
A fully-abstract semantics of λµ in the π-calculus

(Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014)

Steffen van Bakel1 and Maria Grazia Vigliotti2

1: Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
2: Adelard LLP Exmouth House, 3-11 Pine Street London EC1R 0JH, UK

s.vanbakel@imperial.ac.uk mgv@adelard.com

Abstract

We study the λµ-calculus, extended with explicit substitution, and define a compositional
output-based interpretation into a variant of the π-calculus with pairing that preserves single-
step explicit head reduction with respect to weak bisimilarity. We define four notions of weak
equivalence for λµ – one based on weak reduction ∼wβµ, two modelling weak head-reduction
and weak explicit head reduction, ∼wh and ∼wxh respectively (all considering terms without
weak head-normal form equivalent as well), and one based on weak approximation ∼A – and
show they all coincide. We will then show full abstraction results for our interpretation for
the weak equivalences with respect to weak bisimilarity on processes.

Introduction

The research presented in this paper is part of an ongoing investigation into the suitability
of classical logic in the context of programming languages with control. Rather than looking
at how to encode known control features into calculi like the λ-calculus [9, 7], Parigot’s λµ-
calculus [21], or Λµ [13], as has been done in great detail by others, we focus on trying to
understand what is exactly the notion of computation that is embedded in calculi like λµ; we
approach that problem here by presenting a fully abstract interpretation for that calculus into
the (perhaps better understood) π-calculus [20].

In the past, many researchers investigated interpretations into the π-calculus of various
calculi that have their foundation in classical logic. From these papers it might seem that the
interpretation of such ‘classical’ calculi comes at a great expense; for example, to encode typed
λµ, [15] defines an extension of Milner’s encoding and considers a strongly typed π-calculus;
[3] shows preservation of reduction in X [4] only with respect to �c, the contextual ordering
(so not with respect to ∼c, contextual equavalence, nor with respect to weak bisimilarity); [10]
defines a non-compositional interpretation of λµµ̃ [11] that strongly depends on recursion,
and does not regard the logical aspect.

In [6] we started our investigations by presenting an interpretation for de Groote’s variant
Λµ into the π-calculus [20] and proved soundness; here we show that this interpretation is
fully abstract, but have to limit the interpretation to λµ terms. We study an output based
encoding of λµ into the π-calculus that is an extension of the one we defined for the λ-
calculus [5] and is a natural variant of that for Λµ in [6]. In those papers, we have shown
that our encoding respects single-step explicit head reduction (which only ever replaces the head
variable of a term) modulo ∼c.

We will here address the natural question that arises next: are two terms that are equal
under the interpretation also operational equivalent, i.e.: is the interpretation fully abstract?
We answer that question positively, using a new approach to showing full abstraction, for our

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 2

interpretation of λµ-terms (rather than Λµ as used in [6]) and thereby also for the standard
λ-calculus. Following the approach of [6] we can show that our interpretation respects single-
step explicit head reduction →xh modulo weak bisimularity ≈ rather than ∼c as used in [6] (we
omit the details here). We extend this result to ∼wxh, the equivalence relation generated by
→xh that equates also terms without (weak) normal form with respect to →xh. The main proof
of the full abstraction result is then achieved through showing that ∼wxh equates to ∼wβµ, the
equivalence relation generated by standard reduction that also equates terms without weak
head normal form.

This technique is considerably different from the one used by Sangiorgi, who has shown
a full abstraction result [23, 24] for Milner’s encoding M m a of the lazy λ-calculus [20]. To
achieve full abstraction, Sangiorgi proves that M m a ≈ N m a if and only if M =∼ N, where =∼
is the applicative bisimularity on λ-terms [2]. However, this result comes at a price: applicative
bisimulation equates terms that are not weakly bisimilar under · m ·. This has strong reper-
cussion as far as the interpretation of the λ-calculus is concerned: in order to achieve full
abstraction, Sangiorgi had to extend Milner’s encoding to Λc, a λ-calculus enriched with con-
stants and by exploiting a more abstract encoding into the Higher Order π-calculus, a variant
of the π-calculus with higher-order communications. Sangiorgi’s result then essentially states
that the interpretations of closed Λc-terms M and N are contextually equivalent if and only
if M and N are applicatively bisimilar; in [23] he shows that the interpretation of terms in Λc
in the standard π-calculus is weakly bisimilar if and only if they have the same Lévy-Longo
tree.

We would like to stress that in order to achieve full abstraction for our interpretation, we
did not need to extend the interpreted calculus, and use a first order π-calculus. In fact, the main
contribution of this paper and novelty of our proof is the structure of the proof of the fact that
our interpretation gives a fully abstract semantics. To wit, we define a choice of operational
equivalences for the λµ-calculus, both with and without explicit substitution. We define the
weak explicit head equivalence ∼wxh and show that this is exactly the relation that is naturally
representable in the π-calculus; we define weak head equivalence ∼xh and show that for λµ-
terms without explicit substitution, ∼wxh corresponds to ∼xh. The relation ∼wxh essentially
equates terms that have the same Lévy-Longo tree, but of course defined for λµ, which gets
shown through a notion of weak approximation. We then show that the relation ∼Aw , which
expresses that terms have the same set of weak approximants, ∼wxh, and ∼wβµ all correspond.

The combined results of [5, 6] and the full abstraction results we present here stress that
the π-calculus constitutes a very powerful abstract machine indeed: although the notion of
structural reduction in λµ is very different from normal β-reduction, no special measures had
to be taken in order to be able to express it through our interpretation. In fact, the distributive
character of application in λµ, and of both term and context substitution is dealt with by
congruence in π, and both naming and µ-binding are dealt with entirely statically by the
interpretation.

Notation: We will use a vector notation · as abbreviation for any sequence: for example, xi
stands for x1, . . . , xn, for any irrelevant n, or for {x1, . . . , xn}, and 〈αi := Ni · βi〉 for 〈α1 :=N1·β1〉
· · · 〈αn :=Nn·βn〉 , etc. When possible, we will drop the indices.

1 The λµ calculus and explicit substitution

In this section, we will briefly discuss Parigot’s λµ-calculus [21]; we assume the reader to be
familiar with the λ-calculus and its notion of reduction →β and equality =β.

λµ is a proof-term syntax for classical logic, expressed in Natural Deduction, defined as an

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 3

extension of the Curry type assignment system for the λ-calculus by adding the concept of
named terms, and adding the functionality of a context switch, allowing arguments to be fed to
subterms.

Definition 1.1 (Syntax of λµ) The λµ-terms we consider are defined over the set of variables
(Roman characters) and names, or context variables (Greek characters), through:

M, N ::= x | λx.M | MN | µα.[β]M

We will occasionally write C for the pseudo-term [α]M.

As usual, λx.M binds x in M, and µα.C binds α in C, and the notions of free variables
fv (M) and names fn(M) are defined accordingly; the notion of α-conversion extends naturally
to bound names and we assume Barendregt’s convention in that we assume that free and
bound variables and names are always distinct, using α-conversion when necessary. As usual,
M[N/x] stands for the substitution of all occurrences of x in M by N, and M[N·γ/α], the
structural substitution, for the term obtained from M when every (pseudo) sub-term of the
form [α]M′ is replaced by [γ]M′N. (We omit the formal definition here; see Def. 3.1 for the
variant with explicit structural substitution.)

Definition 1.2 (λµ reduction) Reduction on λµ-terms is defined as the contextual closure of
the rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.C)N → µγ.(C[N·γ/α])

renaming : µδ.[β](µγ.[α]M) → µδ.[α]M[β/γ]
erasing : µα.[α]M → M (α �∈ fn(M))

We use →∗
βµ for the pre-congruence based on these rules, =βµ for the congruence, write

M →nf
βµ N if M →∗

βµ N and N is in normal form, M →βµ
hnf N if M →∗

βµ N and N is in head-
normal form, M⇓ if there exists a finite reduction path starting from M, and M⇑ if this is not
the case; we will use these notations for other notions of reduction as well.

That this notion of reduction is confluent was shown in [22]; so we have:

Proposition 1.3 If M =βµ N and M →∗
βµ P, then there exists Q such that P →∗

βµ Q and N →∗
βµ Q.

Definition 1.4 (Head reduction for λµ (cf. [19])) i) We define head reduction →h as the re-
striction of →βµ by removing the contextual rule: M → N ⇒ LM → LN

ii) The λµ head-normal forms (hnf) are defined through the grammar:

H ::= λx.H
| xM1 · · · Mn (n ≥ 0)
| µα.[β]H (β �= α or α ∈ H, and H �= µγ.[δ]H ′)

iii) The notion of head variable of M, hv (M), and head name hn (M) are defined as expected.

The following is straightforward:

Proposition 1.5 (→h implements λµ’s head reduction) If M →∗
βµ N with N in hnf (so M →βµ

hnf

N), then there exists H such that M →h
nf H (so H is in →h-normal form) and H →∗

βµ N without using
→h.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 4

2 The synchronous π-calculus with pairing

The notion of π-calculus that we consider in this paper was already considered in [5] and is
different from other systems studied in the literature [14] in that it adds pairing and uses a
let-construct to deal with inputs of pairs of names that get distributed, similar to that defined
in [1]; in contrast to [3, 5], we do not consider the asynchronous π-calculus.

As already argued in [5], the main reason for the addition of pairing lies in preservation
of (implicate, or functional) type assignment; therefore data is introduced as a structure over
names, such that not only names but also pairs of names can be sent (but not a pair of pairs);
this way a channel may pass along either a name or a pair of names.

Definition 2.1 (Processes) Channel names and data are defined by:

a,b, c,d, x,y,z names p ::= a | 〈a,b〉 data

Processes are defined by:

P ,Q ::= 0 | P |Q | !P | (νa)P | a(x).P | a p .P | let 〈x,y〉=p in P

We see, as usual, ν as a binder, and call the name n bound in (νn)P , x bound in a(x).P and x,y
bound in let 〈x,y〉=p in P ; we write bn(P) for the set of bound names in P ; n is free in P if it
occurs in P but is not bound, and we write fn(P) for the set of free names in P .

Notice that data occurs only in two cases: a p and let 〈x,y〉= p in P , and that then p is either
a single name, or a pair of names; we therefore do not allow a(〈x,y〉).P , nor a 〈〈b,c〉,d〉.P , nor
〈b,c〉 p .P , nor (ν〈a,b〉)P , nor let 〈〈a,b〉,y〉= p in P , etc.

We abbreviate a(x).let 〈y,z〉=x in P by a(y,z).P , (νm) (νn)P by (νmn)P , and write a p for
a p .0 . As in [24], we write a b for the forwarder a(x).b x .

Definition 2.2 (Structural Congruence) The structural congruence is the smallest congru-
ence generated by the rules:

P | 0 ≡ P
P | Q ≡ Q | P

!P ≡ P | !P
(νn)0 ≡ 0

(P | Q) | R ≡ P | (Q | R)
(νm) (νn)P ≡ (νn) (νm)P
(νn) (P | Q) ≡ P | (νn)Q (n �∈ fn(P))

let 〈x,y〉= 〈a,b〉 in P ≡ P [a/x,b/y]

As usual, we will consider processes modulo congruence and α-conversion: this implies that
we will not deal explicitly with the process let 〈x,y〉= 〈a,b〉 in P , but rather with P [a/x,b/y].
Because of rule (P | Q) | R ≡ P | (Q | R), we will not write brackets in a parallel composition
of more than two processes.

Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 2.3 (Reduction) The reduction relation over the processes of the π-calculus is de-
fined by the following (elementary) rules:

a p .P | a(x).Q →π P | Q [p/x]
P →π P’ ⇒ (νn)P →π (νn)P ′
P →π P ′ ⇒ P | Q →π P ′ | Q

P ≡ Q & Q →π Q ′ & Q ′ ≡ P ′ ⇒ P →π P ′

Notice that let 〈x,y〉= a in P (where a is a name) is stuck.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 5

There are several notions of equivalence defined for the π-calculus: the one we consider
here, and will show is related to our encoding, is that of weak-bisimilarity.

Definition 2.4 (Weak-bisimilarity) i) We write P ↓n and say that P outputs on n (or P ex-
hibits an output barb on n) if P ≡ (νb) (n p .Q | R), where n �∈ b, and P ↓n (P inputs on n) if
P ≡ (νb) (n(x).Q | R), where n �∈ b.

ii) We write P ⇓n (P will output on n) if there exists Q such that P →∗
π Q and Q ↓n, and P ⇓n

(P will input on n) if there exists Q such that P →∗
π Q and Q ↓n.

iii) A barbed bisimilarity ≈· is the largest symmetric relation such that P ≈· Q satisfies:

– for every name n: if P ↓n then Q ⇓n, and if P ↓n then Q ⇓n;
– for all P ′, if P →∗

π P ′, then there exists Q ′ such that Q →∗
π Q ′ and P ′ ≈· Q ′;

iv) Weak-bisimilarity is the largest relation ≈ defined by: P ≈ Q if and only if C[P] ≈· C[Q] for
any context C[·].

3 λµx: λµ with explicit substitution

One of the main achievements of [5] is that it establishes a strong link between reduction in
the π-calculus and step-by-step explicit substitution [8] for the λ-calculus, by formulating a
result not only with respect to explicit head reduction and the spine interpretation defined
there, but also for Milner’s interpretation [20] with respect to explicit lazy reduction.

In view of this, for the purpose of our interpretation it was natural to study a variant of
Λµ in [6] with explicit substitution as well; since here we work with λµ, we present here λµx,
as a variant of Λµx as presented in that paper. Explicit substitution treats substitution as a
first-class operator, both for the logical and the structural substitution, and describes all the
necessary steps to effectuate both.

Definition 3.1 (λµx) i) The syntax of the explicit λµ calculus, λµx, is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉 | µα.[β]M | M 〈α :=N·γ〉
We consider the occurrences of x in M bound in M 〈x :=N〉, and those of α in M in
M 〈α :=N·γ〉; by Barendregt’s convention, x and α do not appear outside M.

ii) The reduction relation →x on λµx is defined as the contextual closure of the following
rules:
a) Main reduction rules:

(λx.M)N → M 〈x :=N〉
(µα.C)N → µγ.C 〈α :=N·γ〉 (γ fresh)
µβ.[β]M → M (β �∈ fn(M))
[β]µγ.C → C[β/γ]

b) Term substitution rules:

x 〈x :=N〉 → N
M 〈x :=N〉 → M (x �∈ fv (M))

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉)

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 6

c) Structural rules:

(µδ.C) 〈α :=N·γ〉 → µδ.(C 〈α :=N·γ〉)
([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N
([β]M) 〈α :=N·γ〉 → [β](M 〈α :=N·γ〉) (α �= β)

M 〈α :=N·γ〉 → M (α �∈ fn(M))
(λx.M) 〈α :=N·γ〉 → λx.M 〈α :=N·γ〉
(PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉)(Q 〈α :=N·γ〉)

iii) We use →:= for the notion of reduction where only term substitution and structural rules
are used (so not the main reduction rules).

Notice that since reduction in λµx is formulated via term rewriting rules [16], reduction is
allowed to take place also inside the substitution term. The following is straightforward:

Proposition 3.2 (λµx implements λµ-reduction) i) M →βµ N ⇒ M →∗
x N.

ii) M ∈ λµ & M →x N ⇒ ∃L ∈ λµ [N →∗
:= L].

In the context of head reduction and explicit substitution, we can economise further on
how substitution is executed, and perform only those that are essential for the continuation
of reduction. We will therefore limit substitution to allow it to only replace the head variable of
a term. (This principle is also found in Krivine’s machine [17].) The results of [5] show that
this is exactly the kind of reduction that the π-calculus naturally encodes.

Definition 3.3 (Explicit head reduction) We define explicit head reduction →xh on λµx as
→x, but change and add a few rules (we only give the changes):

i) Term substitution rules: (PQ) 〈x :=N〉 → (P 〈x :=N〉 Q) 〈x :=N〉 (x = hv (P))
ii) There are only two structural rules:

(µβ.[α]M) 〈α :=N·γ〉 → µβ.[γ](M 〈α :=N·γ〉)N (α = hn (µβ.[α]M))
M 〈α :=N·γ〉 → M (α �∈ fn(M))

iii) We remove the following contextual rules:

M → N ⇒



LM → LN
L 〈x :=M〉 → L 〈x :=N〉
L 〈α :=M·γ〉 → L 〈α :=N·γ〉

so no longer allow reduction inside the substitution or inside the right-hand side of an
application.

iv) We add two substitution rules:

M 〈x :=N〉 〈y :=P〉 → M 〈y :=P〉 〈x :=N〉 〈y :=P〉 (y = hv (M))
M 〈α :=N·γ〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈α :=N·γ〉 〈β := L·δ〉 (β = hn (M))

Notice that, for example, in case (i), the clause postpones the substitution 〈x :=N〉 on Q until
such time that an occurrence of the variable x in Q becomes the head-variable of the full term.

The following proposition states the relation between explicit head reduction, head reduc-
tion, and explicit reduction.

Proposition 3.4 i) If M →∗
h N, then there exists L ∈ λµx such that M →∗

xh L and L →∗
:= N.

ii) If M →nf
xh N with M ∈ λµ, then there exists L ∈ λµ such that N →nf

:= L, and M →h
nf L.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 7

iii) M →nf
βµ N if and only if there exists L ∈ λµx such that M →nf

xh L and L →nf
x N.

This result gives that we can show our main results for λµx for reductions that reduce to hnf.

4 A logical interpretation of λµx-terms to π-processes

We will now define our logical, 1 output-based interpretation M a of the λµx-calculus into
the π-calculus (where M is a λµ-term, and a is the name given to its (anonymous) output),
which is essentially the one presented in [6], but no longer considers [α]M to be a term. The
reason for this change is the following: using the interpretation of [6],

µα.λx.x a = (νs) ((νxb)(x(u).! u b | s〈x,b〉))
is in normal form, and all inputs and outputs are restricted; thereby, it is weakly bisimilar to 0
and to (λx.xx)(λx.xx) a. So using that interpretation, we cannot distinguish between blocked
and looping computations, which clearly affects any full-abstraction result. When restricting
our interpretation to λµ, this problem disappears: since naming has to follow µ-abstraction,
µα.λx.x is not a term in λµ. Since λµ is a subcalculus of Λµ, this change clearly does not affect
the results shown in [6] that all hold for the interpretation we consider here as well.

The main idea behind the interpretation, as in [5], is to give a name to the anonymous
output of terms; it combines this with the inherent naming mechanism of λµ. As shown
in [6], this encoding naturally represents explicit head reduction; we will need to consider
weak reduction later for the full abstraction result, but not for soundness, completeness, or
termination.

Definition 4.1 (Logical interpretation [6]) The interpretation of λµx terms into the π-calculus
is defined by:

x a =
∆ x(u).! u a (u fresh)

λx.M a =
∆ (νxb)(M b | a〈x,b〉) (b fresh)

MN a =
∆ (νc) (M c | ! c(v,d).(v :=N | ! d a)) (c,v,d fresh)

M 〈x :=N〉 a =
∆ (νx)(M a | x :=N)

x := N a =
∆ ! x(w). N w (w fresh)

µγ.C a =
∆ (νs) C s [a/γ] (s fresh)

[β]M a =
∆ M β

M 〈β :=N·γ〉 a =
∆ (νβ)(M a | β :=N·γ)

α := M·γ a =
∆ ! α(v,d).(v :=N | !d γ) (v,d fresh)

Notice that µγ.[β]M a =
∆ (νs) [β]M s [a/γ] =

∆ (νs) M β [a/γ] ≡ M β[a/γ] which im-
plies that we can add µγ.[β]M a =∆ M β[a/γ] to our encoding.

Observe the similarity between

MN a =
∆ (νc) (M c | ! c(v,d).(v :=N | ! d a)) and

M 〈c :=N·γ〉 a =
∆ (νc)(M a | c :=N·γ)

=
∆ (νc)(M a | !c(v,d).(v :=N | ! d γ))

The first communicates N via the output channel c of M (which might occur more than once
inside M c, so replication is needed), whereas the second communicates with all the sub-

1 It is called logical because it has its foundation in the relation between natural deduction and Gentzen’s
sequent calculus.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 8

terms that have c as output name, and changes the output name of the process to γ. In other
words, application is just a special case of explicit structural substitution; this allows us to
write (νc) (M c | c := N·a) for MN a. This stresses that the π-calculus constitutes a very
powerful abstract machine indeed: although the notion of structural reduction in λµ is very
different from normal β-reduction, no special measures had to be taken in order to be able to
express it; the component of our interpretation that deals with pure λ-terms is almost exactly
that of [5] (ignoring for the moment that substitution is modelled using a guard, which affects
also the interpretation of variables), but for the use of replication in the case for application.

As in [20, 24], we can now show a reduction-preservation result for explicit head reduction
for λµx, by showing that · · preserves →xh up to weak bisimularity.

Theorem 4.2 (Operational Soundness [6]) i) M →∗
xh N ⇒ M a ≈ N a.

ii) If M⇑xh then M a⇑.

The proof in [6] shows that β-reduction is implemented in π by at least one synchronisation.
We can also show that reduction with explicit substitution, →x, is preserved under our

encoding by weak bisimulation. Note that this result is stated for =x, not =xh, and that it does
not show that the encoding of terms is related through reduction.

Theorem 4.3 If M =x N, then M a ≈ N a.

Proof: By induction on the definition of =x.

Now the following is an immediate consequence:

Theorem 4.4 (Semantics) If M =βµ N, then M a ≈ N a.

Proof: By induction on the definition of =βµ. The case M →∗
βµ N follows from the fact that

then, by Proposition 3.2, also M →∗
x N, so by Theorem 4.3, we have M a ≈ N a. The steps

to an equivalence relation follow directly from ≈.

Notice that it is clear that we cannot prove the exact reversal of this result, since terms
without head-normal form are all interpreted by 0 (see also Lem. 5.6), but are not all related
through =βµ. Using weak equivalence, we can deal with the reverse part, and will do so in
the last sections of this paper.

5 Weak equivalences for λµ and λµx

Since ∆∆ and ΩΩ (where ∆= λx.xx and Ω = λy.yyy) are closed terms that do not interact with
any context, they are contextually equivalent; any well-defined interpretation of these terms
into the π-calculus, be it input based or output based, will therefore map those to processes
that are weakly bisimilar to 0 , and therefore to weakly bisimilar processes. Abstraction, on
the other hand, enables interaction with a context, and therefore the interpretation of λz.∆∆
will not be weakly bisimilar to 0 . We therefore cannot hope to model normal βµ-equality in
the π-calculus in a fully abstract way; rather, we need to consider a notion of reduction that
considers all abstractions meaningful; therefore, the only kind of reduction on λ-calculi that
can naturally be encoded into the π-calculus is weak reduction.

Definition 5.1 We define the notion →wβµ of weak βµ-reduction as in Def. 1.2, the notion →wh

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 9

of weak head reduction2 on λµ as in Def. 1.4, and the notion →wxh of weak explicit head reduction
on λµx as in Def. 3.3, by (also) eliminating the rules:

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(λx.M) 〈α :=N·γ〉 → λx.(M 〈α :=N·γ〉)

M → N ⇒ λx.M → λx.N

We define the notion of weak head-normal forms, the normal forms with respect to weak
head-reduction:

Definition 5.2 (Weak head-normal forms for λµ) i) The λµ weak head-normal forms (whnf)
are defined through the grammar:

Hw ::= λx.M
| xM1 · · · Mn (n ≥ 0)
| µα.[β]Hw (α �= β or α ∈ Hw,Hw �= µγ.[δ]H ′

w)

ii) We say that M has a whnf if there exists Hw such that M →∗
wh Hw.

The main difference between hnfs and whnfs is in the case of abstraction: where the
definition of hnf only allows for the abstraction over a hnf, for whnfs any term can be
the body. Moreover, notice that both λz.∆∆ and λz.ΩΩ are in whnf.

Since →wxh ⊆ →xh, we can show the equivalent of Lem 1.5 and Thm. 4.2 also for weak
explicit head reduction:

Theorem 5.3 (cf. [6]) i) If M →∗
wxh N, then M a ≈ N a.

ii) If M →∗
βµ N with N in whnf, then there exists Hwx such that M →nf

wxh Hwx and Hwx →∗
x N

without using →wxh.

We also define weak explicit head-normal forms.

Definition 5.4 (Weak explicit head-normal forms) i) The λµx weak explicit head-normal forms
(wehnf) are defined through:

Hwx ::= λx.M 〈y :=N〉 〈σ :=Q·τ〉
| xM1 · · ·Mn 〈y :=N〉 〈σ :=Q·τ〉 (n ≥ 0, x �∈ y)
| µα.[β]Hwx 〈y :=N〉 〈σ :=Q·τ〉

(β �∈ σ, α �= β or α ∈ Hwx, and Hwx �= µγ.[δ]H ′
wx)

ii) We say that M ∈ λµx has an wehnf if there exists Hwx such that M →∗
wxh Hwx.

Remark 5.5 In the context of reduction (normal and weak), when starting from pure terms,
the substitution operation can be left inside terms in normal form, as in

(λx.yM)NL →xh yM 〈x :=N〉 L.

However, since, by Barendregt’s convention, x does not appear free in L, the latter term is
operationally equivalent to yML 〈x :=N〉 ; in fact, these two are equivalent under ∼wh (see
Def. 5.10), and also congruent when interpreted as processes. Since in weak reduction the

2 This notion is also known as lazy reduction; for the sake of keeping our terminology consistent, we prefer to
call it weak head reduction.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 10

reduction (λx.M) 〈y :=N〉 for λx.(M 〈y :=N〉) is not allowed, also this substitution can be
considered to stay at the outside. Therefore, without loss of generality, for readability and
ease of definition we will use a notation for terms that places all explicit substitutions on
the outside.3 So actual terms can have substitutions inside, but they are written as if they
appear outside. To ease notation, we will use S for a set of substitutions of the shape 〈x :=N〉
or 〈α :=N·γ〉 when the exact contents of the substitutions is not relevant; we write x ∈ S if
〈x :=N〉 ∈ S and similarly for α ∈ S.

We can show that the interpretation of a term without whnf is weakly bisimilar to 0 .

Lemma 5.6 If M has no wehnf (so M also has no whnf), then M a ≈ 0 .

Proof: If M has no wehnf, then all M’s reducts are of the shape (λx.P1)P2 · · ·Pn 〈y :=Q〉 〈α :=R·β〉
(perhaps prefixed with a context switch µα.[β], which, as we have seen, does not fundamen-
tally change the structure of the process). Then:

(λx.P1)P2 · · ·Pn 〈y :=Q〉 〈α :=R·β〉 a =
∆

(νc)((νxb)(P1 b | c1〈x,b〉) | ci−1 :=Pi·ci | y :=Q | α :=R·β)

where cn−1 = a. Since a synchronisation over c1 is possible, the process is not in normal form.
Observe that all outputs are over bound names or under guard, and since the result of the
reduction has no head variable, no input is exposed. So M a ≈ 0 .

We can show the following property.

Lemma 5.7 Let M and N be pure λµ-terms; then M →nf
wh N if and only if there exists N′, S such that

M →nf
wxh N′ S, and N′ S →nf

:= N.

Proof: Straightforward, using Prop. 3.4.

We will now define equivalences ∼wβµ and ∼wh between terms of λµ, and ∼wxh between
terms of λµx (the last two are defined coinductively as bisimulations), that are based on
weak reduction, and show that the last two equate the same pure λµ-terms. These notions all
consider terms without whnf equivalent. This is also the case for the approximation semantics
we present in the next section.

First we define a weak equivalence generated by the reduction relation →wβµ.

Definition 5.8 We define ∼wβµ as the smallest congruence that contains:

M, N have no whnf ⇒ M ∼wβµ N
(λx.M)N ∼wβµ M[N/x]
(µα.C)N ∼wβµ µγ.C[N·γ/α] (γ fresh)

µα.[β]µγ.[δ]M ∼wβµ µα.([δ]M[β/γ])
µα.[α]M ∼wβµ M (α �∈ M)

Since reduction is confluent, the following is immediate.

3 This is exactly the approach of Krivine’s machine, where explicit substitutions are called closures that form an
environment in which a term is evaluated.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 11

Proposition 5.9 If M ∼wβµ N and M →∗
wβµ Hw, then there exists H ′

w such that Hw ∼wβµ H ′
w and

N →∗
wβµ H ′

w.

The other two equivalences we consider are generated by weak head reduction and weak explicit
head reduction. We will show in Theorem 5.13 that these coincide for pure, substitution-free
terms.

Definition 5.10 (Weak head equivalence) The relation ∼wh is defined co-inductively as the
largest symmetric relation such that: M ∼wh N if and only if either M and N have both no
whnf, or both M →nf

wh M′ and N →nf
wh N′, and either:

• if M′ = xM1 · · · Mn (n ≥ 0), then N′ = xN1 · · ·Nn and Mi ∼wh Ni for all 1 ≤ i ≤ n; or
• if M′ = λx.M′′, then N′ = λx.N′′ and M′′ ∼wh N′′; or
• if M′ = µα.[β]M′′, then N′ = µα.[β]N′′ (so α �= β or α ∈ fn(M′′), M′′ �= µγ.[δ]R, and simi-

larly for N′′), and M′′ ∼wh N′′.

Notice that λz.∆∆ ∼wh λz.ΩΩ because ∆∆ ∼wh ΩΩ, since neither has a whnf.
We will now define a notion of weak explicit head equivalence, that, in approach, corre-

sponds the weak head equivalence but for the fact that now explicit substitutions are part of
terms.

Definition 5.11 (Weak explicit head-equivalence) The relation ∼wxh is defined co-inductively
as the largest symmetric relation such that: M ∼wxh N if and only if either M and N have both
no →wxh-normal form, or both M →nf

wxh M′ S and N →nf
wxh N′ S ′, and either:

• if M′ = xM1 · · · Mn (n ≥ 0), then N′ = xN1 · · ·Nn (so x �∈ S, x �∈ S ′) and Mi S ∼wxh Ni S ′ for
all 1 ≤ i ≤ n; or

• if M′ = λx.M′′, then N′ = λx.N′′ and M′′ S ∼wxh N′′ S ′; or
• if M′ = µα.[β]M′′, then N′ = µα.[β]N′′ (so α �= β or α ∈ fn(M′′), M′′ �= µγ.[δ]R, so β �∈ S,

β �∈ S ′, and similarly for N′′) and M′′S ∼wxh N′′ S ′.

Notice that µα.[β]∆∆ ∼wxh ∆∆.
The following results formulate the strong relation between ∼wh and ∼wxh, and therefore

between →wh and →wxh. We first show that pure terms that are equivalent under ∼wxh are
also so under ∼wh.

Lemma 5.12 Let M and N be pure λµ-terms. M ∼wh N if and only if there are M′, N′ such that
M′ →nf

:= M and N′ →nf
:= N, and M′ ∼wxh N′.

Proof: (only if) : By co-induction on the definition of ∼wh. If M ∼wh N, then either:

– M →nf
wh xM1 · · · Mn and N →nf

wh xN1 · · ·Nn and Mi ∼wh Ni, for all 1 ≤ i ≤ n. Then, by
Lem. 5.7, there are M′

i such that

M →nf
wxh xM′

1 · · · M′
n S →∗

:= xM1 · · · Mn

N →nf
wxh xN′

1 · · ·N′
n S ′ →∗

:= xN1 · · ·Nn

But then M′
i S →nf

:= Mi and N′
i S ′ →nf

:= Ni, for all 1 ≤ i ≤ n; then by induction, M′
i S ∼wxh

N′
i S ′ for all 1 ≤ i ≤ n. But then M ∼wxh N.

The other cases are similar.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 12

(if) : By co-induction on the definition of ∼wxh. If there are M′, N′ such that M′ →nf
:= M and

N′ →nf
:= N, and M′ ∼wxh N′, then either:

– M′ →nf
wxh xM′

1 · · · M′
n S, N′ →nf

wxh xN′
1 · · ·N′

n S ′ and M′
i S ∼wxh N′

i S ′. Let, for all 1≤ i≤ n,
M′

i S →nf
:= Mi and N′

i S →nf
:= Ni then by induction, Mi ∼wh Ni. Notice that we have

M′ →nf
wxh xM′

1 · · · M′
n S →nf

:= xM1 · · · Mn. Let M′ = M′′S ′′, so M′′S ′′ →nf
wxh xM′

1 · · · M′
n S ′ S ′′,

where S= S ′ S ′′. Let M′′S ′′ →nf
:= M, then by Lem. 5.7, we also have M →nf

wxh xM′′
1 · · · M′′

n S ′ →nf
wh

xM1 · · · Mn. Then, again by Lem. 5.7, M →nf
wh xM1 · · · Mn; likewise, we have N →nf

wh
xN1 · · ·Nn. But then M ∼wh N.

The other cases are similar.

Notice that this lemma in fact shows:

Theorem 5.13 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N.

6 Full abstraction for the logical interpretation

In this section we will show our main result, that the logical encoding is fully abstract with
respect to weak equivalence between pure λµ-terms. To achieve this, we show in Thm. 6.9 that
M a ≈ N a iff M ∼wxh N. We are thus left with the obligation to show that M ∼wxh N iff

M ∼wβµ N. In Thm. 5.13 we have shown that M ∼wxh N iff M ∼wh N, for pure terms; to achieve
M ∼wh N iff M ∼wβµ N, we go through a notion of weak approximation; based on Wadsworth’s
approach [26], we define ∼Aw that expresses that terms have the same approximants and show
that M ∼wh N iff M ∼Aw N iff M ∼wβµ N.

We can show that if the interpretation of M produces an output, then M reduces by head
reduction to an abstraction; similarly, if the interpretation of M produces an input, then M
reduces by head reduction to a term with a head variable.

Lemma 6.1 i) If M a⇓ a, then there exist x, N and S such that M a ≈ λx.N S a, and M →nf
wxh

λx.N S.
ii) If M a⇓ c, with a �= c, then there exist α, c, x, N and S such that M a ≈ µα.[c]λx.N S a, and

M →nf
wxh µα.[c]λx.N S.

iii) If M a⇓ x, then there exist zj, x, Ni, c and S with x �∈ zj, m ≥ 0, and n ≥ 0 such that

– M a ≈ λz1 · · · zm.xN1 · · ·Nn S c;
– M →nf

wxh λz1 · · · zm.xN1 · · ·Nn S if a = c;
– M →nf

wxh µα.[c]λz1 · · · zm.xN1 · · ·Nn[a/α]S, if a �= c.

Proof: Straightforward.

As to the reverse, we can show:

Lemma 6.2 i) If M →nf
wxh λx.N S, then M a⇓ a.

ii) If M →nf
wxh µα.[β]λx.N S, then M a⇓β.

iii) M a⇓ x if M →nf
wxh xN1 · · ·Nn S or M →nf

wxh µα.[β]xN1 · · ·Nn S.

Proof: Straightforward.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 13

Essentially following [26], we now define a weak approximation semantics for λµ. Approxi-
mation for λµ has been studied by others as well [25, 12]; however, seen that we are mainly
interested in weak reduction here, we will define weak approximants, which are normally not
considered.

Definition 6.3 (Weak approximation for λµ) i) The set of λµ’s weak approximants Aw is de-
fined through the grammar:

Aw ::= ⊥ | λx.Aw | xA1
w · · ·An

w (n ≥ 0)
| µα.[β]Aw (α �= β or α ∈ Aw, Aw �= µγ.[δ]A′

w, Aw �= ⊥)

ii) The relation � ⊆ Aw × λµ is the smallest preorder that is the compatible extension of
⊥ � M.

iii) Aw(M) =
∆ {Aw ∈Aw | ∃N ∈ λµ [M →∗

βµ N & Aw � N]}.

iv) Weak approximation equivalence is defined through: M ∼Aw N =
∆ Aw(M) =Aw(N).

The relationship between the approximation relation and reduction is characterised by:

Lemma 6.4 i) If Aw � M and M →∗
βµ N, then Aw � N.

ii) If Aw ∈Aw(N) and M →∗
βµ N, then also Aw ∈Aw(M).

iii) If Aw ∈Aw(M) and M →βµ N, then there exists L such that N →∗
βµ L and Aw � L.

iv) M is a whnf if and only if there exists Aw �= ⊥ such that Aw � M.

As is standard in other settings, interpreting a λµ-term M through its set of weak approxi-
mants Aw(M) gives a semantics.

Theorem 6.5 (Weak approximation semantics) If M =βµ N, then M ∼Aw N.

Proof: Using Prop. 1.3 and Lem. 6.4.

The reverse implication of this result does not hold, since terms without whnf (which have
only ⊥ as approximant) are not all related by reduction. But we can show the following full
abstraction result:

Theorem 6.6 (Full abstraction of ∼wβµ versus ∼Aw) M ∼wβµ N if and only if M ∼Aw N.

Proof: (if) : By co-induction on the definition of the set of weak approximants.

(only if) : As the proof of Theorem 6.5, but using Proposition 5.9 rather than 1.3.

We can also show that weak head equivalence and weak approximation equivalence coin-
cide:

Theorem 6.7 M ∼wh N if and only if M ∼Aw N.

Proof: Straightforward, by coinduction.

We can define M Aw = �{Aw | Aw ∈ Aw(M)}, with � the least-upper bound with respect
to �; then · Aw corresponds to the (λµ variant of) Lévy-Longo trees. Combined with the
results shown in the previous section, we now also have the following result that states that
all equivalences coincide:

Corollary 6.8 Let M, N ∈ λµ, then M ∼wxh N ⇐⇒ M ∼wh N ⇐⇒ M ∼Aw N ⇐⇒ M ∼wβµ N.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 14

We now come to the main result of this paper, where we show a full abstraction result for
our logical interpretation. First we show the relation between weak explicit head equivalence
and weak bisimilarity.

Theorem 6.9 (Full abstraction of ≈ versus ∼wxh) For any M, N ∈ λµx: M a ≈ N a if and
only if M ∼wxh N.

Proof: (if) : By co-induction on the definition of ∼wxh. Let M ∼wxh N, then either M and N
have both no →wxh-normal form, so, by Lem. 5.6, their interpretations are both weakly
bisimilar to the process 0 ; or both M →nf

wxh M′S and N →nf
wxh N′ S ′ (let S= 〈y :=P〉 〈α :=Q·β〉 ,

and S ′ = 〈y :=P′〉 〈α :=Q′·β〉), and either:
(M′ = xM1 · · · Mn (n ≥ 0), N = xN1 · · ·Nn and Mi S ∼wxh Ni S ′, for all 1 ≤ i ≤ n) :

We have M a ≈ xM1 · · · Mn S a and N a ≈ xN1 · · ·Nn S ′ a by Corollary 5.3. Notice
that

xM1 · · · Mn S a = (νcyα) (x(u).! u c1 | ci :=Mi·ci+1 | S)

where cn = a and

S = y :=P | α :=Q·β
ci :=Mi·ci+1 = ! ci(v,d).(! v(w). Mi w | !d ci+1)

yj :=Pj = ! yj(w). Pj w
αk :=Qk·βk = ! αk(v,d).(! v(w). Qk w | !d βk)

and similar for xN1 · · ·Nn S ′ a. By induction,

(νyα) (Mi w | S) =
∆ Mi S w ≈ Ni S ′ w =

∆ (νyα) (Ni w | S ′)

Since ≈ is a congruence, also

! ci(v,d).(! v(w). Mi w | ! d ci+1) | S ≈ !ci(v,d).(! v(w). Ni w | ! d ci+1) | S ′

for all 1≤ i ≤ n, so also xM1 · · · Mn S a ≈ xN1 · · ·Nn S ′ a but then also M a ≈ N a.
(M′ = λx.M′′ or M′ = µγ.[δ]M′′) : Similar.

(only if) : We distinguish the following cases.
a) M a can never input nor output; then M a ≈ 0 ≈ N a. Assume M has a weak-head

normal form, then by Lem. 6.2, M a is not weakly bisimilar to 0 ; therefore, M and N
both have no weak-head normal form.

b) M a⇓ c, then by Lem. 6.1, M a ≈ (νxb) (M′ b | c〈x,b〉 | S), and M →∗
wxh λx.M′ S.

Since M a ≈ N a, also N a⇓ c, so N a ≈ (νxb) (N′ b | c〈x,b〉 | S ′) and N →∗
wxh

λx.N′ S ′. Then also M′ b | S ≈ N′ b | S ′ , so M′ S a ≈ N′ S ′ a and by induction,
M′ S ∼wxh N′ S ′; so also M ∼wxh N by definition.

c) If M a � ⇓ c, but M a⇓ x, then by Lem. 6.1, M a ≈ xM1 · · · Mn S a′ and M →∗
wxh

xM1 · · · Mn S. We have

xM1 · · · Mn S a′ = (νcyα) (x(u).! u c1 | ci :=Mi·ci+1 | S)

with S , ci :=Mi·ci+1 , yj :=Pj , and αk :=Qk·βk are defined as above.
Since M a ≈ N a, again by Lem. 6.1, N a ≈ xN1 · · ·Nn S ′ a′′ and N →∗

wxh xN1 · · ·Nn S ′.
Notice that

xN1 · · ·Nn S ′ a′′ = (νcyα) (x(u).! u c1 | ci :=Ni·ci+1 | S ′)

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 15

with S ′ , ci :=Ni·ci+1 , yj :=P′
j , and αk :=Q′

k·βk similar to above. Then we have

xM1 · · · Mn S a′ ≈ xN1 · · ·Nn S ′ a′′,

so a′ = a′′ and M′
i S w ≈ N′

i S ′ w; then by induction, M′
i S ∼wxh N′

i S ′, and M ∼wxh N.

We now obtain our main result:

Theorem 6.10 (Full abstraction) Let M, N ∈ λµ, then M a ≈ N a if and only if M ∼wβµ N.

Conclusions and future work

We have studied the output based, logic-inspired interpretation of untyped λµ with explicit
substitution into the π-calculus and shown that this interpretation is fully abstract with respect
to weak equivalence between terms and weak bisimilarity between processes.

We have defined the weak equivalences ∼wβµ, ∼wh, ∼wxh, and ∼Aw on λµ terms, and shown
that these all coincide. We then proved that M ∼wxh N ⇐⇒ M a ≈ N a, which, combined
with our other results, essentially shows that · · respects equality between Lévy-Longo trees
for λµ.

We will investigate the relation between our interpretation and the cps-translation of Lafont,
Reus, and Streicher [18].

References

[1] M. Abadi & A. Gordon (1997): A Calculus for Cryptographic Protocols: The Spi Calculus. In: 4th CCS,
pp. 36–47, doi:10.1145/266420.266432.

[2] S. Abramsky & C.-H.L. Ong (1993): Full Abstraction in the Lazy Lambda Calculus. Information and
Computation 105(2), pp. 159–267, doi:10.1006/inco.1998.2740.

[3] S. van Bakel, L. Cardelli & M.G. Vigliotti (2008): From X to π; Representing the Classical Sequent
Calculus in the π-calculus. In: CL&C’08, doi:http://arxiv.org/abs/1109.4817.

[4] S. van Bakel & P. Lescanne (2008): Computation with Classical Sequents. Mathematical Structures in
Computer Science 18, pp. 555–609, doi:10.1017/S0960129508006762.

[5] S. van Bakel & M.G. Vigliotti (2009): A logical interpretation of the λ-calculus into the π-
calculus, preserving spine reduction and types. In CONCUR’09, 5710, Springer, pp. 84 – 98,
doi:10.1007/978-3-642-04081-8 7.

[6] S. van Bakel & M.G. Vigliotti (2012): An Output-Based Semantics of λµ with Explicit Substitu-
tion in the π-calculus - Extended Abstract. In IFIP-TCS 2012, LNCS 7604, Springer, pp. 372–387,
doi:10.1007/978-3-642-33475-7 26.

[7] H. Barendregt (1984): The Lambda Calculus: its Syntax and Semantics, revised edition. North-
Holland.

[8] R. Bloo & K.H. Rose (1995): Preservation of Strong Normalisation in Named Lambda Calculi with Explicit
Substitution and Garbage Collection. In: CSN’95, pp. 62–72, doi:10.1.1.51.5026.

[9] A. Church (1936): A Note on the Entscheidungsproblem. JSL 1(1), pp. 40–41, doi:10.2307/2269326.
[10] M. Cimini, C. Sacerdoti Coen & D. Sangiorgi (2010): Functions as Processes: Termination and the

λµµ̃-Calculus. In TGC’10, LNCS 6084, Springer, pp. 73–86, doi:10.1007/978-3-642-15640-3 5.
[11] P.-L. Curien & H. Herbelin (2000): The Duality of Computation. In: ICFP’00, ACM Sigplan Notices

35.9, ACM, pp. 233–243, doi:10.1145/351240.351262.
[12] U. de’Liguoro (2014): The Approximation Theorem for the Λµ-Calculus. To appear in MSCS.
[13] Ph. de Groote (1994): On the Relation between the λµ-Calculus and the Syntactic Theory of Sequential

Control. In: LPAR’94, LNCS 822, Springer, pp. 31–43, doi:10.1007/3-540-58216-9 27.

Proceedings of Classical Logic and Computation 2014, Vienna, Austria, EPTCS 194 : 33-47,2014 16

[14] K. Honda & M. Tokoro (1991): An Object Calculus for Asynchronous Communication. In ECOOP’91,
LNCS 512, Springer, pp. 133–147, doi:10.1007/BFb0057019.

[15] K. Honda, N. Yoshida & M. Berger (2004): Control in the π-Calculus. In: Proceedings of Fourth
ACM-SIGPLAN Continuation Workshop (CW’04).

[16] J.W. Klop (1992): Term Rewriting Systems. In Handbook of Logic in Computer Science, chapter 1, 2,
Clarendon Press, pp. 1–116.

[17] J-L. Krivine (2007): A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation
20(3), pp. 199–207, doi:10.1007/s10990-007-9018-9.

[18] Y. Lafont, B. Reus & Th. Streicher (1993): Continuation Semantics or Expressing Implication by Nega-
tion. Report 9321, Ludwig-Maximilians-Universität, München.

[19] S.B. Lassen (2006): Head Normal Form Bisimulation for Pairs and the λµ-Calculus. In: LICS’06, pp.
297–306. Available at http://doi.ieeecomputersociety.org/10.1109/LICS.2006.29.

[20] R. Milner (1992): Functions as Processes. Mathematical Structures in Computer Science 2(2), pp. 269–
310, doi:10.1017/S0960129500001407.

[21] M. Parigot (1992): An algorithmic interpretation of classical natural deduction. In: LPAR’92, LNCS 624,
Springer, pp. 190–201, doi:10.1007/BFb0013061.

[22] W. Py (1998): Confluence en λµ-calcul. Phd thesis, Université de Savoie.
[23] D. Sangiorgi (1994): The Lazy Lambda Calculus in a Concurrency Scenario. I&C 111(1), pp. 120–153,

doi:10.1006/inco.1994.1042.
[24] D. Sangiorgi & D. Walker (2001): The Pi-Calculus. Cambridge University Press.
[25] A. Saurin (2010): Standardization and Böhm Trees for λµ-calculus. In M. Blume, N. Kobayashi &

G. Vidal, editors: FLOPS’10, LNCS 6009, Springer, pp. 134–149, doi:10.1007/978-3-642-12251-4 11.
[26] C.P. Wadsworth (1976): The Relation Between Computational and Denotational Properties for Scott’s

Dinfty-Models of the Lambda-Calculus. SIAM JoC 5(3), pp. 488–521, doi:10.1137/0205036.

