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Abstract

The Curry-Howard correspondence has shown us that mathematics and programming can
be seen as the same activity. This correspondence is often approached using intuitionistic
logic to give a theoretical grounding to programming languages. However, intuitionistic
logic is not the only way to understand this correspondence, as classical logic has com-
putational interpretations through control operators, whilst also allowing proofs involving
classical concepts like Proof by Contradiction. This paper describes a dependently typed
classical calculus and its implementation as a programming language, Candid.
When adding dependent types to a classical calculus, restrictions must be made on their
interactions with the control operators to maintain consistency. We extend a dependent
classical calculus with coproducts, inductive data and codata, and extend the restrictions
for dependent types and control operators to these new structures. We then implement this
calculus as the core of a dependently typed theorem prover for classical logic, able to express
proofs of uniquely classical propositions as runnable programs.

keywords: Classical Logic, Dependent Types, Theorem Provers

1 Introduction
Proof assistants are programming languages that correspond with a formal logic, and come
in different shapes and forms; Coq [12] has a particular focus on the theorem proving aspect
where proofs can be written with intuitive tactics, whereas Agda [33] and Idris [7] are more
deeply connected to functional programming languages like Haskell. Under the hood, theo-
rem provers ensure proof correctness by a strong type system. The mainstream languages are
all based on so-called intuitionistic type theory [27]. They all capitalise on the Curry-Howard
correspondence [21], the fact that functions in a functional programming language correspond
to proofs in intuitionistic logic [8, 9, 10], and the types of these functions correspond to the
propositions that are derived by said proofs. Under this correspondence, type-checking a
function is the same operation as checking a proof of a proposition [44].

Intuitionism inescapably limits these languages to the fact that they are unable to prove
a simple logical notion: that any proposition is either true or false. This is known as the
law of the excluded middle (lem), and is the distinguishing feature of Classical Logic [15].
Intuitionistic logic rejects this notion, and instead is based on the idea that any proof must be
constructive; so a proof of ‘A or B’ must be constructed from a proof of either A or from a
proof of B; it is not enough to prove it cannot be the case that ‘not (A or B)’ is not true. This
notion of constructive logic and mathematics is strongly tied with computability, and until
fairly recently it was believed that a proof had a correspondence with a function only if the
proof is constructive, and that classical logic did not have a computational counterpart.

This belief was challenged when [16] discovered that a control operator, similar to the call/cc
function in Scheme, corresponded directly with an axiom of classical logic, namely that of
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double negation elimination, which states that a proposition being ‘not not true’ is the same
as it being ‘true’. This is another axiom that characterises classical logic. This spawned a new
area of research, that of calculi such as the λµ calculus that correspond with classical logic [36,
42, 13, 4]. It is natural to investigate the possibility of defining a theorem prover for Classical
Logic based on one of these calculi, and our choice at this time is to depart with λµ.

In this paper we show that in terms of implementability, expressiveness, and elegance proof
assistants based on Classical Logic have much to contribute. We will explore the current state
of research into classical calculi, both for propositional and first order logic. We will then
discuss how to use these calculi to form the core of useable proof assistants, and evaluate
our own implementations of such languages. Our attempts proved successful and we present
Candid, a theorem prover bases on λµ, but enriched with dependent types, as an extension
of ECCK [31] adding coproducts and dependent algebraic data types. After some startling
examples of the capabilities of Candid in Sect. 2, we start our investigation in this paper in
Sect. 3, where we focus on the system of classical natural deduction (cnd) we explore here, one
that uses the logical connectors implication, negation, conjunction, and disjunction, and discuss
issues that arise with the definition of proof contraction. This is followed in Sect. 4, where we
briefly repeat the definition of Parigot’s λµ. We will present the underlying logic with focus
for that system, discuss how it relates to cnd, and how the problem of proof contraction in
cnd is solved.

As we will see in Sect. 5, the link between first order classical logic and computation is a
bit more tricky. First order intuitionistic logic is known to be achieved by dependently typed
systems (Sect. 5.1), but [19] showed that naively combining dependent types and control op-
erators allows one to prove that all types have only one inhabitant (Sect. 5.2). Fortunately,
not all is lost, as [20] also shows a way to restrict how dependent types and control opera-
tors can interact, which regains a logically consistent type theory (Sect. 5.3). A more general
dependent classical system, ECCK (Sect. 5.4) is proposed by [31], as part of ongoing work in
defining type-preserving CPS for dependently typed systems. ECCK is, roughly speaking, the
Extended Calculus of Constructions [26] plus the control operators catch and throw. Although
a powerful calculus, it is not strong enough to represent proofs in classical logic.

This paper introduces the calculus ECCµ, which expands on ECCK; first by adding coprod-
ucts with dependent elimination (Sect. 6), and then generalising coproducts and products to
inductive data and codata (Sect. 8), all while making sure that these new constructs are able
to interact safely with the control operators. ECCµ is used as the core of a dependently typed
theorem prover, Candid. We introduce the notions of weak head normal forms and a type
checking algorithm (Sect. 7) for ECCµ that provide theoretical foundations of the language,
which is implemented as a functional programming language (Sect. 9).

The contributions of this paper are as follows:

• We define the dependently typed classical calculus ECCµ, which extends ECCK by adding
coproducts with dependent elimination (Sect. 6).
• We introduce a bidirectional typing algorithm for ECCµ, including novel rules for typing µ

and [·] terms (Sect. 7).
• We expand ECCµ with inductive data and codata, maintaining consistency by generalising
the restrictions of how control operators can interact with products and coproducts (Sect. 8).
• We outline the implementation of Candid: a dependently typed programming language
with control operators, data and codata, based on ECCµ that functions as a proof assistant for
classical logic (Sect. 9).

Finally, we discuss related work (Sect. 10) and conclude (Sect. 11).
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2 Working with Candid Proofs

This section gives some examples of uniquely classical propositions and their computable
proofs.

To express double negation elimination, a new operator, µ, is added to the λ-calculus.
Due to the Curry-Howard correspondence, µ can be understood from both a logical and a
computational perspective. Where λx.M means to index an assumption by x, µα.M means to
index a negated assumption by α; for example, µα.M : A means that α indexes the assumption

A; and then M refutes this assumption and allows to derive absurdity, ⊥; the prefix µ then
embodies the ‘proof by contradiction’ step. So essentially, departing from Γ, x: A � M :⊥, it is
possible to derive both Γ � λx.M : A and Γ � µx.M : A, highlighting the difference between
the intuitionistic logic of the pure λ-calculus, and the classical reasoning µ gives.

To form the contradiction needed in these proofs, there is the syntax [β]M, which means
that M : B directly contradicts β : B. The new term constructs are kept together, and used to
create terms of the form µα.[β]M. In this theorem prover, µα.[β]M is written as \\‘a.[‘b]M

(where, using the qsymbols notation, ‘a is taken to mean α, ‘b β, and so on).

Example 2.1 (Law of Excluded Middle) The law of the excluded middle (lem) captures exactly
the notion that in Classical Logic a proposition is either true or false. In standard theorem
provers it is added as an axiom, but it is provable in Candid.

lem : (A : Type) -> (A + !A)

lem _ = \\‘a.[‘a] inj2 (\x -> \\_.[‘a] inj1 x)

The proof reads: assume there is a proof ‘a showing A + A is not true. We seek to contradict
this by proving A + A, and comparing it with [‘a]. This is achieved by assuming x is a proof
of A; then by inj1 x follows (A + A) which contradicts the assumption ‘a of (A + A).
Thus, by proof by contradiction (PbC) on ‘a, we have (A + A). Notice that lem holds for any
type A; we are not restricted to, say, the impredicative type of propositions P. This separates
Candid from proof assistants like Agda and Coq, in which lem is not provable in general.

Example 2.2 (Double Negation Elimination) Also the strongest classical axiom [2], A→A
(DNE) can be understood through as: if A is not true, A is. Again \\ and [·] are used:

dne : (A : Type) -> !!A -> A

dne A nna = \\‘a.[_] nna (\x -> \\_.[‘a] x)

This term can be read similarly to the previous example. We assume A, and then assume
a proof ‘a of A, which immediately causes a contradiction. However, the contradiction
is with a normal λ-variable nna (not a special assumption ‘g from \\‘g), so we compare
this contradiction with the tautology ⊥ (represented by [_]), which gives a second (trivial)
contradiction.

This can be used in many ways; in general, we could just apply it to intuitionistic proofs of
A to get A, in some sense performing a reverse double negation translation. For example,

take an intuitionistic proof of (A ∨ A):

nnlem : (A : Type) -> !!((A + !A)

nnlem _ x = x (inj2 (\y -> (x inj1 y)))

In intuitionistic logic, this is all that would be achievable. But in classical logic, it is possible
to eliminate these negations, by applying double negation elimination to nnlem:

lem2 : (A : Type) -> (A + !A)

lem2 A = dne (A+!A) (nnlem A)

Candid can normalise this term (in the command line REPL):
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> lem2

\\‘a.[‘a] inj2 (\y -> \\_.[‘a] inj1 y)

Note that this is the first proof of lem; we took a proof of a double negation translated
proposition and turned it into a proof of the original proposition. REPL evaluated the proof of
lem2; this illustrates that the system can normalise proofs in classical logic, yielding computa-
tional classical logic.

Example 2.3 (Classical Existential) Candid is able to classically reason about quantified
statements as well. In intuitionistic logic, proofs of ∃n.P(n) are constructive and provide the
witness. In classical logic, this might not be the case: the proof could come from a refutation
of its negation.

Candid is able to reason about such non-constructive existentials. Interestingly, the refuta-
tion will still involve creating a pair (that might consist of the continuation variables).

Our goal is to prove a tautology of classical logic: ∃n.B(n)↔ (∀n. B(n)). The implication
left to right is provable in intuitionistic logic, with a proof given by Qinv:

Qinv : (A : Type)

-> (B : A -> Type)

-> (n:A)* (B n)

-> !((n:A) -> !(B n))

Qinv A B ex f = f (proj1 ex) (proj2 ex)

What Candid is able to prove, unlike other proof assistants, is (∀n. B(n))→∃n.B(n). To
show how, we first define a lemma, P := (∃n.B(n))→∀n. B(n), that is proved by:

P : (A : Type)

-> (B : A -> Type)

-> !((n:A) * B n)

-> ((n:A) -> !(B n))

P _ _ nex = \n b_n -> nex (n, b_n)

Note that the proof of P is intuitionistic and, thus, makes no use of the classical operator
\\·.[·].

The classical proof of (∀n. B(n))→∃n.B(n) is expressed by Q, which uses lemma P:

Q : (A : Type)

-> (B : A -> Type)

-> !((n:A) -> !(B n))

-> ((n:A) * B n)

Q A B nfa = \\nex.[_] nfa (P A B (\x -> \\_.[nex] x))

Again, this proof can be understood intuitively. We assume a proof nfa of (∀n. B(n)).
Then, for the sake of argument, let us assume ∃n.B(n) is not true – this is expressed by \\nex.
By the lemma P we know we can convert our proof nex of ∃n.B(n) into a proof of ∀n. B(n)
– this contradicts nfa. Thus, by PbC, it must be the case that ∃n.B(n) is true. Finally, to
form the logical equivalence ∃n.B(n)↔ (∀n. B(n)), we can form a pair of the proofs of each
implication, as A↔ B (‘A if and only if B’) is encoded by a pair of proofs of A→ B and A← B:

T : (A : Type)

-> (B : (A -> Type))

-> (((n:A) * (B n)) <-> !((n:A) -> !(B n)))

T A B = (Qinv A B, Q A B)
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3 Classical Logic

Natural Deduction for Classical Logic, defined by [15] is a way of describing the structure of
formal proofs in mathematics that follow the intuitive, human, lines of reasoning as much as
possible. Natural deduction deals with statements of the shape A1, . . . , An � B, where all the
formulas on the left of the turnstyle are assumed to hold, and the one on the right is shown
to follow from those assumption, using reasoning steps that are formalised through inference
rules that introduce or eliminate connectors in the logical formulas. In that paper, Gentzen
also presents the Sequent Calculus, which differs from Natural Deduction in that it derives
sequences of the shape A1, . . . , An � B1, . . . , Bm with the intended meaning ‘if all of the properties
A1, . . . , An hold, then at least one of the B1, . . . , Bm does as well.’

In the Sequent Calculus, for each connector, there is a left and right introduction rule; there
are no elimination rules for connectors, just a generic (cut)-rule that eliminates a formula.

To better be able to reason about the representation of the structure of proofs and the
technicalities of proof contraction, it is necessary to represent the structure of proofs via term
information from an appropriate calculus, and inhabit the inference rules with terms, such that
proof contractions correspond to term reduction. This employs the Curry-Howard principle,
which expresses a correspondence between terms and their types on one side, and proofs for
propositions on the other. There are many systems already proposed for term calculi that
represent proofs in classical logic. Four directions are that of λµ-calculus defined by [36],
the νλµ-calculus by [42] that adds negation to λµ (representing ( I) through νx . M, and ( E)

through [M]N), the λµµ̃-calculus defined by [13], and the calculus X defined by [4]. The
latter two deal with representations of the Sequent Calculus, that is perhaps less suitable for
a human-operated proof-tool. For reasons of simplicity, this paper starts with the exploration
of the first.

The variant of Classical Natural Deduction that will be considered in this paper uses the
logical connectors → (implication), (negation), ∧ (conjunction) and ∨ (disjunction).

Definition 3.1 (Classical Natural Deduction) The formulas for Classical Natural Deduc-
tion are:

A, B ::= ϕ | A→B | A | A ∧ B | A ∨ B

A context Γ is a multi-set of formulas, where Γ, A = Γ ∪+ {A} and �ni is defined through the
inference rules (using a sequent notation):

(Ax)
Γ, A�A

Γ, A�B
(→I )

Γ�A→B

Γ�A→B Γ�A
(→E)

Γ�B

Γ, A�⊥
( I)

Γ� A

Γ� A Γ�A
( E)

Γ�⊥
Γ�⊥

(EFQ)
Γ�A

Γ�A Γ�B
(∧I)

Γ�A ∧ B

Γ�A ∧ B

Γ�A

Γ�A ∧ B
(∧E)

Γ�B

Γ�A

Γ�A ∨ B

Γ�B
(∨I)

Γ�A ∨ B

Γ�A ∨ B Γ, A�C Γ, B�C
(∨E)

Γ�C

Γ, A�⊥
(PbC)

Γ�A

Γ�A{a/x}
(∀I)

Γ�∀x.A

Γ�∀x.A
(∀E)

Γ�A{a/x}
Γ�A{a/x}

(∃I)
Γ�∃x.A

Γ�∃x.A Γ, A{a/x}�B
(∃E)

Γ�B

Notice that, in this presentation, ⊥ is not a formula. Omitting rule (DNE) would give a
definition for intuitionistic logic. Moreover, in �ni, rule (EFQ) is a derivable by weakening and
(PbC).

Negation comes of course with introduction and elimination rules, but plays a more intri-
cate role in Classical Logic, in that the law of excluded middle or something similar holds. There
are many rules that express this to a different degree, like:

Γ, A � ⊥
(PbC)

Γ � A

Γ � A
(DNE)

Γ � A
(LEM)

� A ∨ A
(PL)

� ((A→B)→A)→A
(RAA)

� ( A→A)→A
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(called ‘proof by contradiction’, ‘double negation elimination’, ‘law of excluded middle’, ‘Peirce’s law’,
and reductio ad absurdum, respectively.) These rules have different expressive power, and
adding one rather than another changes the set of provable formula (see [1]).

For the Sequent Calculus, Gentzen defines a notion of (proof) contraction that removes
occurrences of (cut), and shows that this is terminating: for every proof that shows Γ � ∆,
there exists a (cut)-free proof that shows the same result. He does not show that result for
Natural Deduction, which would eliminate all introduction-elimination pairs, and we can
guess that that is because this notion of contraction is harder to define.

The main difficulty is that in Natural Deduction, not all proof-constructions follow the
introduction-elimination pattern of the inference rules; above, in particular, that is the rule
(PbC).

(Ax)
Γ, A � A

D1

Γ, A � B
(→I )

Γ � A→B

D2

Γ � A
(→E)

Γ � B

⇒
D2

Γ � A

D1

Γ � B

For those that do, proof contraction consists of
elimination an introduction step followed by an
elimination step for the same logical connector; for
implication that looks like in the diagram (where
⇒ stands for proof contraction). Notice that, in the
rule (→I), the formula A ceases to be an assump-
tion, and that, in the composed proof on the right,
A is no longer an assumption needed to reach the conclusion, since it has been shown to hold
by D2. This is not always possible for negation.

Example 3.2 Take the following proof:

D1

Γ, (A→B) � (A→B)
(Ax)

(A→B) � (A→B)
( E)

Γ, (A→B) � ⊥
(PbC)

Γ � A→B

D2

Γ � A
(→E)

Γ � B

It is a priori not obvious how to con-
tract this proof; it is normal prac-
tice for the sub-derivations to be the
building stones for the proof for Γ � B
without the (PbC)-(→E) pair, but it is
not immediately clear how to do that.

Notice that there is no sub-derivation above the step (PbC) that has A as an assumption (so
does not contain Γ, A � A as the result of rule (Ax)), nor one that derives Γ � A→B.

Below will be shown how λµ deals with this problem.
This paper will present Candid, a kernel programming language equipped with a notion

of dependent types that will allow for the inhabitation of proofs for derivable statements in
�ni as a variant of λµ (see next section), extended with constructs to represent pairing, choice,
and dependent types. Negation will be represented by adding ⊥ as a psuedo-formula in that
it will only be used to represent negation, and only ‘under the hood’; so (→I) and (→E) will
be used for ( I) and ( E). The system is complete, in that all judgements provable in �ni can
be proven in Candid, but it is not the case that all proofs in �ni can be inhabited directly in
Candid.

4 λµ-Calculus

Parigot’s λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduction,
defined as an extension of the Curry type assignment system for the λ-calculus. With λµ

Parigot created a multi-conclusion typing system which corresponds to classical logic with
focus; there derivable statements have the shape Γ � A | ∆, where A is the main conclusion of
the statement, expressed as active, Γ is the set of assumptions and ∆ is the set of alternative
conclusions, or have the shape Γ � ⊥ | ∆ if there is no formula under focus.

λµ’s underlying logic corresponds to the following:
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Definition 4.1 (A classical logic with focus) The formulas for this system are:

A, B ::= ϕ | A→B

and a context Γ is a set of formulas, where Γ, A = Γ ∪ {A}; the inference rules are defined by:

(Ax) :
Γ, A � A | ∆ (→I) :

Γ, A � B | ∆
Γ � A→B | ∆

(→E) :
Γ � A→B | ∆ Γ � A | ∆

Γ � B | ∆

(Act) :
Γ � ⊥ | A,∆

Γ � A | ∆
(Pass) :

Γ � A | A,∆

Γ � ⊥ | ∆
Γ �f M : A | ∆ is used for judgements derivable in this system.

Notice that negation is not part of the type language, so does not occur in Γ nor in ∆.

Γ, ∆, A � ⊥
(PbC)

Γ � A

(Ax)
Γ, ∆, A � A Γ, ∆, A � A

( E)
Γ, ∆, A � ⊥

The intention of this system is to express classi-
cal logic, and for this it encapsulates the rule (PbC).
To see this, we need first to emphasise that it is
the intention that the formulas in ∆ can be seen as
negated. In fact, for any statement Γ �f A | ∆ can be
seen as Γ, ∆ �ni A (where ∆ lists the negated ver-
sions of all types in ∆). With that view, the rules (Act) and (Pass) corresponds to allowing the
shown variants of rule (PbC) and ( E) but in a version of Natural Deduction where formulas
have at most a negation at the front. Note that it therefore solves the problem of Example 3.2
by not allowing the rule (PbC) to be applied to assumptions on the right in ( E): A cannot be
a negated type, so the judgements in the right-hand proof cannot occur swapped.

The variant of λµ considered in this paper, as defined by [37] and that gives a Curry-Howard
interpretation to the above inference rules will now be presented.

Definition 4.2 (Syntax of λµ) The λµ-terms considered here are defined by the grammar:

M, N ::= V | MN | µα.[β]M

V ::= x | λx.M (values)

Recognising both λ and µ as binders, the notion of free and bound names and variables is
defined as usual, and Barendregt’s convention is extended to keep free and bound names and
variables distinct, using (silent) α-conversion whenever necessary.

The x ∈ M (α ∈ M) if x (α) occurs in M, either free of bound, and call a term closed if it has
no free names or variables. The pseudo-terms of the shape [α]M are called commands, written
Cmd, and are treated as terms for reasons of brevity, whenever convenient.

4.1 Reduction
As with Implicative Intuitionistic Logic, the reduction rules for the terms that represent the
proofs correspond to proof contractions, but in �f; the difference is that the reduction rules for
the λ-calculus are the logical reductions, i.e. deal with the removal of a introduction-elimination
pair for a type construct. In addition to these, Parigot expresses also the structural rules that
change the focus of a proof, where elimination essentially deals with negation and takes place
for a type constructor that appears in one of the alternative conclusions. In λµ, reduction of
terms is expressed via implicit substitution, and as usual, M{N/x} stands for the (instanta-
neous) substitution of all occurrences of x in M by N. Two kinds of structural substitution
are defined: the first is the standard one, where M{N·γ/α} stands for the term obtained from
M in which every command of the form [α]P is replaced by [γ]PN (γ is a fresh name). The
second will be of use for cbv reduction; here {N·γ α}M stands for the term obtained from M
in which every [α]P is replaced by [γ]NP.

Definition 4.3 (Structural substitution) Right-structural substitution, M{N·γ/α}, and left-
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structural substitution, {N·γ α}M, are defined inductively over pseudo terms. The main cases
are:

[α]M{N·γ/α} =
∆ [γ](M{N·γ/α}N)

[β]M{N·γ/α} =
∆ [β](M{N·γ/α}) (β = α)

{N·γ α}[α]M =
∆ [γ]N({N·γ α}M)

{N·γ α}[β]M =
∆ [β]{N·γ α}M (β = α)

The following notions of reduction are defined on λµ. For the third, call by value, different
variants exists in the literature; the one adopted here is from [35].

Definition 4.4 (λµ reduction) i) The reduction rules of λµ are:

logical (β) : (λx.M)N → M{N/x}
structural (µ) : (µα.Cmd)N → µγ.Cmd{N·γ/α} (γ fresh)

renaming (Rename) : [β]µγ.Cmd → Cmd{β/γ}
Evaluation contexts are defined as terms with a single hole � by:

C ::= � | CM | MC | λx.C | µα.[β]C

(Free, unconstrained) reduction →βµ on λµ-terms is defined through CM� →βµ CN� if
M→ N using either the β, µ, Erase, or Rename-reductions rule.

ii) cbn evaluation contexts are defined as:

Cn ::= � | CnM | µα.[β]Cn

cbn reduction→n
βµ is defined through: Cn M� →n

βµ Cn N� if M→ N using either the β, µ,
Erase, or Rename-reduction rule.

iii) cbv evaluation contexts are defined through:

Cv ::= � | CvM | VCv | µα.[β]Cv

cbv reduction →v
βµ is defined through: Cv M� →v

βµ Cv N� if M→N using either µ, Erase,
Rename, or:

(βv) : (λx.M)V →v
βµ M{V/x}

(µv) : V(µα.Cmd) →v
βµ µγ.{V·γ α}Cmd (γ fresh)

Remark that, for rule (µv), µα.[β]N is not a value. Also, unlike for the λ-calculus, cbv
reduction is not a sub-reduction system of→βµ: the rule (µv) (and left-structural substitution)
are not part of →βµ. Both cbn and cbv constitute reduction strategies in that they pick exactly
one free βµ-redex to contract; notice that a term might be in either cbn or cbv-normal form
(i.e. reduction has stopped), but not need be that for →βµ.

It is possible to define more reduction rules, but Parigot refrained from that since he aimed
at defining a confluent reduction system. It is possible to add the cbv-rules to λµ, and define

(µL) : (µα.Cmd)N →βµ µγ.Cmd{N·γ/α} (γ fresh)
(µR) : M(µα.Cmd) →βµ µγ.{M·γ α}Cmd (γ fresh)

but then reduction would no longer be confluent: the critical pair (µα.Cmd1)(µβ.Cmd2) can be
contracted in two ways, with perhaps different outcomes.

4.2 Type assignment
Type assignment for λµ is defined below; there is a main, or active, conclusion, labelled by a
term, and the alternative conclusions are labelled by names α, β, etc. Judgements in λµ are of
the shape Γ �λµ M : A | ∆, where ∆ consists of pairs of Greek characters (the names) and types;
the left-hand context Γ, as for the λ-calculus, contains pairs of Roman characters and types.

Definition 4.5 (Typing rules for λµ) i) Let ϕ range over a countable (infinite) set of type-
variables. The set of Curry types is defined by the grammar:
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A, B ::= ϕ | A→B

ii) A context (of term variables) Γ is a partial mapping from term variables to types, denoted
as a finite set of statements x:A, such that the subjects of the statements (x) are distinct.
Γ1, Γ2 is the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2, then A1 = A2), and
Γ, x:A stands for Γ,{x:A}, x∈ Γ if there exists no A such that x:A∈ Γ, and Γ x for Γ {x:A}.

iii) A context of names ∆ (or co-context) is a partial mapping from names to types, denoted as a
finite set of statements α:A, such that the subjects of the statements (α) are distinct. Notions
∆1,∆2, as well as ∆,α:A and α ∈∆ are defined as for Γ.

iv) The type assignment rules for λµ, adapted to our notation, are:

(Ax) :
Γ, x:A � x : A | ∆ (→I ) :

Γ, x:A � M : B | ∆
Γ � λx.M : A→B | ∆

(→E) :
Γ � M : A→B | ∆ Γ � N : A | ∆

Γ � MN : B | ∆

(µ) :
Γ � M : B | α:A, β:B,∆

Γ � µα.[β]M : A | β:B,∆

Γ � M : A | α:A,∆

Γ � µα.[α]M : A | ∆
Γ �λµ M : A | ∆ is used for statements derivable in this system.

v) Barendregt’s convention on free and bound variables and names is extended to judge-
ments (for all the notions of type assignment defined here), so in Γ, x:A �λµ M : B | α:C,∆,
both x and α cannot appear bound in M.

Notice that, by the extension of Barendregt’s convention in Definition 4.5, Γ′ and ∆′ cannot
contain statements for the bound names and variables in M.

Γ � B | A, B,∆
(Pass)

Γ � ⊥ | A, B,∆
(Act)

Γ � A | B,∆

Γ � A | A,∆
(Pass)

Γ � ⊥ | A,∆
(Act)

Γ � A | ∆

It is worthwhile mentioning that ⊥ plays no role
in the presentation of λµ, and only pops up in the
literature when trying to inhabit double negation
elimination (see Sect. 4.3).

Notice that, if all term information is erased from the inference rules, the rules from �f
appear, but for the variants of (µ); these can be inferred, however, so they are admissible.

The intuition behind the structural rule is given by [17]: “in a λµ-term µα.M of type A→B, only
the subterms named by α are really of type A→B (. . . ); hence, when such a µ-abstraction is applied to
an argument, this argument must be passed over to the sub-terms named by α.” Remark that this is
accurate, but hides the fact that the naming construction [α]M is actually a (hidden) instance
of rule ( E), so ‘naming’ is actually an application.

4.3 Double negation elimination and λµ

Double negation elimination is shown in �ni by the proof on the left; this can also be shown in
�f, as in the proof on the right (⊥ is added to express negation, and Γ = (C→⊥)→⊥):

(Ax)
C, C � C

(Ax)
C, C � C

( E)
C, C � ⊥

(PbC)
C � C

(→I )
� C ⇒ C

(Ax)
Γ � (C→⊥)→⊥ | C

(Ax)
Γ,C � C | C

(Pass)
Γ,C � ⊥ | C

(→I )
Γ � C→⊥ | C

(→E)
Γ � ⊥ | C

(Act)
Γ � C |

(→I )
� ((C→⊥)→⊥)→C | ⊥

Notice that the rules (Pass) and (Act) are not paired, while they are in λµ, and that the
assumption C �ni C gets replaced by the proof for �f C→⊥ | C.

Using this transformation, [36] shows that ‘double negation elimination’ can be represented
in λµ through the term λy.µα.[γ]y(λx.µδ.[α]x). As suggested above, first⊥ is added as a pseudo-
type to express negation A through A→⊥, as well as contradiction.
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(Ax)
y:(C→⊥)→⊥ �λµ y : (C→⊥)→⊥ |

(Ax)
x:C �λµ x : C | δ:⊥,α:C,γ:⊥

(µ)
x:C �λµ µδ.[α]x :⊥ | α:C,γ:⊥

(→I )
�λµ λx.µδ.[α]x : C→⊥ | α:C,γ:⊥

(→E)
y:(C→⊥)→⊥ �λµ y(λx.µδ.[α]x) :⊥ | α:C,γ:⊥

(µ)
y:(C→⊥)→⊥ �λµ µα.[γ]y(λx.µδ.[α]x) : C | γ:⊥

(→I )
�λµ λy.µα.[γ]y(λx.µδ.[α]x) : ((C→⊥)→⊥)→C | γ:⊥

This corresponds to the proof in �f above, but for the fact that extra calls to (Pass) and (Act)
are added inside the calls to (µ), as well as additional names of type ⊥; notice that this term
is not closed as it has a free name γ.

Parigot essentially replaces here an instance of the (Ax) rule for Γ, C �ni C by a derivation
for Γ �λµ λy.µδ.[α]y : C→⊥ | α:C,∆. It is this what allows for the successful encoding of �ni in λµ.

This kind of transformation will play an important role later in the paper.
It is important to point out that the use of γ in the previous example creates an anomaly.

Although it is a logical tautology, the λµ-term that is the witness for ((C→⊥)→⊥)→C is not
a closed term so the proof has an uncanceled assumption. Moreover, terms can have type ⊥
without being typed with the equivalent of rule ( I), but using (→E).

Several attempts have been made to address this. Parigot not only adds ⊥ to the language
of types in a side remark, but also allows for statements like γ:⊥ to be used without adding
them explicitly to the co-context, so does not consider them ‘real’ assumptions. [1] rectify that
by defining an extension of λµ, adding a special syntax construct [tp]M, where tp acts as a
‘continuation constant’ and represent the outermost context of the term. In their system, the
witness to ((C→⊥)→⊥)→C is the closed term λy.µα.[tp]y(λx.µδ.[α]x). It can be argued that it
would be better to add negation as a type constructor to λµ, as done in [42], where DNE gets
represented by λy.µx.yx, arguably a more simple proof.

Another solution would be to detach, syntactically, passivation from activation. That is
the approach in de Groote and Saurin’s Λµ-calculus [17, 39]; there the witness would be
λy.µα.y(λx.[α]x) which directly inhabits the proof in �f above. That variant of λµ better ex-
presses the logic of �f, but one problem with Λµ is that is not clear if (denotational) semantics
can be defined for it, which is possible for λµ [41, 3]. This is directly related to the fact that a
µ-abstraction can now be applied to a term of type ⊥ that is an application, rather than a term
typed (implicitly) with rule ( E).

5 Dependent Types and Control

Systems with dependent types allow for reasoning about quantified propositions – those in
first order logic. A theorem prover for first order classical logic would then certainly need
dependent types. In this section, after a quick review of ITT, we will show that a naive
combination of dependent types with the µ operator leads to an inconsistent logic. We will
then discuss a calculus for arithmetic that safely allow the two to co-exist in a type system by
restricting their interactions, and start to explore how this calculus can be expanded to more
general domains.

5.1 Dependent Types
Intuitionistic Type Theory (ITT) is a proof system for first order intuitionistic logic, first in-
troduced by [27]. ITT introduces dependent types to the λ-calculus, which correspond with
quantification in first order logic. In a dependent type system, types are able to depend on
terms. A full presentation of the syntax of a standard ITT can be found in Figure 1.
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M, N, A, B ::= x Variable
| (x:A)→B Dependent Function Type
| λx.M Lambda Abstraction
| let x = M in N Let Expression
| MN Function Application
| (x:A)×B Dependent Pair Type
| (M, N) Dependent Pair
| πi(M) Pair Projection (i = 1,2)
| A + B Sum Type

| ini(M) Sum Injection (i = 1,2)
| case M � z.C of (x.N | y.L) Case Analysis
| M = N Identity Type
| refl Reflexivity
| subst M N Substitution
| ⊥ Empty Type
| 1 Unit Type
| 〈〉 Unit Element
| Ui Type Universe (i = 0,1, · · ·)

Figure 1. Syntax for ITT

Dependent functions are functions whose codomain (return type) depends on the argument
supplied to the domain. For example, a function λx.M is typed by (x:A)→B, the dependent
function type. Here, B is a family of types, indexed by values of type A; one could think of B
itself as being a ‘function’ that takes values x of type A and returns a type, B(x). Supplying
an argument N to λx.M determines the return type, (λx.M)N : B{N/x}. These dependent
functions relate to ‘for all’ quantification in logic: λx.M : (x:A)→B represents a proof that, for
all x of type A, B(x) holds.

Dependent pairs are pairs (M, N) with type (x:A)×B, where the type family B is indexed
by the left value, M, of the pair. Dependent pairs correspond with an existential proposition.
In constructive logic, a proof of an existential formula ∃(x:A).B(x) is formed by providing an
example of such an x (called the witness, W), and then showing B(W). Thus, the proof of an
existential is a pair of a witness, W, and a proof P that the witness satisfies B, so B(W) holds;
in ITT this is written (W, P) : (x:A)×B.

5.2 The Problem of Control
Given these two systems discussed above enable to reason about classical propositional logic
and intuitionistic first order logic, one might want to see if they can be combined to create a
system for reasoning with classical first order logic, that is, a system that allows for reasoning
about ∀,∃-quantified statements, and also proof by contradiction.

Unfortunately, dependent types do not sit well with classical calculi. As [19] discovered, a
naive mix of dependent types and control leads to a ‘degeneracy in the domain of discourse’,
meaning that all types can be shown to have only one inhabitant. Thus any two terms (under
the same type) are judgementally equal.

An example of such an offending term, permitting a proof of 0 = 1, is given by [29];

P := µα.[α](0,µδ.[α](1, refl)) : ∃(x : N).x = 1

The projections of P show that π1 (P)→∗ 0 and π2(µα.[α](0,µδ.[α](1, refl)))→∗ refl.

π1(µα.[α](0,µδ.[α](1, refl))) →µπ1
µα.[α]π1(0,µδ.[α]π1(1, refl)) →π1 µα.[α]0 →µη 0

π2(µα.[α](0,µδ.[α](1, refl))) →µπ2
µα.[α]π2(0,µδ.[α]π2(1, refl)) →π2

µα.[α]µδ.[α]π2(1, refl) →π2 µα.[α]µδ.[α]refl →Rename

µα.[α]refl →µη refl

Γ � P : ∃(x:N).x = 1 | ∆
Γ � π2 (P) : (x = 1){π1 (P)/x} | ∆

Following the type assignment for π2 (P) leads to the
derivation on the right. However, noting that π1 (P) reduces
to 0, it follows that (x = 1){π1 (P)/x} ≡ (π1 (P) = 1) ≡ (0 = 1),
and thus the type of π2 (P) is 0 = 1.

As described by [29], the issue comes down to P behaving
differently in different contexts. In the left projection, P gives the (incorrect) witness 0 to the
proposition. In the right projection, the evaluation reaches the µδ.[α], which causes it to throw
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away the witness 0 (via µδ), and then ‘backtrack’ to the original context (via [α]), in which it
uses the witness 1 in the proof. So P uses a different witness depending on its context.

5.3 Restricting Control and Dependent Types
As a step towards a general system with both dependent types and control, [20] defined
the calculus dPAω, a classical proof system for arithmetic; here, the operands of dependent
eliminations are restricted to a subset of terms that are called negative elimination free (nef).

As the name suggests, nef terms are those that cannot contain a negation elimination ( E).
Thus, a nef term cannot contain subterms of the form µα.[β]N as the subterm [β]N corresponds
with ( E); or an application MN, as this could correspond with ( E) when M : A→⊥ and N : A.
The exception to this is when these subterms appear under a lambda abstraction λx.P, as a
µ operator in a subterm is unable to capture a context outside of this abstraction; therefore
lambda abstractions are always in nef. nef terms, then, are those that behave more like
intuitionistic values [32], and are not able to backtrack when evaluated [28], avoiding the
inconsistency caused by the above term P.

For example, the rules for dependent projections in dPAω are:

(∃Ed
1) :

Γ � M : (x:B)×A
(M ∈ nef)

Γ � π1(M) : B
(∃Ed

2) :
Γ � M : (x:B)×A

(M ∈ nef)
Γ � π2(M) : A{π1(M)/x}

Immediately, these rules disallow recreating the proof P of 0 = 1. The second projection
of P, π2 (P), is not typeable by (∃Ed

2), as P is not nef. If the pair type is not dependent, the
projection out of non-nef pairs is still possible; there are separate rules for non-dependent
eliminations:

(∃E1) :
Γ � M : (x:B)×A

(x ∈ fv(A))
Γ � π1(M) : B

(∃E2) :
Γ � M : (x:B)×A

(x ∈ fv(A))
Γ � π2(M) : A

In general, the nef restrictions only apply to dependent types, and the non-dependent
eliminations can be typed without regard for if the operands are nef. In fact, dPAω with the
nef restriction is enough to give a consistent, normalising proof system [28, 20]1.

Definition 5.1 (Reductions) Reductions in this calculus largely follow a cbv strategy [20, 28].
The reductions for application and let expressions are:

(λx.M)N → let x = M in N

let x = V in M → M{V/x}

This strategy ensures that, in a dependent elimination, the reduction will only occur with
a value operand (which implies it is nef). The only exception to the cbv strategy is for the
coinductive operator, cofix, which follows a lazy (call-by-need) reduction. Lazy reduction
is needed as coinductive structures can be potentially infinite, so only the needed terms are
evaluated.

5.4 The Calculus ECCK

ECCK [31] is a classical extension to the Extended Calculus of Constructions (ECC) [26]. The
classical reasoning is achieved by adding control operators, and restricting type assignments
for dependent eliminations to nef terms. ECCK is formally understood through its translation
into Ldep, a classical sequent calculus with dependent types; the results for both calculi are
part of ongoing work.

1 More precisely, the normalisation property is shown for dLPAω , a sequent calculus corresponding with dPAω ,
although no formal translation between the two is made.
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Valid Contexts (·) : � · | (ax) :
Γ � A : Ui | ∆

Γ, x:A � x : A | ∆
(αx) :

Γ � A : Ui | ∆
Γ � · | α:A,∆

Introduction/Formation

(→I) :
Γ, x:A � M : B | ∆

Γ � λx:A.M : (x:A)→B | ∆
(Π) :

Γ � A : Ui | ∆ Γ, x:A � B : Uj | ∆
Γ � (x:A)→B : Ui�j | ∆

(×I) :
Γ � M : A | ∆ Γ � N : B{M/x} | ∆

Γ � (M, N) : (x:A)×B | ∆
(Σ) :

Γ � A : Ui | ∆ Γ, x:A � B : Uj | ∆
Γ � (x:A)×B : Ui�j | ∆

NEF (nefI) :
Γ � M : A | ∆

(M ∈ nef)
Γ �nef M : A | ∆

(nefE) :
Γ �nef M : A | ∆

Γ � M : A | ∆

Control (catch) :
Γ � M : A | α:A,∆

Γ � catchα M : A | ∆
(throw) :

Γ � M : A | α:A,∆

Γ � throwα M : B | α:A,∆

Universes (U I) :
Γ � Ui : Ui+1 | ∆ (UC) :

Γ � A : Ui | ∆
Γ � A : Ui+1 | ∆

Γ � A : U | ∆ is used when there exists i such that Γ � A : Ui | ∆.

Propositions (P) :
Γ � P : U0 | ∆ (ΠP) :

Γ � A : U | ∆ Γ, x:A � B : P | ∆
Γ � (x:A)→B : P | ∆

Equality (refl) :
Γ � A : U | ∆ Γ � M : A | ∆

Γ � refl : M =A M | ∆
(=) :

Γ � A : Ui | ∆ Γ � M : A | ∆ Γ � N : A | ∆
Γ � M =A N : Ui | ∆

(subst) :
Γ, x:A � B : U | ∆ Γ � N : B{P/x} | ∆ Γ � M : P = Q | ∆

Γ � subst M N : B{Q/x} | ∆
Non-Dependent Elimination

(→E) :
Γ � M : A→B | ∆ Γ � N : A | ∆

Γ � MN : B | ∆
(let) :

Γ � M : A | ∆ Γ, x:A � N : B | ∆
(x ∈ fv(B))

Γ � let x = M in N : B | ∆

(×E1) :
Γ � M : (x:A)×B | ∆

(x ∈ fv(B))
Γ � π1(M) : A | ∆

(×E2) :
Γ � M : (x:A)×B | ∆

(x ∈ fv(B))
Γ � π2(M) : B | ∆

Dependent Elimination

(→Ed) :
Γ � M : (x:A)→B | ∆ Γ �nef N : A | ∆

Γ � MN : B{N/x} | ∆
(letd) :

Γ �nef M : A | ∆ Γ, x:A � N : B | ∆
Γ � let x = M in N : B{M/x} | ∆

(×Ed
1) :

Γ �nef M : (x:A)×B | ∆
Γ � π1(M) : A | ∆

(×Ed
2) :

Γ �nef M : (x:A)×B | ∆
Γ � π2(M) : B{π1(M)/x} | ∆

Figure 2. ECCK Type Assignments

Definition 5.2 (ECCK Terms) The terms of ECCK are defined as those of ITT, without co-
products (A + B, inji(M), case analysis) or the constants ⊥,〈〉 and 1, by adding the two control
operators:

M, N, A, B ::= . . . | catchα M | throwα M

In terms of λµ, catchα M and throwα M can be understood by µα.[α]M and µ .[α]M (where ‘ ’
is the Haskell notation for a name that does nor occur in fn(M)), respectively.

Definition 5.3 (Reduction and type assignment) The reductions (Figure 3b) are, like for
dPAω, cbv; reductions will only substitute with nef terms, which helps maintain subject
reduction.

The type assignment ruless for ECCK [31] are presented in Figure 2. The rules infer judge-
ments of the shape Γ � M : A | ∆; although there is little to distinguish the categories of terms
and types, M, N, P, Q, . . . will be used for the ‘terms’ that appear on the left of the statement,
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Mnef, Nnef, Anef, Bnef ::=
x | Ui | P | (x:Anef)→Bnef

| λx : A.M | let x = Mnef in nnef

| (x:Anef)×Bnef | (Mnef,nnef)

| πi(Mnef) | Mnef = nnef

(a) ECCK nef Terms

(λx.M)N → let x = N in M
let x = V in M → M{V/x}

πi (let x = M in N) → let x = M in πi (N)

πi(v1,v2) → vi
subst refl M → M

(b) ECCK cbv Reductions

Figure 3. ECCK

and A, B,C, D, . . . for the ‘types’ appearing on the right; lower case characters will be used for
variables. This notational convention is especially useful when presenting inference rules.

Notice that the type system is very similar to that of ECC, except that the dependent elimi-
nations are restricted to nef terms.

6 ECCµ: ECC with Control

ECCK is an important step towards a general classical calculus, but, being part of ongoing
work, its definition is not quite complete. In this section, we present the calculus ECCµ, a
direct extension of ECCK. We first introduce coproducts with dependent elimination, which
will be greatly useful in gaining intuition for how to add inductive data (Section 8), and
define when they are nef. We will then present a more complete set of cbv reductions for
ECCµ, which include the µ reductions, as well as notions of values, evaluation contexts, and
normal forms. We then prove subject reduction for the calculus, and also sketch a proof of the
consistency of ECCµ.

Definition 6.1 (Terms of ECCµ ) The constants ⊥,〈〉,1 and coproducts are added to the defi-
nition of syntax in Figure 4e. Note that we use the control operators µ and [·] from λµ instead
of the catch and throw operators of ECCK. The normal forms (wrt to the reductions in Figure
5), and nef terms are presented in Figures 4a and 4f, respectively. The nef terms add the con-
stants and coproducts to those for ECCK; determining when coproduct terms are nef comes
from dPAω. Note that M need not be nef for λx:A.M to be nef.

When dealing with terms of the form [β]M, unless otherwise stated, the discussion will also
apply to terms of the form [tp]M.

The cbv reduction strategy is taken from dPAω; this is necessary as it ensures that substi-
tutions from reductions will only occur with values (and thus nef terms), which will allow to
prove subject reduction. µ-reduction is generalised to be able to control any cbv context; this
evaluation is deterministic under the cbv strategy.

Definition 6.2 (Values, Reduction, and Type Assignment) The values of the calculus (Fig-
ure 4c) generalise those of dPAω [20]. For determining when types are values, the intuition
given by [40] is used; data constructors are values only when their arguments are values, and
data types are always values. Then function, pair and coproduct types can be viewed as data
types, and thus they are always values.

The reduction rules for ECCµ are give in Figure 5. The evaluation contexts (Figure 4d) again
come from generalising those in dPAω.

The type assignment rules for the terms shared by ECCK and ECCµ are the same as in
Figure 2; those for the new terms in ECCµ are presented in Figure 6. The rules for the control
operators are the same as found in [2]. For the constants and coproducts, the rules can be
found in [43], though, of course, for (+Ed) we add the appropriate nef restriction discussed
above.
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N ::= x | ⊥ | 1 | 〈〉 | Ui
| (x:N1)→N2 | (x:N1)×N2 | N1 + N2 | N1 = N2
| λx:A.N | refl
| (N1, N2) (Ni = µδ.N′)
| inji(N) (N = µδ.N′)
| µα[β]N (N = µδ.N′)
| case N � z.N of (x1.N1 | x2.N2)

(N = inji(N′),µα.N′)
| πi(N) (N = (N1, N2),µα.N′)
| xN1 · · ·Nk (Ni = µα.N′)
| subst N1 N2 (N1 = refl,µα.M)

(a) ECCµ Normal Forms

Mnef, Nnef, Anef, Bnef ::= x | ⊥ | 1 | 〈〉 | Ui
| (x:Anef)→Bnef | λx:A.M
| let x = Mnef in Nnef | (x:Anef)×Bnef

| (Mnef,nnef) | πi(Mnef)

| Mnef = Nnef | refl
| subst Mnef nnef

| Anef+Bnef | inji(Mnef)

| case Mnef � z.A of (x.N1nef | y.N2nef)

(b) ECCµ nef Terms

V ::= x | ⊥ | 1 | 〈〉 | Ui
| (x:A)→B | (x:A)×B | A + B | M = N
| λx:A.M | (V1,V2) | inji(V) | refl

(c) ECCµ Values

K ::= • | KM | vK
| inji(K) | (K, M) | (V,K)
| case K � z.A of (x1.N1 | x2.N2)

| let x = K in M | πi(K) | subst K M

(d) ECCµ cbv Evaluation Contexts

M, N, A, B ::= · · ·
| ⊥ Empty Type
| 1 Unit Type
| 〈〉 Unit Element
| A + B Coproduct Type
| inji(M) Injection (i = 1,2)
| case M � z.A of (x.N1 | y.N2)

Coproduct Dependent Eliminator

(e) ECCµ Terms

Mnef , Nnef ::= · · · | ⊥ | 1 | 〈〉
| refl
| subst Mnef Nnef

| Anef + Bnef

| inji(Mnef)

| case Mnef � z.A of (x.N1nef | y.N2nef)

(f) ECCµ nef Terms

Figure 4. ECCµ Fragments and Notions

Crucially, under cbv in the term (λx.M)(µα.N) the µ-reduction is prioritised over β-reduction.
This is similar to Definition 4.4 ((iii)).

To justify the typing rule for dependent elimination of coproducts, observe the reduction of
a case analysis:

case inji(M)� z.A of (x1.N1 | x2.N2) : A{M/z} → let xi = M in Ni : A{inji(M)/xi}
From the letd rule, it follows that M ∈ nef; therefore, in general, P must be nef in case P �
z.A of (x1.N1 | x2.N2). This also justifies the pattern matched methods xi.Ni, as it is possible to
determine when let xi = M in Ni ∈ nef. If, instead, case analysis methods were functions i.e.
case P � z.A of (N1|N2), then case would reduce to an application, which cannot be nef – this
would mean nef terms are not closed under reduction.

It is possible to show closure of nef terms under substitution and reductions.

Lemma 6.3 (nef Substitution / Reduction Closure) Proof in A.1.1.
i) M, N ∈ nef⇒ M{N/x} ∈ nef.

ii) M ∈ nef and M→∗ N⇒ N ∈ nef.

The closure of nef-reduction is essential; nef terms cannot contain a subterm that will
backtrack, and will not reduce to a term that will backtrack. When expanding the calculus,
this is a goal for when to define new syntax to be nef; specifically, when a new term construct
has a reduction into previously defined terms, the new construct is constricted to being nef
only when all of its single-step reductions are nef. As a corollary, we get the same result for
M→∗ N. A similar result for M =β N does not hold. Consider the example, if P, Q ∈ nef then
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(λx.M)N → let x = N in M, (M = µα.M′)
let x = V in M → M{V/x}

K{let x = M in N} → let x = M in K{N}
case inji(M)� z.A of (x1.N1 | x2.N2)

→ let xi = M in Ni
πi(v1,v2) → vi

subst refl M → M
K{µα.M} → µα.M{[α]K{•}/[α]•}

µα.[α]M → M (α ∈ fn(M))

[β]µδ.M → M{β/δ}
(a) cbv Reductions

(µα.M)N → µα.M{[α] • N/[α]•}
v(µα.M) → µα.M{[α]v • /[α]•}

πi(µα.M) → µα.M{[α]πi(•)/[α]•}
(v,µα.M) → µα.M{[α](v,•)/[α]•}
(µα.M, N) → µα.M{[α](•, N)/[α]•}

let x = µα.M in N → µα.M{[α]let x = • in N/[α]•}
inji(µα.M) → µα.M{[α]inji(•)/[α]•}

case µα.M � z.A of (x1.N1 | x2.N2)→
µα.M{[α]case •� z.A of (x1.N1 | x2.N2)/[α]•}

subst (µα.M) N → µα.M{[α]subst (•) N/[α]•}
(b) (µ)-reductions

Figure 5. ECCµ Reductions

Constants (⊥) :
Γ � ⊥ : Ui | ∆ (unit) :

Γ � 〈〉 : 1 | ∆ (1) :
Γ � 1 : Ui | ∆

Control (µ) :
Γ � M :⊥ | α:A,∆

Γ � µα.M : A | ∆
(name) :

Γ � M : A | α:A,∆

Γ � [α]M :⊥ | α:A,∆
(tp) :

Γ � M : ⊥ | ∆
Γ � [tp]M :⊥ | ∆

Coproduct Introduction/Formation

(+Ii) :
Γ � M : Ai | ∆ Γ � A1 : Uj | ∆ Γ � A2 : Uj | ∆

Γ � ini(M) : A1 + A2 | ∆
(+F) :

Γ � A : Ui | ∆ Γ � B : Ui | ∆
Γ � A+B : Ui | ∆

Coproduct Non-Dependent Elimination

(+E) :
Γ � M : A+B | ∆ Γ � C : U | ∆ Γ, x:A � N1 : C | ∆ Γ,y:B � N2 : C | ∆

(z ∈ fv(C))
Γ � case M � z.C of (x.N1 | y.N2) : C | ∆

Coproduct Dependent Elimination

(+Ed) :
Γ �nef M : A+B | ∆ Γ,z:A+B � C : U | ∆ Γ, x:A � N1 : C1 | ∆ Γ,y:B � N2 : C2 | ∆

Γ � case M � z.C of (x.N1 | y.N2) : C[M/z] | ∆
with C1 = C{inj1(x)/z} and C2 = C{inj2(y)/z}.

Figure 6. ECCµ Type Assignments

(λx.P)Q ∈nef; this reduces to let x = Q in P ∈ nef. Thus they are β-equal, but not both in nef.
This same idea will also help to determine when to allow for dependent elimination. When

reducing new syntax to terms for which it is already known that it is not possible to allow
dependent elimination, the requirements carry back to the new syntax.

A term substitution lemma is usually used to prove subject reduction. However, a naive
substitution lemma is not provable; consider M = π1(x, refl) : x=A x, for some x:A. If N:A and
N ∈ nef, then M{N/x} = π1(N, refl) is not typeable. This problem is avoided by the fact that
reductions are cbv, so only values are substituted; all values are nef, thus the substitutions in
the dependent eliminations will still be safe.

Lemma 6.4 (Term Substitution) Proof in A.1.2. If there exists a type C such that Γ, x:C �M : A |∆
and Γ �nef N : C | ∆, then Γ{N/x} � M{N/x} : A{N/x} | ∆{N/x}.

Proposition 6.5 (Subject Reduction) Proof in A.1.3 If Γ �M : A |∆ and M→ N, then Γ � N : A |∆.

The calculus is consistent, with a proof sketch via an encoding into ECCK.

Claim 6.6 (ECCµ Consistency) Proof Sketch in A.1.4 There is no term M such that �M :⊥ |
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7 Typing Algorithm

To use ECCµ as the core of a theorem prover, a typing algorithm is needed. In this section, we
achieve this by defining a bidirectional algorithm. Part of the algorithm requires evaluating
types to weak head normal form, so this notion will be introduced for ECCµ. At the end of
this section, we discuss weakening the nef restrictions to terms that reduce to nef, providing
a more expressive user-level language.

Extensive use is made of terms that are in weak head normal form (whnf). The key idea
behind terms in whnf is that, normally using weak-head or lazy reduction they have been
evaluated to the outermost data/type constructor or lambda abstraction [22], and that this
‘head’ of the term is not reducible. [5] have extended the notion of whnf to λµ: for a term
µα.[β]M to be whnf, reductions on the head are not allowed. If α = β, and α ∈ fn(M), then the
rule (µη) could be applied; so either (α = β or α ∈ fn(H) needs to hold in order for the term to
be in whnf. The other case to consider is the renaming reduction; when M = µγ.[δ]M′, it is
possible to reduce the term by µα.[β]µγ.[δ]M′ → µα.[δ]M′[β/γ]; thus, M = µγ.[δ]M′. Moreover,
the subterm itself, M, needs to be in whnf.

The whnf definition also respects the various µ reductions. For example, a term πi(µα.M)

is (head) reducible, so this is not in whnf; the constants are trivially in whnf.

Definition 7.1 (Weak Head Normal Form Terms [5, 33])

H ::= x | λx.M | refl | 〈〉 | 1 | ⊥ | Ui

| (x:A)→B | (x:A)×B | A + B

| (M, N) (M, N = µα.M′)
| inji(M) (M = µα.M′)
| HM1 · · ·Mn (H = λx.M or µα.M)

| πi(H) (H = (M, N) or µα.M)

| case H � z.C of (x1.N1 | x2.N2)

(H = inji(M) or µα.M)

| µα.[β]H (α = β, or α ∈ fn(H); H = µγ.[δ]M)

| subst H M (H = refl or µα.N)

7.1 Bidirectional Typing
The approach to typing is to define a bidirectional algorithm, where there are two types of
judgements [33]:

Γ � M⇒ A | ∆� N (Type Inference)
Γ � M⇐ A | ∆� N (Type Checking)

This can be read: infer the type A for M, with output N; and check the type A against the
term M, with output N. During the typing algorithm, the terms are sometimes (partially)
evaluated to check their weak-head normal form or if they are nef; this evaluated term is
given by the output N.

The bidirectional algorithm itself is largely standard, and is similar to that of [33]. The rules
for coproducts are based on those in [38]. The new rules are highlighted; the full presentation
(including subtyping rules) can be seen in Appendix A.3.1. The rules for elimination are split
into their dependent and non-dependent versions, with the appropriate nef checks, otherwise
they are much the same as those in [33] and [38].

Soundness of the algorithm (wrt the type system) comes from the nature of bidirectional
algorithms as it is directly derived from the type system. Completeness of this algorithm is
not achieved; in general, terms can only be typed when given the initial type to check, and
the term is in weak head normal form. Although this seems restrictive, this is in fact the
usual case for type checking: a function is defined by declaring its type and then giving an
inhabiting term.
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(µ) :
Γ � M⇐⊥ | α:A,∆� t

Γ � µα.M⇐ A | ∆ � µα.t

(name) :
Γ � M⇐ A | ∆� t

Γ � [α]M⇒⊥ | α:A,∆� [α]t

(tp) :
Γ � M⇐⊥ | ∆� t

Γ � [tp]M⇒⊥ | ∆� [tp]t

To type a µ-term, the assumption α:A is added
to the co-context. This means the type A is needed
before typing starts; so the (µ) rule must be treated
as a type checking rule. As for the (name) rule, it is in
fact quite similar to the (→E) rule2. As the type of
α is already known (otherwise it is not bound in the
term and tp), we only need to check that M matches
that type.

7.2 NEF Restrictions
The system is extended with the nef Rules, which allow the conversion between �nef and �.
These rules are written with �, which can be replaced with either ⇒ or ⇐, allowing to check
if a term is nef whilst checking it against, or inferring, a type. The simplest way to implement
this rule is to just check if the given term, M, is nef.

(nefI) :
Γ � M � A | ∆ � t

(M ∈ nef)
Γ �nef M � A | ∆� t

(nefE) :
Γ �nef M � A | ∆� t

Γ � M � A | ∆� t

From the user’s perspective, however, this can
lead to a very restrictive language, as, in the term
M(NP), M is not able to have a dependent type, as
applications (NP) cannot be nef– even if (NP) eval-
uates to some term Q ∈nef. This motivates the need to consider the class of terms rnef; terms
that reduce to nef terms.

A similar idea, is explored by [24], where they restrict dependent types to a class of terms
called ‘semantic values’ (those that are equivalent to syntactic values) a value restriction for
their dependent typings. The user is then able to write programs, unaware of the value
restriction, as the typing algorithm attempts to find values equivalent to the user terms where
needed; the type system uses explicit equivalency proofs for these value substitutions.

Definition 7.2 (rnef) M ∈ rnef (nef-reducible) when there exists a term N ∈ nef such that
M→∗ N.

(nefI) :
Γ � N � A | ∆� t

(M→∗ N ∈ nef)
Γ �nef M � A | ∆� t

It is possible to add the rule displayed to
the right, which greatly increases the expres-
siveness of the user-level language, but at the
costof greatly slow down the type-checking algorithm, as all user-defined functions would
have to be effectively inlined at each use.

What is certainly worth exploring, then, is if there is a way to determine for a given function,
f , the exact requirements on its arguments to be rnef, and store these requirements alongside
its definition. Then, when f is called, the type-checker would only need to consult these
requirements, instead of evaluating f .

8 Dependent Algebraic Data Types

Most theorem provers and dependently typed languages boast the capability for user-defined
(co)data types. In this section, we add inductive families and codata to ECCµ by generalising
the results for coproducts and dependent pairs. We first add the syntax for data to the calculus,
and how to assign types to data, making the appropriate nef restrictions. We will then do the
same for codata. At the end of the section, we will present the reductions for data and codata.
For codata, this requires a specific introduction of lazy evaluation and lazy evaluation contexts,

2 This intuition came from how the νλµ calculus views a term [α]M as a ‘continuation application’, so can be
seen as a modified form of application [42]
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as we cannot eagerly evaluate an infinite structure. Finally, we will define the (weak head)
normal forms and values of data and codata, to help include them in the typing algorithm.

The resulting calculus forms the basis of our theorem prover for classical logic, Candid.
Below the notation ⇀oi is used to represent a vector/sequence of objects o1 · · · ok; often the

subsript ·i will be omitted, as in ⇀o .

Definition 8.1 i) The notation
⇀

(ai:Ai) (or
⇀

(a : A) if the range of the index is not important) is
used as an abbreviation of the (finite) sequence of type assignments (a1:A1) · · · (an:An).

ii) M
⇀
N is the sequence of terms formed by adding M to the start of the sequence

⇀
N ;

(a:A) · ⇀

(b:B) is the sequence formed by adding (a:A) to the start of the sequence
⇀

(b:B) ,
and

⇀

(a:A) · ⇀

(b:B) = (a1:A1) · · · (an:An) · (b1:B1) · · · (bm:Bm).
iii) (Sequence Formation)

Γ � A1 : U | ∆ · · · Γ, a1:A1, . . . , an−1:An−1 � An : U | ∆
Γ � ⇀

(ai:Ai) : U | ∆
Note that this means Ai can depend on aj for j < i.

iv) (Sequence Instance)

Γ � · : · | ∆
Γ � M : A | ∆ Γ � ⇀

Ni : (
⇀

bi:Bi {M/x}) | ∆ (1≤ i ≤ n)

Γ � M
⇀

Ni : (x:A) · ⇀
(bi:Bi) | ∆

We write ⇀x :
⇀

(ai:Ai) for the sequence of (dependent) assignments: (x1 : (a1:A1)) · · · (xk :
(ak:Ak)).

Below the notation
⇀{Γ � N : A | ∆} will be used for Γ � Ni : Ai | ∆ (1≤ i ≤ n).

8.1 Data
The intuition behind extending the calculus to inductive families is in how they are a general-
isation of coproduct types.

Definition 8.2 (Inductive Families) i) An inductive family D, with parameters p of type Ep

and indices i or type Fi, is defined (in a style similar to [33]) by:

data D
⇀

(p:Ep) :
⇀

(i:Fi) → U where
{

constrj :
⇀

(a:A)
⇀

(b:B) → D ⇀p
⇀
S j

}k

j=1

where:
– ⇀p are the parameters,

⇀
i the indices

–
⇀
S j are the indices corresponding to the j-th constructor

–
⇀

(a:A) are the non-recursive arguments (not containing D)
–

⇀

(bj:Bj) are the recursive arguments. Each Bj must be positive in D, i.e. is of the form
C1→·· ·→Ck→D ⇀p

⇀
i , and the type D does not appear in any Cj [6].

Notice that this definition adds each constructor to the syntax of terms, and adds it
type to an environment, or signature.

ii) The term syntax is given by:

M, N, A, B ::= · · · | D ⇀
M

⇀
N | constri

| elim M � ⇀z .A by (⇀x 1.N1 | · · · | ⇀x k.Nk)

| case M � ⇀z .A of (⇀x 1.N1 | · · · | ⇀x k.Nk)

iii) Defining the data constructors and eliminators nef is similar to that for coproducts:

M, N, A, B ::= · · · | D ⇀
M nef

⇀
N nef | constri

⇀
M nef

| elim Mnef � ⇀z .A by (⇀x 1.N1nef | · · · | ⇀x k.Nk nef)

| case Mnef � ⇀z .A of (⇀x 1.N1nef | · · · | ⇀x k.Nk nef)
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In part (ii) the elim construct is for inductive eliminations that will recurse on the data
type; case is for non-recursive elimination. This distinction is the same as that given by [6].
For elim M � ⇀z .C by (⇀x 1.N1 | · · · | ⇀x k.Nk), M is called the target, ⇀z .C the motive, and ⇀x i.Ni the
methods, and similar for the case construct.

Definition 8.3 To avoid cluttering the notation with too many indices, we will drop the uni-
verse levels (i.e. we will write U instead of Ui), although they are implicitly present.
i) Inductive Family Definition Check [14, 6] Definitions are checked by ensuring the parame-

ters and indices are types, and then checking the types of constructors given the param-
eter variables (but not the indices).

(data) :
Γ � ⇀

(p:Ep) ·
⇀

(i:Fi) : U | ∆
Γ � D

⇀
(p:Ep)

⇀
(i:Fi) : U | ∆

(where) :




⇀{
Γ,

⇀
(p:Ep) �

⇀
(a:A) · ⇀

(b:B) : U | ∆
} ⇀{

Γ,
⇀

(p:Ep) ,
⇀

(a:A) ,
⇀

(b:B) � S : F | ∆
}

Γ � constrj :
⇀

(a:A)
⇀

(b:B) → D
⇀
P

⇀
S | ∆




k

j=1

Here the type derived for the constructor must be the one stored in the environment.
ii) Inductive Family Formation/Introduction [14, 6]

To ensure an instantiation of a data type is valid, the parameters and indices must be
of the correct types, and the parameter types P indeed types (i.e. members of a universe
U ).

(data) :
⇀{Γ � P : (p:E) | ∆}

⇀{
Γ � Q : (i:F){ ⇀

P/p } | ∆
}

Γ � D
⇀
P

⇀
Q : U | ∆

Only constructors in canonical form [6] are considered, that is, those that are fully applied.
This makes it easier to identify nef terms.

(constri) :
⇀{

Γ � P : (p:Ep) | ∆
} ⇀{

Γ � M : (a:A){ ⇀
P/p } | ∆

} ⇀{
Γ � N : (b:B){ ⇀

P/p ,
⇀

M/a } | ∆
}

Γ � constrj
⇀
P

⇀
M

⇀
N : D

⇀
P

⇀
S | ∆

iii) Inductive Family Dependent Elimination (elim)

(elimd) : Γ �nef M : D
⇀
P

⇀
Q | ∆ Γ, ⇀z :

⇀
(P:E) · ⇀

(Q:F) ·(D ⇀
P

⇀
Q ) � C : U | ∆

⇀{
Γ, ⇀xj :

⇀
(P:E) · ⇀

(a:A) · ⇀
(b:B) · ⇀

(v:V) �nef Nj : C(
⇀
P

⇀
Q (constrj

⇀x p ⇀x a ⇀x b)) | ∆
}

k
j=1

..

.

Γ � elim M � ⇀z .C by (
⇀x 1.N1 | · · · | ⇀x k .Nk) : C(

⇀
P

⇀
Q M) | ∆

where:
– C(

⇀
P

⇀
Q M) stands for C{(⇀

P
⇀
Q M)/⇀z }.

– ⇀x y stands for the subsequence of ⇀x corresponding to the variables typed by
⇀

(y:Y) .
– each B is of the form (k1:K1)→·· ·→(kl :Kl)→D

⇀
P

⇀
S .

– each V is of the form (u1:U1)→·· ·→(ul :Ul)→C(
⇀
P

⇀
S (bj u1 · · ·ul)), and is of the same length

as the type B (i.e. the index l matches).
iv) Inductive Family Dependent Elimination (case)

(cased) : Γ �nef M : D
⇀
P

⇀
Q | ∆ ..

.
Γ, ⇀z :

⇀
(p:E) · ⇀

(q:F) ·(D ⇀
P

⇀
Q )�C : U |∆

⇀{
Γ, ⇀xj :

⇀
(p:E) · ⇀

(a:A) · ⇀
(b:B) � Nj : C(

⇀
P

⇀
Q (constrj

⇀x p ⇀x a ⇀x b)) | ∆
}

k
j=1

Γ � case M � ⇀z .C of (⇀x 1.N1 | · · · | ⇀x k.Nk) : C(
⇀
P

⇀
Q M) | ∆

v) Inductive Family Non-Dependent Elimination.

(elim) : Γ � M : D
⇀
P

⇀
Q | ∆ ..

.
Γ �C : U |∆ (zi ∈ fv(C))

⇀{
Γ, ⇀xj :

⇀
(p:E) · ⇀

(a:A) · ⇀
(b:B) · ⇀

(v:Vi) � Nj : C | ∆
}

k
j=1

Γ � elim M � ⇀z .C by (
⇀x 1.N1 | · · · | ⇀x k.Nk) : C | ∆
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(case) :
Γ � M : D

⇀
P

⇀
Q | ∆ Γ � C : U | ∆ (zi ∈ fv(C))

⇀{
Γ, ⇀xj :

⇀
(p:Ep) ·

⇀
(a:A) · ⇀

(b:B) � Nj : C | ∆
}

k
j=1

Γ � case M � ⇀z .C of (⇀x 1.N1 | · · · | ⇀x k.Nk) : C | ∆

The reasoning behind the nef restrictions of both the target and all the methods in part (iii)
comes from the reduction for elim in Figure 7. In particular, the rule (letd) needs the subterms
assigned to xi to be nef. This means each ⇀w j.(elim bj

⇀w j � ⇀z .C by (⇀x 1.N1 | · · · | ⇀x k.Nk)) must be
nef, and thus, as ⇀w j could have length 0, each ni ∈ nef. Also a,b ∈ nef, which generalises to
the target being nef.

The reasoning behind the nef restriction for the target in the rule (cased) again comes from
observing the reductions in Figure 7. From the letd rule, we see we need a,b ∈ nef, thus, more
generally, we need the target to be nef.

Just like with coproducts, the non-dependent elimination needs no nef restrictions. This
can be seen from the reductions (in Section 8.3) for both elim and case, in which they reduce
to let expressions where the type is not dependent in the bound variable. Thus, by the (let)
rule, we know we don’t need any of the terms to be nef.

8.2 Codata
As suggested by [33], codata can be seen as a generalisation of dependent pairs. A codata
type R with parameters

⇀

(p:Ep) is defined by;

codata R
⇀

(p:Ep) : U where {proji : Ai}k
i=1

where Ai is strictly positive w.r.t. R, and fv(Ai) ⊆ ⇀p , and proj1, · · ·,proji−1 can appear in Ai. We
extend the syntax similarly to how we did for data types:

M, N, A, B ::= · · · | R ⇀p | proji(M) | build(N1 | · · · | Nk)

We define when the terms are nef, which can be obtained by generalising those of product
types:

Mnef, Nnef, Anef, Bnef ::= · · · | R ⇀p nef | proji(Mnef) | build(Nnef1 | · · · | Nnefk).

Definition 8.4 (Type Assignment for Codata) i) (Codata Declaration)

(codata) :
Γ � ⇀

(p:Ep) :: U | ∆
Γ � R

⇀
(p:Ep) : U | ∆

(where) :

{
Γ,

⇀
(p:Ep) ,proj1:A1, · · ·,proji−1:Ai−1 � Ai : U | ∆

Γ,
⇀

(p:Ep) ,proj1:A1, · · ·,proji−1:Ai−1 � proji : Ai | ∆

}k

i=1

ii) (Codata Formation/Introduction) The formation of codata instances is very similar to that
for data instances. The build construct is typed as a generalisation of the pairing con-
struct (·, ·), where the type of each successive term is dependent on the previous terms.
Given a valid codata declaration R

⇀

(p:Ep) :U in the context Γ, instances of the type and
introductions are checked, where

⇀
P is a term vector (of the same length as ⇀p ), by;

(codata) :
Γ � ⇀

P : (p:Ep) | ∆
Γ � R

⇀
P : U | ∆

(buildR) :
Γ � R

⇀
P : U | ∆ Γ � N1 : A1{

⇀
P/p } | ∆ · · · Γ � Nk : Ak{

⇀
P/p ,

⇀
N/p } | ∆

Γ � build(N1 | · · · | Nk) : R
⇀
P | ∆

iii) (Codata Projection) The projections are a generalisation of the pair projections. Given
codata R

⇀

(p:Ep) : U in the context Γ, and
⇀
P a term vector of the same length as ⇀p , we

type the projections by the following rules:

(proji) :
Γ � M : R

⇀
P | ∆ Γ � R

⇀
P : U | ∆

(pj ∈ fv(Ai) for j = 1, · · ·, (i−1))
Γ � proji(M) : Ai{

⇀
P/p } | ∆

(projdi ) :
Γ �nef M : R

⇀
P | ∆ Γ � R

⇀
P : U | ∆

Γ � proji(M) : Ai{
⇀

P/p ,proj1(M)/proj1, · · ·,proji−1(M)/proji−1} | ∆
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constri
⇀
V µα.M

⇀
N → µα.M{[α]constri

⇀
V • N/[α]•}

case (constri
⇀a

⇀
b )� ⇀z .C of (⇀x 1.N1 | · · · | ⇀x k.Nk) → let ⇀x i =

⇀a
⇀
b in Ni

elim (constri
⇀a

⇀
b )� ⇀z .C by (

⇀x 1.N1 | · · · | ⇀x k.Nk) →

let ⇀x =




⇀a
⇀
b

⇀w 1.(elim b1
⇀w 1 � ⇀z .C by (

⇀x 1.N1 | · · · | ⇀x k.Nk))

· · ·
⇀w l .(elim bl

⇀w l �
⇀z .C by (

⇀x 1.N1 | · · · | ⇀x k.Nk))




in Ni

Figure 7. Reductions for Inductive Families

K{build(N1 | · · · | Nk)} → let x = build(N1 | · · · | Nk) in K{x}
let x = build(N1 | · · · | Nk) in L{proji(x)} → let x = Ni in L{x}

build(
⇀
V | µα.M | ⇀

N ) → µα.M{[α]build(
⇀
V | • | ⇀

N )/[α]•}
let x = build(N1 | · · · | Nk) in µα.[β]M → µα.[β]let x = build(N1 | · · · | Nk) in M

Figure 8. Lazy Reductions for Codata

8.3 Reductions for (Co)Inductive Types
Viewing a constructor constri fully applied to its arguments as function application, cbv con-
texts are expanded by:

K ::= · · · | constri
⇀v K ⇀

M | proji(K)
| case K � ⇀z .A of (⇀x 1.N1| · · · |⇀x k.Nk)

| elim K � ⇀z .A by (⇀x 1.N1| · · · |⇀x k.Nk)

The cbv contexts for the constructors constri and destructors case and elim come from [40].
The reductions of inductive families are defined in Figure 7. ⇀x =

⇀
M

⇀
N represents that the

sequence of variables ⇀x is of the same length as the sequence
⇀

M
⇀
N , and that each xi is bound

to the corresponding term on the right hand side.
A cbv strategy will not work for coinductive structures; they represent (potentially) infinite

objects, so cannot be evaluated to completion. Thus, specifically for codata, cbn or lazy
reduction is used. Following [20], this also requires the introduction of specific contexts for
lazy evaluation, labeled L.

Definition 8.5 (Lazy Evaluation Contexts) L ::= • | L{K} | let x = build(N1 | · · · | Nk) in L
The reduction rules for codata are given in Figure 8, and are similar to the lazy reduction

rules of the cofix operator of dPAω [20]. The way in which these rules achieve lazy evaluation
is well explained by [28]: the first rule highlights that, when a coinductive structure is reached
in a cbv context, its computation is delayed by abstracting it; the second rule precisely corre-
sponds to when the coinductive structure is linked to x, whose value is needed, so a single
evaluation step is performed. The third reduction shows that control operators are able to
capture the context of a build statement. The last reduction describes how control operators
interact with coinductive structures under let expressions.

Finally, to be able to understand cbv reduction, and to enable implementation of a bidirec-
tional typing algorithm, whnfs and values for (co)data terms are defined.

Definition 8.6 ((Weak Head) Normal Forms, Values) i) Normal Forms.

N ::= · · · | D ⇀
N | R ⇀

N | constri
⇀
N

| build(N1 | · · · | Nk) (Ni = µα.M)

| proji(N) (N = build(N1 | · · · | Nk),µα.M)

| case N � z.C of (⇀x 1.N1 | · · · | ⇀x k.Nk) (N = constri
⇀
N ,µα.M)

| elim N � z.C by (⇀x 1.N1 | · · · | ⇀x k.Nk) (N = constri
⇀
N ,µα.M)

ii) Weak Head Normal Forms (whnf).
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h, H ::= · · · | D ⇀
M | R ⇀

M | constri
⇀

M | build(M1 | · · · | Mk)

| proji(H) (H = build(N1 | · · · | Nk))

| case H � z.C of (⇀x 1.N1 | · · · | ⇀x k.Nk) (H = constri
⇀
N )

| elim H � z.C by (⇀x 1.N1 | · · · | ⇀x k.Nk) (H = constri
⇀
N )

iii) Values. V ::= · · · | D ⇀
M | R ⇀

M | constri
⇀
V | build(V1 | · · · | Vk)

9 Implementation

In this section, we discuss the technical details of Candid, a theorem prover that uses ECCµ as
its core calculus. A full presentation of the syntax can be found in A.4.1, and is reminiscent
of Agda’s syntax. We will also discuss how users can interact with the type system through a
REPL.

(Term Representation): The variables are implemented via the unbound-generics [23] library,
which is a re-implementation of the unbound library outlined in [45]. This gives variables a
locally nameless representation, where bound variables have De Bruijn Indices [11], and free
variables are nameful. Evaluation is achieved by substitution: for usual substitution, we were
able to use unbound-generics’s Subst class; for the structural substitutions, we developed a
similar generic class StrSubst, letting us define structural substitutions for each µ-reduction.

(Type Checking): We implemented the bidirectional algorithm (Section 7) for ECCµ. The
pipeline for type-checking follows the usual steps: we first lex and parse the given file into
the internal data structure for definitions and terms. The function and data definitions are
then type checked in sequential order (with respect to the order they were defined in the file),
adding the function types, data/codata types and constructors/projectors to a global context
when they successfully type check, and exit with an error message if not.

As described in the bidirectional algorithm, we need to make use of an evaluator for both
reducing to whnf, and attempting to reduce a term to nef. This distinguishes the algorithm
from other similar bidirectional systems, as it means the evaluator is used in two different
ways; one needs to have to goal of whnf, that won’t bother to reduce subterms when not
needed to, the other needs to be more eager and able to exit once the term has reached a nef
form. This was achieved by abstracting the reduction rules as rewrites, and letting the two
subevaluators (for whnf and nef) call these rewrites and also each other if they need to.

User-level Language
The surface language is very close to that of ECCµ, although there are simplifications for the
user. Functions can be defined with arguments, where the definition f x y = M is desug-
ared into f = \x -> \y -> M. Multiple variables can be bound at a single lambda or tele-
scope, where \x y -> M and (A B : T) are desugared into \x -> \y -> M and (A : T)(B :

T). There are also some shorthands for logical operators, where !A and A are both desugared
into A -> Bot (where Bot represents the type ⊥), and A <-> B to (A -> B) * (B -> A).

((Co)Data): Defining data and codata is very similar to how one would in Agda:

data Vector (A : Type) : (n : Nat) -> Type where

empty : Vector A 0

cons : (n : Nat)(x : A)(xs : Vec A n)

-> Vec A (suc n)

codata Stream (A : Type) : Type where

head : A

tail : Stream A
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Note that constructors use telescopes rather than function types in their definition. This is
due to the fact that constructors can only be used in canonical form.

Data and record types are handled via pattern matched case and co-pattern matched build
trees:

headOrZero : (n : Nat)(A : Univ) -> (Vec A n) -> A

headOrZero n A v = case v of

empty -> 0

cons i x xs -> x

from : Nat -> Stream Nat

from n = build

head -> n

tail -> from (suc n)

(REPL): Users are able to interact with the type checker through holes, indexed by a number.
The user can than query the REPL, which reports back the goal and scope at each hole:

foo : (A B : Type) -> A -> B -> A

foo T1 T2 x = \y -> ?1

Hole 1:

Goal: T1

Scope: {x:T1, y:T2};

The type holes let the user engage in a dialog with the type system [34], and enables a
hole-driven design workflow, where the type signature of the function guides its construction.

(Future Features): To ensure soundness of programs, theorem provers like Agda employ strict
positivity checks on (co)data constructor/projector types, and heuristics to ensure program
termination. These are both able to be added to the calculus; strict positivity can be achieved
by a syntactic check, and a common termination heuristic is that of structural recursion, in
which recursive functions must always call a subexpression of a given argument in at least
one of the recursive arguments. The universe hierarchy is also not currently implemented, so
a user is able to write Type:Type. Allowing the typical ambiguity in the surface language has
well documented implementation methods [18], that are applicable to this language.

Dependently typed languages like Agda enjoy implicit arguments, where the type checker
can fill in arguments the user doesn’t supply and (co)pattern matched function definitions,
which allow functions to have multiple definitions based on the (co)patterns of the argu-
ments/return value. Methods to implementation of both of these features are well docu-
mented; algorithms for handling implicit arguments and pattern matching are both explained
well in [33].

10 Related Work

(Calculi with nef Restrictions): Our work on ECCµ is based on the calculi dPAω, of [20], and
ECCKof [32]. dPAω is a classical proof system for Peano Arithmetic, that is able to prove both
the axioms of countable and dependent choice. Countable choice is achieved through a clever
use of a coinductive fixpoint, and the intuition that a for-all quantification over a countable
domain can be represented by a countable conjunction. For example, a predicate P defined
over the natural numbers can be represented by P(0)∧ P(1)∧ P(2) · · ·. This infinite conjunction
is constructed by then building a stream with the coinductive fixpoint.

ECCK is Luo’s Extended Calculus of Constructions equipped with catch and throw control
operators. This calculus is defined via a translation into Ldep; a dependent, classical sequent
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calculus, capable of CPS translations for dependent types. Ldep combines the previous work
of the three authors, including, interestingly, a sequent calculus version of dPAω [30], that was
used to show the strong normalisation of dPAω.

(PML2): [24] defines a type system with a similar goal; combining dependent types with
control. This system is implemented in the language PML2 [25]. The key difference when
compared to our own system is that Leipgre uses a ‘semantic value restriction’ instead of
the nef restriction. A term is a semantic value when it can be shown to be observationally
equivalent to a syntactic value; the typing rules for semantic values then need a proof of this
equivalence. Roughly speaking, when compared with our typing rules, the �nef M require-
ment on M is the same as finding a value V that is equivalent to M, and then making the
judgement on M with the equivalency proof in the context; (M ≡ V) � M. Due to the basis in
equivalency proofs the semantic value restriction is not decideable [29], and is much looser
than the nef requirement. In fact, all nef terms can be shown to be equivalent to a value, so
the semantic value restriction can be understood as a proper superset of nef terms [29].

PML2 itself is a dependently typed cbv ML-like language with control operators. This is
the most closely related proof assistant to our own, as it is has dependent functions and pairs
compatible with classical logic. As it is based on the semantic value model described above,
allowing dependent type checking means the system must uses equational reasoning on non-
value terms, which is comparable with our method for checking if a non-nef term is rnef
by evaluating it. As the set of nef terms is a proper superset of syntactic values, our rnef
evaluator invoked less often than PML2’s equational reasoning in the type checking process.

11 Conclusion

In this paper, we introduced classical logic, how it differs with intuitionistic logic, and its
computational content, through the λµ calculus. Then, we reviewed dependent types and
how they relate to first order intuitionistic logic, and that care must be taken when combin-
ing them with control operators. We explored the calculi dPAω and ECCK, that achieve this
safe combination. We presented our calculus ECCµ, which extends ECCK with dependent
coproducts, inductive data and codata, which allows for classical reasoning and dependent
types to safely interact. We defined a bidirectional typing algorithm for ECCµ, which success-
fully turns the type system into a decideable type checking algorithm. Finally, we presented
our programming language Candid, based on this calculus, which is a proof assistant for
computational classical logic.

We conjecture that we can expand the set of provable propositions in ECCµ by weakening
the nef restriction on terms. By making negation an explicit type (for example, in the νλµ-
calculus [42]), rather than encoded by ‘→⊥’, this would allow for a less restrictive definition
of nef terms that relates specifically to negation elimination. This would allow ECCµ to prove
even more tautologies of classical logic.

The notion of judgemental equality in ECCµ is currently not subscribed to any particular
school of equality, like Observational Type Theory (OTT) or Homotopy Type Theory (HoTT).
Thus, the notion of equality in ECCµ has great potential to be expanded upon. For example,
HoTT has very powerful notions of equality, given by the univalence axiom. This axiom im-
plies that lem is not true for some types [43], and thus seemingly incompatible with classical
logic. It is worth investigating if this is still the case in the presence of the nef restrictions,
and if in fact these characterise the types for which lem is provable.

We hope this work forms part of the first steps towards a new style of theorem provers that
uncover the computational content of classical logic, and the new reasoning power it brings.
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Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 720–729. ACM, 2018.
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Appendix A Appendix
Appendix A.1 Proofs
Appendix A.1.1 Lemma 6.3: nef-Substitution and Reduction Closure in ECCµ

Proof : (i) By induction on the structure of nef terms. x ∈ fv(M)⇒ M{N/x} = m ∈ nef. This
covers terms y,〈〉,1, Ui,0, refl. From now on, we assume x ∈ fv(M).

(Base Case): Assume n ∈ nef; then x{N/x} = n ∈ nef.

(Inductive Cases): Assume p{N/x},q{N/x}, M{N/x}, A{N/x}, B{N/x} ∈ nef. Then:

• ((y:A)→B){N/x} = (y:A{N/x})→B{N/x} ∈ nef
• (λy.m){N/x} = λy.(M{N/x}) ∈ nef
• (let y = p in q){N/x} = (let y = p{N/x} in q{N/x}) ∈ nef
• ((y:A)×B){N/x} = (y:A{N/x})×B{N/x} ∈ nef
• πi(M){N/x}= πi(M{N/x}) ∈ nef
• (P, Q){N/x} = (P{N/x}, Q{N/x}) ∈ nef
• (A + B){N/x} = (A{N/x}+ B{N/x} ∈ nef)
• inji(M){N/x}= inji(M{N/x}) ∈ nef
• (case M of (y1.p,y2.q)){N/x} = case M{N/x} of (y1.p{N/x},y2.q{N/x}) ∈ nef
• (p =A q){N/x} = (p{N/x} =A q{N/x}) ∈ nef
• (subst p q){N/x} = subst p{N/x} q{N/x} ∈ nef

((ii)): By induction on the definition of reductions. Note that the (µ) reductions involve terms
of the form µα.m, and thus won’t be nef.

• let x = inji(p) in q ∈ nef⇒ p,q ∈ nef⇒ let y = p in q[inji(y)/a] ∈ nef
• πi(let x = p in q) ∈ nef⇒ p,q ∈ nef⇒ let x = p in πi(q) ∈ nef
• let x = p in q ∈ nef⇒ p,q ∈ nef⇒ p{N/x} ∈ nef
• case inji(M) of (x1.n1|x2.n2) ∈ nef⇒ m, p,q ∈ nef⇒ let x = M in ni ∈ nef
• πi(m1,m2) ∈ nef⇒ m1,m2 ∈ nef
• subst refl M ∈ nef⇒ m ∈ nef
• K{let x = M in n} ∈ nef means that all terms appearing in the context K are nef3, and
that m,n ∈ nef⇒ let x = M in K{n} ∈ nef.

As it holds for the single step reductions, this holds by transitivity for →∗, and it is easy to
see this holds for the contextual closure relations.

Appendix A.1.2 Lemma 6.4: nef-Term Substitution

Proof by induction on the structure of M. Assume Γ, x:C � M : A | ∆ and Γ �nef N : C | ∆. We
write Γ′ and ∆′ for Γ{N/x} and ∆{N/x}, respectively.

• x: Γ, x:C � x:C | ∆ and Γ � C : Ui | ∆ (Ax)

⇒ Γ′ � x{N/x} : C{N/x} | ∆′,
Γ′ � C{N/x} : Ui | ∆′ Induction

⇒ Γ′ � x{N/x} : C | ∆′ and Γ′ � C : Ui | ∆′ (x ∈ fv(C), by (Ax))

⇒ Γ′ � N : C | ∆′ Defn

3 This can be proved with a very simple induction on the definition of K, needing only consider when it is of
the form inji(K′), (K′, m), (v,K),case K′ of (x1.n1|x2.n2), pii(K′),subst K′ M, let x = K′ in M.
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• y: Γ,y : C � y : C | ∆ and Γ � C : Ui | ∆ (Ax)

⇒ Γ′ � y{N/x} : C{N/x} | ∆′,
Γ′ � C{N/x} : Ui | ∆′ Induction

⇒ Γ′ � y{N/x} : C{N/x} | ∆′ (Ax)

⇒ Γ′ � y : C{N/x} | ∆′ Defn

• (y:M)→N A = Ui, Γ, x:C � m : Ui | ∆ and, Γ, x:C,y : m � n : Ui | ∆ (Π)

⇒ Γ′ � M{N/x} : Ui | ∆′,
Γ′,y : M{N/x} � n{N/x} : Ui | ∆′ Induction

⇒ Γ′ � (y:M{N/x})→n{N/x} : Ui | ∆′ (Π)

⇒ Γ′ � ((y:M)→N){N/x} : Ui | ∆′ Defn

• λy.M A = (y:E)→F and Γ, x:C,y : E � m : F | ∆ (→ I)

⇒ Γ′,y : E{N/x} � M{N/x} : F{N/x} | ∆′ Induction
⇒ Γ′ � λy.(M{N/x}) : (y:E{N/x})→F{N/x} | ∆′ (→ I)

⇒ Γ′ � (λy.M){N/x} : ((y:E)→F){N/x} | ∆′ Defn
• let y = P in Q : A

Non-dependent: Γ, x:C � P : B | ∆ and Γ, x:C,y:B � Q : A | ∆ (let)

⇒ Γ′ � P{N/x} : B{N/x} | ∆′,
Γ′,y:B{N/x} � Q{N/x} : A{N/x} | ∆′ Induction

⇒ Γ′ � let y = P{N/x} in Q{N/x} : A{N/x} | ∆′ (let)

⇒ Γ′ � (let y = P in Q){N/x} : A{N/x} | ∆′ Defn

Dependent: A = A′[P/y]Γ, x:C � P : B | ∆,

Γ, x:C,y:B �nef Q : A′ | ∆ (letd)

⇒ Γ′ � P{N/x} : B | ∆′,
Γ′,y:B �nef Q{N/x} : A′ {N/x} | ∆′ Induction

⇒ Γ′ � let y = P{N/x} in Q{N/x} : A′ {N/x}{(M{N/x})/y} | ∆′ (letd)

⇒ Γ′ � (let y = P in Q){N/x} : A′[P/y]{N/x} | ∆′ Defn

• PQ Non-dependent: Γ, x:C � P : B→ A | ∆ and Γ, x:C � Q : B | ∆ (→ E)

⇒ Γ′ � P{N/x} : (B→ A){N/x} | ∆′,
Γ′ � Q{N/x} : B{N/x} | ∆′ Induction

⇒ Γ′ � P{N/x} : (B{N/x} → A{N/x}) | ∆′ Defn
⇒ Γ′ � P{N/x}Q{N/x} : A{N/x} | ∆′ (→ E)

⇒ Γ′ � (PQ){N/x} : A{N/x} | ∆′ Defn

Dependent: A = A′[n/y], Γ, x:C � P : (y:B)→A′ | ∆,

Γ, x:C �nef Q : B | ∆ (→ Ed)

⇒ Γ′ � P{N/x} : ((y:B)→A′){N/x} | ∆′,
Γ′ �nef Q{N/x} : B{N/x} | ∆′ Induction

⇒ Γ′ � P{N/x} : (y:B{N/x})→A′ {N/x} | ∆′ Defn
⇒ Γ′ � P{N/x}Q{N/x} : A′ {N/x}[(Q{N/x})/y] | ∆′ (→ Ed)

⇒ Γ′ � (PQ){N/x} : A′[Q/y]{N/x} | ∆′ Defn

• (y:P)×Q A = Ui, Γ, x:C � P : Ui | ∆ and Γ, x:C,y : m � Q : Ui | ∆ (Σ)

⇒ Γ′ � P{N/x} : Ui | ∆′,
Γ,y : P{N/x} � Q{N/x} : Ui | ∆ Induction

⇒ Γ′ � (y:P{N/x})×Q{N/x} : Ui | ∆′ (Σ)

⇒ Γ′ � ((y:P)×Q){N/x} : Ui | ∆′ Defn
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• (P, Q) A = (y:A1)×A2, Γ, x:C � P : A1 | ∆ and Γ, x:C � Q : A2[P/y] | ∆ (×I)

⇒ Γ′ � P{N/x} : A1{N/x} | ∆′,
Γ′ � Q{N/x} : (A2[(P{N/x})/y]){N/x} | ∆′ Induction

⇒ Γ′ � Q{N/x} : A2{N/x}[(M{N/x})/y] | ∆′ Defn
⇒ Γ′ � (P{N/x}, Q{N/x}) : (y:A1{N/x})×A2{N/x} | ∆′ (×I)

⇒ Γ′ � (P, Q){N/x} : ((y:A1)×A2){N/x} | ∆′ Defn

• π1(M) Non-dependent: Γ, x:C � m : A× B | ∆ (×E1)

⇒ Γ′ � M{N/x} : (A× B){N/x} | ∆′ Induction
⇒ Γ′ � M{N/x} : A{N/x} × B{N/x} | ∆′ Defn
⇒ Γ′ � π1(M{N/x} : A{N/x}) | ∆′ (×E1)

⇒ Γ′ � (π1(M)){N/x} : A{N/x} | ∆′ Defn

Dependent: Γ, x:C � m : (y:A)×B | ∆ (×Ed
1)

⇒ Γ′ � M{N/x} : ((y:A)×B){N/x} | ∆′ Induction
⇒ Γ′ � M{N/x} : ((y:A{N/x})×B{N/x}) | ∆′ Defn
⇒ Γ′ � π1(M{N/x} : A{N/x}) | ∆′ (×E1)

⇒ Γ′ � (π1(m)){N/x} : A{N/x} | ∆′ Defn

• π2(M) Non-dependent: Γ, x:C � m : B× A | ∆ (×E2)

⇒ Γ′ � M{N/x} : (B× A){N/x} | ∆′ Induction
⇒ Γ′ � M{N/x} : B{N/x} × A{N/x} | ∆′ Defn
⇒ Γ′ � π2(M{N/x} : A{N/x}) | ∆′ (×E2)

⇒ Γ′ � (π2(M)){N/x} : A{N/x} | ∆′ Defn

Dependent: A = A′[π1(m)/y], Γ, x:C � m : (y:B)×A′ | ∆ (×Ed
2)

⇒ Γ′ � M{N/x} : ((y:B)×A′){N/x} | ∆′ Induction
⇒ Γ′ � M{N/x} : (y:B{N/x})×A′ {N/x} | ∆′ Defn
⇒ Γ′ � π2(M{N/x} : A′[π1(M{N/x})/y]) | ∆′ (×E2)

⇒ Γ′ � (π2(m)){N/x} : A′[π1(m)/y]{N/x} | ∆′ Defn

• D + E A = Ui, Γ, x:C � D : Ui | ∆ and Γ, x:C � E : Ui | ∆ (+F)

⇒ Γ′ � D{N/x} : Ui | ∆′ and Γ � E{N/x} | ∆ Induction
⇒ Γ′ � D{N/x}+ E{N/x} : Ui | ∆′ (+F)

⇒ Γ′ � (D + E){N/x} : Ui | ∆′ Defn
• inji(M): We show for i = 1; it is almost exactly the same for i = 2 (as there is no dependency).

A = A1 + A2, Γ, x:C � M : A1 | ∆ and Γ, x:C � Ai : Ui | ∆ (+I)

⇒ Γ′ � M{N/x} : A1{N/x} | ∆′,
⇒ Γ′ � Ai{N/x} : Ui | ∆′ Induction
⇒ Γ′ � inj1(M{N/x}) : A1{N/x}+ A2{N/x} | ∆′ (+I)

⇒ Γ′ � (inj1(M)){N/x} : (A1 + A2){N/x} | ∆′ Defn
• case M � z.P of (x1.N1|x2.N2)
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Non-dependent: M = A, Γ, x:C � m : B1 + B2 | ∆,

Γ, x:C, xi:Bi � Ni : A | ∆, (+E)

Γ, x:C � A : Ui | ∆

⇒ Γ′ � M{N/x} : (B1 + B2){N/x} | ∆′,
Γ′, xi:Bi{N/x} � Ni {N/x} : (A{N/x}) | ∆′, (Induction)
Γ′ � A{N/x} : Ui | ∆′

⇒ Γ′ � M{N/x} : B1{N/x}+ B2{N/x} | ∆′ (Defn)
⇒ Γ{N/x} �

case M{N/x}� z.(A{N/x}) of (x1.(N1{N/x}) | x2.(N2{N/x})) : A{N/x}
| ∆{N/x} (+E)

⇒ Γ′ � (case M � z.A′ of (x1.N1|x2.N2)){N/x} : A{N/x} | ∆′ Defn

Dependent: A = A′[m/z], Γ, x:C � m : B1 + B2 | ∆,

Γ, x:C, xi:Bi � Ni : A[inji(xi)/x] | ∆, (+Ed)

Γx:C,z : B1 + B2 � M : Ui | ∆

⇒ Γ′ � M{N/x} : (B1 + B2){N/x} | ∆′,
Γ′, xi:Bi{N/x} � Ni{N/x} : (A′[inji(xi)/z]{N/x}) | ∆′, (Induction)
Γ′,z : (B1 + B2){N/x} � A′ {N/x} : Ui | ∆′

⇒ Γ′ � M{N/x} : B1{N/x}+ B2{N/x} | ∆′,
Γ′, xi:Bi{N/x} � Ni{N/x} : A′ {N/x}[inji(xi)/z] | ∆′, (Defn)
Γ′,z : B1{N/x}+ B2{N/x} � A′ {N/x} : Ui | ∆′

⇒ Γ{N/x} �
case M{N/x}� z.(A′ {N/x}) of (x1.(N1{N/x})|x2.(N2{N/x})) : A′ {N/x}[m/z]

| ∆{N/x} (+Ed)

⇒ Γ′ � (case M � z.A′ of (x1.N1|x2.N2)){N/x} : A′[m/z]{N/x} | ∆′ Defn

• m =B n A = Ui, Γ, x:C � m : B | ∆ and Γ, x:C � n : B | ∆ (=)

⇒ Γ′ � M{N/x} : {N/x}B | ∆′,
Γ � n{N/x} : B{N/x} | ∆ Induction

⇒ Γ′ � M{N/x} =B n{N/x} | ∆′ (=)

⇒ Γ′ � (m =B n){N/x} | ∆′ Defn

• refl A = (m =B m), Γ, x:C � B : Ui | ∆ and Γ, x:C � m : B | ∆ (refl)

⇒ Γ′ � B{N/x} : Ui | ∆′Γ′ � M{N/x} : B{N/x} | ∆′ Induction
⇒ Γ′ � reflM {N/x} : M{N/x}=B{N/x} M{N/x} | ∆′ (refl)

⇒ Γ′ � reflM {N/x} : (m =B m){N/x} | ∆′ Defn

• subst M N Γ, x:C,z : B � A : Ui | ∆, Γ, x:C � n : A[p/z] | ∆, Γ, x:C � m : p = q | ∆ (subst)

⇒ Γ′,z : B{N/x} � A{N/x} : Ui | ∆′,
Γ′ � n{N/x} : A[p/z]{N/x} | ∆′, Induction
Γ′ � M{N/x} : (p =B q){N/x} | ∆′

⇒ Γ′ � n{N/x} : A{N/x}[(p{N/x})/z] | ∆′,
Γ′ � M{N/x} : p{N/x} =B{N/x} q{N/x} | ∆′ Defn

⇒ Γ′ � subst M{N/x} n{N/x} : A{N/x}[(q{N/x})/z] | ∆′ (subst)

⇒ Γ′ � (subst M N){N/x} : A[q/z]{N/x} | ∆′ Defn
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• µα.m Γ, x:C � m :⊥ | α : A,∆ (µ)

⇒ Γ � M{N/x} | α : A{N/x},∆ Induction
⇒ Γ � µα.(M{N/x}) : A{N/x} | ∆ (subst)

⇒ Γ � (µα.m){N/x} : A{N/x} | ∆ Defn

• [α]m A = ⊥ Γ, x:C � m : B | ∆ (name)
⇒ Γ′ � M{N/x} : B{N/x} | ∆′ Induction
⇒ Γ′ � [α](M{N/x}) :⊥ | α : B{N/x},∆′ (name)
⇒ Γ′ � ([α]m){N/x} :⊥{N/x} | α : B{N/x},∆′ Defn

• 〈〉: by (unit), Γ′ � 〈〉 : 1 | ∆′ ⇒ Γ′ � 〈〉{N/x} : 1{N/x} | ∆′

• 1: by (1), Γ′ � 1 : Ui | ∆′ ⇒ Γ′ � 1{N/x} : Ui{N/x} | ∆′

• 0: by (0), Γ′ � 0 : Ui | ∆′ ⇒ Γ′ � 0{N/x} : Ui{N/x} | ∆′

• Ui: by (Ui), Γ′ � Ui : Ui+1 | ∆′ ⇒ Γ′ � Ui{N/x} : Ui+1{N/x} | ∆′

Appendix A.1.3 Lemma 6.5: Subject Reduction

Proof by induction on reductions. For each reduction M→ N, assume Γ � M : A | ∆.

• (λx.m)n→ let x = N in M
Non-dependent: Γ � λx.M : B→ A | ∆ and Γ � N : B | ∆ (→ E)

⇒ Γ, x:B � M : A | ∆ (→ I)

⇒ Γ � let x = N in M : A | ∆ (let)

Dependent: A = A′ {N/x}Γ � λx.M : (x:B)→A′ | ∆ and Γ �nef N : B | ∆ (→ Ed)

⇒ Γ, x:B � M : A′ | ∆ (→ I)

⇒ Γ � let x = N in M : A′ {N/x} | ∆ (letd)

• let x = V in M→ M{V/x}
Non-dependent: Γ, x:B � M : A | ∆, Γ � V : B | ∆ (let)

⇒ Γ � M{V/x} : A | ∆ Lemma ??

Dependent: A = A′ {V/x}Γ, x:B � M : A | ∆, Γ �nef V : B | ∆ (letd)

⇒ Γ � M{V/x} : A′ {V/x} | ∆ Lemma ??
• K{let x = M in N} → let x = M in K{N}

Non-dependent: Γ � K{let x = M in N} : A | ∆

Assume that there is a type B (a subterm of A) such that:
Γ � let x = M in N : B | ∆.

⇒ The hole in K has type B, and Γ � N : B | ∆ (let)

⇒ Γ � K{N} : A | ∆, as n has the same type as •
⇒ Γ � let x = M in K{N} : A | ∆ (let)

Dependent: Γ � K{let x = M in N} : A | ∆

⇒ A = A′ {M/x}, as the type assignment for K{let x = M in N}
will at some point use the letd rule, which will bind x in a subterm of A.

Assume that there is a type B (a subterm of A) such that:
Γ � let x = M in N : B | ∆.

⇒ B = B′ {M/x}, Γ �nef M : C | ∆, Γ, x:C � N : B′ | ∆ (letd)

⇒ The hole in K has type B′, with x ∈ fv(B′)
⇒ Γ, x:C � K{N} : A′ | ∆, as n has the same type as •
⇒ Γ � let x = M in K{N} : A′ {M/x} | ∆ (letd)

• case inji(M)� z.C of (x1.N1|x2.N2)→ let xi = M in Ni
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Non-dependent: A = C{inji(M)/z}, Γ � inji(M) : B1 + B2 | ∆, Γ � C : Ui | ∆,

Γ, xi : Bi � Ni : C | ∆ (+E)

⇒ Γ � M : Bi | ∆ (+Ii)

⇒ Γ � let xi = M in Ni : C | ∆ (let)

⇒ Γ � let xi = M in Ni : C | ∆ (Defn)

Dependent: A = C{inji(M)/z}, Γ �nef inji(M) : B1 + B2 | ∆,

Γ,z : B1 + B2 � C : Ui | ∆, (+Ed)

Γ, xi : Bi � Ni : C{inji(xi)/z} | ∆

⇒ Γ �nef M : Bi | ∆ (+Ii)

⇒ Γ � let xi = M in Ni : (C{inji(xi)/z}){M/xi} | ∆ (letd)

⇒ Γ � let xi = M in Ni : C{inji(M)/z} | ∆ (Defn)
• π1(M1, M2)→ M1

Non-dependent: Γ � (M1, M2) : A× B | ∆ (×E1)

⇒ Γ � M1 : A | ∆ (×I)

Dependent: Γ �nef (M1, M2) : (x:A)×B | ∆ (×Ed
1)

⇒ Γ �nef M1 : A | ∆ (×I)
• π2(M1, M2)→ M2

Non-dependent: Γ � (M1, M2) : B× A | ∆ (×E2)

⇒ Γ � M2 : A | ∆ (×I)

Dependent: A = A′[π1(M1, M2)/x], Γ �nef (M1, M2) : (x:B)×A′ | ∆ (×Ed
2)

⇒ Γ �nef M2 : A′[π1(M1, M2)/x] | ∆ (×I)
• subst refl M→ M

A = B{Q/x}, Γ � refl : P = Q | ∆, Γ � M : B{P/x} | ∆ (subst)

⇒ Γ � refl : P = P | ∆, so Q is syntactically equal to P (refl)

⇒ B{Q/x} = B{P/x} = A

⇒ Γ � M : A | ∆

• V(µα.M)→ µα.M{[α]V • /[α]•}
Γ � V : B→ A | ∆, Γ � µα.M : B | ∆ (→ E)

⇒ Γ � M :⊥ | α : B,∆ (µ)

⇒ Γ � N : B | ∆, for each N such that [α]N is a subterm of M (name)
⇒ Γ � VN : A | ∆ (→ E)

⇒ Γ � [α]VN :⊥ | α : A,∆ (name)
⇒ Γ � µα.M{[α]V • /[α]•} : A | ∆

• (µα.M)N→ µα.M{[α] • N/[α]•}
Γ � N : B | ∆, Γ � µα.M : B→ A | ∆ (→ E)

⇒ Γ � M :⊥ | α : B→ A,∆ (µ)

⇒ Γ � P : B→ A | ∆, for each P such that [α]P is a subterm of M (name)
⇒ Γ � PN : A | ∆ (→ E)

⇒ Γ � [α]PN :⊥ | α : A,∆ (name)
⇒ Γ � µα.M{[α] • N/[α]•} : A | ∆

• let x = µα.M in N→ µα.M{[α]let x = • in N/[α]•}

33



Γ, x:B � N : A | ∆, Γ � µα.M : B | ∆ (let)

⇒ Γ � M :⊥ | α : B,∆ (µ)

⇒ Γ � P : B | ∆, for each P such that [α]P is a subterm of M (name)
⇒ Γ � let x = P in N : A | ∆ (let)

⇒ Γ � [α]let x = P in N :⊥ | α : A,∆ (name)
⇒ Γ � µα.M{[α] • N/[α]•} : A | ∆

• µα.[α]M→ m (α ∈ fn(M))

Γ � [α]M :⊥ | α : A,∆ (µ)

⇒ Γ � M : A| ∆ (name)
• [β]µδ.m→ M{β/δ}

So A : ⊥ by (name), and; Γ � µδ.M : B | β : B,∆ (name)
⇒ Γ � M :⊥ | β : B,δ : B,∆ (µ)

We also need that M[β/δ] : A⇒

M : A. As β : B and δ : B, then substituting β for δ will not change the type of a term. Indeed,
for any named term [δ]N:

Γ � [δ]N :⊥ | δ : B, β : B,∆

⇒ Γ � n : B| δ : B, β : B,∆ (name)
⇒ Γ � [β]N :⊥| δ : B, β : B,∆ (name)

• πi(µα.M)→ µα.M[[α]πi(•)/[α]•]
A = Ai Γ � µα.M : A1 × A2 | ∆ (×E)

⇒ Γ � M :⊥ | α : A1 × A2,∆ (µ)

⇒ Γ � N : A1 × A2 | ∆, for each n such that [α]N is a subterm of m (name)
⇒ Γ � πi(N) : Ai | ∆ (×E)

⇒ Γ � [α]πi(N) :⊥ | α : Ai,∆ (name)
⇒ Γ � µα.M{[α]V • /[α]•} : Ai | ∆

• inji(µα.M)→ µα.M{[α]inji(•)/[α]•}
A = A1 + A2 Γ � µα.M : Ai | ∆ (+I)

⇒ Γ � M :⊥ | α : Ai,∆ (µ)

⇒ Γ � N : Ai | ∆, for each n such that [α]N is a subterm of m (name)
⇒ Γ � inji(N) : A1 + A2 | ∆ (+I)

⇒ Γ � [α]inji(N) :⊥ | α : A1 + A2,∆ (name)
⇒ Γ � µα.M{[α]V • /[α]•} : A1 + A2 | ∆

• (V,µα.M)→ µα.M[[α](V,•)/[α]•]
A = A1 × A2, Γ � V : A1 | ∆, Γ � µα.M : A2 | ∆ (×I)

⇒ Γ � M :⊥ | α : A2,∆ (µ)

⇒ Γ � N : A2 | ∆, for each N such that [α]N is a subterm of M (name)
⇒ Γ � (V, N) : A1 × A2 | ∆ (×I)

⇒ Γ � [α](V, N) :⊥ | α : A1 × A2,∆ (name)
⇒ Γ � µα.M{[α](V,•)/[α]•} : A1 × A2 | ∆

• (µα.M, N)→ µα.M{[α](•, N)/[α]•}
A = A1 × A2, Γ � µα.M : A1 | ∆, Γ � N : A2 | ∆ (×I)

⇒ Γ � M :⊥ | α : A1,∆ (µ)

⇒ Γ � P : A1 | ∆, for each P such that [α]P is a subterm of M (name)
⇒ Γ � (P, N) : A1 × A2 | ∆ (×I)

⇒ Γ � [α](P, N) :⊥ | α : A1 × A2,∆ (name)
⇒ Γ � µα.M{[α](•, N)/[α]•} : A1 × A2 | ∆

• case µα.M � z.A of (x1.N1|x2.N2)→ µα.M[[α]case • � z.A of (x1.N1|x2.N2)/[α]•]
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Γ � µα.M : A1 + A2 | ∆, Γ, xi : Ai � Ni : A | ∆, Γ � A : Ui | ∆ (+E)

⇒ Γ � M :⊥ | α : A1 + A2,∆ (µ)

⇒ Γ � P : A1 + A2 | ∆, for each P such that [α]P is a subterm of M (name)
⇒ Γ � case P � z.A of (x1.N1|x2.N2) : A | ∆ (+E)

⇒ Γ � [α]case P � z.A of (x1.N1|x2.N2) :⊥ | α : A,∆ (name)
⇒ Γ � µα.M

{
[α]case •� z.A of (x1.N1|x2.N2)/[α] •

}
: A | ∆

• subst (µα.M) N→ µα.M{[α]subst (•) N/[α]•}
A = B{Q/x}, Γ � µα.M : P = Q | ∆, Γ � N : B{P/x} | ∆ (subst)

⇒ Γ � M :⊥ | α : P = Q,∆ (name)
⇒ Γ � L : P = Q | ∆, for each L such that [α]L is a subterm of M (name)
⇒ Γ � subst L N : B{Q/x} | ∆ (subst)

⇒ Γ � [α]subst L N :⊥ | α : B{Q/x},∆ (subst)

⇒ Γ � µα.M{[α]subst (•) N/[α]•} : B{Q/x} | ∆

Appendix A.1.4 Claim: ECCµ Consistency
Proof : (Sketch) We encode ECCµ into ECCK by:

�A + B� = (b:B)× (if b then A else B)

�inj1(M)� = (true, M)

�inj2(M)� = (false, M)

�case M � z.A of (x1.n1|x2.n2)� = if π1(�M�)

then (let x1 = π2(�M�) in N1)

else (let x2 = π2(�M�) in N2)

�µα.[β]M� = catchα throwβ M

�M� = �·� applied recursively to the subterms of M

With the reverse translation given by:

�B� = 1 + 1

�true� = inj1(〈〉)
�false� = inj2(〈〉)

�if b then M else N� = case �b� � z.�B� of (�M� | �N�)

�catchα M� = µα.[α]M

�throwα M� = µ .[α]M

�M� = �·� applied recursively to the subterms of M

We then use the fact that ECCK is consistent [31].

Appendix A.2 Type Systems
Appendix A.2.1 ECCµ Subtyping

Subtyping Rules for ECCµ [33, 31]
Γ � t : A | ∆ Γ � A � B | ∆

Γ � t : B | ∆
Γ � Ui � Ui+1 | ∆

Γ � A1 : U | ∆ Γ � A2 : U | ∆ Γ � A1 � A2 : U | ∆ Γ, x : A1 � B1 � B2 | ∆

Γ � (x:A1)→B1 � (x:A2)→B2 | ∆

Γ � A1 : U | ∆ Γ � A2 : U | ∆ Γ � A1 � A2 : U | ∆ Γ, x : A1 � B1 � B2 | ∆

Γ � (x:A1)×B1 � (x:A2)×B2 | ∆

Γ � A1 � A2 | ∆ Γ � B1 � B2 | ∆

Γ � A1 + B1 � A2 + B2 | ∆
Γ � A1 : Ui | ∆ Γ � A2 : Ui | ∆ Γ � A1 � A2 : Ui | ∆

Γ � A1 � A2 | ∆
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Γ � A1 � A2 | ∆ Γ � A2 � A3 | ∆

Γ � A1 � A3 | ∆

Appendix A.3 Bidirectional Algorithms for ECCµ

Appendix A.3.1 Bidirectional Type Assignments

The rules are derived by combining the bidirectional style of [33] with the type system in
Figure 6

(Valid Contexts):

(·) : � · | (Ax) :
Γ � A⇐ Ui | ∆ � B

Γ, x:A � x⇒ A | ∆ � x
(αx)

Γ � A⇐ Ui | ∆
Γ � · | α:A,∆

(Function Introduction/Formation):

(→I) :
Γ, x:A � M⇐ B | ∆ � t

(C→whnf (x:A)→B)
Γ � λx.M⇐ C | ∆ � λx.t

(Π) :
Γ � e1⇒ C1 | ∆ � A Γ, x:A � e2⇒ C2 | ∆ � B

(C1→whnf Ui ∧ C2→whnf Uj)
Γ � (x:e1)→e2⇒ Ui�j | ∆ � (x:A)→B

(Pair Introduction/Formation):

(×I) :
Γ � M⇐ A | ∆ � t Γ � N⇐ B[t/x] | ∆ � u

(C→whnf (x:A)×B)
Γ � (M,N)⇐ C|∆ � (t,u)

(Σ) :
Γ � e1⇒ C1 | ∆ � A Γ, x:A � e2⇒ C2 | ∆ � B

(C1→whnf Ui ∧ C2→whnf Uj)
Γ � (x:e1)×e2⇒ Ui�j | ∆ � (x:A)×B

(Coproduct Introduction/Formation):

(+I1) :
Γ � M⇐ A | ∆ � t Γ � B⇐ Ui | ∆

(C→whnf A + B)
Γ � injl (M)⇐ C | ∆ � injl (t)

(+I2) :
Γ � A⇐ Ui | ∆ Γ � M⇐ B | ∆ � t

(C→whnf A + B)
Γ � injr (M)⇐ C | ∆ � injr (t)

(Non-Dependent Elimination):

(→E) :
Γ � M⇒ C | ∆ � t Γ � N⇐ A | ∆ � u

(C→whnf (x:A)→B ∧ x ∈ fv(B))
Γ � MN⇒ B | ∆ � tu

(let) :
Γ � M⇒ A|∆ � t Γ, x:A � N⇒ B | ∆ � u

(x ∈ fv(B))
Γ � let x = M in N⇒ B | ∆ � let x = t in u

(×E1) :
Γ � M⇒ C | ∆ � t

(C→whnf (x:A)×B ∧ x ∈ fv(B))
Γ � π1(M)⇒ A � π1(t)

(×E2) :
Γ � M⇒ C | ∆ � t

(C→whnf (x:A)×B ∧ x ∈ fv(B))
Γ � π2(M)⇒ B � π2(t)

(+E) :
Γ � M⇒ D | ∆ � t Γ � C⇒ Ui | ∆ � E Γ, x:A � N1⇒ E | ∆ � u1 Γ,y:B � N2⇒ E | ∆ � u2

(D→whnf A + B ∧ z ∈ fv
Γ � case M � z.C of (x.N1 | y.N2)⇒ E � case t � z.E of (x.u1 | y.u2)

(Dependent Elimination):
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(→Ed) :
Γ � M⇒ C | ∆ � t Γ � N⇐ A | ∆ � u

(C→whnf (x:A)→B)
Γ � MN⇒ B[N/x] | ∆ � tu

(letd)
Γ � M⇒ A|∆ � t Γ, x:A � N⇒ B | ∆ � u

Γ � let x = M in N⇒ B[M/a] | ∆ � let x = t in u

(×Ed
1) :

Γ � M⇒ C | ∆ � t
(C→whnf (x:A)×B)

Γ � π1(M)⇒ A | ∆π1(t)

(×E2) :
Γ � M⇒ C | ∆ � t

(C→whnf (x : A)xB)
Γ � π2(M)⇒ B[π1(M)/x] | ∆ � π2(t)

(+E) : Γ � M⇒ D | ∆ � t Γ,z:A + B � C⇒ Ui | ∆ � E

Γ, x1:A�N1⇒ E{inj1(N1)/z} |∆ � u1

..

.
Γ, x2:B � N2⇒ E{inj2(N2)/z} | ∆ � u2

(D→whnf A + B)
Γ � case M � z.C of (x.N1 | y.N2)⇒ C[M/z] | ∆ � case t � z.E of (x1.u1 | x2.u2)

(NEF):

(nefI) :
Γ � M⇒ A | ∆ � t

(M ∈ nef)
Γ � M⇒ A | ∆ � t

(nefE) :
Γ � M⇒ A | ∆ � t

Γ � M⇒ A | ∆ � t

(nefI) :
Γ � M⇐ A | ∆ � t

(M ∈ nef)
Γ � M⇐ A | ∆ � t

(nefE) :
Γ � M⇐ A | ∆ � t

Γ � M⇐ A | ∆ � t

(Control):

(µ) :
Γ � M⇐ 0 | α :A,∆ � t

Γ � µα.M⇐ A | ∆ � µα.t
(name) :

Γ � M⇐ A | ∆ � t

Γ � [α]M⇒ 0 | α : A,∆ � [α]t
(tp) :

Γ � M⇐ 0|∆ � t

Γ � [tp]M⇒ 0 | ∆ � [tp]t

(Types):

(1) : Γ � 1⇒ Ui | ∆ � 1 (unit) :
Γ � 〈〉 ⇒ 1 � 〈〉 (Ui) :

Γ � Ui⇒ Ui+1 � Ui+1

(Propositions):

(P) :
Γ � P⇒ U0 � P

(ΠP) :
Γ � e1⇒ C1 | ∆ � A Γ, x:A � e2⇒ C2 | ∆ � B

(C1→whnf Ui ∧ C2→whnf P)
Γ � (x:e1)→e2⇒ P | ∆ � (x:A)→B

(Equality):
(re f l) : Γ � p ≡ q | ∆ � t≡ uΓ � refl⇐ p = q | ∆ � reflt=u

(subst) :
Γ � M⇒ p = q | ∆ � t Γ � N⇒ B[p/x] | ∆ � u Γ, x:A � B⇒ Ui | ∆

Γ � subst M n⇒ B[q/x] | ∆ � subst t u

Appendix A.3.2 Bidirectional Subtyping

Subtyping [33]
A→whnf A′ B→whnf B′ Γ � A′ �: B′ | ∆

Γ � A � B | ∆

Subtyping for Types in whnf Γ � Ui �: Ui+1 | ∆
Γ � A1 �: A2 | ∆ Γ � B1 �: B2 | ∆

Γ � A1 + B1 �: A2 + B2 | ∆

Γ � A1 ≡ A2⇐ Ui | ∆ for some i Γ, x : A1 � B1 �: B2 | ∆

Γ � (x:A1)×B1 �: (x:A2)×B2 | ∆

Γ � A1 ≡ A2⇐ Ui | ∆ for some i Γ, x : A1 � B1 �: B2 | ∆

Γ � (x:A1)→B1 �: (x:A2)→B2 | ∆

Γ � A ≡ B | ∆ Γ � A⇐ Ui | ∆ Γ � B⇐ Ui | ∆

Γ � A �: B | ∆

Appendix A.4 Implementation
Appendix A.4.1 Syntax

Dependently Typed Theorem Prover Syntax
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〈name〉 ::= [unicode letters]
〈var〉 ::= ′ | 〈name〉

〈term〉,〈type〉 ::= 〈name〉
| \(〈var〉+)→ 〈term〉
| \(〈var〉 : 〈type〉)→ 〈term〉
| 〈term〉+
| \〈var〉 : 〈var〉\ 〈term〉
| inj(1|2) 〈term〉
| case-or 〈term〉 of (〈var〉.〈term〉|〈var〉.〈term〉)
| (〈term〉,〈term〉)
| proj(1|2) 〈term〉
| (〈term〉)
| ?[0− 9]+

| Top

| <>

| Bot

| 〈type〉 → 〈type〉
| 〈telescope〉 → 〈type〉
| 〈type〉 ± 〈type〉
| 〈type〉 × 〈type〉
| (〈name〉 : 〈type〉) × 〈type〉
| (〈type〉)
| case 〈term〉 of 〈pattTree〉
| elim 〈term〉 by 〈pattTree〉
| build 〈pattTree〉
| Type | Prop
| refl

| subst 〈term〉 〈term〉
| 〈term〉= 〈term〉

〈pattTree〉 ::= (〈var〉+→ 〈term〉)∗
〈decl〉 ::= 〈name〉 : 〈type〉

| 〈name〉 = 〈term〉
| variable〈name〉 : 〈type〉
| data 〈name〉 〈telescope〉 : 〈telescope〉 where

(〈name〉 : 〈telescope〉 → 〈type〉)∗
| record 〈name〉 〈telescope〉 : 〈telescope〉 where

(〈name〉 : 〈type〉)∗
〈telescope〉 ::= (〈name〉+ : 〈type〉)〈telescope〉

| 〈type〉 〈telescope〉
| ε
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