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Abstract

X is a relatively new calculus, invented to give a Curry-Howard correspondence with Classi-
cal Implicative Sequent Calculus. It is already known to provide a very expressive language;
embeddings have been defined of the λ-calculus, Bloo and Rose’s λx, Parigot’s λµ and Curien
and Herbelin’s λµµ̃. We investigate various notions of polymorphism in the context of the
X -calculus. In particular, we examine the first class polymorphism of System F, and the shal-
low polymorphism of ML. We define analogous systems based on the X -calculus, and show
that these are suitable for embedding the original calculi. In the case of shallow polymor-
phism we obtain a more general calculus than ML, while retaining its useful properties. A
type-assignment algorithm is defined for this system, which generalises Milner’s W .

1 Introduction

Polymorphism is a powerful aspect of most modern programming languages. It is a mech-
anism for allowing a program to be applied with various different types for its inputs (or
outputs), and so allows flexibility and reuse of code. For example, in a polymorphic system,
the identity function might be given the type ∀X.(X→X), where the ∀-bound type variable
X ranges over all types. This correctly expresses that the identity may be typed with A→A
for any and all formulas A. The rules for type-assignment typically allow this type to be
instantiated several different times, so that it would be acceptable for the identity function to
be applied to both an integer and a list in the same program.
X is based on the work of [7] and [11], and has since been further studied in [1]. Like the

λµ-calculus of Parigot [9], it has been designed to have a Curry-Howard correspondence with
Classical Logic. Unlike most existing calculi in this field (which, like λµ are typically based
on a Natural Deduction formulation of logic), X corresponds to a Classical Sequent Calculus.
The particular sequent calculus is defined by Urban [11].

In this paper we investigate various notions of polymorphism based on the logical ∀ connec-
tive, in the context of the X -calculus. We examine the first class polymorphism of System F,
and the shallow polymorphism of ML. We define analogous systems based on the X -calculus,
and show that these systems are suitable for encoding System F and ML. In the case of shal-
low polymorphism we present a more general calculus than ML, and show that all the useful
properties of ML still hold.
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2 The X -Calculus

In this section we will give a brief presentation of the X -calculus; a more detailed description
is given in [1]. We present here the syntax and reduction rules, and aim to give an intuition
of how the calculus behaves.

Although X provides a rather different computational behaviour to calculi based on the
λ-calculus, it has been shown that it can faithfully encode many such calculi, including λ-
calculus, λx, and the λµ-calculus [1]. These calculi incorporate variable-symbols and (with the
exception of λx) rely on an implicit concept of substitution to perform the basic computational
steps. X on the other hand features two separate categories of ‘connectors’, plugs and sockets,
that act as input and output channels, and is defined without any notion of substitution.

Definition 2.1 (X -Terms) The terms of the X -calculus are defined by the following syntax,
where x,y range over the infinite set of sockets and α, β over the infinite set of plugs (sockets
and plugs together form the set of connectors).

P, Q ::= 〈x.α〉 capsule
| ŷPβ̂·α export
| Pβ̂ [y] x̂Q mediator
| Pα̂ † x̂Q cut

The ·̂ symbolises that the connector underneath is bound in the circuit; notions of free and
bound connectors are defined as usual. We will use fp(P) to denote the free plugs of P, and
similarly fs(P) for free sockets.

The notion of reduction on X -terms corresponds to the process of cut elimination on sequent
calculus proofs. As such, the reduction rules define how cuts may be eliminated from an
X -term. If a cut binds a connector which occurs several times in the corresponding subterm,
it may not be immediately eliminated, but rather must seek out each of these occurrences and
make a copy of itself for each one. For example, if there are many occurrences of x in the term
Q then the term Pα̂ † x̂Q can reduce by ‘pushing’ the cut into the structure of Q, and making
a cut between a copy of P and each x found. This process of ‘pushing’ is correctly referred to
as propagation, in this example right-propagation (since we propagate the cut into the right-
hand term). Once the cut reaches a level where a single α and x are immediately introduced
in its two subterms, a logical rule specifies how the two subterms can communicate with one
another through the cut. For example, a cut between an export and a mediator allows the
body of the function from the export to be inserted between the two subterms of the mediator.

Definition 2.2 (Logical Rules) The logical rules are presented by:

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷPβ̂·α)α̂ † x̂〈x.γ〉 → ŷPβ̂·γ α �∈ fs(P)
(med) : 〈y.α〉α̂ † x̂(Pβ̂ [x] ẑQ) → Pβ̂ [y] ẑQ x �∈ fs(P, Q)

(exp-med) : (ŷPβ̂·α)α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(Pβ̂ † ẑR)
(Qγ̂ † ŷP)β̂ † ẑR

}
α �∈ fs(P),
x �∈ fs(Q, R)

The first three logical rules above specify a renaming (reconnecting) procedure, whereas the
last rule specifies the basic computational step: it links the exportation of a function, available
on the plug α, to an adjacent mediator via the socket x (the resulting cuts may be bracketed
either way, as shown).

A key element of the cut-elimination procedure of [11] is that cuts which are propagated to
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the left or right are marked as such.

Definition 2.3 (Active Cuts) The syntax is extended with two flagged or active cuts:

P ::= . . . | P1α̂ † x̂P2 | P1α̂ † x̂P2

We define two cut-activation rules.

(act-l) : Pα̂ † x̂Q → Pα̂ † x̂Q if P does not introduce α
(act-r) : Pα̂ † x̂Q → Pα̂ † x̂Q if Q does not introduce x

where: (P introduces x:) : Either P = Qβ̂ [x] ŷR and x �∈ fs(Q, R), or P = 〈x.α〉.
(P introduces α:) : Either P = x̂Qβ̂·α and α �∈ fp(Q), or P = 〈x.α〉.

An activated cut is processed by ‘pushing’ it systematically through the syntactic structure
of the circuit in the direction indicated by the tilting of the dagger. Whenever an active cut
meets a circuit exhibiting the connector it is trying to communicate with, a new (inactive) cut
is ‘deposited’, representing an attempt to communicate at this level. The pushing of the active
cut continues until the level of capsules is reached, where it is either deactivated or destroyed.
Once again, the inactive cut can reduce via a logical rule, or pushing can continue in the other
direction. This behaviour is expressed by the following propagation rules.

Definition 2.4 (Propagation Rules) Left Propagation:

(† †) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P
(† cap) : 〈y.β〉α̂ † x̂P → 〈y.β〉 β �= α

(† exp-outs) : (ŷQβ̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)β̂·γ)γ̂ † x̂P, γ fresh
(† exp-ins) : (ŷQβ̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P)β̂·γ, γ �= α

(† med) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)
(† cut) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P)

Right Propagation:

( † †) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉
( †cap) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, y �= x
( †exp) : Pα̂ † x̂(ŷQβ̂·γ) → ŷ(Pα̂ † x̂Q)β̂·γ

( †med-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R)),
z fresh

( †med-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R), z �= x
( †cut) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R)

The symmetry of the cut can be seen by these rules - it may (depending on the conditions
on the activation rules) be propagated to the left or right, making copies of the right or left
term respectively. Right-propagation is reminiscent of substitution of terms for term-variables;
left-propagation Pα̂ † x̂Q then is its dual: it expresses the connection of the continuation Q,
accessible via x, to all the ‘calls’ α in P.

We write → for the (reflexive, transitive, compatible) reduction relation generated by the
logical, propagation and activation rules. The reduction relation → is not confluent; this
comes in fact from the critical pair that activates a cut Pα̂ † x̂Q in two ways if P does not
introduce α and Q does not introduce x.

Definition 2.5 ([1]) The interpretation of lambda terms into circuits of X via the plug α,
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��M��α
λ, is defined by:

��x��α
λ = 〈x.α〉

��λx.M��α
λ = x̂��M��β

λβ̂·α, β fresh
��MN��α

λ = ��M��γ
λγ̂ † x̂(��N��β

λβ̂ [x] ŷ〈y.α〉), x,y, β,γ fresh

In [1] it is shown that this interpretation respects ( cbn/ cbv) reduction and typeability.
Notice that every sub-circuit of ��M��α

λ has exactly one free plug. This can be seen as an
explicit notation for the output of the lambda term (outputs are not explicitly labelled in
λ-calculus).

3 Type Assignment for X
The notion of type assignment on X that we present in this section is the basic implicative
system for Classical Logic. The Curry-Howard property is easily achieved.

Definition 3.1 (Types and Contexts) i) The set of types TC, ranged over by A, B, is defined
over a set of atomic types V = {ϕ1, ϕ2, ϕ3, . . .} by the grammar:

A, B ::= ϕ | A→B

These types are normally known as Curry types.
ii) A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of state-

ments x:A, such that the subjects of the statements (the sockets) are distinct. We write
Γ, x:A for Γ∪{x:A}. When writing a context as Γ, x:A, we indicate that either Γ is not
defined on x or contains the same statement x:A. We write Γ\x for the context from
which the statement concerning x, if any, has been removed.

Contexts of plugs ∆, and the notations α:A,∆ and ∆\α are defined in a similar way.
iii) A pair 〈Γ;∆〉 is usually referred to simply as a context, and is a shorthand for the sequent

Γ 
 ∆.

The notation Γ 
 ∆ will still usually be used when discussing sequents.

Definition 3.2 (Typing for X ) i) Type judgements are expressed via a ternary relation P ··· Γ 
 ∆,
where Γ is a context of sockets and ∆ is a context of plugs, and P is an X -term. We say
that P is the witness of this judgement.

ii) Type assignment is defined by the following sequent calculus:

(cap) : 〈y.α〉 ··· Γ,y:A 
 α:A,∆ (med) :
P ··· Γ 
 α:A,∆ Q ··· Γ, x:B 
 ∆

Pα̂ [y] x̂Q ··· Γ,y:A→B 
 ∆

(exp) :
P ··· Γ, x:A 
 α:B,∆

x̂Pα̂·β ··· Γ 
 β:A→B,∆
(cut) :

P ··· Γ 
 α:A,∆ Q ··· Γ, x:A 
 ∆

Pα̂ † x̂Q ··· Γ 
 ∆

We write P ··· Γ 
 ∆ if there exists a derivation that has this judgement in the bottom
line.

Notice that, in P ··· Γ 
 ∆, Γ and ∆ carry the types of the free connectors in P, as unordered
sets. By the Curry-Howard correspondence, P represents a proof of the sequent Γ 
 ∆, so P is
actually a witness to this sequent being derivable in the logic. Moreover, there is no notion of
a single type for P itself, instead the derivable statement shows the consistency between the
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free connectors of P.
It is important to note that the typing rules include a notion of implicit contraction (just

as the original sequent rules do); if a new statement is introduced on the bottom line of a
rule, but it was already present in the context, then it is simply merged. We do not consider
duplicate statements, as we consider contexts to be unordered sets.

We have the following result:

Theorem 3.3 (Witness Reduction [1]) If P ··· Γ 
 ∆, and P → Q, then Q ··· Γ 
 ∆.

Also, the standard notion of Curry type assignment on lambda terms and the notion of type
assignment on X defined above are strongly linked:

Theorem 3.4 ([1]) If Γ 
λ M : A, then ��M��α
λ ··· Γ 
 α:A.

In [2] a notion of principal contexts (principal typings, in the language of [12]) is defined
by providing an algorithm pC that, given an X -term P, returns a context 〈Γ;∆〉, with the
following properties:

Theorem 3.5 (Soundness and Completeness of pC) i) Soundness: If pC (P) = 〈Γ;∆〉, then
P ··· Γ 
 ∆.

ii) Completeness: If P ··· Γ 
 ∆, then there exist Γp and ∆ p, and a substitution S such that pC (P) =
〈Γp;∆ p〉, and (S Γp) ⊆ Γ and (S ∆ p) ⊆ ∆.

4 System F in X
In this section, we will examine the System F approach to polymorphism, and how it may be
incorporated into the X -calculus. We will present System F, and show it can be expressed in
an X setting, by giving an explicit encoding into a variant of the X -calculus. We will show
that typings and reductions are preserved by this encoding.

4.1 System F

System F (also known as the Polymorphic λ-calculus) was invented independently by Jean-
Yves Girard [6] and John C. Reynolds [10]. We will give here a short overview of its main
definitions, based largely on those of [5].

Definition 4.1 (System F Types) The types of System F (ranged over by A, B) are defined over
an infinite set of atomic types (ranged over by ϕ), and one of type variable-symbols (ranged
over by X,Y), in the following way:

A, B ::= ϕ | X | A→B | ∀X.A

A type is well-formed if and only if it contains no free type variable-symbols (i.e. every such
symbol X appears under a ∀X binder). It is useful to consider types modulo some kind of
alpha-conversion, for example we would like to identify the types ∀X.(X→X) and ∀Y.(Y→Y).
From here on we will assume this.

Definition 4.2 (System F) The terms of System F (à la Church) are defined over an infinite set
of typed term variable-symbols, {xA,yB, . . .}, where A, B can be any System F type. They are
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defined by the following syntax:

M, N ::= xA | λxA.M1 | MN | Λϕ.M2 | MA

1: if xB appears free in M, then B = A.
2: ϕ does not appear in the type of a free term variable of M.

The syntax as described above is in fact rather too liberal; a notion of well-formed terms will
be employed, which insists that terms must have a well-formed type. It is simple to derive
the type of a particular System F term (unique, modulo alpha conversion) from the type
information within the syntax. We will write M:F A to denote that A is the type of the term
M.

Definition 4.3 (Type Derivation in System F) The procedure of type derivation is defined as
follows:

(Ax)
xA:F A

M:FB
(→I)

λxA.M:FA→B

M:FA→B N:FA
(→E)

(MN):FB

M:F A
(∀I)

Λϕ.M:F∀X.A[X/ϕ]

M:F∀X.A
(∀E)

(MB):FA[B/X]

For example, we would not consider the term (xAyA) to be well-formed, since (according to
the rules above) it does not have a type. In addition, we would not consider the term λxX.xX

to be well-formed (its type is X→X where X is free). As an example of a well-formed term,
the identity function would be represented in System F by the term Λϕ.λxϕ.xϕ, which has the
type ∀X.(X→X). From here onwards we will assume terms are well-formed unless otherwise
stated.

Definition 4.4 (System F Reductions) There are two reduction rules:

(λxA.M) N →F M[N/xA ]
(Λϕ.M) A →F M[A/ϕ]

In general, we will write →F for the reflexive, transitive, compatible closure of the relation
generated by these rules.

System F à la Church possesses a Curry-Howard correspondence with the ‘∀,→’-fragment
of Intuitionistic Natural Deduction. Since each term carries only one type, the correspondence
between terms and proofs is in fact one-to-one.

To illustrate the polymorphism in this system, we can find a typeable term analogous with
the lambda term (λz.zz)(λx.x). The term we would use is

(λz∀Z.(Z→Z).Λϕ1.((z∀Z.(Z→Z) (ϕ1→ϕ1))(z∀Z.(Z→Z) ϕ1)))(Λϕ2.λxϕ2 .xϕ2)

4.2 Typed Polymorphic X
One possible method of introducing polymorphism to X is to go back to the sequent calculus
rules, and encode the quantifier rules there into the syntax of a typed version of X . This
gives typed X -terms which naturally carry polymorphic types. This approach is analogous to
that of System F, where the original implicative calculus (typed λ-calculus) is extended with
representations of the ‘∀’ rules.

The ∀-rules from the sequent calculus are as follows:
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Γ, A[B/X] 
 ∆
(∀L)

Γ,∀X.A 
 ∆

Γ 
 A,∆
(∀R)∗

Γ 
 ∀X.A[X/ϕ],∆

* if ϕ does not occur in Γ,∆.
Notice that (as is typical of the sequent calculus rules) quantifiers are only introduced (and

not eliminated), but may be introduced on the left of a sequent (which approximately corre-
sponds to elimination in a Natural Deduction setting).

We introduce two new terms, representing the rules (∀L) and (∀R), and give a typed
version of the existing syntax.

Definition 4.5 (Typed Polymorphic X ) The terms of Typed Polymorphic X (hereafter de-
noted by X ∀) are defined by the following syntax:

P, Q ::= 〈xA.αA〉 | ŷAPβ̂B · αA→B | Pβ̂A [yA→B] x̂BQ
| Pα̂A † x̂AQ | Pα̂A�

ϕ
β∀X.A[X/ϕ] (∗) | y∀X.A�

B
x̂A[B/X]Q

(∗) ϕ does not appear in the type of a free connector of P, except (possibly) αA.

The notation � is chosen to indicate the generalisation of the output α, whereas the symbol �
denotes the corresponding instantiation. Although instantiation is really a ‘Natural Deduction
way’ of considering this mechanism (where there is an elimination rule to do the job), the
concept still makes sense in reading the term from left to right, since this means reading the
(∀L) rule from the bottom upwards.

Notice that no process of derivation is required in determining the type (context) of an X∀

term - the context may be immediately formed by taking a statement for each free connec-
tor in the term, with the type it has there. This is because outputs are labelled as well as
inputs, so all of the pertinent information is present in the term. For example, the X ∀ term
ŷA〈xB.βB〉β̂B ·αA→B would be given the context x:B 
 α:A→B. We write P ··· Γ 
∀ ∆ to indicate
that Γ 
 ∆ is the context for the X ∀ term P.

It is straightforward to convert the original X reduction rules into their typed versions. The
extra rules required to deal with the new syntax constructs are given in Appendix A. We will
write →∀ for the reduction relation for X∀.

We have the following result:

Theorem 4.6 (Witness Reduction for X ∀) For all X ∀-terms P, Q, if P ··· ΓP 
∀ ∆P, and P→∀ Q
and Q ··· ΓQ 
∀ ∆Q, then ΓQ ⊆ ΓP and ∆Q ⊆ ∆P.

So our new formulation of the calculus is well-behaved with respect to the type-assignment
proposed.

It is possible to encode System F à la Church into X∀, just as X can encode the original
λ-calculus. The interpretation is based on the translation from Natural Deduction to Sequent
Calculus proofs, as originally given in [4].

The interpretation function takes as input a System F term and a plug α (used to represent
the output in the resulting X ∀ term) and returns the corresponding X ∀ term. It makes use of
the derivation of the (unique) type of a System F term, of Definition 4.3.

Definition 4.7 (Encoding System F à la Church) The interpretation of System F into X ∀,
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via the plug α is defined recursively by:

��xA��α
∀ = 〈xA.αA〉

��λxA.M��α
∀ = x̂APβ̂B · αC

where M :F B
P = ��M��β

∀

C = A→B

��Λϕ.M��α
∀ = Pβ̂A�

ϕ
αB

where M :F A
P = ��M��β

∀

B = ∀X.A[X/ϕ]

��MN��α
∀ = Pβ̂C † x̂C(Qγ̂A [xC] ŷB〈yB.αB〉)

where M :F A→B
N :F A
P = ��M��β

∀

Q = ��N��γ
∀

C = A→B
��MB��α

∀ = Pβ̂C † x̂C(xC�
B

ŷD〈yD.αD〉)
where M :F ∀X.A

P = ��M��β
∀

C = ∀X.A
D = A[B/X]

The following results show that we can simulate System F faithfully.

Theorem 4.8 i) If M →F N then ��M��α
∀→∀ ��N��α

∀.
ii) If M:F A then there exists a Γ such that ��M��α

∀ ··· Γ 
∀ α:A.

4.3 Untyped Polymorphic X
As an alternative to X ∀, it is possible to work in the style of System F à la Curry and deal
with the original syntax of X while allowing polymorphism to be represented only in the
type system. This is essentially achieved by employing System F types, and by adding the
following two type assignment rules to those standard for X .

P ··· Γ, x:A[B/X] 
p ∆
(∀L)

P ··· Γ, x:∀X.A 
p ∆

P ··· Γ 
p α:A,∆
(∀R)∗

P ··· Γ 
p α:∀X.A[X/ϕ],∆

*if ϕ does not occur in Γ,∆.

We encode System F à la Curry by the usual encoding of the λ-calculus syntax into X , as
given in Definition 2.5. This encoding respects typeability and reductions.

5 Shallow Polymorphism

In this section, we will examine the style of polymorphism commonly associated with ML,
that of shallow polymorphism. We will show that a shallow polymorphic type assignment can
be naturally defined on X -terms without the need to extend the syntax (in contrast to the
case of the λ-calculus). We will show that ML can be encoded into X , and that using this
new type-assignment, typings and reductions are preserved. We will discuss the notions of
principal types and typings [12] with respect to our shallow polymorphic version of X , and
present a type inference algorithm in the style of the algorithm W of [8].

ML [8] is a calculus based upon the λ-calculus, which uses a different approach to System
F for admitting polymorphism. To obtain decidability of type assignment, it permits only
shallow polymorphism, which means that types are allowed to contain the ∀ symbol only on the
outside of their structure.

The syntax of the λ-calculus is extended the construct let x = M in N which (along with its
typing rule) is designed to give a workaround for the situation when an application (λx.N)M
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would be untypeable, whereas the reduct N[M/x] can be typed. The typing rule for let
allows M to be given a shallow polymorphic type, and for this type to be used for x when
trying to derive a type for N. This way, it may be that several instances of the polymorphic
type are used for different occurrences of x within N.

Definition 5.1 (ML Expressions) The set Lml of ML expressions is defined by:

M, N ::= x | MN | λx.M | Fix g.M | let x = M in N

The construct Fix g.M is included to allow recursion in the calculus. For simplicity in our
discussions of polymorphism we choose to study the subset of ML expressions without Fix,
and from hereon will consider ML expressions only within this subset.

Definition 5.2 (ML Reductions) The reduction rules in ML are as follows:

(λx.N)M →ML N[M/x]
(let x = M in N) →ML N[M/x]

The typing rules for let provide the polymorphism in this system - it is allowed for each
of the occurrences of x in N to be given a different instance of a polymorphic type found for
M. This is in contrast to the usual way in which the term (λx.N)M would be treated, which
would allow only one Curry type to be used for the variable x.

Definition 5.3 (Generic Types [8]) The set of generic types is built from the usual Curry types
by allowing ∀ quantifiers to be built on the outside. We will use A, B to range over the usual
Curry types, and ψ to range over generic types, as defined below.

A ::= ϕ | X | (A → B) Curry types
ψ ::= A | (∀X.ψ) generic types

As in the discussions in the previous section, we distinguish between atomic types ϕ and type
variable symbols X (whereas Milner chooses not to), and again consider only types with no
free type-variable symbols to be well-formed.

Definition 5.4 ([3]) ML-type assignment and ML-derivations are defined by the following de-
duction system.

(ax) : (x:ψ ∈ Γ)
Γ 
ml x : ψ (let) :

Γ 
ml M1 : ψ Γ, x:ψ 
ml M2 : B

Γ 
ml (let x = M1 in M2) : B

(→I) :
Γ, x:A 
ml M : B

Γ 
ml λx.M : A→B
(→E) :

Γ 
ml M1 : A→B Γ 
ml M2 : A

Γ 
ml M1 M2 : B

(∀I) :
Γ 
ml M : ψ

(*)
Γ 
ml M : ∀X.ψ[X/ϕ]

(∀E) :
Γ 
ml M : ∀X.ψ

Γ 
ml M : ψ[B/X]

*If ϕ is not free in Γ.

Notice that generic types ψ may not be used in the (→I) or (→E) rules - this reflects the
fact that ∀-symbols may not appear inside an arrow type. However, when x is a variable not
occurring under an abstraction, the rules allow more freedom - if x has a polymorphic type in
the basis then the use of the (ax) and (∀E) rules allows a different instance of this type to be
chosen each time x is used.

Although ML admits less polymorphism than System F does, it has the advantage of being
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very practical - not only is type assignment in ML decidable (in contrast to System F), but it
has a principal type property. Milner presents an algorithm (called W) that takes as input
a pair of (basis, term) and returns a pair of (substitution, type), representing the most general
typing for the term (if one exists) using a substitution instance of the basis.

6 ML in X
The key to the use of polymorphism in ML is in the let construct, which is interpreted as
a substitution both syntactically (according to its reduction rule) and semantically (see [8]).
The polymorphism present in the (let)-rule essentially gives a way of typing the substitution
about to take place, such that the multiple occurrences of the name to replace need not all
be typed in the same way. The let-construct is a necessary extension to the syntax for a
shallow polymorphic approach (short of allowing polymorphism to be used directly with
abstractions and applications, which leads to System F), since there is nothing in the syntax
of the λ-calculus to represent these substitutions. In the X -calculus, there is a construct
already present which can be seen to represent substitution. The cut Pα̂ † x̂Q can, depending
on the structure of P and Q, be seen to represent the substitution of P for the x’s in Q, or
symmetrically the substitution of Q for α’s in P.

A subtle problem occurs in defining a shallow polymorphic type assignment, which moti-
vates a relaxation of Definition 3.1 to allow multiple statements in a context with the same
subject. The main reason for this is in the manipulation of quantified types, when we wish to
take several instances of a type in the same derivation. It should be noted that in a sequent
calculus setting, instances are taken on the same side of the sequent as the quantified type ap-
peared (see the ∀L rule of Definition 6.1 below). We wish many such instances to be available
(to make full use of the polymorphism in the system), and this causes us a difficulty, since all
must be types for the same connector. For example the (med)-rule

(med) :
P ··· Γ 
 α:A,∆ Q ··· Γ, x:B 
 ∆

Pα̂ [y] x̂Q ··· Γ,y:A→B 
 ∆

(which adds a type for y to the context Γ) would be expressed awkwardly: assume y:C already
occurs in Γ, then, given the polymorphic character of types, we can accept that A→B and C
are different, as long as they are all instances of the same quantified type. In other words, we
can assume that y:∀ϕ.D ∈ Γ, and ask that A→B can be obtained from D by instantiation. This
would give a complicated side-condition to the rule.

Instead, we choose to relax Definition 3.1, in that we now allow multiple statements in a
context with the same subject. However, in order to retain soundness, we insist that whenever
the rules (exp), (med) and (cut) are employed, the connectors mentioned in the top line of the
rule (which are bound in the construction of the respective terms) have a unique statement
in the rule. This enforces that all the types for a connector disappear from the contexts when
the connector is bound. We also insist that a derivation is not complete unless the subjects
of the statements in the final sequent are unique (so the relaxation is only usable temporarily
within a derivation). As a consequence of these restrictions, if several statements with the
same subject (but different types) are used in a derivation, it will be necessary for the ∀ rules
to be applied until the types of these statements match, and they are contracted into a single
statement. Until this takes place, it will be impossible to either bind the connective concerned,
or complete the derivation.

Definition 6.1 (Shallow Polymorphic Type Assignment for X ) The shallow polymorphic
type assignment for X is defined by the following rules (where ψ represents a generic type of
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Definition 5.3):

(cap) : 〈y.α〉 ··· Γ,y:ψ 
sp α:ψ,∆ (med) :
P ··· Γ 
sp α:A,∆ Q ··· Γ, x:B 
 ∆

(2)
Pα̂ [y] x̂Q ··· Γ,y:A→B 
sp ∆

(exp) :
P ··· Γ, x:A 
sp α:B,∆

(1)
x̂Pα̂·β ··· Γ 
sp β:A→B,∆

(cut) :
P ··· Γ 
sp α:ψ,∆ Q ··· Γ, x:ψ 
sp ∆

(3)
Pα̂ † x̂Q ··· Γ 
sp ∆

(∀L) :
P ··· Γ, x:ψ[B/X] 
sp ∆

P ··· Γ, x:∀X.ψ 
sp ∆
(∀R) :

P ··· Γ 
sp α:ψ,∆
(4)

P ··· Γ 
sp α:∀X.ψ[X/ϕ],∆

1: if x �∈Γ and α �∈∆. 2,3: if x �∈Γ and α �∈∆. 4: if ϕ does not occur in Γ,∆.

We include a notion of implicit contraction in the above rules (as for the type system pre-
sented in Section 3), so that if a derivation rule introduces a statement which was already
present in the context, it is simply merged.

Notice that generic types are not used in the (exp) or (med) rules. This enforces the restric-
tion that the ∀-symbol may not appear to the left of an ‘→’ in a type, and is similar to the way
the (→I) and (→E) rules are treated in ML.

We have the following result:

Theorem 6.2 (Witness Reduction) If P ··· Γ 
sp ∆, and P → Q, then Q ··· Γ 
sp ∆.

Using our previous observation concerning the fact that let and a cut both explicitly repre-
sent a substitution, we define an encoding of the language of ML into X .

Definition 6.3 (Encoding ML in X )

��x��α
ML = 〈x.α〉

��λx.M��α
ML = x̂��M��β

MLβ̂·α
��MN��α

ML = ��M��β
MLβ̂ † ŷ(��N��γ

MLγ̂ [y] ẑ〈z.α〉)
��let x = M in N��α

ML = ��M��β
MLβ̂ † x̂��N��α

ML

where y,z, β,γ are fresh connectors.

We have the following results for our encoding:

Theorem 6.4 i) ��M��β
MLβ̂ † x̂��N��α

ML → ��(N[M/x])��α
ML.

ii) If M →ML N then ��M��α
ML → ��N��α

ML.
iii) If Γ 
ml M : ψ then ��M��β

ML ··· Γ 
sp β:ψ.

In fact, the converse of part (iii) also holds if we restrict the right-context in our X typing
judgement to contain only a statement for β (any other information would be redundant since
β is the only free plug in such a term). This implies that the possible typings for M in ML
and ��M��β

ML in shallow-polymorphic X are essentially the same. Since Wells proves in [12]
that ML does not in general have principal typings (i.e. when the basis of assumptions is
unspecified, there is no pair of basis and type which represents all other possible typings),
this immediately implies that the same is the case of our shallow polymorphic version of X .

On the other hand, it is well known that a notion of principal types for ML terms exists (as
presented by Milner), with respect to a fixed basis Γ. We can define principal typings in our
shallow polymorphic version of X , with respect to a given context 〈Γ;∆〉 which gives a type
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to the free connectors in a term. Notice that such a context provides types for the outputs as
well as the inputs.

We define an algorithm, based on the W algorithm of [3], which takes as input an X -term
and a context 〈Γ;∆〉, and produces as output a substitution S, giving the most general solution
to the problem of typing the term with a (substitution) instance of 〈Γ;∆〉. We require that no
types in ∆ contain the ∀ symbol - the intention is that Γ provides any known licence to use
polymorphism in the type search. In defining this algorithm (which we will name WX ), we
require the following definition.

Definition 6.5 (∀-closure) The ∀-closure of type ψ with respect to a context 〈Γ;∆〉, is defined
by: ∀-closure ψ 〈Γ;∆〉= ∀X1 . . .∀Xn.(ψ[Xi/ϕi]) where ϕ1, . . . , ϕn are the atomic types occurring
in ψ but not in 〈Γ;∆〉.

We are now in a position to define our type-inference algorithm.

Definition 6.6 (WX ) The procedure WX :: 〈X , 〈Γ;∆〉〉 → S is defined by:

WX (x̂Pα̂·β, 〈Γ;∆〉) = S2◦S1
where ϕ1 = fresh

ϕ2 = fresh
S1 = WX (P, 〈Γ∪x:ϕ1;∆∪α:ϕ2〉
A = (S1 ϕ1)
B = (S1 ϕ2)
C = instance β (S1 ∆)

S2 = unify C A→B

WX (Pα̂ [y] x̂Q, 〈Γ;∆〉) = S3◦S2◦S1
where ϕ1 = fresh

ϕ2 = fresh
S1 = WX (P, 〈Γ;∆∪α:ϕ1〉)
S2 = WX (Q, (S1 〈Γ∪x:ϕ2;∆〉))
A = (S2◦S1 ϕ1)
B = (S2◦S1 ϕ2)
C = instance y (S2◦S1 Γ)

S3 = unify C A→B

WX (〈x.α〉, 〈Γ;∆〉) = S
where A = instance x Γ

B = instance α ∆
S = unify A B

WX (Pα̂ † x̂Q, 〈Γ;∆〉) = S2◦S1
where ϕ = fresh

S1 = WX (P, 〈Γ;∆∪α:ϕ〉)
ψ = ∀-closure (S1 ϕ) (S1 〈Γ;∆〉)

S2 = WX (Q, 〈(S1 Γ)∪x:ψ; (S1 ∆)〉)
where instance is a mapping that takes the type associated to the given connective in the given
context and replaces all ∀-bound type-variables by fresh atomic types. Note that since we
prohibit ∆ from containing the ∀ symbol, our uses of instance on a plug α merely extract the
type for α from the context.

In order to reason about this context being truly principal, we need a notion of ‘more
general’ for quantified types.

Definition 6.7 (Generic Instance) A type scheme ψ = ∀X1 . . .∀Xm.A has a generic instance
ψ′ = ∀Y1 . . .∀Yn.A′ if there exists a type B such that:

i) There exist types B1, . . . , Bm with B = A[Bi/Xi].
ii) There exist atomic types ϕ1, . . . , ϕn such that A′ = B[Yi/ϕi], and the ϕi are not free in ψ.

We write ψ′ � ψ in this case, read “ψ′ is a generic instance of ψ”.
We extend this notion to contexts, by defining � on contexts to be the least preorder such
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that:
ψ′ � ψ ⇒ 〈Γ;∆,α:ψ′〉 � 〈Γ;∆,α:ψ〉
ψ′ � ψ ⇒ 〈Γ, x:ψ;∆〉 � 〈Γ, x:ψ′;∆〉

∀-closure is extended to right-contexts by taking the closure of each statement.

Definition 6.8 (∀-closure for Contexts) We define the closure of a context 〈Γ;∆〉 by

closure 〈Γ;∆〉= 〈Γ;∆′〉
where ∆′ = {α:ψ′ | α:ψ ∈ ∆ and ψ′ = ∀-closure ψ 〈Γ;∆\α〉}

We can now define our notion of principal contexts for shallow polymorphic X , by running
the algorithm WX , applying the resulting substitution, and taking the closure of the result.

Definition 6.9 (Principal Contexts for Shallow Polymorphic X ) Given any X -term P, and
a context 〈Γ;∆〉 which provides types for exactly the free connectors in P, we define the shallow
polymorphic principal context for P with respect to a 〈Γ;∆〉 by:

sppc (P, 〈Γ;∆〉) = closure ((S 〈Γ;∆〉))
where S = WX (P, 〈Γ;∆〉)

Notice that sppc may or may not succeed, depending on whether the call to WX does. The
following result justifies this definition.

Theorem 6.10 (Soundness and Completeness of sppc) Given an X -term P and an initial con-
text 〈Γ1;∆1〉,

i) If sppc(P, 〈Γ1;∆1〉) succeeds and 〈Γ;∆〉= sppc(P, 〈Γ1;∆1〉) then P ··· Γ 
sp ∆.
ii) If 〈Γ2;∆2〉 is an instance of 〈Γ1;∆1〉 (i.e. can by obtained from the latter by substitution), and is

such that P ··· Γ2 
sp ∆2 then:
a) sppc(P, 〈Γ1;∆1〉) succeeds.
b) If 〈Γ;∆〉 = sppc(P, 〈Γ1;∆1〉) then there is a substitution S such that 〈Γ2;∆2〉 � (S 〈Γ;∆〉).

In summary, we have shown that in our shallow polymorphic formulation of X we can
faithfully simulate ML reductions, we have decideable type-assignment (at least as strong as
that of ML) and principal typings with respect to a fixed basis of assumptions (in the style of
W ). While we retain all these useful properties, our calculus is more general than ML because
of its basis on Classical Sequent Calculus. We can give typeable programs which have no
analogue in ML (for example, we can give a program that has Pierce’s Law as a type), and
can treat terms with multiple outputs. Furthermore, since cut elimination is well-known to
be non-confluent, we can simulate non-determinism, a feature not present in ML. The precise
computational content of these various extensions is the subject of ongoing research.

7 Future Work

We are interested in investigating further useful programming features in the context of X ,
like recursion.

At present, we only model polymorphism in the same style that ML does, in generalising
an output on the left of a cut and then taking instances for the various inputs on the right.
Since X is a very symmetric calculus, a natural idea to explore is the use of polymorphism
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in the opposite direction: to generalise the input of the right-hand term, and take instances
for the (possibly several) outputs on the left. In logical terms, this can be seen as introducing
the ∃ connective to the system, and investigations into a system based on this observation are
ongoing. While a ‘dual’ notion of polymorphism is fairly straightforward to define (where
we allow ∃ in the type system instead of ∀), it is more complicated to allow both kinds of
polymorphism at once. This is a promising line of future work, and is expected to yield a
very powerful decideable type system for X .
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Appendix A New Reduction Rules for X ∀

The new key logical rule which is introduced, is the following:

(poly) : (Pα̂A�
ϕ

β∀X.A[X/ϕ])β̂∀X.A[X/ϕ] † ŷ∀X.A[X/ϕ](y∀X.A[X/ϕ]�
B

x̂A[B/ϕ]Q)

→ (P[B/ϕ])α̂A[B/ϕ] † x̂A[B/ϕ]Q if β �∈ fp(P),y �∈ fs(Q)

This rule is complex, more so than the existing logical rules, because of the need to account
for the instantiation of the polymorphic type involved. It is necessary for a type substitution
to be made throughout P, in order for the type of the output α to be able to agree with the
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type of the input x. This is where the instantiation happens - once a copy of P has been
propagated to meet a single term Q with which it can communicate, an appropriate instance
of P is taken. Of course, many such copies of P may have been made by this stage, and it
is the polymorphic type for α which allows each of these to be instantiated in different (and
possibly non-unifiable) ways.

We omit the type information from the following rules for brevity. However, except in the
case of the poly rule already described, the types are not necessary for understanding the
operation of the rules.

Logical Rules

(gen) : (Pβ̂�α)α̂ † x̂〈x.γ〉 → Pβ̂�γ α �∈ fp(P)
(inst) : 〈y.α〉α̂ † x̂(x�ẑP) → y�ẑP x �∈ fs(P)
(poly) : (Pβ̂�α)α̂ † x̂(x�ŷQ) → Pβ̂ † ŷQ α �∈ fp(P), x �∈ fs(Q)

Activation Rules
(act-l) : Pα̂ † x̂Q → Pα̂ † x̂Q if P does not introduce α
(act-r) : Pα̂ † x̂Q → Pα̂ † x̂Q if Q does not introduce x

where:

(P introduces x:) : P = Qβ̂ [x] ŷR and x �∈ fs(Q, R), or P = x�ŷQ and x �∈ fs(Q), or P = 〈x.α〉.
(P introduces α:) : P = x̂Qβ̂·α and α �∈ fp(Q), or P = Qβ̂�α and α �∈ fp(Q), or P = 〈x.α〉.

Left Propagation

(† gen-outs) : (Qβ̂�α)α̂ † x̂P → ((Qα̂ † x̂P)β̂�γ)γ̂ † x̂P, γ fresh
(† gen-ins) : (Qβ̂�γ)α̂ † x̂P → (Qα̂ † x̂P)β̂�γ, γ �= α

(† inst) : (y�ẑQ)α̂ † x̂P → y�ẑ(Qα̂ † x̂P)

Right Propagation

( †gen) : Pα̂ † x̂(Qβ̂�γ) → (Pα̂ † x̂Q)β̂�γ
( †inst-outs) : Pα̂ † x̂(x�ŷQ) → Pα̂ † ẑ(z�ŷ(Pα̂ † x̂Q)), z fresh
( †inst-ins) : Pα̂ † x̂(z�ŷR) → z�ŷ(Pα̂ † x̂R), z �= x


