
From X to π

Representing the Classical Sequent Calculus in the π-calculus

Extended Abstract
(International Workshop on Classical Logic and Computation (CL&C’08), 2008)

Steffen van Bakel1, Luca Cardelli2, and Maria Grazia Vigliotti1

1: Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
2: Microsoft Research Cambridge, 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK

svb@doc.ic.ac.uk,luca@microsoft.com,mgv98@doc.ic.ac.uk

Abstract

We study the π-calculus, enriched with pairing and non-blocking input, and define a notion
of type assignment that uses the type constructor →. We encode the circuits of the calculus
X into this variant of π, and show that all reduction (cut-elimination) and assignable types
are preserved. Since X enjoys the Curry-Howard isomorphism for Gentzen’s calculus lk, this
implies that all proofs in lk have a representation in π.

Introduction

In this paper we present an encoding of proofs of Gentzen’s (implicative) lk [15] into the
π-calculus [26] that respects cut-elimination, and define a new notion of type assignment
for π so that processes will become witnesses for the provable formulae. The encoding of
classical logic into π-calculus is attained by using the intuition of the calculus X , which gives
a computational meaning to lk (a first version of this calculus was proposed in [32, 34, 33];
the implicative fragment of X was studied in [8]).
X enjoys the Curry-Howard property for lk; it achieves the isomorphism by constructing

witnesses, called nets, for derivable sequents. Nets in X have multiple named inputs and
multiple named outputs, that are collectively called connectors. Reduction in X is expressed
via a set of rewrite rules that represent cut-elimination, eventually leading to renaming of
connectors. It is well known that cut-elimination in lk is not confluent, and, since X is Curry-
Howard for lk, neither is reduction in X . These two features –non-confluence and reduction
as connection of nets via the exchange of names– lead us to consider the π-calculus as an
alternative computational model for cut-elimination and proofs in lk.

The relation between process calculi and classical logic is an interesting and very promising
area of research (similar attempts we made in the context of natural deduction [24] and linear
logic [10]). Our aim is to widen further the path to practical application of classical logic in
computation by providing an interpretation of classical logic into process algebra, that fully
exploits the non-determinism of both lk and π.

The aim of this paper is to link lk and π via X ; the main achievements are:

• an encoding of X into π is defined, that preserves the operational semantics – to achieve
this result, reduction in π is generalised;

• we define a non-standard notion of type assignment for π (types do not contain channel
information) that encompasses implication;

International Workshop on Classical Logic and Computation (CL&C’08), 2008 2

• the encoding preserves assignable types, effectively showing that all proofs in lk have a
representation in π – to represent lk, π is enriched with pairing [2].

Classical sequents, X , and π

The sequent calculus lk, introduced by Gentzen in [15], is a logical system in which the rules
only introduce connectives (but on either side of a sequent), in contrast to natural deduction
(also introduced in [15]) which uses rules that introduce or eliminate connectives in the logical
formulae. Natural deduction normally derives statements with a single conclusion, whereas
lk allows for multiple conclusions, deriving sequents of the form A1, . . . , An � B1, . . . , Bm, where
A1, . . . , An is to be understood as A1∧ . . .∧An and B1, . . . , Bm is to be understood as B1∨ . . .∨Bm.
The version G3 of Implicative lk has four rules: axiom, left introduction of the arrow, right in-
troduction, and cut.

(Ax) :
Γ, A � A,∆ (⇒L) :

Γ � A,∆ Γ, B � ∆

Γ, A⇒B � ∆

(⇒R) :
Γ, A � B,∆

Γ � A⇒B,∆
(cut) :

Γ � A,∆ Γ, A � ∆

Γ � ∆

Since lk has only introduction rules, the only way to eliminate a connective is to eliminate
the whole formula in which it appears via an application of the (cut)-rule. Gentzen defined a
procedure that eliminates all applications of the (cut)-rule from a proof of a sequent, generat-
ing a proof in normal form of the same sequent, that is, without a cut. This procedure is defined
via local reductions of the proof-tree, which has –with some discrepancies– the flavour of term
rewriting [25] or the evaluation of explicit substitutions [14, 1].

The calculus X achieves a Curry-Howard isomorphism, first discovered for Combinatory
Logic [13], for the proofs in lk by constructing witnesses (called nets) for derivable sequents,
without any notion of application. In establishing the isomorphism for X , similar to calculi
like λµ [28] and λµµ̃ [12], Roman names are attached to formulae in the left context, and
Greek names for those on the right, and syntactic structure is associated to the rules. These
correspond to variables and co-variables, respectively, in [35], or, alternatively, to Parigot’s λ-
and µ-variables [28] (see also [12]).

Gentzen’s proof reductions by cut-elimination become the fundamental principle of com-
putation in X . Cuts in proofs are witnessed by P α̂ † x̂Q (called the cut of P and Q via α and
x), and the reduction rules specify how to remove them. Since cut-elimination in lk is not
confluent, neither is reduction in X ; for example, when P does not contain α and Q does not
contain x, reducing P α̂ † x̂Q can lead to both P and Q. Reduction in X boils down to renam-
ing: during reduction nets are re-organised, creating nets that are similar, but with different
connector names inside.
X ’s notion of multiple inputs and outputs is also found in π, and was the original inspi-

ration for our research. The aim of this work is to find a simple and intuitive encoding of
lk-proofs in π, and to devise a notion of type assignment for π so that the types in X are
preserved in π. In this precise sense we view processes in π as giving an alternative computa-
tional meaning to proofs in classical logic. Clearly this implies that we had to define a notion
of type assignment that uses the type constructor → for π; we managed this without having
to linearise the calculus as done in [24], and this is one of the contributions of this paper.

Although the calculi X and π are, of course, essentially different, the similarities go beyond
the correspondence of inputs and output between nets in X and processes in π. Like X , π is
application free, and substitution only takes place on channel names, similar to the renaming
feature of X , so cut-elimination is similar to synchronisation.

International Workshop on Classical Logic and Computation (CL&C’08), 2008 3

Related work

In the past, say before Herbelin’s PhD [20] and Urban’s PhD [32], the study of the relation
between computation, programming languages and logic has concentrated mainly on natural
deduction systems (of course, exceptions exist [16, 18]). In fact, these carry the predicate ‘natural’
deservedly; in comparison with, for example, sequent style systems, natural deduction systems
are easy to understand and reason about. This holds most strongly in the context of non-
classical logics; for example, the Curry-Howard relation between Intuitionistic Logic and the
Lambda Calculus (with types) is well studied and understood, and has resulted in a vast and
well-investigated area of research, resulting in, amongst others, functional programming lan-
guages and much further to system F [17] and the Calculus of Constructions [11]. Abramsky
[3, 5] has studied correspondence between multiplicative linear logic and processes, and later
moved to the context of game semantics [4]. In fact, all the calculi are applicative in that ab-
straction and application (corresponding to arrow introduction and elimination) are the main
constructors in the syntax. The link between Classical Logic and continuations and control
was first established for the λC-Calculus [19] (where C stands for Felleisen’s C operator).

The introduction-elimination approach is easy to understand and convenient to use, but is
also rather restrictive: for example, the handling of negation is not as nicely balanced, as is the
treatment of contradiction (normally represented by the type ⊥; for a detailed discussion, see
[30]). This imbalance can be observed in Parigot’s ‘l‘m-calculus [28], an approach for repre-
senting classical proofs via a natural deduction system in which there is one main conclusion
that is being manipulated and possibly several alternative ones. Adding ⊥ as pseudo-type
(only negation, or A→⊥, is expressed; ⊥→A is not a type), the ‘l‘m-calculus corresponds to
minimal classical logic [6].

Herbelin has studied the calculus λµµ̃ as a non-applicative extension of λµ, which gives
a fine-grained account of manipulation of sequents [20, 12, 21]. The relation between call-
by-name and call-by-value in the fragment of lk with negation and conjunction is studied
in the Dual Calculus [35]; as in calculi like λµ and λµµ̃, that calculus considers a logic with
active formulae, so these calculi do not achieve a direct Curry-Howard isomorphism with lk.
The relation between X and λµµ̃ has been investigated in [7, 8]; there it was shown that it
is straightforward to map λµµ̃-terms into X whilst preserving reduction, but that it is not
possible to do the converse.

The π-calculus is equipped with a rich type theory [29]: from the basic type system for
counting the arity of channels to sophisticated linear types in [24], which studies a relation
between Call-by-Value λµ and a linear π-calculus. Linearisation is used to be able to achieve
processes that are functions, by allowing output over one channel name only. Moreover,
the encoding presented in [24] is type dependent, in that, for each term, there are different
π-processes assigned, depending on the original type; this makes the encoding quite cumber-
some. By contrast, our encoding is very simple and intuitive by interpreting the cut opera-
tionally as a communication. The idea of giving a computational interpretation of the cut as a
communication primitive is also used by [5] and [10]. In both papers, only a small fragment of
Linear Logic was considered, and the encoding between proofs and π-calculus was left rather
implicit.

The type system presented in this paper differs quite drastically from the standard type
system presented in [29]: here input and output channels essentially have the type of the data
they are sending or receiving, and are separated by the type system by putting all inputs with
their types on the left of the sequent, and the outputs on the right. In our paper, types give
a logical view to the π-calculus rather than an abstract specification on how channels should
behave.

International Workshop on Classical Logic and Computation (CL&C’08), 2008 4

1 The calculus X
In this section we will give the definition of the X -calculus which has been proven to be a fine-
grained implementation model for various well-known calculi [7], like the λ-calculus [9], λµ
[28] and λµµ̃ [21]. As discussed in the introduction, the calculus X is inspired by the sequent
calculus; the system we will consider in this section has only implication, no structural rules
and a changed axiom. X features two separate categories of ‘connectors’, plugs and sockets,
that act as input and output channels, and is defined without any notion of substitution or
application.

Definition 1.1 (Syntax) The nets of the X -calculus are defined by the following syntax, where
x,y range over the infinite set of sockets, α, β over the infinite set of plugs.

P, Q ::= 〈x·α〉 | ŷP β̂·α | P β̂ [y] x̂ Q | P α̂ † x̂Q
capsule export import cut

The ·̂ symbolises that the socket or plug underneath is bound in the net. The notion of
bound and free connector (free sockets fs(P), and free plugs fp(P), respectively, and fc(P) =
fs(P) ∪ fp(P)) is defined as usual, and we will identify nets that only differ in the names of
bound connectors, as usual. We accept Barendregt’s convention on names, which states that
no name can occur both free and bound in a context; α-conversion is supposed to take place
silently, whenever necessary.

The calculus, defined by the reduction rules below, explains in detail how cuts are propa-
gated through nets to be eventually evaluated at the level of capsules, where the renaming
takes place. Reduction is defined by specifying both the interaction between well-connected
basic syntactic structures, and how to deal with propagating active nodes to points in the net
where they can interact.

It is important to know when a connector is introduced, i.e. is connectable, i.e. is exposed
and unique; this will play an important role in the reduction rules. Informally, a net P intro-
duces a socket x if P is constructed from sub-nets which do not contain x as free socket, so x
only occurs at the “top level.” This means that P is either an import with a middle connector
[x] or a capsule with left part x. Similarly, a net introduces a plug α if it is an export that
“creates” α or a capsule with right part α.

Definition 1.2 (P introduces x) : Either P = Q β̂ [x] ŷ R with x
∈ fs(Q, R), or P = 〈x·α〉.
(P introduces α) : Either P = x̂Q β̂·α and α
∈ fp(Q), or P = 〈x·α〉.

The principal reduction rules are:

Definition 1.3 (Logical rules) Let α and x be introduced in, respectively, the left- and right-
hand side of the main cuts below.

(cap) : 〈y·α〉 α̂ † x̂〈x·β〉 →X 〈y·β〉
(exp) : (ŷP β̂·α) α̂ † x̂〈x·γ〉 →X ŷP β̂·γ
(imp) : 〈y·α〉 α̂ † x̂(Q β̂ [x] ẑ R) →X Q β̂ [y] ẑ R

(exp-imp) : (ŷP β̂·α) α̂ † x̂(Q γ̂ [x] ẑ R) →X

{
Q γ̂ † ŷ(P β̂ † ẑR)
(Q γ̂ † ŷP) β̂ † ẑR

The first three logical rules above specify a renaming procedure, whereas the last rule spec-
ifies the basic computational step: it links the export of a function, available on the plug α,

International Workshop on Classical Logic and Computation (CL&C’08), 2008 5

to an adjacent import via the socket x. The effect of the reduction will be that the exported
function is placed in-between the two sub-terms of the import, acting as interface. Notice
that two cuts are created in the result, that can be grouped in two ways; these alternatives do
not necessarily share all normal forms (reduction is non-confluent, so normal forms are not
unique).

In X there are in fact two kinds of reduction, the one above, and the one which defines
how to reduce a cut when one of its sub-nets does not introduce a connector mentioned in
the cut. This will involve moving the cut inwards, towards a position where the connector is
introduced. In case both connectors are not introduced, this search can start in either direction,
indicated by the tilting of the dagger.

Definition 1.4 (Active cuts) The syntax is extended with two flagged or active cuts:

P ::= . . . | P1 α̂ † x̂P2 | P1 α̂ † x̂P2

We define two cut-activation rules.

(a†) : P α̂ † x̂Q →X P α̂ † x̂Q if P does not introduce α

(†a) : P α̂ † x̂Q →X P α̂ † x̂Q if Q does not introduce x

The next rules define how to move an activated dagger inwards.

Definition 1.5 (Propagation rules) Left propagation:

(d†) : 〈y·α〉 α̂ † x̂P →X 〈y·α〉 α̂ † x̂P
(cap†) : 〈y·β〉 α̂ † x̂P →X 〈y·β〉 β
= α

(exp-out†) : (ŷQ β̂·α) α̂ † x̂P →X (ŷ(Q α̂ † x̂ P) β̂·γ) γ̂ † x̂ P γ fresh
(exp-in†) : (ŷQ β̂·γ) α̂ † x̂P →X ŷ(Q α̂ † x̂ P) β̂·γ γ
= α

(imp†) : (Q β̂ [z] ŷ R) α̂ † x̂P →X (Q α̂ † x̂ P) β̂ [z] ŷ(R α̂ † x̂ P)
(cut†) : (Q β̂ † ŷR) α̂ † x̂P →X (Q α̂ † x̂ P) β̂ † ŷ(R α̂ † x̂P)

Right propagation:

(†d) : P α̂ † x̂〈x·β〉 →X P α̂ † x̂〈x·β〉
(†cap) : P α̂ † x̂〈y·β〉 →X 〈y·β〉 y
= x
(†exp) : P α̂ † x̂(ŷQ β̂·γ) →X ŷ(P α̂ † x̂Q) β̂·γ

(†imp-out) : P α̂ † x̂(Q β̂ [x] ŷ R) →X
P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R)), z fresh

(†imp-in) : P α̂ † x̂(Q β̂ [z] ŷ R) →X (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂ R) z
= x
(†cut) : P α̂ † x̂(Q β̂ † ŷR) →X (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

We write →X for the (reflexive, transitive, compatible) reduction relation generated by the
logical, propagation and activation rules.

The reduction →X is not confluent; confluent sub-systems are defined in [8].

Summarising, reduction brings all cuts down to logical cuts where both connectors single
and introduced, or elimination cuts that are cutting towards a capsule that does not con-
tain the relevant connector. Cuts towards connectors occurring in capsules lead to renam-
ing (P α̂ † x̂〈x·β〉→X P[β/α] and 〈z·α〉 α̂ † x̂P→X P[z/x]), and towards non-occurring connec-
tors leads to elimination (P α̂ † x̂〈z·β〉→X 〈z·β〉 and 〈z·β〉 α̂ † x̂ P→X 〈z·β〉).

International Workshop on Classical Logic and Computation (CL&C’08), 2008 6

2 Typing for X : from lk to X
X offers a natural presentation of the classical propositional calculus with implication, and
can be seen as a variant of system lk.

We first define types and contexts.

Definition 2.1 (Types and Contexts) i) The set of types is defined by the grammar: A, B ::= ϕ | A→B,
where ϕ is a basic type of which there are infinitely many.

ii) A context of sockets Γ is a finite set of statements x:A, such that the subject of the statements
(x) are distinct. We write Γ1, Γ2 to mean the union of Γ1 and Γ2, provided Γ1 and Γ2 are
compatible (if Γ1 contains x:A1 and Γ2 contains x:A2 then A1 = A2), and write Γ, x:A for
Γ,{x:A}.

iii) Contexts of plugs ∆ are defined in a similar way.

The notion of type assignment on X that we present in this section is the basic implicative
system for Classical Logic (Gentzen’s system lk) as described above. The Curry-Howard
property is easily achieved by erasing all term-information. When building witnesses for
proofs, propositions receive names; those that appear in the left part of a sequent receive
names like x,y,z, etc, and those that appear in the right part of a sequent receive names like
α, β,γ, etc. When in applying a rule a formula disappears from the sequent, the corresponding
connector will get bound in the net that is constructed, and when a formula gets created, a
new connector will be associated to it.

Definition 2.2 (Typing for X) i) Type judgements are expressed via a ternary relation P :
Γ � ∆, where Γ is a context of sockets and ∆ is a context of plugs, and P is a net. We say
that P is the witness of this judgement.

ii) Type assignment for X is defined by the following rules:

(cap) : 〈y·α〉 : Γ,y:A � α:A,∆ (imp) :
P : Γ � α:A,∆ Q : Γ, x:B � ∆

P α̂ [y] x̂ Q : Γ,y:A→B � ∆

(exp) :
P : Γ, x:A � α:B,∆

x̂ P α̂·β : Γ � β:A→B,∆
(cut) :

P : Γ � α:A,∆ Q : Γ, x:A � ∆

P α̂ † x̂ Q : Γ � ∆

Notice that Γ and ∆ carry the types of the free connectors in P, as unordered sets. There is
no notion of type for P itself, instead the derivable statement shows how P is connectable.

Example 2.3 (A proof of Peirce’s Law) The following is a proof for Peirce’s Law in lk:

(Ax)
A � A, B

(⇒R)� A⇒B, A
(Ax)

A � A
(⇒L)

(A⇒B)⇒A � A
(⇒R)� ((A⇒B)⇒A)⇒A

International Workshop on Classical Logic and Computation (CL&C’08), 2008 7

Inhabiting this proof in X gives the derivation:

(cap)
〈y·δ〉 : y:A � δ:A,η:B

(exp)
ŷ〈y·δ〉 η̂ ·α : � α:A→B,δ:A

(cap)
〈w·δ〉 : w:A � δ:A

(imp)
(ŷ〈y·δ〉 η̂ ·α) α̂ [z] ŵ〈w·δ〉 : z:(A→B)→A � δ:A

(exp)
ẑ((ŷ〈y·δ〉 η̂ ·α) α̂ [z] ŵ〈w·δ〉) δ̂ ·γ : � γ:((A→B)→A)→A

The following soundness result is proven in [8]:

Theorem 2.4 (Witness reduction) If P : Γ � ∆, and P→X Q, then Q : Γ � ∆.

3 The asynchronous π-calculus with pairing and nesting

The notion of asynchronous π-calculus that we consider in this paper is different from other
systems studied in the literature [22]. One reason for this change lies directly in the calculus
that is going to be interpreted, X : since we are going to model sending and receiving pairs
of names as interfaces for functions, we add pairing, inspired by [2]. The other reason is
that we want to achieve a preservation of full cut-elimination; to this aim, we need to use
non-blocking inputs, by adding the reduction rule (nesting) (see Definition 3.3). Without this
last addition, we cannot model full cut-elimination; this was, for example, also the case with
the interpretations defined by Milner [26], Sangiorgi [29], Honda et al [24], and Thielecke [31],
where reduction in the original calculus had to be restricted in order to get a completeness
result. Notice that this last extension of π only relates to cut-elimination: that all proofs in lk
are representable in π is not affected by this, nor is the preservation of types.

To ease the definition of the interpretation function of circuits in X to processes in the
π-calculus, we deviate slightly from the normal practice, and write either Greek characters
α, β,υ, . . . or Roman characters x,y,z, . . . for channel names; we use n for either a Greek or a
Roman name, and ‘◦’ for the generic variable. We also introduce a structure over names, such
that not only names but also pairs of names can be sent (but not a pair of pairs). In this way a
channel may pass along either a name or a pair of names. We also introduce the let-construct
to deal with inputs of pairs of names that get distributed over the continuation.

Definition 3.1 Channel names and data are defined by:

a,b, c,d ::= x | α names p ::= a | 〈a,b〉 data

Notice that pairing is not recursive. Processes are defined by:

P, Q ::= 0 Nil
| P | Q Composition
| ! P Replication
| (νa)P Restriction

| a(x).P Input
| a p (Asynchronous) Output
| let 〈x,y〉= z in P Let construct

We abbreviate a(x).let 〈y,z〉= x in P by a(〈y,z〉).P, and (νm) (νn)P by (νm,n)P.
A (process) context is simply a term with a hole [·].

Definition 3.2 (Congruence) The structural congruence is the smallest equivalence relation

International Workshop on Classical Logic and Computation (CL&C’08), 2008 8

closed under contexts defined by the following rules:

P | 0 ≡ P
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
(νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P
(νn) (P | Q) ≡ P | (νn)Q if n
∈ fn(P)

! P ≡ P | ! P
let 〈x,y〉= 〈a,b〉 in R ≡ R[a/x,b/y]

Definition 3.3 i) The reduction relation over the processes of the π-calculus is defined by
following (elementary) rules:

(synchronisation) : a b | a(x).Q →π Q[b/x]
(binding) : P →π P′ ⇒ (νn)P →π (νn)P′

(composition) : P →π P′ ⇒ P | Q →π P′ | Q
(nesting) : P →π Q ⇒ n(x).P →π n(x).Q

(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

ii) We write →+
π for the reflexive and transitive closure of →π.

iii) We write P↓n if P ≡ (νb1) . . . bm(n p | Q) for some Q, where n
= b1 . . . bm.
iv) We write Q⇓n if there exists P such that Q →+

π P and P↓n.

Notice that we no longer consider input in π to be blocking; we are aware that this is a con-
siderable breach with normal practice, but this is strongly needed in our completeness result
(Theorem 5.4); without it, we can at most show a partial result.

Moreover, notice that
a 〈b, c〉 | a(〈x,y〉).Q →+

π Q[b/x, c/y]

Definition 3.4 ([23]) Barbed contextual simulation is the largest relation π� such that P π� Q
implies:

• for each name n, if P↓n then Q⇓n;
• for any context C, if C[P] →π P′, then for some Q′, C[Q]→+

π Q′ and P′ π� Q′.

4 Type assignment

In this section, we introduce a notion of type assignment for processes in π that describes the
‘input-output interface’ of a process. This notion is novel in that it assigns to channels the type
of the input or output that is sent over the channel; in that it differs from normal notions, that
would state:

a b : Γ,b:A �πio a:ch(A),∆
In order to be able to encode lk, types in our system will not be decorated with channel
information.

As for the notion of type assignment on X terms, in the typing judgements we always write
channels used for input on the left and channels used for output on the right; this implies
that, if a channel is both used to send and to receive, it will appear on both sides.

Definition 4.1 (Type assignment) The types and contexts we consider for the π-calculus are
defined like those of Definition 2.1, generalised to names. Type assignment for π-calculus is

International Workshop on Classical Logic and Computation (CL&C’08), 2008 9

defined by the following sequent system:

(0) : 0 : Γ �πio ∆

(!) :
P : Γ �πio ∆

! P : Γ �πio ∆

(ν) :
P : Γ, a:A �πio a:A,∆

(νa)P : Γ �πio ∆

(|) :
P : Γ �πio ∆ Q : Γ �πio ∆

P | Q : Γ �πio ∆

(in) :
P : Γ, x:A �πio x:A.∆

a(x).P : Γ, a:A �πio ∆

(out) : a b : Γ,b:A �πio a:A,b:A,∆

(pair-out) : a 〈b, c〉 : Γ,b:A �πio a:A→B, c:B,∆

(let) :
P : Γ,y:B �πio x:A,∆

let 〈x,y〉= z in P : Γ,z:A→B �πio ∆

Notice that it is possible to derive a a : �π
io a:A, although sending a channel name over that

channel itself is never produced by our encoding, nor by the reduction of processes created
by the encoding.

Example 4.2 We can derive

P : Γ,y:B �πio x:A,∆

let 〈x,y〉= z in P : Γ,z:A→B �πio ∆

a(z).let 〈x,y〉= z in P : Γ, a:A→B �πio ∆

so the following rule is derivable:

(pair-in) :
P : Γ,y:B �πio x:A,∆

a(〈x,y〉).P : Γ, a:A→B �πio ∆

Notice that the rule (pair-out) does not directly correspond to the logical rule (⇒R), as that
(pair-in) does not directly correspond to (⇒L); this is natural, however, seen that the encoding
does not map rules to rules, but proofs to type derivations. This apparent discrepancy is
solved by Theorem 5.1.

In fact, this notion of type assignment does not (directly) relate back to lk. For example,
rules (|) and (!) do not change the contexts, so do not correspond to any rule in the logic, not
even to a λµ-style activation step.

Notice that the cases P : Γ �πio x:A,∆ and P : Γ, x:A �π
io

∆ can be generalised by weakening to
fit the lemma.

We now come to the main soundness result for our notion of type assignment for π.

Theorem 4.3 (Witness reduction) If P : Γ �π
io

∆ and P →π Q, then Q : Γ �π
io

∆.

5 Interpreting X into π

In this section, we define an encoding from nets in X onto processes in π .
The encoding defined below is based on the intuition as formulated in [8]: the cut P α̂ † x̂Q

expresses the intention to connect all α s in P and x s in Q , and reduction will realise this
by either connecting all α s to all x s, or all x s to all α s. Translated into π , this results in
seeing P as trying to send at least as many times over α as Q is willing to receive over x , and
Q trying to receive at least as many times over x as P is ready to send over α .

International Workshop on Classical Logic and Computation (CL&C’08), 2008 10

As discussed above, when creating a witness for (⇒R) (the net x̂ P α̂·β , called an export), the
exported interface of P is the functionality of ‘receiving on x , sending on α ’, which is made
available on β . When encoding this behaviour in π , we are faced with a problem. It is clearly
not sufficient to limit communication to the exchange of single names, since then we would
have to separately send x and α , breaking perhaps the exported functionality, and certainly
disabling the possibility of assigning arrow types. We overcome this problem by sending out a
pair of names, as in a 〈v,δ〉 . Similarly, when interpreting a witness for (⇒L) (the net P α̂ [x] ŷ Q
, called an import), the circuit that is to be connected to x is ideally a function whose input will
be connected to α , and its output to y . This means that we need to receive a pair of names
over x , as in x(〈v,δ〉).P .

A cut P α̂ † x̂Q in X expresses two nets that need to be connected via α and x . If we model
P and Q in π , then we obtain one process sending on α , and one receiving on x , and we
need to link these via α.x . Since each output on α in P takes place only once, and Q might
want to receive in more than one x , we need to replicate the sending; likewise, since each
input x in Q takes place only once, and P might have more than one send operation on α , Q
needs to be replicated.

We added pairing to the π -calculus in order to be able to deal with arrow types. Notice
that using the polyadic π -calculus would not be sufficient: since we would like the inter-
pretation to respect reduction, in particular we need to be able to reduce the interpretation
of (x̂P α̂·β) β̂ † ẑ〈z·γ〉 to that of x̂P α̂·γ (when β not free in P). So, choosing to encode the
export of x and α over β as β〈x,α〉 would force the interpretation of 〈z·γ〉 to receive a pair of
names. But requiring for a capsule to always deal with pairs of names is too restrictive, it is
desirable to allow capsules to deal with single names as well. So, rather than moving towards
the polyadic π -calculus, we opt for letting communication send a single item, which is either
a name or a pair of names. This implies that a process sending a pair can also successfully
communicate with a process not explicitly demanding to receive a pair.

Definition 5.1 (Notation) In the definition below, we use ‘ ◦ ’ for the generic variable, to
separate plugs and sockets (and their interpretation) from the ‘internal’ variables of π . Also,
although the departure point is to view Greek names for outputs and Roman names forinputs,
by the very nature of the π -calculus (it is only possible to communicate using the same channel
for in and output), in the implementation we are forced to use Greek names also for inputs,
and Roman names for outputs; in fact, we need to explicitly convert ‘an output sent on α is to be
received as input on x ’ via ‘ α(◦).x ◦ ’ (so α is now also an input, and x also an output channel),
which for convenience is abbreviated into α x .

Definition 5.2 The interpretation of circuits is defined by:

〈x·α〉 = x(w).α w
ŷQ β̂·α = (νyβ) (! Q | α〈y,β〉)

P α̂ [x] ŷQ = x(v,d).((να) (! P | ! α v) | (νy) (! d y | ! Q))
P α̂ † x̂Q = P α̂ † x̂Q = P α̂ † x̂Q = (ναx) (! P | ! α x | ! Q)

Notice that the interpretation of the inactive cut is the same as that of activated cuts. This
implies that we are, in fact, also interpreting a variant of X without activated cuts, allowing
arbitrary movement of cuts over cuts, but with the same set of rewrite rules. This is very
different from Gentzen’s original definition – he in fact does not define a cut-over-cut step,
and uses innermost reduction for his Hauptsatz result – and different from Urban’s definition
– allowing only activated cuts to propagate is crucial for his Strong Normalisation result. Also,

International Workshop on Classical Logic and Computation (CL&C’08), 2008 11

one could argue that then the reduction rules no longer present a system of cut-elimination,
since now rule (†cut) reads:

P α̂ † x̂(Q β̂ † ŷR) →X (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

in which it is doubtful that a cut has been eliminated; it is also easy to show that this creates
loops in the reduction system. However, this rewriting is still sound with respect to typeability.
Here we can abstract from these aspects, since we only aim to prove a simulation result, for
which the encoding above will be shown adequate.

Example 5.3 The encoding of the witness of Peirce’s law becomes:

ẑ((ŷ〈y·δ〉 η̂ ·α) α̂ [z] ŵ〈w·δ〉) δ̂·γ =
(νzδ) (! z(v,d).((να) ! ((νyη) (! y(w).δ w | α〈y,η〉) | ! α v) |

(νw) (! d w | ! w(w).δ w)) | γ〈z,δ〉)
That this process is a witness of ((A→B)→A)→A is a straightforward application of Theo-
rem 5.1 below.

The correctness result for the encoding essentially states that the image of the encoding in
π contains some extra behaviour that can be disregarded.

Theorem 5.4 If P→X P′ , then for some Q , P →+
π Q and P′ π� Q .

This result might appear weak at first glance, but it would be a mistake to dismiss the
encoding on such an observation.

Our result states that the encoding of X into π contains more behaviour than the original
term. In part, the extra behaviour is due to replicated processes, which can be easily dis-
charged; but, more importantly, π has no notion of erasure of processes: the cut P α̂ † x̂Q , with
α not in P and x not in Q , in X erases either P or Q , but P α̂ † x̂Q then runs to P | Q
. The result presented in [24] is stronger, but only achieved for Call-by-Value λµ , and at the
price of a very intricate translation that depends on types. Also P essentially contains all
normal forms of P in parallel; since λµ is confluent, there is only one normal form, so the
problem disappears. Moreover, restricting to either (confluent) call-by-name or call-by-value
restrictions, also then the problem disappears.

The following theorem states one of the main results of this paper: it shows that the encod-
ing preserves types.

Theorem 5.1 If P : Γ �X ∆ , then P : Γ �π
io

∆ .

Notice that this theorem links proofs in lk to type derivations in �π

6 The Lambda Calculus

We assume the reader to be familiar with the λ -calculus; we just repeat the definition of
(simple) type assignment.

Definition 6.1 (Type assignment for the λ-calculus)

(Ax) :
Γ, x:A �λ x : A

(→I) :
Γ, x:A �λ M : B

Γ �λ λx.M : A→B

International Workshop on Classical Logic and Computation (CL&C’08), 2008 12

(→E) :
Γ �λ M : A→B Γ �λ N : A

Γ �λ MN : B

The following was already defined in [8]:

Definition 6.2 (Interpretation of the λ-calculus in X)

x α
λ

=
∆ 〈x·α〉

λx.M α
λ

=
∆ x̂ M β

λ β̂·α β fresh
MN α

λ
=
∆ M γ

λγ̂ † x̂(N β
λ β̂ [x] ŷ〈y·α〉) γ, β, x,y fresh

Observe that every sub-net of M α
λ has exactly one free plug, and that this is precisely α

. Moreover, notice that, in the λ -calculus, the output (i.e. result) is anonymous; where an
operand ‘moves’ to carries a name via a variable, but where it comes from is not mentioned,
since it is implicit. Since in X , a net is allowed to return a result in more than one way, in
order to be able to connect outputs to inputs we have to name the outputs; this forces a name
on the output of an interpreted λ -term M as well, carried in the sub-script of M α

λ ; this
name α is also the name of the current continuation, i.e. the name of the hole in the context in
which M occurs.

Combining the interpretation of λ into X and X into π , we get yet another encoding
of the λ -calculus into π [27, 26], one that preserves assignable simple types; as usual, the
interpretation is parametric over a name.

Definition 6.3 (Interpretation of the λ-calculus in π via X) The mapping · π· : Λ→π

is defined by: M
π

α = M α
λ

Since in [8] it is shown that the interpretation · ·
λ preserves both reduction and types, the

following result is immediate:

Corollary 6.1 (Simulation of the Lambda Calculus)
i) If M →β N then M

π

γ �π N
π

γ .

ii) If Γ �λ M : A , then M
π

α : Γ �π
io

α:A .

Conclusion

We studied how to give the computational meaning to classical proofs via the π-calculus.
Our results have been achieved in two steps: (1) we have encoded X into π enriched with
pairing and non-blocking input, and showed that the encoding preserves interesting semantic
properties; (2) we have defined a novel and ‘unusual’ type system for π and proved that types
are preserved by the encoding.

The caveat of the paper was to find the right intuition to reflect the computational meaning
of cut-elimination in π. Essentially we have interpreted the input in π as ‘witness’ for the
formulae on the left-hand side of the turnstyle in lk, and outputs as ‘witnesses’ for the right-
hand side. Arrow-right in lk corresponds to an output channel that sends a pair of names,
while arrow-left corresponds to a channel that inputs a pair of names (via the let constructor).
The cut-elimination procedure is then interpreted as a forwarder that connects an input and
an output via private channels that have the same type. Essentially, if we take the view that
input are witnesses for fomulae on the left-hand side of the turnstyle in lk and output are

International Workshop on Classical Logic and Computation (CL&C’08), 2008 13

witnesses for fomulae on the right-hand side of the turnstye in lk then the cut eliminates the
same formulue on the right and on the left of the turnstyle. Thus the representation of a cut
in π has to guarantee that the input’s and the output’s witness of formulae on the right and
left-hand side of the turnstyle can communicate. This is achieved by using the concept of
forwarder, that connects two processes with different inputs and outputs.

The work that naturally compares with ours is [24], where the encoding of cbv-λµ is pre-
sented. In that paper, full abstraction is proved, but for natural deduction rather than for the
sequent calculus as treated in this paper. In order to achieve the full abstraction result, the
authors have to introduce a notion of typed equivalence of Call-by-Value λµ. By contrast,
we have tried to give a simple, intuitive compositional encoding of lk in π and we leave for
future work to consider a restriction of π in order to make our result stronger. X is a calcu-
lus without application and substitution that is much easier to interpret in π; notice that we
needed no continuation-style encoding to achieve our results.

In [10] an intuive relation between fragments of linear logic and π-calculus was studied; the
results there do not compare with ours. The notion of correctness presented in that paper is
not between the logical rules and π, but between π and the ‘cut algebra’ which is essentially a
dialect of π. Note also that they encode the linear logic as opposed to the implicative fragment
of Classical Logic. In other work [3], the relationship with linear logic and game semantics is
studied. Both linear logic and game semantics are outside the scope of this paper, yet we leave
for future work the study of the relation of linear X (with explicit weakening and contraction)
[36], and relate that with both game semantics and π without replication.

One of the main goals we aimed for with our interpretation was: if α does not occur free
in P, and x does not occur free in Q, then both P α̂ † x̂Q →π P and P α̂ † x̂Q →π Q .
However, we have not achieved this; we can at most show that P α̂ † x̂Q reduces to a process
that contains P | Q . It is as yet not clear what this say about either X , or lk, or π, or simply
about the encoding. The problem is linked to the fact that π does not have an automatic
cancellation: since communication is based on the exchange of channel names, processes that
do not communicate with each other just ‘sit next to each other’. In X , a process that wants
to be ‘heard’, but is not ‘listened’ to, disappears; this corresponds to a proof contracting to
a proof, not to two non-connected proofs for the same sequent. But, when moving to linear
X , or ∗X , studied in [36], this all changes. Since there reduction can generate non-connected
nets, it seems promising to explore an encoding of ∗X in π.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. JFP, 1(4), 1991.
[2] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In 4th CCCS,

ACM Press, 1997.
[3] S. Abramsky. Computational interpretations of linear logic. TCS, 111(1&2), 1993.
[4] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic. JSL,

59(2), 1994.
[5] S. Abramsky. Proofs as processes. TCS, 135(1), 1994.
[6] Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP’03, LNCS

2719, 2003.
[7] S. van Bakel, S. Lengrand, and P. Lescanne. The language X : circuits, computations and classical

logic. In ICTCS’05, LNCS 3701, 2005.
[8] S. van Bakel and P. Lescanne. Computation with classical sequents. MSCS, 2008.
[9] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised

edition, 1984.
[10] G. Bellin and P. J. Scott. On the pi-Calculus and Linear Logic. TCS, 135(1), 11–65, 1994.

International Workshop on Classical Logic and Computation (CL&C’08), 2008 14

[11] T. Coquand and G. Huet. The Calculus of Constructions. IAC, 76(2,3), 1988.
[12] P.-L. Curien and H. Herbelin. The Duality of Computation. In ICFP’00, ACM, 2000.
[13] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.
[14] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expressions

and segments. TH-Report 78-WSK-03, University of Eindhoven, 1978.
[15] G. Gentzen. Untersuchungen über das Logische Schliessen. Math. Zeitschrift, 39, 1935.
[16] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[17] J.Y. Girard. The System F of Variable Types, Fifteen years later. TCS, 45, 1986.
[18] J.-Y. Girard. A new constrcutive logic: classical logic. Mathematical Structures in Computer Science,

1(3):255–296, 1991.
[19] T. Griffin. A formulae-as-types notion of control. In POPL’90, ACM, 1990.
[20] H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de

λ-termes et comme calcul de stratégies gagnantes. Thèse d’université, Paris 7, 1995.
[21] H. Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation,

Université Paris 11, Décembre 2005.
[22] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In ECOOP’91,

LNCS 512, 133–147, 1991.
[23] K. Honda and N. Yoshida. On the Reduction-based Process Semantics. TCS, 151:437–486, 1995.
[24] K. Honda, N. Yoshida, and M. Berger. Control in the π-calculus. In CW’04, 2004.
[25] J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, volume 2, chapter 1,

pages 1–116. Clarendon Press, 1992.
[26] R. Milner. Function as processes. In MSCS, 2(2), 1992.
[27] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.
[28] M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS 624,

1992.
[29] D. Sangiorgi and D. Walker. The Pi-Calculus. Cambridge University Press, 2003.
[30] A.J. Summers. Extending lambda-mu with first class continuations. Manuscript, 2007.
[31] H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University of Edin-

burgh, 1997.
[32] C. Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, 2000.
[33] C Urban. Strong Normalisation for a Gentzen-like Cut-Elimination Procedure’. In TLCA’01, LNCS

2044, 2001.
[34] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. FI, 45(1,2),

2001.
[35] P. Wadler. Call-by-Value is Dual to Call-by-Name. In ICFP’03, ACM, 2003.
[36] D. Žunić. Computing with Sequents and Diagrams in Classical Logic - Calculi ∗X , dX , and c©X .

PhD thesis, ENS Lyon, 2007.

