisely, and is not even a function.

Notice that the fourth rule effectively models the reduction rule (U) in reverse, arbitrarily

many times; its use is even allowed under abstraction, thereby stepping outside the cbpv

reduction strategy.

We cannot show that reduction is preserved under this relation.

Example 3.7 Remark that (λx. xx) (λx. xx)→n (λx. xx) (λx. xx). We have:

6 The last rule is missing from Figure 3 in the Appendix of [5], but we assume this is in error.

9

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx .xx 7→n λx .x!{x!}

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx .xx 7→n λx .x!{x!}

(λx .xx) (λx .xx) 7→n (λx .x!{x!}){λx .x!{x!}}

and

(λx. x!{x!}){λx. x!{x!}} →p (C) x!{x!} [{λx. x!{x!}}/x]

= {λx. x!{x!}}!{{λx. x!{x!}}!}

→p (U) (λx. x!{x!}){{λx. x!{x!}}!}

It will be clear that (λx. x!{x!}){λx. x!{x!}} does not run to itself. This is partially solved by

the fourth rule, since we can also show:

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx .xx 7→n λx .x!{x!}

x 7→n x! x 7→n x!

xx 7→n x!{x!}

λx .xx 7→n λx .x!{x!}

λx .xx 7→n {λx .x!{x!}}!

(λx .xx) (λx .xx) 7→n (λx .x!{x!}){{λx .x!{x!}}!}

One could argue that it could have been better to reverse the above idea and add the rule

(U) without limitation to solve this quandary; notice that then we would have:

(λx. x!{x!}){{λx. x!{x!}}!} →p (λx. x!{x!}){λx. x!{x!}}

as desired, and would have obtained a cbn-interpretation.

It is possible to show that 7→n respects type assignment; this result is very much like that

of Theorem 4.12, and we therefore will not present it here.

Using this notion, [10, 5] show:

Lemma 3.8 ([10, 5]) i) (Forwards simulation) Let M, N be λ-terms. If M 7→n Q, and M→∗
n

N, then

there exists a cbpv term R such that N 7→n R and Q→∗
p

R.

ii) (Backwards simulation) Let M be a λ-term. If M 7→n Q, and Q→∗
p

R, then there exists a λ-term

N such that N 7→n R and M→∗
n

N.

This is a rather complicated solution for a problem caused by, in our opinion, the wrong

choice of grammar for cbpv. Since the problem is introduced by (implicit) substitution and

arbitrarily allowing for thunking and forcing, our solution is to change exactly how terms are

inserted into positions occupied by variables; this will be the approach of Section 4, where we

present essential cbpv.

3.3 The results for λ-val [5]

In this section we will revisit the results shown for a variant of the λ-calculus presented in [10,

5] called the ‘simply-typed fine-grained call-by-value λ-calculus’ that distinguishes terms from

values through the prefix construct ret in [10], called val in [5]. It is called cbv throughout [5],

but since it differs significantly from the original cbv-λ-calculus, in order to distinguish these

we call it the λ-val-calculus here. Reduction rules are not presented in [10]; to be able to show

our results, we will define them below.

Definition 3.9 (The λ-val-calculus [5]) The terms of the λ-val-calculus are defined using the

grammar:

u,v ::= x | λx. s (values)

s, t ::= val v | st (expressions)

10

For type assignment, we use the types and variants of the inference rules from Definition 1.2,

adding a rule that deals with val:

(axiom) :
Γ, x:A ⊢v x : A

(abstr) :
Γ, x:A ⊢e s : B

Γ ⊢v λx .s : A→B

(val) :
Γ ⊢v v : A

Γ ⊢e valv : A
(appl) :

Γ ⊢e s : A →B Γ ⊢e t : A

Γ ⊢e st : B

The name cbv used in [5] for this calculus although it bears little resemblance to cbv-λ:

notice that rule (abstr) recognises that an abstraction is a value, but it needs to be labelled

with the keyword val before it can be used in an application. Since it redefines the concept of

cbv, there is little claim to be made that the results of [5] deal with the relation between cbn,

cbv, and cbpv.

When mapping λ-val into cbpv, expressions are interpreted as cbpv computations, so types

should be interpreted as cbpv computation types. Since the type syntax for cbpv is different,

we need an interpretation of the λ-calculus types into cbpv types.

Definition 3.10 (Simulation of λ-val in cbpv [5]) Terms of the λ-val-calculus are translated

into those for cbpv through ·:

x =∆ x

λx. s =∆ {λx. s}

val v =∆ ret v

st =∆ x := s; y := t; x!y

Types are translated using Levy’s · (Definition 3.4).

Notice that values are only allowed inside applications if preceded by the val keyword; this

is the main difference between λ-val and the traditional cbv λ-calculus, and is (we believe)

mainly added to facilitate an interpretation into cbpv. Moreover, the interpretation maps

values to values, and expressions to computations.

Forster et al. state a type preservation result in [5].Lemma 2.3, which incorrectly restates the

result shown in [11] as ‘If Γ ⊢e s : A , then Γ ⊢c s : A and analogously for values’.7 We correct

and prove the result here for our system.

Lemma 3.11 If Γ ⊢v v : A , then Γ ⊢v v : A , and if Γ ⊢e s : A , then Γ ⊢c s : F A.

Proof : Simultaneously by induction on the definition of type assignment.

(axiom) : Then v ≡ x, and Γ = Γ′, x:A; since v =∆ x, and Γ = Γ′, x:A, by rule (axiom) also

Γ ⊢v v : A .

(abstr) : Then A = B→C, v ≡ λx. s, and Γ, x:B ⊢e s : C ; since Γ, x:B = Γ, x:B, by induction we

have Γ, x:B ⊢c s : F C. We can construct:

(abstr)
Γ ⊢c λx .s : B→FC

(thunk)
Γ ⊢v {λx .s} : U (B→FC)

Notice that λx. s =∆ {λx. s} and A = U(B→FC).

(val) : Then s ≡ val v, and Γ ⊢v v : A ; by induction, we have Γ ⊢v v : A . Then, by rule (ret),

Γ ⊢c ret v : F A.

(appl) : Then s ≡ uv, and there exists B such that Γ ⊢e u : B→A and Γ ⊢e v : B . Then, by

induction, Γ ⊢c u : F B→A and Γ ⊢c v : F B. Notice that B→A = U(B→FA), and uv =∆

x := u; y := v; x!y. We can construct (with Γ′ = Γ, x:U(B→A),y:B):

7 The proofs in Coq provided online for [5] seem to avoid this error.

11

(valλa.(val a) (vala)) (valλa.(vala) (val a)) =∆

x := valλa.(vala) (val a); y := valλa.(val a) (vala); x!y =∆

x := retλa.(vala) (vala); y := retλa.(vala) (vala); x!y →p

y := retλa.(vala) (val a); λa.(vala) (vala)! y →p

λa.(vala) (vala)! λa.(val a) (vala) =∆

{λa. (vala) (val a)}! λa.(val a) (vala) →p

(λa. (vala) (vala)) λa.(vala) (vala) =∆

(λa. x := ret a; y := ret a; x!y) λa.(vala) (val a) →p

x := retλa.(vala) (vala); y := retλa.(vala) (vala); x!y =∆

(valλa.(val a) (vala)) (valλa.(vala) (val a))

Figure 1. Running (val λa.(val a) (val a)) (val λa.(val a) (val a)) in→p.

❈❈ ✄✄
Γ ⊢c u : F U (B→A)

❈❈ ✄✄
Γ, x:U (B→A) ⊢c v : F B

(axiom)
Γ′ ⊢c x : U (B→FA)

(force)
Γ′ ⊢c x! : B→F A

(axiom)
Γ′ ⊢c y : B

(appl)
Γ, x:U (B→A),y:B ⊢c x!y : F A

(assign)
Γ, x:U (B→A) ⊢c y := v; x!y : F A

(assign)
Γ ⊢c x := u ; y := v ; x!y : F A

Reduction on λ-val is not formally defined in [5], but following common practice, we can

assume it to be defined as follows.

Definition 3.12 (Reduction on λ-val) Evaluation contexts for λ-val are defined through:

Cv ::= [] | Cv t | (val v)Cv

Reduction→v on λ-val is (rather awkwardly) defined through:

Cv [(val λx. s) (val v)] →v Cv [s [v/x]]

and =v is the equivalence relation generated by→v.

Example 3.13 We consider the reduction of (val λa.(val a) (val a)) (val λa.(val a) (val a)) (which is

the λ-val equivalent of the λ-term (λa. aa) (λa. aa)) which, as we would expect, runs to itself.

(val λa.(val a) (val a)) (val λa.(val a) (val a)) →v

(val a) (val a) [λa.(val a) (val a)/a] =

(val λa.(val a) (val a)) (val λa.(val a) (val a))

The interpretation of this term into cbpv runs as in Figure 1.

As we can see from this example, using the keyword val creates a rather cumbersome

calculus and notion of reduction, in which it plays no role at all. It seems that the only

real reason for using it is to facilitate the encoding results, since it causes the keyword ret

to be placed inside the interpreted terms. But this was already achieved by Levy’s original

interpretation (see Definition 3.1).

Regardless of the missing formal definition, the authors claim that their ‘translation is cor-

rect w.r.t. small-step semantics’ [5]. We make the following observation:

Example 3.14 Consider the reduction

(val λa.val a) ((val λb .val b) (val λc .val c)) →v (val λa.val a) (val λc .val c)

then under the interpretation we have the reduction given in Figure 2, and

12

(valλa.vala) ((valλb.valb) (valλc.val c)) =∆

x := valλa.vala; y := (valλb.valb) (valλc.valc); x!y =∆

x := ret{λa.ret a}; y := (valλb.valb) (valλc.val c); x!y →p

y := (valλb.valb) (valλc.val c); {λa. ret a}!y =∆

y := (u := valλb.valb; v := valλc.val c; u!v); {λa. ret a}!y =∆

y := (u := ret{λb. ret b}; v := ret{λc. ret c}; u!v); {λa. ret a}!y →p

y := (v := ret{λc.ret c}; {λb. ret b}! v); {λa. ret a}! y →p

y := {λb. ret b}! {λc.ret c}; {λa. ret a}! y →p

y := (λb. ret b) {λc. ret c}; {λa. ret a}! y →p

y := ret{λc. ret c}; {λa. ret a}! y →p

{λa. ret a}! {λc. ret c} →p (λa.ret a) {λc.ret c} →p ret{λc.ret c}

Figure 2. Running (val λa.val a) ((val λb .val b) (val λc .val c)) in→p.

(val λa.val a) (val λc .val c) =∆ x := ret{λa. ret a}; y := ret{λc . ret c}; x!y →p

y := ret{λc .ret c}; {λa. ret a}!y →p {λa. ret a}!{λc .ret c} →p

(λa. ret a){λc .ret c} →p ret{λc . ret c}

As before, we can only show that if s→v t, then s =p t.

Notice that

(val λa.val a) ((val λb .val b) (val λc .val c)) 6 →p (val λa.val a) (val λc .val c),

so single-step reduction is not preserved under the interpretation.8

As this example suggests, it would be possible to show that the interpretation is correct with

respect to large-step semantics. This is of course a weaker property, since only terminating

terms can be equated then.

In [5] there is no real motivation given for the departure from the pure λ-calculus with cbv-

reduction by adding the keyword val. In fact, all results shown in [5] were already claimed

in [10], but using (an extension of) the pure λ-calculus with cbv-reduction. In particular, the

problem of Theorem 3.3, that reduction is only respected upto equality, is still there.

4 Essential cbpv

In this section we will address a number of the issues we mentioned above by defining essential

cbpv, a variant of cbpv for which it will be possible to prove stronger results. The main

change will be that we will limit the use of thunking and forcing, essentially only allowing

for the forcing of variables and thunking of unforced computations. We define a notion

of substitution ‘M 〈V/x〉’ on ecbpv-terms essentially as normal, with the exception of the

case (x!) 〈{M}/x〉 which produces M rather than {M}!, effectively contracting the U-redex

that would be created ‘on the fly’ and thereby making that reduction rule obsolete. This is

comparable to dropping the construct ret when contracting an F-redex.

Definition 4.1 (ecbpv) i) Terms of essential cbpv (ecbpv) are defined through the grammar:

V,W ::= x | {M} (M 6= x!)

M, N ::= x! | λx. M | MV | ret V | x := M; N

ii) The substitution ‘M 〈V/x〉’ on ecbpv-terms is defined as follows:

8 It could of course be that our definition of reduction in Definition 3.12 is not the one the authors of [5]
intended, but that seems unlikely.

13

x 〈V/x〉 = V

y 〈V/x〉 = y (y 6= x)

(x!) 〈V/x〉 =

{

z! (V = z)

M (V = {M})

(y!) 〈V/x〉 = y! (y 6= x)

{M}〈V/x〉 = {M 〈V/x〉}

(λz. M) 〈V/x〉 = λz. M 〈V/x〉

(retW) 〈V/x〉 = ret (W 〈V/x〉)

(MW) 〈V/x〉 = (M 〈V/x〉) (W 〈V/x〉)

(y := M; N) 〈V/x〉 = y := (M 〈V/x〉); (N 〈V/x〉)

iii) The basic reduction rules are now defined using this substitution:

(C′) : (λx. M)V → M 〈V/x〉

(F′) : x := ret V ; N → N 〈V/x〉

iv) ecbpv-reduction is defined through:

M→ N ⇒ C [M]→ C [N]

whenever M→ N through either rule (C′) or (F′), where C is a cbpv-evaluation context

C ::= ⌈⌋ | CV | x := C; M

(as in Definition 2.2). We use→e for this notion.

Notice the absence of rule (U).

Type assignment for this variant is defined using the rules of Definition 2.4, and subject

reduction follows easily, after showing first that our notion of substitution preserves assignable

types.

Lemma 4.2 i) If Γ, x:B ⊢v W : A and Γ ⊢v V : B , then Γ ⊢v W 〈V/x〉 : A .

ii) If Γ, x:B ⊢c M : A and Γ ⊢v V : B , then Γ ⊢c M 〈V/x〉 : A .

Proof : By simultaneous induction on the definition of ‘· 〈V/x〉’.

Theorem 4.3 If Γ ⊢c M : A , and M→∗e N, then Γ ⊢c N : A .

Proof : By induction on the definition of reduction; we only show the cases for single-step

reduction.

(C′) : Then M = (λx. P)V and N = P 〈V/x〉. Then there exists B such that the derivation for

Γ ⊢c M : A is constructed as follows:

❈❈ ✄✄
Γ, x:B ⊢c P : A

(abstr)
Γ ⊢c λx .P : B→A

❈❈ ✄✄
Γ ⊢v V : B

(appl)
Γ ⊢c (λx .P)V : A

so in particular Γ, x:B ⊢c P : A and Γ ⊢v V : B . Then by Lemma 4.2 we have Γ ⊢c P 〈V/x〉 :

A .

(F′) : Then M = x := ret V ; P and N = P 〈V/x〉. Then there exists B such that the derivation

for Γ ⊢c M : A is constructed as follows:

❈❈ ✄✄
Γ ⊢v V : B

(ret)
Γ ⊢c retV : FB

❈❈ ✄✄
Γ, x:B ⊢c P : A

(assign)
Γ ⊢c x := retV ; P : A

so in particular Γ, x:B ⊢c P : A and Γ ⊢v V : B . Then by Lemma 4.2 we have Γ ⊢c P 〈V/x〉 :

A .

(P→e Q ⇒ M = PV→e PV = N) : Then there exists B such that the derivation for Γ ⊢c M :

A is constructed as follows:

14

❈❈ ✄✄
Γ ⊢c P : B→A

❈❈ ✄✄
Γ ⊢v V : B

(appl)
Γ ⊢c (λx .P)V : A

By induction we have Γ ⊢c P : B→A , and the result follows by rule (appl).

(P→e Q ⇒ M = x := P; R→e x := Q; R = N) : We have:

❈❈ ✄✄
Γ ⊢c M : FB

❈❈ ✄✄
Γ, x:B ⊢c P : A

(assign)
Γ ⊢c x := M ; P : A

By induction we have Γ ⊢c N : FB , and the result follows by rule (assign).

4.1 A cbv-interpretation of Λ in ecbpv

We will now define our cbv interpretation of pure λ-terms into ecbpv and show that it does

respect single-step cbv-reduction, and not just equality.

Definition 4.4 The cbv interpretation · λ
v of λ-terms into ecbpv is defined through:

x λ
v = ret x

λx. M λ
v = ret{λx. M λ

v}

zN λ
v = y := N λ

v ; z!y

(λz. M)N λ
v = y := N λ

v ; (λz. M λ
v)!y

MN λ
v = x := M λ

v ; y := N λ
v ; x!y (M not a value)

So our interpretation deals with all terms basically in the same way as · λ
v of Definition 3.1,

but for the fact that we place the value V in the interpretation of V N directly, so without using

assignment; this is done in a term rewriting style, so without using (implicit) substitution.

Using this interpretation, we can now show that cbv reduction for the pure λ-calculus is

respected by the interpretation. First we show that · λ
v respects substitution.

Lemma 4.5 (Substitution lemma for · λ
v) i) M λ

v 〈w/z〉 = M [w/z] λ
v.

ii) M λ
v 〈{λw . R λ

v}/z〉 = M [λw.R/z]λ
v.

Proof : i) By straightforward induction on the definition of substitution.

ii) (M ≡ z) : z λ
v 〈{λw . R λ

v}/z〉 =∆ (ret z) 〈{λw . R λ
v}/z〉 =∆ ret{λw . R λ

v} =∆ λw.R λ
v =∆

z [λw.R/z]λ
v

(M ≡ u and u 6= z) : u λ
v 〈{λw . R λ

v}/z〉 =∆ (ret u) 〈{λw . R λ
v}/z〉 =∆ ret u =∆ u λ

v =∆

u [λw.R/z]λ
v

(M ≡ λu . N) : λu . N λ
v 〈{λw . R λ

v}/z〉 =∆ (ret{λu . N λ
v}) 〈{λw . R λ

v}/z〉 =∆

ret{λu . (N λ
v 〈{λw . R λ

v}/z〉)} = (IH) ret{λu . N [λw . R/z]λ
v} =∆

λu . N [λw . R/z]λ
v

(M ≡ xQ) : xQ λ
v 〈{λw . R λ

v}/z〉 =∆ (y := Q λ
v ; x!y) 〈{λw . R λ

v}/z〉 =∆

y := Q λ
v 〈{λw . R λ

v}/z〉 ; x!y = (IH) y := Q [λw . R/z]λ
v ; x!y =∆

xQ [λw . R/z]λ
v =∆ (xQ) [λw . R/z]λ

v

(M ≡ (λx. P)Q) : (λx. P)Q λ
v 〈{λw . R λ

v}/z〉 =∆

(y := Q λ
v ; λx. P λ

v!y) 〈{λw . R λ
v}/z〉 =∆

y := (Q λ
v 〈{λw . R λ

v}/z〉) ; (λx. P λ
v 〈{λw . R λ

v}/z〉)!y = (IH)

y := Q [λw.R/z]λ
v ; (λx. P) [λw.R/z]λ

v!y =∆

((λx. P) [λw.R/z])Q [λw.R/z] λ
v =∆

((λx. P)Q) [λw . R/z]λ
v

15

(M ≡ PQ, P not a λ-value) : PQ λ
v 〈{λw . R λ

v}/z〉 =∆

(x := P λ
v ; y := Q λ

v ; x!y) 〈{λw . R λ
v}/z〉 =∆

(x := P λ
v ; y := 〈{λw . R λ

v}/z〉; x!y Q λ
v 〈{λw . R λ

v}/z〉) = (IH)

x := P [λw . R/z]λ
v ; y := Q [λw . R/z] λ

v ; x!y =∆

P [λw . R/z]Q [λw . R/z]λ
v =

(PQ) [λw . R/z]λ
v

Using this lemma, we can now show:

Theorem 4.6 If M→v N, then M λ
v→∗e N λ

v.

Proof : ((λx. M) z→v M [z/x]) : (λx. M) z λ
v =∆ y := ret z; (λx. M λ

v)y →p (λx. M λ
v) z →p

M λ
v 〈z/x〉 = (4.5) M [z/x] λ

v

((λx. M) (λz. R)→v M [λz. R/x]) : (λx. M) (λz. R)λ
v =∆ y := λz. R λ

v ; (λx. M λ
v)!y =∆

y := ret{λz. R λ
v}; (λx. M λ

v)!y →p (λx. M λ
v){λz. R λ

v} →p

M λ
v 〈{λz. R λ

v}/x〉 = (4.5) M [λz. R/x]λ
v

(M→v z ⇒ MP→v zP) : MP λ
v =∆ x := M λ

v ; y := P λ
v ; x!y →∗

p
(IH)

x := z λ
v ; y := P λ

v ; x!y =∆ x := ret z; y := P λ
v ; x!y →∗

p

y := P λ
v ; z!y =∆ zP λ

v

(M→v λz. N ⇒ MP→v (λz. N)P) : MP λ
v =∆ x := M λ

v ; y := P λ
v ; x!y →∗

p
(IH)

x := λz. N λ
v ; y := P λ

v ; x!y =∆ x := ret{λz. N λ
v}; y := P λ

v ; x!y →∗
p

y := P λ
v ; (λz. N λ

v)y =∆ (λz. N)P λ
v

(M→v N ⇒ MP→v NP, N not a value) : MP λ
v =∆ x := M λ

v ; y := P λ
v ; x!y →∗

p
(IH)

x := N λ
v ; y := P λ

v ; x!y =∆ NP λ
v

(M→v N ⇒ zM→∗
v

zN) : zM λ
v =∆ y := M λ

v ; z!y →∗
p
(IH) y := N λ

v ; z!y =∆ zN λ
v

(M→v N ⇒ (λz. R)M→∗
v
(λz. R)N) : (λz. R)M λ

v =∆ y := M λ
v ; (λz. R λ

v)y →∗
p
(IH)

y := N λ
v ; (λz. R λ

v)y =∆ (λz. R)N λ
v

Notice that this result was shown for reduction, in contrast to Theorem 3.3 which was

shown for equality.

We can also show that type assignment for the pure λ-calculus is respected by the interpre-

tation · λ
v.

Lemma 4.7 If Γ ⊢ M : A , then Γ ⊢c M λ
v : F A.

Proof : By induction on definition of type assignment.

(Ax) : Then M ≡ x, and Γ = Γ′, x:A, and Γ =∆ Γ′, x:A. We can construct:

(axiom)
Γ ⊢v x : A

(ret)
Γ ⊢c ret x : F A

Notice that x =∆ ret x.

(→I) : Then A = B→C, M ≡ λx. N, and Γ, x:B ⊢e N : C ; since Γ, x:B =∆ Γ, x:B, by induction

we have Γ, x:B ⊢c N λ
v : F C. We can construct:

❈❈ ✄✄
Γ, x:B ⊢c N λ

v : F C
(abstr)

Γ ⊢c λx . N λ
v : B→FC

(thunk)
Γ ⊢v {λx . N λ

v} : U (B→FC)
(ret)

Γ ⊢c ret{λx . N λ
v} : F U (B→FC)

16

Notice that λx. N λ
v =∆ ret{λx. N λ

v} and A =∆ U(B→FC).

(→E) : Then M ≡ PQ, and there exists B such that Γ ⊢e P : B→A and Γ ⊢e Q : B . Then, by

induction, Γ ⊢c P λ
v : F B→A and Γ ⊢c Q λ

v : F B. Notice that B→A =∆ U(B→FA). We

have three cases to consider:

(P ≡ z) : From Γ ⊢c z λ
v : F B→A =∆ Γ ⊢c ret z : F U(B→FA) we know that z : U(B→FA)∈

Γ, so we can construct:

❈❈ ✄✄
Γ ⊢c Q λ

v : F B

(axiom)
Γ,y:B ⊢c z : U (B→F A)

(force)
Γ,y:B ⊢c z! : B→FA

(axiom)
Γ,y:B ⊢c y : B

(appl)
Γ,y:B ⊢c (z!) y : FA

(assign)
Γ ⊢c y := Q; z!y : FA

Notice that zQ λ
v =∆ y := Q λ

v ; z!y.

(P ≡ λz. R) : From Γ ⊢c λz. R λ
v : F B→A =∆ Γ ⊢c ret{λz. R λ

v} : F U(B→FA), we know

that in a subderivation Γ ⊢c λz. R λ
v : B→FA is shown, with which we can construct:

❈❈ ✄✄
Γ ⊢c Q λ

v : F B

❈❈ ✄✄
Γ,y:B ⊢c λz. R λ

v : B→FA
(axiom)

Γ,y:B ⊢c y : B
(appl)

Γ,y:B ⊢c {λz. R λ
v}!y : FA

(assign)
Γ ⊢c y := Q; (λz. R λ

v)!y : FA

Notice that (λz. R)Q λ
v =∆ y := Q λ

v ; {λz. R λ
v}!y.

(Otherwise) : We can construct (with Γ′ = Γ, x:U(B→FA),y:B):

❈❈ ✄✄
Γ ⊢c P λ

v : F U (B→FA)

❈❈ ✄✄
Γ ⊢c Q λ

v : F B

(axiom)
Γ′ ⊢c x : U (B→FA)

(force)
Γ′ ⊢c x! : B→FA

(axiom)
Γ′ ⊢c y : B

(appl)
Γ, x:U (B→FA),y:B ⊢c (x!) y : FA

(assign)
Γ, x:U (B→FA) ⊢c y := Q λ

v ; (x!) y : FA
(assign)

Γ ⊢c x := P λ
v ; y := Q λ

v ; x!y : FA

Notice that PQ λ
v =∆ x := P λ

v ; y := Q λ
v ; x!y.

4.2 A cbn-interpretation of Λ in ecbpv

We can achieve a stronger result for cbn-reduction as well, as we will show now. First we

modify the interpretation of Definition 3.6.

Definition 4.8 The cbn interpretation · λ
n of λ-terms into ecbpv is defined through:

x λ
n = x!

λx. M λ
n = λx. M λ

n

Mx λ
n = M λ

n x

MN λ
n = M λ

n{ N λ
n} (N not a variable)

Notice that this corresponds to Levy’s cbn-interpretation in Definition 3.6, but for the appli-

cation case, where we avoid to define Mx λ
n = M λ

n{x!}, but directly write M λ
n x.

Now, other than in Example 3.7 we get:

(λx. xx) (λx. xx)λ
n =∆ (λx. x!x){λx. x!x}

→e (x!x) 〈{λx. x!x}/x〉

= x!〈{λx. x!x}/x〉 x 〈{λx. x!x}/x〉

= (λx. x!x){λx. x!x}

This interpretation respects term substitution:

17

Lemma 4.9 (Substitution lemma for · λ
n) i) M λ

n 〈w/z〉 = M [w/z] λ
n.

ii) M λ
n 〈{ N λ

n}/x〉 = M [N/x] λ
n, if N is not a variable.

Proof : i) By straightforward induction on the definition of · 〈·/ ·〉.

ii) (M ≡ z) : z λ
n 〈{ N λ

n}/z〉 = z!〈{ N λ
n}/z〉 = N λ

n = z [N/z]λ
n

(M ≡ u and u 6= z) : u λ
n 〈{ N λ

n}/z〉 = (u!) 〈{ N λ
n}/z〉 = u! = u λ

n = u [N/z]λ
n

(M ≡ λu . R) : λu . R λ
n 〈{ N λ

n}/z〉 = (λu . R λ
n) 〈{ N λ

n}/z〉 = λu . (R λ
n 〈{ N λ

n}/z〉)

= (IH) λu . R [N/z] λ
n = λu . R [N/z]λ

n

(M ≡ Pz) : Pz λ
n 〈{ N λ

n}/z〉 = (P λ
nz) 〈{ N λ

n}/z〉 = P 〈{ N λ
n}/z〉{ N λ

n} = (IH)

P [N/z]λ
n{ N λ

n} = P [N/z]N λ
n = (Pz) [N/z]λ

n

(M ≡ Px, x 6= z) : Px λ
n 〈{ N λ

n}/z〉 = (P λ
n x) 〈{ N λ

n}/z〉 = P 〈{ N λ
n}/z〉x = (IH)

P [N/z]λ
n x = P [N/z]x λ

n = (Px) [N/z]λ
n

(M ≡ PQ) : PQ λ
n 〈{ N λ

n}/z〉 = (P λ
n{ Q λ

n}) 〈{ N λ
n}/z〉 =

P λ
n 〈{ N λ

n}/z〉{ Q λ
n 〈{ N λ

n}/z〉} = (IH) P [N/z]λ
n{ Q [N/z] λ

n} =

P [N/z]Q [N/z] λ
n = (PQ) [N/z]λ

n

With this result we can now show that the interpretation respects cbn-reduction.

Theorem 4.10 If M→n N, then M λ
n→∗e N λ

n.

Proof : ((λx. M)y→n M [y/x]) : (λx. M)y λ
n =∆ (λx. M λ

n)y →e M λ
n 〈y/x〉 = (4.9)

M [y/x] λ
n

((λx. M)N→n M [N/x], N not a variable) : (λx. M)N λ
n =∆ λx. M λ

n{ N λ
n} →e

M λ
n 〈{ N λ

n}/x〉 = (4.9) M [N/x] λ
n

(M→n N ⇒ Mx→n Nx) : Mx λ
n =∆ M λ

n x →∗e(IH) N λ
n x =∆ Nx λ

n

(M→n N ⇒ MP→n NP, with P not a variable) : MP λ
n =∆ M λ

n{ P λ
n} →∗e(IH)

N λ
n{ P λ

n} =∆ NP λ
n

For the preservation of type assignment under · λ
n, we need first to map the types for

Curry’s system to those for cbpv, in a way befitting the interpretation; for this we can use

Levy’s cbn-type interpretation directly.

Definition 4.11 (Simple type interpretation [10]) The type interpretation ‘·’ is defined as:

ϕ = Fϕ

A→B = U A→ B

and the environment interpretation as:

Γ = {x:U A | x:A ∈ Γ}

We can now show that the cbn-interpretation preserves type assignment.

Theorem 4.12 If Γ ⊢ M : A , then Γ ⊢c M λ
n : A .

Proof : By induction on the structure of derivations.

(Ax) : Then M ≡ x, and x:A ∈ Γ. Then x:UA∈ Γ and we can derive:

(axiom)
Γ ⊢v x : U A

(force)
Γ ⊢c x! : F U A

and x λ
n =∆ x!.

18

(→I) : Then M ≡ λx. N, A = B→C, and Γ, x:B ⊢ N : C . By induction, we get Γ, x:UB ⊢c

N λ
n : C , and we can construct:

❈❈ ✄✄
Γ, x:U B ⊢c N : C

(abstr)
Γ ⊢c λx . N : U B→C

and λx. N λ
n =∆ λx. N and B→C = UB→C.

(→E) : Then M≡ PQ, and there exists B such that Γ ⊢ P : B→A and Γ ⊢Q : B . By induction,

we get Γ ⊢c P : B→A ; also, B→A = U B→A. We have two cases:

(Q ≡ x) : Then x:B ∈ Γ and x:UB∈ Γ, and we can construct:

❈❈ ✄✄
Γ ⊢c P λ

n : U B→A
(Ax)

Γ ⊢v x : U B
(appl)

Γ ⊢c P λ
n x : A

and Px λ
n =∆ P λ

n x.

(Q 6= x) : By induction, we have Γ ⊢c Q : B , and can construct:

❈❈ ✄✄
Γ ⊢c P λ

n : U B→A

❈❈ ✄✄
Γ ⊢c Q λ

n : B
(thunk)

Γ ⊢v { Q λ
n} : U B

(appl)
Γ ⊢c P λ

n{ Q λ
n} : A

and PQ λ
n =∆ P λ

n{ Q λ
n}.

5 The calculus λµµ̃

We will now give a short summary of Curien and Herbelin’s calculus λµµ̃, as first presented

in [3]. In its typed version, λµµ̃ is a proof-term syntax for a classical sequent calculus that

treats a logic with focus, and can be seen as an extension of Parigot’s λµ and a variant of

Gentzen’s lk. As in λµ, for λµµ̃ there are two sets of variables: x,y,z, etc., label the types of

the hypotheses and α, β,γ, etc., label the types of the conclusions. The syntax of λµµ̃ has three

different categories: commands, terms, and contexts (or environments). Commands c form

the computational units in λµµ̃ and are composed of a pair 〈v | e〉 of a term v and its context

(or environment) e that can interact.

Reduction in λµµ̃ is dual, in that both parameter call and context call are represented:

parameter call through the context µ̃x.c that can pull the corresponding term in to the places

marked by x, and context call through the term µα.c that places the corresponding context in

the places marked by α.

Correspondingly, these constructs are typed by three kinds of sequents: the usual se-

quents Γ ⊢ ∆ type commands, while the sequents typing terms (resp. contexts) are of the

form Γ ⊢ A | ∆ (resp. Γ | A ⊢ ∆), marking the conclusion (resp. hypothesis) A as active.

Definition 5.1 (Commands, Terms, and Contexts [3]) There are three categories of expres-

sions in λµµ̃, defined by:

c ::= 〈v | e〉 (commands)

v ::= x | λx.v | µβ.c (terms)

e ::= α | v·e | µ̃x.c (contexts)

Here λ, µ, and µ̃ are binders, and the notion of free or bound term and context variables is

defined as usual.

With conventional notations about contexts (i.e. seeing contexts as terms with a hole), v · e

19

can be thought of as e[[] v], and the context v1 ·(· · ·(vn ·α)· · ·) (we can omit these brackets and

write v1 · · · ·vn ·α) as a stack (see Example 5.8); µα.c is inherited from λµ, as is 〈v | α〉 which

corresponds to λµ’s naming construct [α]v, giving name α to the implicit output name of v;

the construct µ̃x.c can be thought of as let x = [] in c.

Commands can be computed (thus eliminating the cut in the corresponding proof):

Definition 5.2 (Reduction in λµµ̃ [3, 8]) Let c [e/β] stand for the implicit substitution of the

free occurrences of the context variable β by the context e, and c [v/x] for that of x by the term

v. The reduction rules are defined by:

logical rules

(λ) : 〈λx. v1 | v2·e〉 → 〈v2 | µ̃x.〈v1 | e〉〉

(µ) : 〈µβ.c | e〉 → c [e/β]

(µ̃) : 〈v | µ̃x.c〉 → c [v/x]

extensional rules

(η) : λx. µβ.〈v | x·β〉 → v (x, β 6∈ fv(v))

(ηµ) : µα.〈v | α〉 → v (α 6∈ fv(v))

(ηµ̃) : µ̃x.〈x | e〉 → e (x 6∈ fv(e))

contextual rules

v→ v′ ⇒











〈v | e〉→〈v′ | e〉

λx.v→λx. v′

v·e→v′·e

e→ e′ ⇒

{

〈v | e〉→〈v | e′ 〉

v·e→v·e′
c→ c′ ⇒

{

µβ.c→µβ.c′

µ̃x.c→ µ̃x.c′

We use→h for this notion of reduction and =h for the induced equality.

Notice that rules (λ), (µ), and (µ̃) reduce commands to commands, rules (η) and (ηµ)

reduce a term to a term, and rule (ηµ̃) reduces a context to a context. Apart from Theorem 5.7,

the extensional rules play no role in this paper. Not all commands can be reduced: e.g. 〈x | α〉,

〈λx.v | α〉 and 〈x | v · e〉 are irreducible; this is one of the differences between the calculus X ,

which embodies Gentzen’s lk, and λµµ̃ [1].

Notice that, although λµµ̃ has abstraction, it does not have application, which is natural

since lk lacks elimination rules. In fact, abstraction’s counterpart is that of context construction

v·e, where a term with a hole is built, offering the operand v and the continuation e. The main

operators are µ and µ̃ abstraction, which, in a sense, respectively, correspond to (delayed)

substitution (parameter call) and to context call.

Notice that λµµ̃ has both explicit and implicit variables: the implicit variables are for example

in v·e, where the hole (·, which acts as input) does not have an identity, and in λx. v where the

context (output) is anonymous. We can make these variables explicit by naming, respectively,

µ̃y.〈y | v·e〉 and µα.〈λx. v | α〉; in case the variable y (α) does not occur in v·e (λx. v), these

terms are η redexes, but, in general, the implicit variable can be made to correspond to one

that already occurs.

(Implicative) Typing for λµµ̃ is defined by:

Definition 5.3 (Typing for λµµ̃ [3]) Using Curry types (Definition 1.2), type assignment is

defined via the rules:

(cut) :
Γ ⊢ v : A | ∆ Γ | α : A ⊢ ∆

〈v | e〉 : Γ ⊢ ∆

(Ax-R) :
Γ, x:A ⊢ x : A | ∆

(Ax-L) :
Γ | α : A ⊢ α:A,∆

(→R) :
Γ, x:A ⊢ v : B | ∆

Γ ⊢ λx .v : A→B | ∆
(→L) :

Γ ⊢ v : A | ∆ Γ | e : B ⊢ ∆

Γ | v · e : A→B ⊢ ∆

(µ) :
c : Γ ⊢ α:A,∆

Γ ⊢ µα.c : A | ∆
(µ̃) :

c : Γ, x:A ⊢ α:A,∆

Γ | µ̃x.c : A ⊢ ∆

We write c : Γ ⊢h ∆, Γ ⊢h v : A | ∆, and Γ | e : A ⊢h ∆ if there exists a derivation built using

20

these rules that has this judgement in the bottom line.

Observe that λµµ̃ has a critical pair in the command 〈µα.c1 | µ̃x.c2〉, which reduces to both

c1 [µ̃x.c2/α] and c2 [µα.c1/x]; since cut-elimination of the classical sequent calculus is not con-

fluent, neither is reduction in λµµ̃. For example, in lk the proof (where (W) is the admissible

weakening rule)

❈❈ ✄✄
D1

Γ ⊢ ∆
(W)

Γ ⊢ A,∆

❈❈ ✄✄D2

Γ ⊢ ∆
(W)

Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

reduces to both D1 and D2, different proofs, albeit for the same sequence; likewise, in ⊢h we

can derive (where α does not appear in c1, and x does not appear in c2):

❈❈ ✄✄
c1 : Γ ⊢ ∆

(W)
c1 : Γ ⊢ α:A,∆

(µ)
Γ ⊢ µα.c1 : A | ∆

❈❈ ✄✄
c2 : Γ ⊢ ∆

(W)
c2 : Γ, x:A ⊢ ∆

(µ̃)
Γ | µ̃x.c2 : A ⊢ ∆

(cut)
〈µα.c1 | µ̃x.c2 〉 : Γ ⊢ ∆

and 〈µα.c1 | µ̃x.c2〉 reduces to both c1 and c2, witnesses to the same sequent but not necessarily

the same proof.

The λµµ̃-calculus expresses the duality of lk’s left and right introduction in a very symmet-

ric syntax. But the duality goes beyond that: for instance, the symmetry of the reduction rules

displays syntactically the duality between the cbv and cbn evaluations (see also [15]). In [3]

the cbv sub-reduction is not defined as a strategy but is obtained by forbidding a µ̃-reduction

when the command is also a µ-redex, whereas the cbn sub-reduction forbids a µ-reduction

when the redex is also a µ̃-redex; there is no other restriction defined in [3, 8] in terms of not

permitting certain contextual rules in the definition of cbv and cbn. Since we want cbn and

cbv to be reduction strategies in the sense that each term has at most one contractable cut, we

will give a more detailed definition here.

Definition 5.4 (cbv and cbn reduction for λµµ̃) i) Values V are defined by V ::= x | λx. v,

and slots9 E are defined by E ::= α | v · e.

ii) cbn-reduction→n

h
is defined by limiting rule (µ) and restricting the contextual rules:

(λ) : 〈λx.v1 | v2·e〉 → 〈v2 | µ̃x.〈v1 | e〉〉

(µn) : 〈µβ.c | E〉 → c [E/β]

(µ̃) : 〈v | µ̃x.c〉 → c [v/x]

(ηµ) : µα.〈v | α〉 → v (α 6∈ fv(v))

v→ v′ ⇒ 〈v | e〉 → 〈v′ | e〉

c→ c′ ⇒ µβ.c→ µβ.c′

iii) cbv-reduction→v

h
is defined by limiting rule (µ̃) and restricting the contextual rules:

(λ) : 〈λx.v1 | v2·e〉 → 〈v2 | µ̃x.〈v1 | e〉〉

(µ) : 〈µβ.c | e〉 → c [e/β]

(µ̃v) : 〈V | µ̃x.c〉 → c [V/x]

v→ v′ ⇒

{

〈v | e〉 → 〈v′ | e〉

v·e → v′·e

e→ e′ ⇒ 〈V | e〉 → 〈V | e′〉

c→ c′ ⇒ µβ.c→ µβ.c′

so removes the reduction 〈µα.c | µ̃x.c′〉 → c′ [µα.c/x], and does not permit reduction on

the right of the context constructor.

9 In [8], slots are called linear evaluation contexts; we use the terminology ‘slot’ here because these are contexts
with a single hole.

21

Essentially following [3], an interpretation ·λ of the λ-calculus into λµµ̃ can be defined as

follows:

Definition 5.5 Interpretation of the λ-calculus into λµµ̃:

x λ =∆ x

λx. M λ =∆ λx. M λ

MN λ =∆ µα.〈 M λ | N λ ·α〉

Notice that λ-values are interpreted by λµµ̃-values and that this interpretation is not geared

towards a certain reduction strategy.

The interpretation respects term substitution.

Proposition 5.6 ([1]) M [N/x] λ = M λ [N λ/x].

Using this result, we can now show that the interpretation respects β-reduction.

Theorem 5.7 i) If M→∗β N, then M λ→∗
h

N λ.

ii) If M→∗
n

N, then M λ→n∗
h

N λ.

iii) If M→∗
v

N, then M λ→v∗
h

N λ.

Proof : i) ((λx.M)N→β M [N/x]) : (λx.M)N λ =∆ µα.〈 λx.M λ | N λ ·α〉 =∆

µα.〈λx. M λ | N λ ·α〉→h (λ) µα.〈 N λ | µ̃x.〈 M λ | α〉〉 →h (µ̃)

µα.〈 M λ [N λ/x] | α〉→h (ηµ) M λ [N λ/x].

(M→β N ⇒ λx.M→β λx.N) : λx.M λ =∆ λx. M λ→∗
h
(IH) λx. N λ =∆ λx.N λ.

(M→β N ⇒ MP→β NP) : MP λ =∆ µα.〈 M λ | P λ ·α〉→∗
h
(IH) µα.〈 N λ | P λ ·α〉 =∆ NP λ.

(M→β N ⇒ PM→β PN) : PM λ =∆ µα.〈 P λ | M λ ·α〉→∗
h
(IH) µα.〈 P λ | N λ ·α〉 =∆ PN λ.

ii) ((λx.M)N→n M [N/x]) : As in part 1 above; notice that all reduction steps are permitted

in→n.

(M→n N ⇒ MP→n NP) : MP λ =∆ µα.〈 M λ | P λ ·α〉 →n∗
h

(IH) µα.〈 N λ | P λ ·α〉 =∆

NP λ.

iii) ((λx.M)V→v M [V/x]) : As in part 1 above; notice that then N ≡ V, and the µ̃-reduction

step is permitted.

(M→v N ⇒ MP→v NP) : MP λ =∆ µα.〈 M λ | P λ ·α〉→v∗
h
(IH) µα.〈 N λ | P λ ·α〉 =∆ NP λ.

(M→v N ⇒ VM→v VN) : VM λ =∆ µα.〈 V λ | M λ ·α〉 →v∗
h

(IH) µα.〈 V λ | N λ ·α〉 =∆

VN λ.

This interpretation corresponds to running the λ-calculus in a stack-based cbn abstract

machine (like Krivine’s machine [9]): evaluating the term λx. M takes a term off the stack

and substitutes it for x in M. For the application MN, N gets placed onto the stack and the

machine then attempts to run M to a term of the form λx. M′. So we can think of it as a

function that takes some existing stack, and returns the machine which runs M in the existing

stack with N pushed on top.

Example 5.8 In λµµ̃ we express the interaction between a program (term) and its context via

commands. Although there is no notion of application, λµµ̃ sees MN1 · · ·Nn
λ as running

M λ in the context that offers the terms N1
λ, . . . , Nn

λ in sequence. To understand this, first

notice that

22

MN1N2
λ =∆ µα.〈 MN1

λ | N2
λ ·α〉

=∆ µα.〈µβ.〈 M λ | N1
λ ·β〉 | N2

λ ·α〉

→h (µ) µα.〈 M λ | N1
λ · N2

λ ·α〉

so it is easy to verify that

MN1 · · ·Nn
λ →∗ (µ) µα.〈 M λ | N1

λ · . . . · Nn
λ ·α〉

which puts into evidence that, for λ-terms, the only contexts that are needed are stacks. No-

tice that the context N1
λ ·(N1

λ · . . . · Nn
λ ·α) represents the λ-context for M, so stands for

C [⌈⌋N1], where C [] ≡ ⌈⌋N2 · · ·Nn.

6 Mapping ecbpv in λµµ̃

In this section we will show that we can interpret ecbpv into the λµµ̃-calculus and simulate it

via the λµµ̃ reduction rules.

Definition 6.1 (Direct interpretation) The interpretation · e of ecbpv-values and compu-

tations into λµµ̃-terms is defined as:

y e = y

{M} e = M e

x!e = x

λx. M e = λx. M e

MV e = µα.〈 M e | V e ·α〉

retV e = V e

x := M; N e = µα.〈 M e | µ̃x.〈 N e | α〉〉

At the moment it is unclear if this encoding can be extended into one for cbpv: to model the

reduction rule (U), it seems necessary to extend λµµ̃ syntactically as well with features that

represent thunking and forcing.

We can show that the interpretation respects term substitution.

Lemma 6.2 M 〈V/x〉 e = M e [V e/x].

Proof : By induction on the definition of · 〈V/x〉. We only show the base cases, the others

follow by straightforward induction.

(x 〈V/x〉 = V) : We have two cases:

(V = y) : x 〈y/x〉 e = y e = y = x [y/x] = x e [y e/x].

(V = {N}) : x 〈{N}/x〉 e = {N} e = N e = x [N e/x] = x e [{N} e/x].

(z 〈V/x〉 = z) : z 〈V/x〉 e = z e = z = z [V e/x] = z e [V e/x].

(x!〈y/x〉 = y!) : x!〈y/x〉 e = y! e = y = x [y/x] = x!e [y e/x].

(x!〈{N}/x〉 = N) : x!〈{N}/x〉 e = N e = x [N e/x] = x!e [{N} e/x].

(z! 〈y/x〉 = z!) : z!〈y/x〉 e = z! e = z = z [y e/x] = z!e [y e/x].

(z! 〈{N}/x〉 = z!) : z! 〈{N}/x〉 e = z! e = z = z [{N} e/x] = z! e [{N} e/x].

We can now show that reduction in ecbpv is preserved under the interpretation.

Theorem 6.3 If M→e N, then M e→n∗
h

N e.

Proof : By induction on the definition of→e.

((λx. M)V→ M 〈V/x〉) : (λx. M)V e = µα.〈λx. M e | V e ·α〉 →n

h
(λ)

µα.〈 V e | µ̃x.〈 M e | α〉〉 →n

h
(µ̃) µα.〈 M e [V e/x] | α〉 →n

h
(ηµ)

M e [V e/x] = (6.2) M 〈V/x〉 e

23

(x := ret V ; N→ N 〈V/x〉) : x := ret V ; N e = µα.〈 V e | µ̃x.〈 N e | α〉〉 →n

h
(µ̃)

µα.〈 N e [V e/x] | α〉 →n

h
(ηµ) N e [V e/x] = (6.2) N 〈V/x〉 e

(M→p N ⇒ MV→p NV) : MV e = µα.〈 M e | V e ·α〉 →n∗
h

(IH) µα.〈 N e | V e ·α〉 =

NV e

(M→p N ⇒ x := M; P→ x := N ; P) : x := M; P e = µα.〈 M e | µ̃x.〈 P e | α〉〉 →n∗
h

(IH)

µα.〈 N e | µ̃x.〈 P e | α〉〉 = x := N ; P e

This stresses again that reduction in cbpv is essentially cbn; moreover, all redexes are

unique and reductions deterministic, which leads to:

Theorem 6.4 (Full abstraction) If M e→e Q, then there exists N ∈ cbpv such that M→e N,

and Q→n∗
h

N e.

We can show a similar result for the abstract machine ck.

Definition 6.5 The interpretation of evaluation stacks and configurations in ck is defined

through:

ǫ ck
α = α

V : S ck
α = V ck · S ck

α

x := []; N : S ck
α = µ̃x.〈 N ck | S ck

α〉

〈MV | S〉ck = µα.〈 M ck | V ck · S ck
α〉

〈x := M; N | S〉ck = µα.〈 M ck | µ̃x.〈 N ck | S ck
α〉〉

〈M | S〉ck = µα.〈 M ck | S ck
α〉 (otherwise)

In fact, it was this similarity between stacks in ck and (applicative) contexts of λµµ̃ that was

the inspiration for this paper.

We can now show that this interpretation respects→ck-reductions.

Lemma 6.6 If 〈M | S〉 →ck 〈M | S〉, then 〈M | S〉ck→n∗
h
〈M | S〉 ck.

Proof : (〈λx. M |V : S〉 →ck 〈M [V/x] | S〉) : 〈λx. M |V : S〉ck =

µα.〈λx. M ck | V ck · S ck
α〉 →n

h
µα.〈 V ck | µ̃x.〈 M ck | S ck

α〉〉 →n

h

µα.〈 M ck [V ck/x] | S ck
α〉 = µα.〈 M [V/x]ck | S ck

α〉 = 〈M [V/x] | S〉 ck

(〈MV | S〉 →ck 〈M |V : S〉) : 〈MV | S〉 ck = µα.〈 M ck | V ck · S ck
α〉 = 〈M | V : S〉ck

(〈x := M; N | S〉 →ck 〈M | x := []; N : S〉) : 〈x := M; N | S〉 ck =

µα.〈 M ck | µ̃x.〈 N ck | S ck
α〉〉 = µα.〈 M ck | x := []; N : S ck

α〉 = 〈M | x := []; N : S〉ck

(〈retV | x := []; M : S〉 →ck 〈M [V/x] | S〉) : 〈retV | x := []; M : S〉ck =

µα.〈 V ck | x := []; M : S ck
α〉 = µα.〈 V ck | µ̃x.〈 M ck | S ck

α〉〉 →n

h

µα.〈 M ck [V ck/x] | S ck
α〉 = 〈M [V/x] | S〉ck

Using the ‘inverse’ of the type interpretation from Definition 4.11, we can also show that

type assignment is preserved under the interpretations.

Definition 6.7 The type interpretation · e is defined as:

ϕe = ϕ

UA
e = A

e

A→B
e = A e→ B

e

FAe = A e

and the environment interpretation as:

Γ e = {x: A e | x:A ∈ Γ}

24

We can now show that λµµ̃ is suited to not just model the kind of reduction of cbpv, but

also its type assignment.

Theorem 6.8 i) If Γ ⊢v V : A , then Γ e ⊢h V e : A e | .

ii) If Γ ⊢c M : A , then Γ e ⊢h M e : A
e | .

Proof : By induction on definition of type assignment for ecbpv-terms.

(axiom) : Then V ≡ x, and Γ = Γ′, x:A; since x e =∆ x, and Γ e = Γ′ e, x: Ae, by rule (Ax-R)

also Γ e ⊢h v e : A e | .

(thunk) : Then A = UA, M ≡ {N}, and Γ ⊢c N : A ; by induction we have Γ e ⊢h N e : A
e | .

Notice that UA
e = A

e and {N} e = N e.

(abstr) : Then A = B→C, M ≡ λx. N, and Γ, x:B ⊢c N : C ; since Γ, x:B e = Γ e, x: B e, by in-

duction we have Γ e, x: B e ⊢h N e : C
e | . We can construct:

❈❈ ✄✄
Γ e, x: B e ⊢h N e : C

e |
(→R)

Γ e ⊢h λx . N e : B e→ C
e |

Notice that λx. M e =∆ λx. N e and A
e = B e→ C

e.

(appl) : Then M ≡ NV, and there exists B such that Γ ⊢c u : B→A and Γ ⊢v v : B . Then,

by induction, Γ e ⊢h N e : B→A
e | and Γ e ⊢h V e : Be | . We can construct (with Γ′ =

Γ e, x:U(B→A),y:B):

❈❈ ✄✄
Γ e ⊢ N e : B→A

e |
(Wk)

Γ e ⊢ N e : B→A
e | α: A

e

❈❈ ✄✄
Γ e ⊢ V e : B e |

(Wk)
Γ e ⊢ V e : B e | α: A

e
(Ax-L)

Γ e | α : A
e ⊢ α: A

e

(→L)
Γ e | V e ·α : B→A

e ⊢ α: A
e

(cut)
〈 M e | V e ·α〉 : Γ e ⊢ α: A

e

(µ)
Γ e ⊢ µα.〈 N e | V e ·α〉 : A

e |

Notice that B→A
e = Be→ A

e so the step (→L) is justified, and NV e =∆ µα.〈 N e |

V e ·α〉.

(force) : Then M = x!, and Γ ⊢v x : U A; notice that x!e = x and UA
e = Ae. Then x:UA ∈ Γ,

so x: A e ∈ Γ e, and by rule (Ax-R) also Γ e ⊢h x e : Ae | .

(ret) : Then A = FA, M = retV, and Γ ⊢v V : A ; notice that retV e = V e and FAe = A e.

Then by induction Γ e ⊢h V e : A e | .

(assign) : Then M = x := P; Q, and there exists x and B such that both Γ ⊢c P : FB and

Γ, x:B⊢c Q : A . Then, by induction, we have Γ e ⊢h P e : FB e | and Γ, x:B e ⊢h Q e : A
e | .

Notice that Γ, x:Be = Γ e, x: B e, FBe = B e, and A
e = A e.

❈❈ ✄✄
Γ e ⊢ P e : B e |

(Wk)
Γ e ⊢ P e : B e | α: A

e

❈❈ ✄✄
Γ e, x: B e ⊢ Q e : A

e |
(Wk)

Γ e, x: B e ⊢ Q e : A
e | α: A

e
(Ax-L)

Γ e, x: B e | α : A
e ⊢ α: A

e

(cut)
〈 Q e | α〉 : Γ e, x: B e ⊢ α: A

e

(µ̃)
Γ e | µ̃x.〈 Q e | α〉 : B e ⊢ α: A

e

(cut)
〈 P e | µ̃x.〈 Q e | α〉〉 : Γ e ⊢ α: A

e

(µ)
Γ e ⊢ µα.〈 P e | µ̃x.〈 Q e | α〉〉 : A

e |

and x := P; Q e = µα.〈 P e | µ̃x.〈 Q e | α〉〉.

25

Conclusion

We have shown that, although partially presented for that purpose, Levy’s cbpv calculus

is not suitable to represent the cbn or cbv reduction of the λ-calculus and that in order to

represent that kind of reduction, it is necessary to change the way term substitution is defined.

This is done in essential cbpv, which we defined here; since now we never create forcing of

thunked terms, also the unblock reduction rule is removed.

For this restricted version of cbpv we have shown that we can fully represent the cbn or cbv

reduction of the λ-calculus, as well as preserve typeability. Moreover, we defined a mapping

into Curien and Herbelin’s λµµ̃, and showed that reduction in ecbpv can be successfully

modeled in the cbn partition of λµµ̃, as well as that typeability is preserved.

References

[1] S. van Bakel and P. Lescanne. Computation with Classical Sequents. Mathematical Structures in
Computer Science, 18:555–609, 2008.

[2] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[3] P.-L. Curien and H. Herbelin. The Duality of Computation. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP’00), volume 35.9 of ACM Sigplan Notices,
pages 233–243. ACM, 2000.

[4] H.B. Curry. Grundlagen der Kombinatorischen Logik. American Journal of Mathematics, 52:509–
536, 789–834, 1930.

[5] Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. Call-by-Push-Value in Coq:
Operational, Equational, and Denotational Theory. In Proceedings of the 8th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs, pages 118–131, New York, NY, USA, 2019.
Association for Computing Machinery.

[6] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift, 39(2):176–
210 and 405–431, 1935.

[7] H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de λ-termes
et comme calcul de stratégies gagnantes. Thèse d’université, Université Paris 7, Janvier 1995.

[8] H. Herbelin. On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic. In
P. Urzyczyn, editor, Typed Lambda Calculi and Applications, 7th International Conference, TLCA 2005,
Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science, pages
209–220. Springer, 2005.

[9] J-L. Krivine. A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation,
20(3):199–207, 2007.

[10] Paul Blain Levy. Call-By-Push-Value: Decomposing Call-By-Value and Call-By-Name. Higher
Order Symbolic Computation, 19(4):377–414, 2006.

[11] P.B. Levy. Call-by-Push-Value: A Subsuming Paradigm. In Jean-Yves Girard, editor, Typed Lambda
Calculi and Applications, pages 228–243, Berlin, Heidelberg, 1999. Springer.

[12] P.B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computa-
tion, V. 2). Kluwer Academic Publishers, USA, 2001.

[13] M. Parigot. Classical Proofs as Programs. In Kurt Gödel Colloquium, pages 263–276, 1993. Presented
at TYPES Workshop, at Bǎstad, June 1992.

[14] José Espı́rito Santo. The Polarized λ-calculus. In V. Nigam and M. Florido, editors, 11th Workshop
on Logical and Semantic Frameworks with Applications, LSFA 2016, Porto, Portugal, January 1, 2016,
volume 332 of Electronic Notes in Theoretical Computer Science, pages 149–168, 2016.

[15] P. Wadler. Call-by-Value is Dual to Call-by-Name. In Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 189 – 201, 2003.

26

	Abstract
	1 The `l-calculus
	2 Call By Push Value
	3 Interpreting the `l-calculus in cbpv
	3.1 A cbv-interpretation of in 31
	3.2 A cbn-handling of in cbpv
	3.3 The results for `l-val Forster'19

	4 Essential cbpv
	4.1 A cbv-interpretation of in 73
	4.2 A cbn-interpretation of in 73

	5 The calculus 112
	6 Mapping 73 in `l`m
	References

